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Abstract In this paper, we propose in a Hilbertian setting a second-order time-
continuous dynamic system with fast convergence guarantees to solve structured
convex minimization problems with an affine constraint. The system is associ-
ated with the augmented Lagrangian formulation of the minimization problem.
The corresponding dynamics brings into play three general time-varying param-
eters, each with specific properties, and which are respectively associated with
viscous damping, extrapolation and temporal scaling. By appropriately adjusting
these parameters, we develop a Lyapunov analysis which provides fast convergence
properties of the values and of the feasibility gap. These results will naturally pave
the way for developing corresponding accelerated ADMM algorithms, obtained by
temporal discretization.
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1 Introduction

Our paper is part of the active research stream that studies the relationship be-
tween continuous-time dissipative dynamical systems and optimization algorithms.
From this perspective, damped inertial dynamics offer a natural way to acceler-
ate these systems. An abundant literature has been devoted to the design of the
damping terms, which is the basic ingredient of the optimization properties of
these dynamics. In line with the seminal work of Polyak on the heavy ball method
with friction [45,46], the first studies have focused on the case of a fixed viscous
damping coefficient [1,17,2]. A decisive step was taken in [52] where the authors
considered inertial dynamics with an asymptotic vanishing viscous damping coef-
ficient. In doing so, they made the link with the accelerated gradient method of
Nesterov [42,41,25] for unconstrained convex minimization. This has resulted in a
flurry of research activity; see e.g. [7,8,9,12,11,13,18,20,21,23,3,27,31,39,51,53].

In this paper, we consider the case of affinely constrained convex structured
minimization problems. To bring back the problem to the unconstrained case,
there are two main ways: either penalize the constraint (by external penalization
or an internal barrier method), or use (augmented) Lagrangian multiplier methods.

Accounting for approximation/penalization terms within dynamical systems
has been considered in a series of papers; see [16,29] and the references therein.
It is a flexible approach which can be applied to non-convex problems and/or ill-
posed problems, making it a valuable tool for inverse problems. Its major drawback
is that in general, it requires a subtle tuning of the approximation/penalization
parameter.

Here, we will consider the augmented Lagrangian approach and study the
convergence properties of a second-order inertial dynamic with damping, which
is attached to the augmented Lagrangian formulation of the affinely constrained
convex minimization problem. The proposed dynamical system can be viewed as
an inertial continuous-time counterpart of the ADMM method originally proposed
in the mid-1970s and which has gained considerable interest in the recent years,
in particular for solving large-scale composite optimization problems arising in
data science. Among the novelties of our work, the dynamics we propose involves
three parameters which vary in time. These are associated with viscous damping,
extrapolation, and temporal scaling. By properly adjusting these parameters, we
will provide fast convergence rates both for the values and the feasibility gap.
The balance between the viscosity parameter (which tends towards zero) and the
extrapolation parameter (which tends towards infinity) has already been developed
in [54], [36] and [14], though for different problems. Temporal scaling techniques
were considered in [6] for the case of convex minimization without affine constraint;
see also [10,12,15]. Thus, another key contribution of this paper is to show that
the temporal scaling and extrapolation can be extended to the class of ADMM-
type methods with improved convergence rates. Working with general coefficients
and in general Hilbert spaces allows us to encompass the results obtained in the
above-mentioned papers and to broaden their scope.

It has been known for a long time that the optimality conditions of the (aug-
mented) Lagrangian formulation of convex structured minimization problems with
an affine constraint can be equivalently formulated as a monotone inclusion prob-
lem; see [50,48,49]. In turn, the problem can be converted into finding the zeros of a
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maximally monotone operator, and can therefore be attacked using inertial meth-
ods for solving monotone inclusions. In this regard, let us mention the following
recent works concerning the acceleration of ADMM methods via continuous-time
inertial dynamics:

• In [26], the authors proposed an inertial ADMM by making use of the iner-
tial version of the Douglas-Rachford splitting method for monotone inclusion
problems recently introduced in [28], in the context of concomitantly solving
a convex minimization problem and its Fenchel dual; see also [34,43,44,47] in
the purely discrete setting.

• Attouch [5] uses the maximally monotone operator which is associated with the
augmented Lagrangian formulation of the problem, and specializes to this op-
erator the inertial proximal point algorithm recently developed in [19] to solve
general monotone inclusions. This gives rise to an inertial proximal ADMM
algorithm where an appropriate adjustment of the viscosity and proximal pa-
rameters gives provably fast convergence properties, as well as the convergence
of the iterates to saddle points of the Lagrangian function. This approach is in
line with [22] who considered the case without inertia. But this approach fails
to achieve a fully split inertial ADMM algorithm.

Contents In Section 2, we introduce the inertial second-order dynamical system
with damping (coined (TRIALS)) which is attached to the augmented Lagrangian
formulation. In Section 3, which is the main part of the paper, we develop a Lya-
punov analysis to establish the asymptotic convergence properties of (TRIALS).
This gives rise to a system of inequalities-equalities which must be satisfied by
the parameters of the dynamics. From the energy estimates thus obtained, we
show in Section 4 that the Cauchy problem attached to (TRIALS) is well-posed,
i.e. existence and possibly uniqueness of a global solution. In Section 5, we exam-
ine the case of the uniformly convex objectives. In Section 6, we provide specific
choices of the system parameters that satisfy our assumptions and achieve fast con-
vergence rates. This is then supplemented by preliminary numerical illustrations.
Some conclusions and perspectives are finally outlined in Section 7.

2 Problem statement

Consider the structured convex optimization problem:

min
x∈X , y∈Y

F (x, y) := f(x) + g(y) subject to Ax+By = c, (P)

where, throughout the paper, we make the following standing assumptions:
X ,Y,Z are real Hilbert spaces;

f : X → R, g : Y → R are convex functions of class C1;

A : X → Z, B : Y → Z are linear continuous operators, c ∈ Z;

The solution set of (P) is non-empty.

(HP)

Throughout, we denote by 〈·, ·〉 and ‖·‖ the scalar product and corresponding norm
associated to any of X ,Y,Z, and the underlying space is to be understood from
the context.
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2.1 Augmented Lagrangian formulation

Classically, (P) can be equivalently reformulated as the saddle point problem

min
(x,y)∈X×Y

max
λ∈Z

L(x, y, λ), (1)

where L : X × Y × Z → R is the Lagrangian associated with (1)

L(x, y, λ) := F (x, y) + 〈λ,Ax+By − c〉. (2)

Under our standing assumption (HP), L is convex with respect to (x, y) ∈ X × Y,
and affine (and hence concave) with respect to λ ∈ Z. A pair (x?, y?) is optimal
for (P), and λ? is a corresponding Lagrange multiplier if and only if (x?, y?, λ?) is
a saddle point of the Lagrangian function L, i.e. for every (x, y, λ) ∈ X × Y × Z,

L(x?, y?, λ) ≤ L(x?, y?, λ?) ≤ L(x, y, λ?). (3)

We denote by S the set of saddle points of L. The corresponding optimality
conditions read

(x?, y?, λ?) ∈ S ⇐⇒


∇xL(x?, y?, λ?) = 0

∇yL(x?, y?, λ?) = 0

∇λL(x?, y?, λ?) = 0

⇐⇒


∇f(x?) +A∗λ? = 0

∇g(y?) +B∗λ? = 0

Ax? +By? − c = 0

, (4)

where we use the classical notations: ∇f and ∇g are the gradients of f and g, A∗ is
the adjoint operator of A, and similarly for B. The operator ∇z is the gradient of
the corresponding multivariable function with respect to variable z. Given µ > 0,
the augmented Lagrangian Lµ : X × Y ×Z → R associated with the problem (P),
is defined by

Lµ(x, y, λ) := L(x, y, λ) +
µ

2
‖Ax+By − c‖2. (5)

Observe that one still has (x?, y?, λ?) ∈ S ⇐⇒


∇xLµ(x?, y?, λ?) = 0,

∇yLµ(x?, y?, λ?) = 0,

∇λLµ(x?, y?, λ?) = 0.

2.2 The inertial system (TRIALS)

We will study the asymptotic behaviour, as t→ +∞, of the inertial system:

(TRIALS): Temporally Rescaled Inertial Augmented Lagrangian System.


ẍ(t) + γ(t)ẋ(t) + b(t)∇xLµ

(
x(t), y(t), λ(t) + α(t)λ̇(t)

)
= 0

ÿ(t) + γ(t)ẏ(t) + b(t)∇yLµ
(
x(t), y(t), λ(t) + α(t)λ̇(t)

)
= 0

λ̈(t) + γ(t)λ̇(t)− b(t)∇λLµ
(
x(t) + α(t)ẋ(t), y(t) + α(t)ẏ(t), λ(t)

)
= 0,

for t ∈ [t0,+∞[ with initial conditions (x(t0), y(t0), λ(t0)) and (ẋ(t0), ẏ(t0), λ̇(t0)).
The parameters of (TRIALS) play the following roles:
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• γ(t) is a viscous damping parameter,
• α(t) is an extrapolation parameter,
• b(t) is attached to the temporal scaling of the dynamic.

