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Abstract

We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm
approximates the objective function by a convex model function and finds an approximate
(Bregman) proximal point of the convex model. This approximate minimizer of the model
function yields a descent direction, along which the next iterate is found. Complemented
with an Armijo-like line search strategy, we obtain a flexible algorithm for which we prove
(subsequential) convergence to a stationary point under weak assumptions on the growth
of the model function error. Special instances of the algorithm with a Euclidean distance
function are, for example, Gradient Descent, Forward–Backward Splitting, ProxDescent,
without the common requirement of a “Lipschitz continuous gradient”. In addition, we
consider a broad class of Bregman distance functions (generated by Legendre functions),
replacing the Euclidean distance. The algorithm has a wide range of applications includ-
ing many linear and non-linear inverse problems in signal/image processing and machine
learning.

1 Introduction

When minimizing a non-linear function on the Euclidean vector space, a fundamental strat-
egy is to successively minimize approximations to the actual objective function. We refer to
such an approximation as model (function). A common model example in smooth optimiza-
tion is linearization (first order Taylor approximation) around the current iterate. However,
in general, the minimization of a linear function does not provide a finite solution, unless,
for instance, the domain is compact. Therefore, the model is usually complemented by a
proximity measure, which favors a solution (the next iterate) close to the current iterate.
For the Euclidean norm as proximity measure, computing the next iterate (minimizer of the
sum of the model function and the Euclidean proximity measure) is equivalent to a Gradient
Descent step, i.e. the next iterate is obtained by moving along the direction of the negative
gradient at the current point for a certain step size.



Contributions and Related Work

Since sequential minimization of model functions does not require smoothness of the ob-
jective or the model function, non-smoothness is handled naturally. The crucial aspect is
the “approximation quality” of the model function, which is controlled by a growth function,
that describes the approximation error around the current iterate. Drusvyatskiy et al. [19]
refer to such model functions as Taylor-like models. The difference among algorithms lies in
the properties of such a growth function, rather than the specific choice of a model function.

For the example of the Gradient Descent model function (linearization around the current
iterate) for a continuously differentiable function, the value and the derivative of the growth
function (approximation error) vanish at the current iterate. In this case, a line search strat-
egy is required to determine a suitable step size that reduces the objective value. If the
gradient of the objective function is additionally L-Lipschitz continuous, then the growth
function satisfies a quadratic growth globally, and step sizes can be controlled analytically.

A large class of algorithms, which are widely popular in machine learning, statistics,
computer vision, signal and image processing can be cast in the same framework. This in-
cludes algorithms such as Forward–Backward Splitting [26] (Proximal Gradient Descent),
ProxDescent [25, 20] (or proximal Gauss–Newton method), and many others. They all obey
the same growth function as Gradient Descent. This allows for a unified analysis of all these
algorithms, which is a key contribution of this paper. Moreover, we allow for a broad class
of (iteration dependent) Bregman proximity functions (e.g., generated by common entropies
such as Boltzmann–Shannon, Fermi–Dirac, and Burg’s entropy), which leads to new algo-
rithms. To be generic in the choice of the objective, the model, and the Bregman functions,
the algorithm is complemented with an Armijo-like line search strategy. Subsequential con-
vergence to a stationary point is established for different types of growth functions.

The above mentioned algorithms are ubiquitous in applications of machine learning,
computer vision, image/signal processing, and statistics as is illustrated in Section 5 and in
our numerical experiments in Section 6. Due to the unifying framework, the flexibility of
these methods is considerably increased further.

2 Contributions and Related Work

For smooth functions, Taylor’s approximation is unique. However, for non-smooth functions,
there are only “Taylor-like” model functions [32, 31, 19]. Each model function yields another
algorithm. Some model functions [32, 31] could also be referred to as lower-Taylor-like mod-
els, as there is only a lower bound on the approximation quality of the model. Noll et al.
[31] addressed the problem by bundle methods based on cutting planes, which differs from
our setup.