In the sequel, we make the following standing assumption on these parameters:

γ, α, b : [t0,+∞[→ R+ are non-negative continuously differentiable functions. (HD)

Plugging the expression of the partial gradients of Lµ into the above system,
the Cauchy problem associated with (TRIALS) is written as follows, where we
unambiguously remove the dependence of (x, y, λ) on t to lighten the formula,



ẍ+ γ(t)ẋ+ b(t)
(
∇f(x) +A∗

[
λ+ α(t)λ̇+ µ(Ax+By − c)

])
= 0

ÿ + γ(t)ẏ + b(t)
(
∇g(y) +B∗

[
λ+ α(t)λ̇+ µ(Ax+By − c)

])
= 0

λ̈+ γ(t)λ̇− b(t)
(
A(x+ α(t)ẋ) +B(y + α(t)ẏ)− c

)
= 0

(x(t0), y(t0), λ(t0)) = (x0, y0, λ0) and

(ẋ(t0), ẏ(t0), λ̇(t0)) = (u0, v0, ν0).

(TRIALS)

If in addition to (HP), the gradients of f and g are Lipschitz continuous on
bounded sets, we will show later in Section 4 that the Cauchy problem associated
with (TRIALS) has a unique global solution on [t0,+∞[. Indeed, although the exis-
tence and uniqueness of a local solution follows from the standard non-autonomous
Cauchy-Lipschitz theorem, the global existence necessitates the energy estimates
derived from the Lyapunov analysis in the next section. The centrality of these
estimates is the reason why the proof of well-posedness is deferred to Section 4.
Thus, for the moment we take for granted the existence of classical solutions to
(TRIALS).

2.3 A fast convergence result

Our Lyapunov analysis will allow us to establish convergence results and rates
under very general conditions on the parameters of (TRIALS), see Section 3. In
fact, there are many situations of practical interest where such conditions are easily
verified, and which will be discussed in detail in Section 6. Thus for the sake of
illustration and reader convenience, here we describe an important situation where
convergence occurs with the fast rate O(1/t2).

Theorem 1 Suppose that the coefficients of (TRIALS) satisfy

α(t) = α0t with α0 > 0, γ(t) =
η + α0

α0t
, b(t) = t

1
α0
−2
,

where η > 1. Suppose that the set of saddle points S is non-empty and let (x?, y?, λ?) ∈
S . Then, for any solution trajectory (x(·), y(·), λ(·)) of (TRIALS), the trajectory
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remains bounded, and we have the following convergence rates:

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

1

t
1
α0

)
,

‖Ax(t) +By(t)− c‖2 = O
(

1

t
1
α0

)
,

− C1

t
1

2α0

≤ F (x(t), y(t))− F (x?, y?) ≤ C2

t
1
α0

,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(

1

t

)
.

where C1 and C2 are positive constants.

In particular, for α0 = 1
2 , i.e. no time scaling b ≡ 1, we have

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

1

t2

)
,

‖Ax(t) +By(t)− c‖2 = O
(

1

t2

)
,

−C1

t
≤ F (x(t), y(t))− F (x?, y?) ≤ C2

t2
.

For the ADMM algorithm (thus in discrete time t = kh, k ∈ N, h > 0), it
has been shown in [32,33] that the convergence rate of (squared) feasibility is
O
(

1
k

)
and that on |F (xk, yk) − F (x?, y?)| is O

(
1

k1/2

)
. These rates were shown to

be essentially tight in [32]. Our results then suggest than for α0 = 1
2 , a proper

discretization of (TRIALS) would lead to an accelerated ADMM algorithm with
provably faster convergence rates (see [37,38] in this direction on specific problem
instances and algorithms). These discrete algorithmic issues of (TRIALS) will be
investigated in a future work.

Again, for α0 = 1
2 , the O

(
1
t2

)
rate obtained on the Lagrangian is reminiscent of

the fast convergence obtained with the continuous-time dynamical version of the
Nesterov accelerated gradient method in which the viscous damping coefficient
is of the form γ(t) = γ0

t and the fast rate is obtained for γ0 ≥ 3; see [11,52].
With our notations this corresponds to γ0 = η+α0

α0
, and our choice α0 = 1

2 entails
γ0 = 2η+ 1 > 3. This corresponds to the same critical value as Nesterov’s but the
inequality here is strict. This is not that surprising in our context since one has to
handle the dual multiplier and there is an intricate interplay between γ and the
extrapolation coefficient α.

2.4 The role of extrapolation

One of the key and distinctive features of (TRIALS) is that the partial gradients
(with the appropriate sign) of the augmented Lagrangian function are not evalu-
ated at (x(t), y(t), λ(t)) as it would the case in a classical continuous-time system
associated to ADMM-type methods, but rather at extrapolated points. This new
property will be instrumental to allow for faster convergence rates, and it can be
interpreted from different standpoints: optimization, game theory, or control:
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• Optimization standpoint : in this field, this type of extrapolation was recently
studied in [14,36,54]. It will play a key role in the development of our Lyapunov
analysis. Observe that α(t)ẋ(t) and α(t)λ̇(t) point to the direction of future
movement of x(t) and λ(t). Thus, (TRIALS) involves the estimated future
positions x(t)+α(t)ẋ(t) and λ(t)+α(t)λ̇(t). Explicit discretization xk+αk(xk−
xk−1) and λk +αk(λk−λk−1) gives an extrapolation similar to the accelerated
method of Nesterov. The implicit discretization reads xk + αk(xk+1 − xk) and
λk + αk(λk+1 − λk). For αk = 1, this gives xk+1 and λk+1, which would yield
implicit algorithms with associated stability properties.

• Game theoretic standpoint : let us think about (x, y) and λ as two players play-
ing against each other, and shortly speaking, we identify the players with their
actions. We can then see that in (TRIALS), each player anticipates the move-
ment of its opponent. In the coupling term, the player (x, y) takes account of
the anticipated position of the player λ, which is λ(t)+α(t)λ̇(t), and vice versa.

• Control theoretic standpoint : the structure of (TRIALS) is also related to control
theory and state derivative feedback. By defining w(t) = (x(t), y(t), λ(t)) the
equation can be written in an equivalent way

ẅ(t) + γ(t)ẇ(t) = K(t, w(t), ẇ(t)),

for an operator K appropriately identified from (TRIALS) in terms of the
partial gradients of Lµ, α and b. In this system, the feedback control term K,
which takes the constraint into account, is not only a function of the state w(t)
but also of its derivative. One can consult [40] for a comprehensive treatment of
state derivative feedback. Indeed, we will use α(·) as a control variable, which
will turn to play an important role in our subsequent developments.

2.5 Associated monotone inclusion problem

The optimality system (4) can be written equivalently as

TL(x, y, z) = 0, (6)

where TL : X ×Y×Z → X ×Y×Z is the maximally monotone operator associated
with the convex-concave function L, and which is defined by

TL(x, y, λ) = (∇x,yL, −∇λL) (x, y, λ)

=
(
∇f(x) +A∗λ, ∇g(y) +B∗λ, −(Ax+By − c)

)
. (7)

Indeed, it is immediate to verify that TL is monotone using (HP). Since it is
continuous, it is a maximally monotone operator. Another way of seeing it is to
use the standard splitting of TL as TL = T1 + T2 where

T1(x, y, λ) = (∇f(x), ∇g(y), 0)

T2(x, y, λ) =
(
A∗λ, B∗λ, −(Ax+By − c)

)
.

The operator T1 = ∂Φ is nothing but gradient of the convex function Φ(x, y, λ) =
f(x) + g(y), and therefore is maximally monotone owing to (HP) (recall that
convexity of a differentiable function implies maximal monotonicity of its gra-
dient [50]). The operator T2 is obtained by translating a linear continuous and
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skew-symmetric operator, and therefore it is also maximally monotone. This im-
mediately implies that TL is maximally monotone as the sum of two maximally
monotone operators, one of them being Lipschitz continuous ([30, Lemma 2.4,
page 34]). In turn, S can be interpreted as the set of zeros of the maximally
monotone operator TL. As such, it is a closed convex subset of X × Y × Z.