The goal of Drusvyatskiy et al. [19] is to measure the proximity of an approximate so-
lution of the model function to a stationary point of the original objective, i.e., a suitable
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stopping criterion for non-smooth objectives is sought. On the one hand, their model func-
tions may be non-convex, unlike ours. On the other hand, their growth functions are more
restrictive. Considering their abstract level, the convergence results may seem satisfactory.
However, several assumptions that do not allow for a concrete implementation are required,
such as a vanishing distance between successive iterates and convergence of the objective
values along a generated convergent subsequence to the objective value of the limit point.
This is in contrast to our framework.

We assume more structure of the subproblems: They are given as the sum of a model
function and a Bregman proximity function. With this mild assumption on the structure
and a suitable line-search procedure, the algorithm can be implemented and the convergence
results apply. We present the first implementable algorithm in the abstract model
function framework and prove subsequential convergence to a stationary point.

Our algorithm generalizes ProxDescent [20, 25] with convex subproblems, which
is known for its broad applicability. We provide more flexibility by considering Bregman
proximity functions, and our backtracking line-search need not solve the subprob-
lems for each trial step.

The algorithm and convergence analysis is a far-reaching generalization of Bonettini
et al. [11], which is similar to the instantiation of our framework where the model function
leads to Forward–Backward Splitting. The proximity measure of Bonettini et al. [11] is
assumed to satisfy a strong convexity assumption. Our proximity functions can be
generated by a broad class of Legendre functions, which includes, for example, the
non-strongly convex Burg’s entropy [13, 3] for the generation of the Bregman proximity
function.

3 Preliminaries and Notations

Throughout the whole paper, we work in a Euclidean vector space RN of dimension N ∈ N
equipped with the standard inner product 〈·, ·〉 and associated norm | · |.

Variational analysis. We work with extended-valued functions f : RN → R, R := R ∪
{±∞}. The domain of f is dom f :=

{
x ∈ RN | f(x) < +∞

}
and a function f is proper, if it

is nowhere −∞ and dom f 6= ∅. It is lower semi-continuous (or closed), if lim infx→x̄ f(x) ≥
f(x̄) for any x̄ ∈ RN . Let int Ω denote the interior of Ω ⊂ RN . We use the notation of

f -attentive convergence x
f→ x̄ ⇔ (x, f(x)) → (x̄, f(x̄)), and the notation k

K→ ∞ for some
K ⊂ N to represent k →∞ where k ∈ K.

As in [19], we introduce the following concepts. For a closed function f : RN → R and a
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point x̄ ∈ dom f , we define the slope of f at x̄ by

|∇f |(x̄) := lim sup
x→x̄, x 6=x̄

[f(x̄)− f(x)]+
|x− x̄|

,

where [s]+ := max{s, 0}. It is the maximal instantaneous rate of decrease of f at x̄. For
a differentiable function, it coincides with the norm of the gradient |∇f(x̄)|. Moreover, the
limiting slope

|∇f |(x̄) := lim inf
x

f→x̄
|∇f |(x)

is key. For a convex function f , we have |∇f |(x̄) = infv∈∂f(x̄) |v|, where ∂f(x̄) is the (convex)
subdifferential ∂f(x̄) :=

{
v ∈ RN | ∀x : f(x) ≥ f(x̄) + 〈x− x̄, v〉

}
, whose domain is given by

dom ∂f :=
{
x ∈ RN | ∂f(x) 6= ∅

}
. A point x̄ is a stationary point of the function f , if

|∇f |(x̄) = 0 holds. Obviously, if |∇f |(x̄) = 0, then |∇f |(x̄) = 0. We define the set of
(global) minimizers of a function f by

Argmin
x∈RN

f(x) :=

{
x ∈ RN | f(x) = inf

x̄∈RN
f(x̄)

}
,

and the (unique) minimizer of f by argminx∈RN f(x), if Argminx∈RN f(x) consists of a single
element. As shorthand, we also use Argmin f and argmin f .

Definition 1 (Growth function [19]). A differentiable univariate function ω : R+ → R+

is called growth function if it satisfies ω(0) = ω′+(0) = 0. If, in addition, ω′+(t) > 0 for t > 0
and equalities limt↘0 ω

′
+(t) = limt↘0 ω(t)/ω′+(t) = 0 hold, we say that ω is a proper growth

function.

Concrete instances of growth functions will be generated for example by the concept of
ψ-uniform continuity, which is a generalization of Lipschitz and Hölder continuity.