The evolution equation associated to TL is written
ẋ(t) +∇f(x(t)) +A∗(λ(t)) = 0

ẏ(t) +∇g(y(t)) +B∗(λ(t)) = 0

λ̇(t)− (A(x(t)) +B(y(t))− c) = 0

(8)

Following [30], the Cauchy problem (8) is well-posed, and the solution trajectories
of (8), which define a semi-group of contractions generated by TL, converge weakly
in an ergodic sense to equilibria, which are the zeros of the operator TL. Moreover,
appropriate implicit discretization of (8) yields the proximal ADMM algorithm.

The situation is more complicated if we consider the corresponding inertial dy-
namics. Indeed, the convergence theory for the heavy ball method can be naturally
extended to the case of maximally monotone cocoercive operators. Unfortunately,
because of the skew-symmetric component T2 in TL (when c = 0), the operator
TL is not cocoercive. To overcome this difficulty, recent studies consider inertial
dynamics where the operator TL is replaced by its Yosida approximation, with an
appropriate adjustment of the Yosida parameter; see [19] and [5] in the case of
the Nesterov accelerated method. However, such an approach does not achieve full
splitting algorithms, hence requiring an additional internal loop.

3 Lyapunov analysis

Let (x?, y?) ∈ X × Y be a solution of (P), and denote by F ? := F (x?, y?) the
optimal value of (P). For the moment, the variable λ? is chosen arbitrarily in Z.
We will then be led to specialize it. Let t 7→ (x(t), y(t), λ(t)) be a solution trajectory
of (TRIALS) defined for t ≥ t0. It is supposed to be a classical solution, i.e. of
class C2. We are now in position to introduce the function t ∈ [t0,+∞[ 7→ E(t) ∈ R
that will serve as a Lyapunov function,

E(t) := δ2(t)b(t)
(
Lµ(x(t), y(t), λ?)− Lµ(x?, y?, λ?)

)
+

1

2
‖v(t)‖2 (9)

+
1

2
ξ(t)‖(x(t), y(t), λ(t))− (x?, y?, λ?)‖2,

v(t) := σ(t)
(

(x(t), y(t), λ(t))− (x?, y?, λ?)
)

+ δ(t)(ẋ(t), ẏ(t), λ̇(t)). (10)

The coefficient σ(t) is non-negative and will be adjusted later, while δ(t), ξ(t)
are explicitly defined by the following formulas:{

δ(t) := σ(t)α(t),

ξ(t) := σ(t)2
(
γ(t)α(t)− α̇(t)− 1

)
− 2α(t)σ(t)σ̇(t)

(11)

This choice will become clear from our Lyapunov analysis. To guarantee that E is a
Lyapunov function for the dynamical system (TRIALS), the following conditions
on the coefficients γ, α, b, σ will naturally arise from our analysis:
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Lyapunov system of inequalities/equalities on the parameters.

(G1) σ(t)
(
γ(t)α(t)− α̇(t)− 1

)
− 2α(t)σ̇(t) ≥ 0,

(G2) σ(t)
(
γ(t)α(t)− α̇(t)− 1

)
− α(t)σ̇(t) ≥ 0,

(G3) − d
dt

[
σ(t)

(
σ(t)

(
γ(t)α(t)− α̇(t)

)
− 2α(t)σ̇(t)

)]
≥ 0,

(G4) α(t)σ(t)2b(t)− d
dt

(
α2σ2b

)
(t) = 0.

Observe that condition (G1) automatically ensures that ξ(t) is a non-negative func-
tion. In most practical situations (see Section 6), we will take σ as a non-negative
constant, in which case (G1) and (G2) coincide, and thus conditions (G1)–(G4) re-
duce to a system of three differential inequalities/equalities involving only the
coefficients (γ, α, b) of the dynamical system (TRIALS).

3.1 Convergence rate of the values

By relying on a Lyapunov analysis with the function E, we are now ready to state
our first main result.

Theorem 2 Assume that (HP) and (HD) hold. Suppose that the growth conditions

(G1)–(G4) on the parameters (γ, α, σ, b) of (TRIALS) are satisfied for all t ≥ t0. Let

t ∈ [t0,+∞[7→ (x(t), y(t), λ(t)) be a solution trajectory of (TRIALS). Let E be the

function defined in (9)-(10). Then the following holds:

(1) E is a non-increasing function, and for all t ≥ t0

F (x(t), y(t))− F ? = O
(

1

α(t)2σ(t)2b(t)

)
.

(2) Suppose moreover that S , the set of saddle points of L in (1) is non-empty, and let

(x?, y?, λ?) ∈ S . Then for all t ≥ t0, the following rates and integrability properties

are satisfied:

(i) 0 ≤ L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

1
α(t)2σ(t)2b(t)

)
;

(ii) ‖Ax(t) +By(t)− c‖2 = O
(

1
α(t)2σ(t)2b(t)

)
;

(iii) there exists positive constants C1 and C2 such that

− C1

α(t)σ(t)
√
b(t)

≤ F (x(t), y(t))− F ? ≤ C2

α(t)2σ(t)2b(t)
;

(iv)

∫ +∞

t0

α(t)σ(t)2b(t)‖Ax(t) +By(t)− c‖2dt < +∞;

(v)

∫ +∞

t0

k(t)‖(ẋ(t), ẏ(t), λ̇(t))‖2dt < +∞, where

k(t) = α(t)σ(t)
(
σ(t) (γ(t)α(t)− α̇(t)− 1)− α(t)σ̇(t)

)
.
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Proof To lighten notation, we drop the dependence on the time variable t. Recall
that (x?, y?) is a solution of (P) and λ? is an arbitrary vector in Z. Let us define

w := (x, y, λ), w? := (x?, y?, λ?), Fµ(w) := Lµ(x, y, λ?)− Lµ(x?, y?, λ?).

With these notations we have (recall (9) and (10))

v = σ(w − w?) + δẇ,

∇Fµ(w) = (∇xLµ(x, y, λ?),∇yLµ(x, y, λ?), 0)

E = δ2bFµ(w) +
1

2
‖v‖2 +

1

2
ξ‖w − w?‖2.

Differentiating E gives

d

dt
E =

d

dt
(δ2b)Fµ(w)+δ2b〈∇Fµ(w), ẇ〉+〈v, v̇〉+ 1

2
ξ̇‖w−w?‖2 +ξ〈w−w?, ẇ〉. (12)

Using the constitutive equation in (TRIALS), we have

v̇ = σ̇(w − w?) + (σ + δ̇)ẇ + δẅ

= σ̇(w − w?) + (σ + δ̇)ẇ − δ (γẇ + bKµ,α(w))

= σ̇(w − w?) + (σ + δ̇ − δγ)ẇ − δbKµ,α(w),

where the operator Kµ,α : X × Y × Z → X × Y × Z is defined by

Kµ,α(w) :=

 ∇xLµ(x, y, λ+ αλ̇)

∇yLµ(x, y, λ+ αλ̇)
−∇λLµ(x+ αẋ, y + αẏ, λ)


Elementary computation gives

Kµ,α(w) = ∇Fµ(w) +

 A∗(λ− λ? + αλ̇)

B∗(λ− λ? + αλ̇)
−A(x+ αẋ)−B(y + αẏ) + c


According to the above formulas for v, v̇ and Kµ,α, we get

〈v, v̇〉 = 〈σ̇(w − w?) + (σ + δ̇ − δγ)ẇ − δbKµ,α(w), σ(w − w?) + δẇ〉
= σσ̇‖w − w?‖2 +

(
δσ̇ + σ(σ + δ̇ − δγ)

)
〈ẇ, w − w?〉+ δ

(
σ + δ̇ − δγ

)
‖ẇ‖2

−δb
[
σ〈∇Fµ(w), w − w?〉+ δ〈∇Fµ(w), ẇ〉

]
−δb

[
σ〈λ− λ? + αλ̇, Ax−Ax?〉+ δ〈λ− λ? + αλ̇, Aẋ〉

]
−δb

[
σ〈λ− λ? + αλ̇, By −By?〉+ δ〈λ− λ? + αλ̇, Bẏ〉

]
+δbσ〈A(x+ αẋ) +B(y + αẏ)− c, λ− λ?〉
+δ2b〈A(x+ αẋ) +B(y + αẏ)− c, λ̇〉.