Definition 2. A mapping F : RN → RM is called ψ-uniform continuous with respect to a
continuous function ψ : R+ → R+ with ψ(0) = 0, if the following holds:

|F (x)− F (x̄)| ≤ ψ(|x− x̄|) for all x, x̄ ∈ RN .

Example 3. Let F be ψ-uniform continuous. If, for some c > 0, we have ψ(s) = csα with
α ∈]0, 1], then F is Hölder continuous, which for α = 1 is the same as Lipschitz continuity.

In analogy to the case of Lipschitz continuity, we can state a generalized Descent Lemma:

Lemma 4 (Generalized Descent Lemma). Let f : RN → R be continuously differen-
tiable and let ∇f : RN → RN be ψ-uniform continuous. Then, the following holds

|f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 | ≤
∫ 1

0

ϕ(s|x− x̄|)
s

ds for all x, x̄ ∈ RN ,

where ϕ : R+ → R+ is given by ϕ(s) := sψ(s).
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Proof. We follow the proof of the Descent Lemma for functions with Lipschitz gradient:

|f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 | = |
∫ 1

0

〈∇f(x̄+ s(x− x̄))−∇f(x̄), x− x̄〉 ds|

≤
∫ 1

0

|∇f(x̄+ s(x− x̄))−∇f(x̄)||x− x̄| ds

≤
∫ 1

0

ψ(s|x− x̄|)|x− x̄| ds =

∫ 1

0

ϕ(s|x− x̄|)
s

ds .

Example 5. The function ω(t) =
∫ 1

0
ϕ(st)
s

ds is an example for a growth function. Obvi-
ously, we have ω(0) = 0 and, using the Dominated Convergence Theorem (with majorizer
sups∈[0,1] ψ(s) < +∞ for small t ≥ 0), we conclude

ω′+(0) = lim
t↘0

∫ 1

0

ϕ(st)

st
ds = lim

t↘0

∫ 1

0

ψ(st) ds =

∫ 1

0

lim
t↘0

ψ(st) ds = 0 .

It becomes a proper growth function, for example, if ψ(s) = 0 ⇔ s = 0 and we impose
the additional condition limt↘0w(t)/ψ(t) = 0. The function ψ(s) = csα with α > 0, i.e.
ϕ(s) = cs1+α, is an example for a proper growth function.

Bregman distance. In order to introduce the notion of a Bregman function [12], we first
define a set of properties for functions to generate nicely behaving Bregman functions.

Definition 6 (Legendre function [4, Def. 5.2]). The proper, closed, convex function
h : RN → R is

(i) essentially smooth, if ∂h is both locally bounded and single-valued on its domain,

(ii) essentially strictly convex, if (∂h)−1 is locally bounded on its domain and h is strictly
convex on every convex subset of dom ∂h, and

(iii) Legendre, if h is both essentially smooth and essentially strictly convex.

Note that we have the duality (∂h)−1 = ∂h∗ where h∗ denotes the conjugate of h.

Definition 7 (Bregman distance [12]). Let h : RN → R be proper, closed, convex and
Gâteaux differentiable on int domh 6= ∅. The Bregman distance associated with h is the
function

Dh : RN×RN → [0,+∞] , (x, x̄) 7→

{
h(x)− h(x̄)− 〈x− x̄,∇h(x̄)〉 , if x̄ ∈ int domh ;

+∞ , otherwise .

In contrast to the Euclidean distance, the Bregman distance is lacking symmetry.
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We focus on Bregman distances that are generated by Legendre functions from the fol-
lowing class:

L :=

h : RN → R

∣∣∣∣∣
h is a proper, closed, convex

Legendre function that is

Fréchet differentiable on int domh 6= ∅

 .

To control the variable choice of Bregman distances throughout the algorithm’s iterations,
we introduce the following ordering relation for h1, h ∈ L :

h1 � h ⇔ ∀x ∈ domh : ∀x̄ ∈ int domh : Dh1(x, x̄) ≥ Dh(x, x̄) .

As a consequence of h1 � h, we have domDh1 ⊂ domDh.
In order to conveniently work with Bregman distances, we collect a few properties.

Proposition 8. Let h ∈ L and Dh be the associate Bregman distance.