Let us insert this expression in (12). We first observe that the term 〈∇Fµ(w), ẇ〉
appears twice but with opposite signs, and therefore cancels out. Moreover, the
coefficient of 〈ẇ, w − w?〉 becomes ξ + δσ̇ − σ(γδ − δ̇ − σ). Thanks to the choice of
δ and ξ devised in (11), the term 〈ẇ, w − w?〉 also disappears. We recall that by
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virtue of (G1), ξ is non-negative, and thus so is the last term in E. Overall, the
formula (12) simplifies to

d

dt
E =

d

dt
(δ2b)Fµ(w) +

(
1

2
ξ̇ + σσ̇

)
‖w − w?‖2 + δ

(
σ + δ̇ − δγ

)
‖ẇ‖2

− δbσ〈∇Fµ(w), w − w?〉 − δbW,

(13)

where

W := σ〈λ− λ? + αλ̇, Ax−Ax?〉+ δ〈λ− λ? + αλ̇, Aẋ〉
+σ〈λ− λ? + αλ̇, By −By?〉+ δ〈λ− λ? + αλ̇, Bẏ〉
−σ〈A(x+ αẋ) +B(y + αẏ)− c, λ− λ?〉
−δ〈A(x+ αẋ) +B(y + αẏ)− c, λ̇〉.

Since (x?, y?) ∈ X ×Y is a solution of (P), we obviously have Ax?+By? = c. Thus,
W reduces to

W = σ〈Ax+By − c, λ− λ? + αλ̇〉+ δ〈Aẋ+Bẏ, λ− λ? + αλ̇〉
−σ〈Ax+By − c, λ− λ?〉 − σα〈Aẋ+Bẏ, λ− λ?〉
−δ〈Ax+By − c, λ̇〉 − δα〈Aẋ+Bẏ, λ̇〉

= (σα− δ)
(
〈Ax+By − c, λ̇〉 − 〈Aẋ+Bẏ, λ− λ?〉

)
.

Since it is difficult to control the sign of the above expression, the choice of δ in
(11) appears natural, which entails W = 0.

On the other hand, by convexity of L(·, ·, λ?), strong convexity of µ
2 ‖· − c‖

2,
the fact that Ax? +By? = c and Fµ(w?) = 0, it is straightforward to see that

−Fµ(w)− µ

2
‖Ax(t) +By(t)− c‖2 ≥ 〈∇Fµ(w), w? − w〉.

Collecting the above results, (13) becomes

d

dt
E +

(
δbσ − d

dt
(δ2b)

)
Fµ(w) (14)

≤
(

1

2
ξ̇ + σσ̇

)
‖w − w?‖2 + δ

(
σ + δ̇ − δγ

)
‖ẇ‖2 − δbσµ

2
‖Ax(t) +By(t)− c‖2 .

Since δ is non-negative (σ and α are), and in view of (G2), the coefficient of the
second term in the right hand side (14) is non-positive. The same conclusion holds
for the coefficient of the first term since its non-positivity is equivalent to (G3).
Therefore, inequality (14) implies

d

dt
E +

(
δbσ − d

dt
(δ2b)

)
Fµ(w) ≤ 0. (15)

The sign of Fµ(w) is unknown for arbitrary λ?. This is precisely where we invoke
(G4) which is equivalent to

δbσ − d

dt
(δ2b) = 0.
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(1) Altogether, we have shown so far that (15) eventually reads, for any t ≥ t0,

d

dt
E(t) ≤ 0, (16)

i.e. E is non-increasing as claimed. Let us now turn to the rates.
E being non-increasing entails that for all t ≥ t0

E(t) ≤ E(t0). (17)

Dropping the non-negative terms 1
2 ‖v(t)‖

2 and 1
2ξ(t)‖w(t) − w?‖2 entering E,

and according to the definition of Lµ, we obtain that, for all t ≥ t0

δ(t)2b(t)
(
Lµ(x(t), y(t), λ?)− Lµ(x?, y?, λ?)

)
(18)

= δ(t)2b(t)
(
L(x(t), y(t), λ?)− L(x?, y?, λ?) +

µ

2
‖Ax(t) +By(t)− c‖2

)
≤ E(t0).

Dropping again the quadratic term in (18), we obtain

δ(t)2b(t)
(
F (x(t), y(t))− F ? + 〈λ?, Ax(t) +By(t)− c〉

)
≤ δ2(t0)b(t0)

(
F (x(t0), y(t0))− F ? + 〈λ?, Ax(t0) +By(t0)− c〉

+
µ

2
‖Ax(t0) +By(t0)− c‖2

)
+

1

2
‖v(t0)‖2

+
1

2
ξ(t0)‖(x(t0), y(t0), λ(t0))− (x?, y?, λ?)‖2

≤ δ2(t0)b(t0)‖λ?‖‖Ax(t0) +By(t0)− c‖+ C0,

where C0 is the non-negative constant

C0 = δ2(t0)b(t0)
(∣∣F (x(t0), y(t0))− F ?

∣∣+ µ

2
‖Ax(t0) +By(t0)− c‖2

)
+

1

2
‖v(t0)‖2 +

1

2
ξ(t0)‖(x(t0), y(t0), λ(t0))− (x?, y?, λ?)‖2. (19)

When Ax(t) + By(t) − c = 0, we are done by taking, e.g. λ? = 0 and C > C0.
Assume now that Ax(t) +By(t)− c 6= 0. Since λ? can be freely chosen in Z, we
take it as the unit-norm vector

λ? =
Ax(t) +By(t)− c
‖Ax(t) +By(t)− c‖

. (20)

We therefore obtain

δ(t)2b(t)
(
F (x(t), y(t))− F ? + ‖Ax(t) +By(t)− c‖

)
≤ C, (21)

where C > δ2(t0)b(t0) ‖Ax(t0) +By(t0)− c‖+C0. Since the second term in the
left hand side is non-negative, the claimed rate in (1) follows immediately.



Inertial system modeling of alternating direction method of multipliers 13

(2) Embarking from (18) and using (3) since (x?, y?, λ?) ∈ S , we have the rates
stated in (i) and (ii).
To show the lower bound in (iii), observe that the upper-bound of (3) entails
that

F (x(t), y(t)) ≥ F (x?, y?)− 〈Ax(t) +By(t)− c, λ?〉. (22)

Applying Cauchy-Schwarz inequality, we infer

F (x(t), y(t)) ≥ F (x?, y?)− ‖λ?‖‖Ax(t) +By(t)− c‖.

We now use the estimate (ii) to conclude. Finally the integral estimates of the
feasibility (iv) and velocity (v) are obtained by integrating (14). ut

3.2 Boundedness of the trajectory and rate of the velocity

We will further exploit the Lyapunov analysis developed in the previous section
to assert additional properties on the iterates and velocities.

Theorem 3 Suppose the assumptions of Theorem 2 hold. Assume also that S , the

set of saddle points of L in (1) is non-empty, and let (x?, y?, λ?) ∈ S . Then, each

solution trajectory t ∈ [t0,+∞[7→ (x(t), y(t), λ(t)) of (TRIALS) satisfies the following

properties:

(1) There exists a positive constant C such that, for all t ≥ t0

‖(x(t), y(t), λ(t))− (x?, y?, λ?)‖2 ≤ C

σ(t)2
(
γ(t)α(t)− α̇(t)− 1

)
− 2α(t)σ(t)σ̇(t)

∥∥(ẋ(t), ẏ(t), λ̇(t))
∥∥ ≤ C

α(t)σ(t)

(
1 +

√
σ(t)

σ(t) (γ(t)α(t)− α̇(t)− 1)− 2α(t)σ̇(t)

)
.

(2) If supt≥t0 σ(t) < +∞ and (G1) is strengthened to

(G+
1 ) inft≥t0 σ(t)

(
σ(t) (γ(t)α(t)− α̇(t)− 1)− 2α(t)σ̇(t)

)
> 0,

then

sup
t≥t0
‖(x(t), y(t), λ(t))‖ < +∞ and

∥∥(ẋ(t), ẏ(t), λ̇(t))
∥∥ = O

(
1

α(t)σ(t)

)
.

If moreover,

(G5) inft≥t0 α(t) > 0,

then

sup
t≥t0

∥∥(ẋ(t), ẏ(t), λ̇(t))
∥∥ < +∞.

Proof We start from (17) in the proof of Theorem 2, which can be equivalently
written

δ2(t)b(t)
(
Lµ(x(t), y(t), λ?)− Lµ(x?, y?, λ?)

)
+

1

2
‖v(t)‖2

+
1

2
ξ(t)‖(x(t), y(t), λ(t))− (x?, y?, λ?)‖2 ≤ E(t0).
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Since (x?, y?, λ?) ∈ S , the first term is non-negative by (3), and thus

1

2
‖v(t)‖2 +

1

2
ξ(t)‖(x(t), y(t), λ(t))− (x?, y?, λ?)‖2 ≤ E(t0).

Choosing a positive constant C ≥
√

2E(t0), we immediately deduce that for all
t ≥ t0

‖(x(t), y(t), λ(t))− (x?, y?, λ?)‖ ≤ C√
ξ(t)

and ‖v(t)‖ ≤ C. (23)

Set z(t) = (x(t), y(t), λ(t))− (x?, y?, λ?). By definition of v(t), we have

v(t) = σ(t)z(t) + δ(t)ż(t).