(i) Dh is strictly convex on every convex subset of dom ∂h with respect the first argument.

(ii) For x̄ ∈ int domh, it holds that Dh(x, x̄) = 0 if and only if x = x̄.

(iii) For x ∈ RN and x̄, x̂ ∈ int domh the following three point identity holds:

Dh(x, x̄) = Dh(x, x̂) +Dh(x̂, x̄) + 〈x− x̂,∇h(x̂)−∇h(x̄)〉 .

Proof. (i) and (ii) follow directly from the definition of h being essentially strictly convex.
(iii) is stated in [16]. It follows from the definition of a Bregman distance.

Associated with such a distance function is the following proximal mapping.

Definition 9 (Bregman proximal mapping [5, Def. 3.16]). Let f : RN → R and Dh be
a Bregman distance associated with h ∈ L . The Dh-prox (or Bregman proximal mapping)
associated with f is defined by

P h
f (x̄) := argmin

x
f(x) +Dh(x, x̄) . (1)

In general, the proximal mapping is set-valued, however for a convex function, the fol-
lowing lemma simplifies the situation.

Lemma 10. Let f : RN → R be a proper, closed, convex function that is bounded from
below, and h ∈ L such that int domh∩ dom f 6= ∅. Then the associated Bregman proximal
mapping P h

f is single-valued on its domain and maps to int domh ∩ dom f .

Proof. Single-valuedness follows from [5, Corollary 3.25(i)]. The second claim is from [5,
Prop. 3.23(v)(b)].
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Proposition 11. Let f : RN → R be a proper, closed, convex function that is bounded from
below, and h ∈ L such that int domh ∩ dom f 6= ∅. For x̄ ∈ int domh, x̂ = P h

f (x̄), and any
x ∈ dom f the following inequality holds:

f(x) +Dh(x, x̄) ≥ f(x̂) +Dh(x̂, x̄) +Dh(x, x̂) .

Proof. See [16, Lemma 3.2].

For examples and more useful properties of Bregman functions, we refer the reader to
[3, 5, 6, 30].

Miscellaneous. We make use of little-o notation f ∈ o(g) (or f = o(g)), which indicates
that the asymptotic behavior of a function f is dominated by that of the function g. Formally,
it is defined by

f ∈ o(g) ⇔ ∀ε > 0: |f(x)| ≤ ε|g(x)| for |x| sufficiently small.

Note that a function ω is in o(t) if, and only if ω is a growth function.

4 Line Search Based Bregman Minimization Algorithms

In this paper, we solve optimization problems of the form

min
x∈RN

f(x) (2)

where f : RN → R is a proper, closed function on RN . We assume that Argmin f 6= ∅
and f := min f > −∞. The main goal is to develop a provably (subsequentially) convergent

algorithm that finds a stationary point x of (2) in the sense of the limiting slope |∇f |(x) = 0.
We analyze abstract algorithms that sequentially minimize convex models of the objective

function.

4.1 The Abstract Algorithm

For each point x̄, we consider a proper, closed, convex model function fx̄ : RN → R with

|f(x)− fx̄(x)| ≤ ω(|x− x̄|) , (3)

where ω is a growth function as defined in Definition 1. The model assumption (3) is an
abstract description of a (local) first order oracle. For examples, we refer to Section 5.

Before delving further into the details, we need a bit of notation. Let

fhx̄,z̄(x) := fx̄(x) +Dh(x, z̄) and fhx̄ := fhx̄,x̄ ,

— 7 —



The Abstract Algorithm

where h ∈ L . Note that fhx̄ (x̄) = f(x̄). Moreover, the following quantity defined for generic
points x̄, x and x̃ will be important:

∆h
x̄(x, x̃) := fhx̄ (x)− fhx̄ (x̃) . (4)

For x̃ = x̄, it measures the decrease of the surrogate function fhx̄ from the current iterate x̄
to any other point x. Obviously, the definition implies that ∆h

x̄(x, x) = 0 for all x.

Algorithm. We consider the following Algorithm 1.

Algorithm 1 (Inexact Bregman Proximal Minimization Line Search).