From the triangle inequality and the bound (23), we get

δ(t)‖ż(t)‖ ≤ C

(
1 +

σ(t)√
ξ(t)

)
.

According to the definition (11) of δ(t) and ξ(t), we get

‖(ẋ(t), ẏ(t), λ̇(t))‖ ≤ C

α(t)σ(t)

(
1 +

√
σ(t)

σ(t) (γ(t)α(t)− α̇(t)− 1)− 2α(t)σ̇(t)

)
,

which ends the proof. ut

3.3 The role of α and time scaling

The time scaling parameter b enters the conditions on the parameters only via
(G4), which therefore plays a central role in our analysis. Now consider relaxing
(G4) to the inequality

(G+
4 ) d

dt

(
α2σ2b

)
(t)− α(t)σ(t)2b(t) ≥ 0.

This is a weaker assumption in which case the corresponding term in (15) does
not vanish. However, such an inequality can still be integrated to yield meaningful
convergence rates. This is what we are about to prove.

Theorem 4 Suppose the assumptions of Theorem 2(2) hold, where condition (G4) is

replaced with (G+
4 ). Let (x?, y?, λ?) ∈ S 6= ∅. Assume also that inf F (x, y) > −∞.

Then, for all t ≥ t0

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

exp

(
−
∫ t

t0

1

α(s)
ds

))
, (24)

‖Ax(t) +By(t)− c‖2 = O
(

exp

(
−
∫ t

t0

1

α(s)
ds

))
, (25)

−C1 exp

(
−
∫ t

t0

1

2α(s)
ds

)
≤ F (x(t), y(t))− F ? ≤ C2 exp

(
−
∫ t

t0

1

α(s)
ds

)
, (26)

where C1 and C2 are positive constants.
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Proof We embark from (15) in the proof of Theorem 2. In view of (G+
4 ) and (11),

(15) becomes

0 ≥ d

dt
E −

(
d

dt

(
α2σ2b

)
− ασ2b

)
Fµ(w) ≥ d

dt
E −

d
dt

(
α2σ2b

)
− ασ2b

α2σ2b
E . (27)

Since (x?, y?, λ?) ∈ S , Fµ is non-negative and so is the Lyapunov function E.
Integrating (27), we obtain the existence of a positive constant C such that, for
all t ≥ t0

0 ≤ E(t) ≤ Cα(t)2σ(t)2b(t) exp

(
−
∫ t

t0

1

α(s)
ds

)
,

which entails, after dropping the positive terms in E,

Fµ(w(t)) ≤ C exp

(
−
∫ t

t0

1

α(s)
ds

)
. (28)

(24) and (25) follow immediately from (28) and the definition of Fµ.
Let us now turn to (26). Arguing as in the proof of Theorem 2(2), we have

F (x(t), y(t))− F ? ≥ −‖λ?‖‖Ax(t) +By(t)− c‖.

Plugging (25) in this inequality yields the lower-bound of (26).
For the upper-bound, we will argue as in the proof of Theorem 2(1) by con-

sidering λ? as a free variable in Z. By assumption, we have F is bounded from
below. This together with (25) implies that E is also bounded from below, and we
denote E this lower-bound. Define Ẽ(t) = E(t)− E if E is negative and Ẽ(t) = E(t)
otherwise. Thus, from (27), it is easy to see that Ẽ verifies

d

dt
Ẽ ≤

d
dt

(
α2σ2b

)
− ασ2b

α2σ2b
Ẽ . (29)

Integrating (29) and arguing with the sign of E, we get the existence of a positive
constant C such that, for all t ≥ t0

E(t) ≤ Ẽ(t) ≤ Cα(t)2σ(t)2b(t) exp

(
−
∫ t

t0

1

α(s)
ds

)
.

Dropping the quadratic terms in E, this yields

F (x(t), y(t))− F ? + 〈λ?, Ax(t) +By(t)− c〉 ≤ C exp

(
−
∫ t

t0

1

α(s)
ds

)
.

When Ax(t) +By(t)− c = 0, we are done by taking, e.g. λ? = 0. Assume now that
Ax(t) +By(t)− c 6= 0 and choose

λ? =
Ax(t) +By(t)− c
‖Ax(t) +By(t)− c‖

.

We arrive at

F (x(t), y(t))− F ? ≤ F (x(t), y(t))− F ? + ‖Ax(t) +By(t)− c‖ ≤ C exp

(
−
∫ t

t0

1

α(s)
ds

)
,

which completes the proof. ut



16 H. Attouch, Z. Chbani, J. Fadili, H. Riahi

Remark 1 Though the rates in Theorem 2 and Theorem 4 look apparently different,
it turns out that as expected, those of Theorem 2 are actually a specialisation of
those in Theorem 4 when (G+

4 ) holds as an equality, i.e. (G4) is verified. To see
this, it is sufficient to realize that, with the notation a(t) := α(t)2σ(t)2b(t), (G4) is

equivalent to ȧ(t) = 1
α(t)a(t). Upon integration, we obtain a(t) = exp

(∫ t
t0

1
α(s)ds

)
,

or equivalently

1

α(t)2σ(t)2b(t)
= exp

(
−
∫ t

t0

1

α(s)
ds

)
.

4 Well-posedness of (TRIALS)

In this section, we will show existence and uniqueness of a strong global solution
to the Cauchy problem associated with (TRIALS). The main idea is to formulate
(TRIALS) in the phase space as a non-autonomous first-order system. In the
smooth case, we will invoke the non-autonomous Cauchy-Lipschitz theorem [35,
Proposition 6.2.1]. In the non-smooth case, we will use a standard Moreau-Yosida
smoothing argument.

4.1 Case of globally Lipschitz continuous gradients

We consider first the case where the gradients of f and g are globally Lipschitz
continuous over X and Y. Let us start by recalling the notion of strong solution.

Definition 1 Denote H := X × Y × Z equipped with the corresponding product
space structure, and w : t ∈ [t0,+∞[7→ (x(t), y(t), λ(t)) ∈ H. The function w is a
strong global solution of the dynamical system (TRIALS) if it satisfies the following
properties:

• w is in C1([0,+∞[;H);
• w and ẇ are absolutely continuous on every compact subset of the interior of

[t0,+∞[ (hence almost everywhere differentiable);
• for almost all t ∈ [t0,+∞[, (TRIALS) holds with w(t0) = (x0, y0, λ0) and
ẇ(t0) = (u0, v0, ν0)).

Theorem 5 Suppose that (HP) holds1 and, moreover, that ∇f and ∇g are Lipschitz

continuous, respectively over X and Y. Assume that γ, α, b : [t0,+∞[→ R+ are non-

negative continuous functions. Then, for any given initial condition (x(t0), ẋ(t0)) =
(x0, ẋ0) ∈ X ×X , (y(t0), ẏ(t0)) = (y0, ẏ0) ∈ Y ×Y, (λ(t0), λ̇(t0)) = (λ0, λ̇0) ∈ Z ×Z,

the evolution system (TRIALS) has a unique strong global solution.

Proof Recall the notations of Definition 1. Let I = [t0,+∞[ and let Z : t ∈ I 7→
(w(t), ẇ(t)) ∈ H2. (TRIALS) can be equivalently written as the Cauchy problem
on H2 {

Ż(t) +G(t, Z(t)) = 0 for t ∈ I,
Z(t0) = Z0,

(30)

1 Actually, convexity is not needed here.
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where Z0 = (x0, y0, λ0, u0, v0, ν0), and G : I ×H2 → H2 is the operator

G(t, (x, y, λ), (u, v, ν)) =



−u
−v
−ν

γ(t)u+ b(t)
(
∇f(x) +A∗ (λ+ α(t)ν + µ(Ax+By − c))

)
γ(t)v + b(t)

(
∇g(y) +B∗ (λ+ α(t)ν + µ(Ax+By − c))

)
γ(t)ν − b(t)

(
A(x+ α(t)u)) +B(y + α(t)v)− c

)


.

(31)
To invoke [35, Proposition 6.2.1], it is sufficient to check that for a.e. t ∈ I, G(t, ·)
is β(t)-Lipschitz continuous with β(·) ∈ L1

loc(I), and for a.e. t ∈ I, G(t, Z) =
O(P (t)(1+‖Z‖), ∀Z ∈ H2, with P (·) ∈ L1

loc(I). Since ∇f , ∇g are globally Lipschitz
continuous, and A and B are bounded linear, elementary computation shows that
there exists a constant C > 0 such that

‖G(t, Z)−G(t, Z̄)‖ ≤ Cβ(t)‖Z − Z̄‖, β(t) = 1 + γ(t) + b(t)(1 + α(t)).

Owing to the continuity of the parameters γ(·), α(·), b(·), β(·) is integrable on
[t0, T ] for all t0 < T < +∞. Similar calculation shows that

‖G(t, (x, y, λ), (u, v, ν))‖ ≤ Cβ(t)
(
‖(∇f(u),∇g(v))‖+ ‖(x, y, λ, u, v, ν)‖

)
,

and we conclude similarly. It then follows from [35, Proposition 6.2.1] that there
exists a unique global solution Z(·) ∈ W 1,1

loc (I;H2) of (30) satisfying the initial
condition Z(t0) = Z0, and thus, by [30, Corollary A.2] that Z(·) is a strong global
solution to (30). This in turn leads to the existence and uniqueness of a strong
solution (x(·), y(·), λ(·)) of (TRIALS). ut

Remark 2 One sees from the proof that for the above result to hold, it is only
sufficient to assume that the parameters γ, α, b are locally integrable instead of
continuous. In addition, in the above results, we even have existence and unique-
ness of a classical solution.

4.2 Case of locally Lipschitz continuous gradients

Under local Lipschitz continuity assumptions on the gradients ∇f and ∇g, the op-
erator Z 7→ G(t, Z) defined in (31) is only Lipschitz continuous over the bounded
subsets of H2. As a consequence, the Cauchy-Lipschitz theorem provides the exis-
tence and uniqueness of a local solution. To pass from a local solution to a global
solution, we will rely on the estimates established in Theorem 3.

Theorem 6 Suppose that (HP) holds2 and, moreover, that ∇f and ∇g are Lipschitz

continuous over the bounded subsets of respectively X and Y. Assume that γ, α, b :
[t0,+∞[→ R+ are non-negative continuous functions such that the conditions (G+

1 ),

(G2), (G3), (G4) and (G5) are satisfied, and that supt≥t0 σ(t) < +∞. Then, for any

initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ X × X , (y(t0), ẏ(t0)) = (y0, ẏ0) ∈ Y × Y,

(λ(t0), λ̇(t0)) = (λ0, λ̇0) ∈ Z×Z, the evolution system (TRIALS) has a unique strong

global solution.

2 Again, convexity is superfluous here.
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Proof We use the same notation as in the proof of Theorem 5. Let us consider the
maximal solution of the Cauchy problem (30), say Z : [t0, T [→ H2. We have to
prove that T = +∞. Following a classical argument, we argue by contradiction,
and suppose that T < +∞. It is then sufficient to prove that the limit of Z(t) exists
as t→ T , so that it will be possible to extend Z locally to the right of T thus getting
a contradiction. According to the Cauchy criterion, and the constitutive equation
Ż(t) = G(t, Z(t)), it is sufficient to prove that Z(t) is bounded over [t0, T [. At
this point, we use the estimates provided by Theorem 3, which gives precisely this
result under the conditions imposed on the parameters. ut

4.3 The non-smooth case

For a large number of applications (e.g. data processing, machine learning, statis-
tics), non-smooth functions are ubiquitous. To cover these practical situations, we
need to consider the case where the functions f and g are non-smooth. In order to
adapt the dynamic (TRIALS) to this non-smooth situation, we will consider the
corresponding differential inclusion

ẍ+ γ(t)ẋ+ b(t)
(
∂f(x) +A∗

[
λ+ α(t)λ̇+ µ(Ax+By − c)

])
3 0

ÿ + γ(t)ẏ + b(t)
(
∂g(y) +B∗

[
λ+ α(t)λ̇+ µ(Ax+By − c)

])
3 0

λ̈+ γ(t)λ̇− b(t)
(
A(x+ α(t)ẋ) +B(y + α(t)ẏ)− c

)
= 0

(x(t0), y(t0), λ(t0)) = (x0, y0, λ0) and

(ẋ(t0), ẏ(t0), λ̇(t0)) = (u0, v0, ν0),

(32)

where ∂f and ∂g are the subdifferentials of f and g, respectively. Beyond global ex-
istence issues that we will address shortly, one may wonder whether our Lyapunov
analysis in the previous sections is still valid in this case. The answer is affirmative
provided one takes some care in two main steps that are central in our analysis.
First, when taking the time-derivative of the Lyapunov, one has to invoke now the
(generalized) chain rule for derivatives over curves (see [30]). The second ingredient
is the validity of the subdifferential inequality for convex functions. In turn all our
results and estimates presented in the previous sections can be transposed to this
more general non-smooth context. Indeed, our approximation scheme that we will
present shortly turns out to be monotonically increasing. This gives a variational
convergence (epi-convergence) which allows to simply pass to the limit over the
estimates established in the smooth case.

Let us now turn to the existence of a global solution to (32). We will again
consider strong solutions to this problem, i.e. solutions that are C1([t0,+∞[;H),
locally absolutely continuous, and (32) holds almost everywhere on [t0,+∞[. A
natural idea is to use the Moreau-Yosida regularization in order to bring the prob-
lem to the smooth case before passing to an appropriate limit. Recall that, for any
θ > 0, the Moreau envelopes fθ and gθ of f and g are defined respectively by

fθ(x) = min
ξ∈X

{
f(ξ) +

1

2θ
‖x− ξ‖2

}
, gθ(y) = min

η∈Y

{
g(η) +

1

2θ
‖y − η‖2

}
.

As a classical result, fθ and gθ are continuously differentiable and their gradi-
ents are 1

θ -Lipschitz continuous. We are then led to consider, for each θ > 0, the
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dynamical system
ẍθ + γ(t)ẋθ + b(t)

(
∇fθ(xθ) +A∗

[
λθ + α(t)λ̇θ + µ(Axθ +Byθ − c)

])
= 0

ÿθ + γ(t)ẏθ + b(t)
(
∇gθ(yθ) +B∗

[
λθ + α(t)λ̇θ + µ(Axθ +Byθ − c)

])
= 0

λ̈θ + γ(t)λ̇θ − b(t)
(
A(xθ + α(t)ẋθ) +B(yθ + α(t)ẏθ)− c

)
= 0.

(33)
The system (33) comes under our previous study, and for which we have existence
and uniqueness of a strong global solution. In doing so, we generate a filtered se-
quence (xθ, yθ, λθ)θ of trajectories.

The challenging question is now to pass to the limit in the system above as
θ → 0+. This is a non-trivial problem, and to answer it, we have to assume that the
spaces X , Y and Z are finite dimensional, and that f and g are convex real-valued
(i.e. dom(f) = X and dom(g) = Y in which case f and g are continuous). Recall
that ∂F (x, y) = ∂f(x)× ∂g(y), and denote [∂F (x, y)]

0 the minimal norm selection
of ∂F (x, y).

Theorem 7 Suppose that X , Y, Z are finite dimensional Hilbert spaces, and that the

functions f : X → R and g : Y → R are convex. Assume that

(i) F is coercive on the affine feasibility set;

(ii) βF := sup(x,y)∈X×Y ‖[∂F (x, y)]
0‖ < +∞;

(iii) the linear operator L = [A B] is surjective.

Suppose also that γ, α, b : [t0,+∞[→ R+ are non-negative continuous functions such

that the conditions (G+
1 ), (G2), (G3) (G4) and (G5) are satisfied, and that supt≥t0 σ(t) <

+∞. Then, for any initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ X×X , (y(t0), ẏ(t0)) =
(y0, ẏ0) ∈ Y × Y, (λ(t0), λ̇(t0)) = (λ0, λ̇0) ∈ Z × Z, the evolution system (32) admits

a strong global solution .

Condition (i) is natural and ensures for instance that the solution set of (P)
is non-empty. Condition (iii) is also very mild. A simple case where (ii) holds is
when f and g are Lipschitz continuous.

Proof The key property is that the estimates obtained in Theorem 2 and 3, when
applied to (33), have a favorable dependence on θ. Indeed, a careful examination
of the estimates shows that θ enters them through the Lyapunov function at t0
only via |Fθ(x0, y0)−Fθ(x?θ , y

?
θ)| and ‖(x?θ , y

?
θ , λ

?
θ)‖, where Fθ(x, y) = fθ(x) + gθ(y),

(x?θ , y
?
θ) ∈ argminAx+Bx=c Fθ(x, y) and λ?θ is an associated dual multiplier; see

(19). With standard properties of the Moreau envelope, see [4, Chapter 3] and [24,
Chapter 12], one can show that for all (x, y) ∈ X × Y

F (x, y)− θ

2
‖[∂F (x, y)]

0‖2 ≤ Fθ(x, y) ≤ F (x, y).