• Basic prerequisites: Fix γ ∈]0, 1[ and h ∈ L . Let

• (xk)k∈N and (ỹk)k∈N be sequences in RN ;

• (fxk)k∈N be a sequence of model functions with infk∈N infx fxk(x) > −∞;

• (hk)k∈N be a sequence in L with hk � h;

• (ηk)k∈N be a sequence of positive real numbers.

• Initialization: Select x0 ∈ dom f ∩ int domh.

• For each k ≥ 0: Generate the sequences such that the following relations hold:

∆hk
xk

(ỹk, xk) < 0 with ỹk ∈ int domh (5)

xk+1 = xk + ηk(ỹk − xk) ∈ int domh (6)

f(xk+1) ≤ f(xk) + γηk∆
hk
xk

(ỹk, xk) (7)

If (5) cannot be satisfied, then the algorithm terminates.

The algorithm starts with a feasible point1 x0. At each iteration, it computes a point ỹk that
satisfies (5), which is an inexact solution of the Bregman proximal mapping

x̃k = P hk
fxk

(xk) := argmin
x∈RN

fxk(x) +Dhk(x, xk) (8)

that, at least, improves the (model) value compared to xk. Thanks to the class of Legendre
functions L , this proximal mapping is well-defined and single-valued on its domain. The
exact version of the algorithm solves the proximal mapping exactly for the global optimal
solution. The optimal solution of the proximal mapping will always be denoted by x̃k instead
of ỹk, which refers to an approximate solution. The direction ỹk − xk can be considered as
a descent direction for the function f . Given this direction, the goal of (6) and (7) is the

1It is often easy to find a feasible point. Of course, there are cases, where finding an initialization is a
problem itself. We assume that the user provides a feasible initial point.
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estimation of a step size ηk (by line search, cf. Algorithm 2) that reduces the value of the
objective function. In case that the proximal mapping has a solution but the first relation
(5) can only be satisfied with equality, we will see that xk = ỹk must be a stationary point
of the objective, hence, the algorithm terminates.

Remark 12. Instead of performing backtracking on the objective values as in Algorithm 1,
backtracking on the scaling of the Bregman distance in (5) is also possible. For a special
model function, this leads to ProxDescent [25, 20] (with Euclidean proximity function). If a
scaled version of (5) yields a descent on f , we can set ηk = 1, and accept this point. However,
this can be expensive when the proximal subproblem in (5) is hard to solve, since each trial
step requires to solve the subproblem. In order to break the backtracking, the new objective
value must be computed anyway. Therefore, a computational advantage of the line search
(6) and (7) is to be expected (cf. Section 6.1).

Algorithm 2 (Line Search for Algorithm 1).

• Basic prerequisites: Fix δ, γ ∈]0, 1[, η̃ > 0, and k ∈ N.

• Input: Current iterates xk ∈ int domh and ỹk satisfy (5).

• Solve: Find the smallest j ∈ N such that η̃j := η̃δj satisfies (6) and (7).

• Return: Set the feasible step size ηk for iteration k to η̃j.

Algorithm 1–2 is well defined as the following lemmas show.

Lemma 13 (Well-definedness). Let ω in (3) be a growth function. Algorithm 1 is well-
defined, i.e., for all k ∈ N, the following holds:

(i) there exists ỹk that satisfies (5) or xk = x̃k and the algorithm terminates;

(ii) xk ∈ dom f ∩ int domh; and

(iii) there exists ηk that satisfies (6) and (7).

Proof. (i) For xk ∈ int domh, Lemma 10 shows that P hk
fxk

maps to int domhk ∩ dom fxk ⊂
int domh ∩ dom f and is single-valued. Thus, for example, ỹk = x̃k satisfies (5). Otherwise,
xk = x̃k, which shows (i). (ii) Since x0 ∈ dom f ∩ int domh and f(xk+1) ≤ f(xk) by (7)
it holds that xk ∈ dom f for all k. Since xk ∈ int domh and ỹk ∈ domh, for small ηk also
xk+1 ∈ int domh, hence xk+1 ∈ dom f ∩ int domh. Inductively, we conclude the statement.
(iii) This will be shown in Lemma 14.

Lemma 14 (Finite termination of Algorithm 2). Consider Algorithm 1 and fix k ∈ N.
Let ω in (3) be a growth function. Let δ, γ ∈]0, 1[, η̃ > 0, h̄ := hk, and x̄ := xk, ỹ := ỹk be
such that ∆h̄

x̄(ỹ, x̄) < 0. Then, there exists j ∈ N such that η̃j := η̃δj satisfies

f(x̄+ η̃j(ỹ − x̄)) ≤ f(x̄) + γη̃j∆
h̄
x̄(ỹ, x̄) .
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Proof. This result is proved by contradiction. Define v := ỹ − x̄. By our assumption in (3),
we observe that

f(x̄+ η̃jv)− f(x̄) ≤ fx̄(x̄+ η̃jv)− f(x̄) + o(η̃j) . (9)

Using Jensen’s inequality for the convex function fx̄ provides:

fx̄(x̄+ η̃jv)− fx̄(x̄) ≤ η̃jfx̄(x̄+ v) + (1− η̃j)fx̄(x̄)− fx̄(x̄) = η̃j ·
(
fx̄(x̄+ v)− fx̄(x̄)

)
. (10)

Now, suppose γ∆h̄
x̄(ỹ, x̄) < 1

η̃j
(f(x̄ + η̃jv) − f(x̄)) holds for any j ∈ N. Then, using (9) and

(10), we conclude the following:

γ∆h̄
x̄(ỹ, x̄) < fx̄(x̄+ v)− fx̄(x̄) + o(η̃j)/η̃j

≤ fx̄(x̄+ v)− fx̄(x̄) +Dh̄(ỹ, x̄) + o(η̃j)/η̃j

= (f h̄x̄ (ỹ)− f h̄x̄ (x̄)) + o(η̃j)/η̃j = ∆h̄
x̄(ỹ, x̄) + o(η̃j)/η̃j ,

which for j →∞ yields the desired contradiction, since γ ∈]0, 1[ and ∆h̄
x̄(ỹ, x̄) < 0.

4.2 Finite Time Convergence Analysis

First, we study the case when the algorithm terminates after a finite number of iterations,
i.e., there exists k0 ∈ N such that (5) cannot be satisfied. Then, the point ỹk0 is a global

minimizer of f
hk0
xk0

and ∆
hk0
xk0

(ỹk0 , xk0) = 0. Moreover, the point xk0 turns out to be a stationary
point of f .

Lemma 15. For x̄ ∈ dom f and a model fx̄ that satisfies (3), where ω is a growth function,
the following holds:

|∇fx̄|(x̄) = |∇f |(x̄) .

Proof. Since ω(0) = 0, we have from (3) that fx̄(x̄) = f(x̄). This, together with sub-
additivity of [·]+, entails

[fx̄(x̄)− fx̄(x)]+
|x− x̄|

≤ [f(x̄)− f(x)]+ + [f(x)− fx̄(x)]+
|x− x̄|

≤ [f(x̄)− f(x)]+
|x− x̄|

+
|f(x)− fx̄(x)|
|x− x̄|

≤ [f(x̄)− f(x)]+
|x− x̄|

+
ω(|x− x̄|)
|x− x̄|

Passing to the lim sup on both sides and using that ω ∈ o(t), we get

|∇fx̄|(x̄) ≤ |∇f |(x̄).

Arguing similarly but now starting with |∇f |(x̄), we get the reverse inequality, which in turn
shows the claimed equality.

Proposition 16 (Stationarity for finite time termination). Consider the setting of
Algorithm 1. Let ω in (3) be a growth function. Let k0 ∈ N be fixed, and set x̃ = ỹk0 ,
x̄ = xk0 , h̄ = hk0 , and x̄, x̃ ∈ dom f ∩ int domh. If ∆h̄

x̄(x̃, x̄) ≥ 0, then x̃ = x̄, ∆h̄
x̄(x̃, x̄) = 0,

and |∇f |(x̄) = 0, i.e. x̄ is a stationary point of f .
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Proof. Since x̃ is the unique solution of the proximal mapping, obviously ∆h̄
x̄(x̃, x̄) = 0 and

x̃ = x̄. Moreover, x̃ is the minimizer of f h̄x̄ , i.e. we have

0 = |∇f h̄x̄ |(x̃) = |∇f h̄x̄ |(x̄) = lim sup
x→x̄
x 6=x̄

[fx̄(x̄)− fx̄(x)−Dh̄(x, x̄)]+
|x− x̄|

= |∇fx̄|(x̄) = |∇f |(x̄) ,

where we used that h̄ is Fréchet differentiable at x̄ and Lemma 15.