This, together with the fact that (x?θ , y
?
θ) ∈ argminAx+Bx=c Fθ(x, y) and (x?, y?) ∈

argminAx+Bx=c F (x, y) yields

Fθ(x
?
θ , y

?
θ) ≤ Fθ(x?, y?) ≤ F (x?, y?) ≤ F (x?θ , y

?
θ).
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Thus

F (x0, y0)− F (x?, y?)− θ

2
‖[∂F (x0, y0)]

0‖2 ≤ Fθ(x0, y0)− Fθ(x?θ , y
?
θ)

≤ F (x0, y0)− F (x?, y?) +
θ

2
‖
[
∂F (x?θ , y

?
θ)
]0‖2.

This entails, owing to (ii), that∣∣Fθ(x0, y0)− Fθ(x?θ , y
?
θ)
∣∣ ≤ ∣∣F (x0, y0)− F (x?, y?)

∣∣+ β2
F θ

2

and thus, since we are interested in the limit as θ → 0+,

sup
θ∈[0,θ̄]

∣∣Fθ(x0, y0)− Fθ(x?θ , y
?
θ)
∣∣ ≤ ∣∣F (x0, y0)− F (x?, y?)

∣∣+ β2
F θ̄

2
< +∞.

On the other hand,

F (x?θ , y
?
θ) ≤ Fθ(x?θ , y

?
θ) +

β2
F θ

2
≤ Fθ(x?, y?) +

β2
F θ

2
≤ F (x?, y?) +

β2
F θ̄

2
.

Thus, in view of (i), ∃a > 0 and b ∈ R such that

a‖(x?θ , y
?
θ)‖+ b ≤ F (x?, y?) +

β2
F θ̄

2
,

which shows that
sup
θ∈[0,θ̄]

‖(x?θ , y
?
θ)‖ < +∞.

Let us turn to λ?θ. When λ?θ is chosen as in (20), then we are done. When λ?θ is
the optimal dual multiplier satisfying (4), then it is a solution to the Fenchel-
Rockafellar dual problem

min
λ∈Z

F ∗θ (−L∗λ) + 〈c, λ〉,

where F ∗θ is the Legendre-Fenchel conjugate of Fθ. Without loss of generality, we
assume c = 0. Classical conjugacy results give

F ∗θ (u) = F ∗(u) +
θ

2
‖u‖2 .

Since f and g are convex and real-valued, the domain of F is full. This is equivalent
to coercivity of F ∗. This together with injectivity of L∗ (see (iii)), imply that there
exists a > 0 and b ∈ R (potentially different from those above) such that

a‖λ?θ‖+b ≤ F
∗(−L∗λ?θ) ≤ F

∗
θ (−L∗λ?θ) ≤ F

∗
θ (−L∗λ?) ≤ F ∗(−L∗λ?)+ θ̄

2

∥∥L∗λ?∥∥2
< +∞.

Altogether this shows that
sup
θ∈[0,θ̄]

‖λ?θ‖ < +∞.

Combining the above with Theorem 3, we conclude that for all T > t0, the tra-
jectories (xθ(.), yθ(.), λθ(·)) and the velocities (ẋθ(.), ẏθ(.), λ̇θ(·)) are bounded in
L2(t0, T ;X × Y) uniformly in θ. Since X and Y are finite dimensional spaces, we
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deduce by the Ascoli-Arzelà theorem, that the trajectories are relatively compact
for the uniform convergence over the bounded time intervals. By properties of the
Moreau envelope, we also have, for all (x, y) ∈ X × Y,

‖∇Fθ(x, y)‖ ↗ ‖[∂F (x, y)]
0‖ as θ ↘ 0,

and thus

‖∇Fθ(x, y)‖ ≤ βF .

Using this and the boundedness assertions of the trajectories and velocities proved
above in the constitutive equations (33), the acceleration remains also bounded
on the bounded time intervals. Passing to the limit as θ → 0+ in (33) is therefore
relevant by a classical maximal monotonicity argument. Indeed, we work with
the canonical extension of the maximally monotone operators ∇Fθ and ∂F to
L2(t0, T,X × Y), and, in this functional setting, we use that ∇Fθ graph converges
to ∂F in the strong-weak topology. ut

We conclude this section by noting that at this stage, uniqueness of the solution
to (32) is a difficult open problem. In fact, even existence in infinite dimension
and/or with any proper lower semicontinuous convex functions f and g is not
clear. This goes far beyond the scope of the present paper and we leave it to a
future work.

5 The uniformly convex case

We now turn to examine the convergence properties of the trajectories generated
by (TRIALS), when the objective F in (P) is uniformly convex on bounded sets.
Recall, see e.g. [24], that F : X ×Y → R is uniformly convex on bounded sets if, for
each r > 0, there is an increasing function ψr : [0,+∞[→ [0,+∞[ vanishing only
at the origin, such that

F (v) ≥ F (w) + 〈∇F (w), v − w〉+ ψr(‖v − w‖) (34)

for all (v, w) ∈ (X × Y)2 such that ‖v‖ ≤ r and ‖w‖ ≤ r. The strongly convex case
corresponds to ψr(t) = cF t

2/2 for some cF > 0. In finite dimension, strict convexity
of F entails uniform convexity on any non-empty bounded closed convex subset of
X × Y, see [24, Corollary 10.18].

Theorem 8 Suppose that F is uniformly convex on bounded sets, and let (x?, y?) be

the unique solution of the minimization problem (P). Assume also that S , the set of

saddle points of L in (1) is non-empty. Suppose that the conditions (G+
1 )–(G4) on the

coefficients of (TRIALS) are satisfied for all t ≥ t0. Then, each solution trajectory

t ∈ [t0,+∞[7→ (x(t), y(t), λ(t)) of (TRIALS) satisfies, ∀t ≥ t0,

ψr
(
‖(x(t), y(t))− (x?, y?)‖

)
= O

(
1

α(t)2σ(t)2b(t)

)
.

As a consequence, assuming that limt→+∞ α(t)2σ(t)2b(t) = +∞, we have that the

trajectory t 7→ (x(t), y(t)) converges strongly to (x?, y?) as t→ +∞.
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Proof Uniformly convex functions are strictly convex and coercive, and thus (x?, y?)
is unique. From Theorem 3(2), there exists r1 > 0 such that

sup
t≥t0

∥∥(x(t), y(t))− (x?, y?)
∥∥ ≤ r1.

Taking r ≥ r1 + ‖(x?, y?)‖, we have that the trajectory (x(·), y(·)) and (x?, y?) are
both contained in the ball of radius r centered at the origin. Let λ? be a Lagrange
multiplier of problem (P), i.e. (x?, y?, λ?) ∈ S . On the one hand, applying the
uniform convexity inequality (34) at v = (x(t), y(t)) and w = (x?, y?), we have

F (x(t), y(t)) ≥ F (x?, y?) + 〈∇F (x?, y?), (x(t), y(t))− (x?, y?)〉
+ ψr

(
‖(x(t), y(t))− (x?, y?)‖

)
.

On the other hand, the optimality conditions (4) tells us that

〈∇F (x?, y?), (x(t), y(t))− (x?, y?)〉 = −〈λ?, Ax(t) +By(t))− c〉

and obviously
F (x?, y?) = L(x?, y?, λ?).

Thus,

ψr
(
‖(x(t), y(t))− (x?, y?)‖

)
≤ L(x(t), y(t), λ?)− L(x?, y?, λ?).

Invoking the estimate in Theorem 2(2)(i) yields the claim. ut

Remark 3 The assumption limt→+∞ α(t)2σ(t)2b(t) = +∞ made in the above theo-
rem is very mild. It holds in particular in all the situations discussed in Section 6.

In particular, for α(t) = tr, 0 ≤ r < 1, σ constant, and b(t) = 1
t2r exp

(
1

1−r t
1−r
)

,

one has α(t)
√
b(t) = exp

(
1

2(1−r) t
1−r
)

. Thus, if F is strongly convex, the trajectory

t 7→ (x(t), y(t)) converges exponentially fast to the unique minimizer (x?, y?).

6 Parameters choice for fast convergence rates

In this section, we suppose that the solution set S of the saddle value problem (4)
is non-empty, so as to invoke Theorem 2(2), Theorem 3 and Theorem 4. The set
of conditions (G+

1 ), (G2), (G3), (G4) and (G5) imposes sufficient assumptions on the
coefficients γ, α, b of the dynamical system (TRIALS), and on the coefficients σ, δ, ξ
of the function E defined in (9), which guarantee that E is a Lyapunov function
for the dynamical system (TRIALS).

Let us show that this system admits many solutions of practical interest which
in turn will entail fast convergence rates. For this, we will organize our discussion
around the coefficient α as dictated by Theorem 4. Indeed, the latter shows that the

convergence rate of the Lagrangian values and feasibility isO
(

exp

(
−
∫ t

t0

1

α(s)
ds

))
.

Therefore, to obtain a meaningful convergence result, we need to assume that∫ +∞

t0

1

α(s)
ds = +∞.
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This means that the critical growth is α(t) = at for a > 0. If α(t) grows faster,
our analysis do not provide an instructive convergence rate. So, it is an essential
ingredient of our approach to assume that α(t) remains positive, but not too large
as t→ +∞. In fact, the set of conditions (G+

1 ), (G2), (G3), (G4) and (G5) simplifies
considerably by taking σ a positive constant, and γα− α̇ a constant strictly greater
than one. This is made precise in the following statement whose proof is immediate.

Corollary 1 Suppose that σ ≡ σ0 is a positive constant, and γα − α̇ ≡ η > 1. Then

the set of conditions (G+
1 ), (G2), (G3), (G4) and (G5) reduces to

b(1 + 2η − 2γα)− αḃ = 0 and inf
t≥t0

α(t) > 0. (35)

Following the above discussion, we are led to consider the following three cases.

6.1 Constant parameter α

Consider the simple situation where σ ≡ σ0 > 0 and η > 1 in which case (G+
1 )

reads γα − α̇ − 1 = η − 1 > 0. Taking α ≡ α0, a positive constant, yields γ ≡ η
α0

and (35) amounts to solving

b− α0ḃ = 0,

that is, b(t) = exp
(
t
α0

)
. Capitalizing on Corollary 1, and specializing the results of

Theorem 2(2) (or equivalently Theorem 4 according to Remark 1) and Theorem 3
to the current choice of parameters yields the following statement.

Proposition 1 Suppose that σ ≡ σ0 > 0, η > 1, and that the coefficients of (TRIALS)
satisfy: the functions α, γ are constant with

α ≡ α0 > 0, γ ≡ η

α0
, b(t) = exp

(
t

α0

)
.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of

(TRIALS), the trajectory and its velocity remain bounded, and we have

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

exp

(
− t

α0

))
,

‖Ax(t) +By(t)− c‖2 = O
(

exp

(
− t

α0

))
,

−C1 exp

(
− t

2α0

)
≤ F (x(t), y(t))− F ? ≤ C2 exp

(
− t

α0

)
,

‖(ẋ(·), ẏ(·), λ̇(·))‖ ∈ L2([t0,+∞[),

where C1 and C2 are positive constants.
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6.2 Linearly increasing parameter α

We now take σ ≡ σ0 > 0, η > 1 and α(t) = α0t with α0 > 0. Then (G+
1 ) is satisfied

and we have γ(t) = η+α0

α0t
. Condition (35) then becomes

b(t)(1− 2α0)− α0tḃ(t) = 0,

which admits b(t) = t
1
α0
−2 as a solution. We then have b ≡ 1 for α0 = 1/2, while

one can distinguish two regimes for its limiting behaviour with

lim
t→+∞

b(t) =

{
+∞ α0 <

1
2 ,

0 α0 >
1
2 .

In view of Theorem 2(2) and Theorem 3, we obtain the following result.

Proposition 2 Suppose that σ ≡ σ0 > 0, η > 1, and that the coefficients of (TRIALS)
satisfy

α(t) = α0t with α0 > 0, γ(t) =
η + α0

α0t
, b(t) = t

1
α0
−2
.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of

(TRIALS), the trajectory remains bounded, and we have the following convergence

rates:

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

1

t
1
α0

)
,

‖Ax(t) +By(t)− c‖2 = O
(

1

t
1
α0

)
,

− C1

t
1

2α0

≤ F (x(t), y(t))− F ? ≤ C2

t
1
α0

,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(

1

t

)
.

where C1 and C2 are positive constants.

6.3 Power-type parameter α

Let us now take σ ≡ σ0 > 0, η > 1 and consider the intermediate case between the
two previous situations, where α(t) = tr, 0 < r < 1. Thus (G+

1 ) is satisfied and we
have γ(t) = η

tr + r
t . Condition (35) is then equivalent to

b(t)(1− 2rtr−1)− tr ḃ(t) = 0,

which, after integration, shows that b(t) = 1
t2r exp

(
1

1−r t
1−r) is a solution. Ap-

pealing again to Theorem 2(2) and Theorem 3, we obtain the following claim.
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Proposition 3 Take σ ≡ σ0 > 0 and η > 1. Suppose that the coefficients of (TRIALS)
satisfy

α(t) = tr with 0 < r < 1, γ(t) =
η

tr
+
r

t
, b(t) =

1

t2r
exp

(
1

1− r t
1−r
)
.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of

(TRIALS), the trajectory remains bounded, and we have the convergence rates:

L(x(t), y(t), λ?)− L(x?, y?, λ?) = O
(

exp

(
− 1

1− r t
1−r
))

,

‖Ax(t) +By(t)− c‖2 = O
(

exp

(
− 1

1− r t
1−r
))

,

−C1 exp

(
− 1

2(1− r)
t1−r

)
≤ F (x(t), y(t))− F ? ≤ C2 exp

(
− 1

1− r t
1−r
)
,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(

1

tr

)
.

where C1 and C2 are positive constants.

6.4 Numerical experiments

To support our theoretical claims, we consider in this section two numerical ex-
amples with X = Y = Z = R2, one with a strongly convex objective F and one
where F is convex but not strongly so.

Example 1 We consider the quadratic programming problem

min
(x,y)∈R4

F (x, y) = ‖x− (1, 1)T‖2 + ‖y‖2 subject to y = x+ (−x2, 0)T,

whose objective is strongly convex and verifies all required assumptions.
Example 2 We consider the minimization problem

min
(x,y)∈R4

F (x, y) = log
(

1 + exp
(
−〈(1, 1)T, x〉

))
+‖y‖2 subject to y = x+(−x2, 0)T.

The objective is convex (but not strongly so) and smooth as required. This
problem is reminiscent of (regularized) logistic regression very popular in ma-
chine learning.

In all our numerical experiments, we consider the continuous time dynami-
cal system (TRIALS), solved numerically with a Runge-Kutta adaptive method
(ode45 in MATLAB) on the time interval [1, 20].

For the solely convex (resp. strongly convex) objective, Figure 1 (resp. Fig-
ure 2) displays the objective error |F (x(t), y(t))− F ?| on the left, the feasibility
gap ‖Ax(t) +By(t)− c‖ in the middle, and the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖ on the
right. In each figure, the first row shows the results for α(t) ≡ α0 with α0 ∈ {1, 2, 4},
the second row corresponds to α(t) = α0t with α0 ∈ {0.25, 0.5, 1} and the third
row to α(t) = tr with r ∈ {0.01, 0.1, 0.5}. In all our experiments, we set µ = 10
(recall that µ is the parameter associated with the augmented Lagrangian for-
mulation). All these choices of the parameters comply with the requirements of
Propositions 1, 2 and 3. The numerical results are in excellent agreement with
our theoretical results, where the values, the velocities and the feasibility gap all
converge at the predicted rates.
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(a) α(t) ≡ α0
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(b) α(t) = α0t
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(c) α(t) = tr

Fig. 1: Experiment on the solely convex objective. Observed (solid) and predicted
(dashed) rates on the objective error |F (x(t), y(t))− F ?| on the left, the feasibility
gap ‖Ax(t) +By(t)− c‖ in the middle, and the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖ on the
right.

7 Conclusion, perspectives

In this paper, we adopted a dynamical system perspective and we have proposed
a second-order inertial system enjoying provably fast convergence rates to solve
structured convex optimization problems with an affine constraint. One of the
most original aspects of our study is the introduction of a damped inertial dy-
namic involving several time-dependent parameters with specific properties. They
allow to consider a variable viscosity coefficient (possibly vanishing so making the
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(b) α(t) = α0t
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Fig. 2: Experiment on the strongly convex objective. Observed (solid) and pre-
dicted (dashed) rates on the objective error |F (x(t), y(t))− F ?| on the left, the fea-
sibility gap ‖Ax(t) +By(t)− c‖ in the middle, and the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖
on the right.

link with the Nesterov accelerated gradient method), as well as variable extrapo-
lation parameters (possibly large) and time scaling. The analysis of the subtle and
intricate interplay between these objects together has been made possible through
Lyapunov’s analysis. It would have been quite difficult to undertake such an anal-
ysis directly on the algorithmic discrete form. On the other hand, as we have now
gained a deeper understanding with such a powerful continuous-time framework,
we believe this will serve us as a guide to design and analyze a class of inertial
ADMM algorithms which can be naturally obtained by appropriate discretization
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of the dynamics (TRIALS). Their full study would go beyond the scope of this
paper and will be the subject of future work. Besides, several other open ques-
tions remain to be studied, among which, the introduction of geometric damping
controlled by the Hessian, and the convergence of the trajectories in the general
convex constrained case.
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