4.3 Asymptotic Convergence Analysis

We have established stationarity of the algorithm’s output, when it terminates after a finite
number of iterations. Therefore, without loss of generality, we now focus on the case where
(5) can be satisfied for all k ∈ N. We need to make the following assumptions.

Assumption 1. The sequence (ỹk)k∈N satisfies fhkxk (ỹk) ≤ inf fhkxk + εk for some εk → 0.

Remark 17. Assumption 1 states that asymptotically (for k →∞) the Bregman proximal
mapping (8) must be solved accurately. In order to obtain stationarity of a limit point,
Assumption 1 is necessary, as shown by Bonettini et al. [11, after Theorem 4.1] for a special
setting of model functions.

Assumption 2. Let h ∈ L . For every bounded sequences (xk)k∈N and (x̄k)k∈N in int domh,
and (hk)k∈N such that hk � h, it is assumed that:

xk − x̄k → 0 ⇔ Dhk(xk, x̄k)→ 0 .

Remark 18. (i) Assumption 2 states that (asymptotically) a vanishing Bregman distance
reflects a vanishing Euclidean distance. This is a natural assumption and satisfied, e.g.,
by most entropies such as Boltzmann–Shannon, Fermi–Dirac, and Burg entropy.

(ii) The equivalence in Assumption 2 is satisfied, for example, when there exists c ∈ R
such that c h � hk holds for all k ∈ N and the following holds:

xk − x̄k → 0 ⇔ Dh(xk, x̄k)→ 0 .

Proposition 19 (Convergence of objective values). Consider the setting of Algorithm 1.
Let ω in (3) be a growth function. The sequence of objective values (f(xk))k∈N is non-
increasing and converging to some f ∗ ≥ f > −∞.

Proof. This statement is a consequence of (7) and (5), and the lower-boundedness of f .

Asymptotically, under some condition on the step size, the improvement of the model
objective value between ỹk and xk must tend to zero. Since we do not assume that the step
sizes ηk are bounded away from zero, this is a non-trivial result.
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Proposition 20 (Vanishing model improvement). Consider the setting of Algorithm 1.
Let ω in (3) be a growth function. Suppose, either2 infk ηk > 0 or ηk is selected by the Line
Search Algorithm 2. Then,

∞∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) < +∞ and ∆hk
xk

(ỹk, xk)→ 0 as k →∞.

Proof. The first part follows from rearranging (7), and summing both sides for k = 0, . . . , n:

γ
n∑
k=0

ηk(−∆hk
xk

(ỹk, xk)) ≤
n∑
k=0

(f(xk)− f(xk+1)) = f(x0)− f(xn+1) ≤ f(x0)− f ∗ .

In the remainder of the proof, we show that ∆hk
xk

(ỹk, xk) → 0, which is not obvious unless
infk ηk > 0. The model improvement is bounded. Boundedness from above is satisfied by
construction of the sequence (ỹk)k∈N. Boundedness from below follows from the following
observation and the uniform boundedness of the model functions from below:

∆hk
xk

(ỹk, xk) = fhkxk (ỹk)− fhkxk (xk) ≥ fhkxk (x̃k)− f(xk) ≥ fxk(x̃k)− f(x0) .

Therefore, there exists K ⊂ N such that the subsequence ∆hk
xk

(ỹk, xk) converges to some ∆∗

as k
K→ ∞. Suppose ∆∗ < 0. Then, the first part of the statement implies that the step

size sequence must tend to zero, i.e., ηk → 0 for k
K→ ∞. For k ∈ K sufficiently large, the

line search procedure in Algorithm 2 reduces the step length from ηk/δ to ηk. (Note that
ηk can be assumed to be the “first” step length that achieves a reduction in (7)). Before
multiplying with δ, no descent of (7) was observed, i.e.,

(ηk/δ)γ∆hk
xk

(ỹk, xk) < f(xk + (ηk/δ)vk)− f(xk) ,

where vk = ỹk − xk. Using (9) and (10), we can make the same observation as in the proof
of Lemma 14:

γ∆hk
xk

(ỹk, xk) < fxk(xk + v)− fxk(xk) + o(ηk/δ)/(ηk/δ)

≤ fxk(xk + v)− fxk(xk) +Dhk(ỹk, xk) + o(ηk)/ηk

= (fhkxk (ỹk)− fhkxk (xk)) + o(ηk)/ηk

= ∆hk
xk

(ỹk, xk) + o(ηk)/ηk ,

which for ηk → 0 yields a contradiction, since γ ∈]0, 1[ and ∆hk
xk

(ỹk, xk) < 0. Therefore, any
cluster point ∆∗ of (∆hk

xk
(ỹk, xk))k∈K must be 0, which concludes the proof.

4.3.1 Asymptotic Stationarity with a Growth Function

In order to establish stationarity of limit points generated by Algorithm 1 additional assump-
tions are required. We consider three different settings for the model assumption (3): ω in
the model assumption (3) is a growth function (this section), ω is a proper growth function
(Section 4.3.2), and ω is global growth function of the form ω = Dh (Section 4.3.3).

2Note that infk ηk > 0 is equivalent to lim infk ηk > 0 as we assume ηk > 0 for all k ∈ N.
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Assumption 3. Let x∗ be a limit point of (xk)k∈N and xk
f→ x∗ as k

K→ ∞ with K ⊂ N.
Then

|∇fxk |(xk) = |∇f |(xk)→ 0 as k
K→∞ .

Remark 21. Assumption 3 is common for abstract algorithms. Attouch et al. [2], for
example, use a relative error condition of the form |∇f |(xk+1) ≤ b|xk+1 − xk|, b ∈ R.
A weaker sufficient condition for Assumption 3 is |∇f |(xk+1) ≤ ψ(|xk+1 − xk|) for some
continuous function ψ : R+ → R+ with ψ(0) = 0; See Corollary 25. See also Remark 24. For
explicit examples, we refer to Section 5.1.

Using this assumption, we can state one of our main theorems, which shows convergence
to a stationary point under various condition. The conditions are easily verified in many
applications (see Section 5).

Theorem 22 (Asymptotic stationarity with a growth function). Consider the setting
of Algorithm 1. Let ω in (3) be a growth function. Moreover, let either infk ηk > 0 or ηk
be selected by the Line Search Algorithm 2. Let (xk)k∈N and (ỹk)k∈N be bounded sequences
such that Assumptions 1 and 2 hold and let fxk obey (3) with growth function ω. Then,
xk − ỹk → 0 and for x̃k = P hk

fxk
(xk), it holds that xk − x̃k → 0 and x̃k − ỹk → 0. Moreover,

f(xk)− f(ỹk)→ 0 and f(x̃k)− f(xk)→ 0 as k →∞. Suppose Assumption 3 is satisfied. If
x∗ is a limit point of the sequence (xk)k∈N, and one of the following conditions is satisfied:

(i) f is continuous on the closure of domh,

(ii) x∗ ∈ int domh,

(iii) x∗ ∈ domh and Dhk(x∗, ỹk)→ 0 as k
K→∞,

(iv) x∗ ∈ cl domh and

• for all x ∈ int domh ∩ dom f holds that Dhk(x, x̃k)−Dhk(x, xk)→ 0 as k
K→∞,

• and for all x ∈ dom f the model functions obey fxk(x)→ fx∗(x) as k
K→∞,

then x∗ is a stationary point of f .

Proof. First, we show that for k →∞ the pairwise distances between the sequences (xk)k∈N,
(ỹk)k∈N, and (x̃k)k∈N vanishes. Proposition 11, reformulated in our notation, can be stated
as

∆hk
xk

(x, x̃k) = fhkxk (x)− fhkxk (x̃k) ≥ Dhk(x, x̃k) , ∀x ∈ dom f . (11)

As a direct consequence, using x = ỹk together with Assumptions 1 and 2, we obtain

Dhk(ỹk, x̃k)→ 0 thus x̃k − ỹk → 0 .

Moreover, from Proposition 20, we have ∆hk
xk

(ỹk, xk)→ 0, and from

∆hk
xk

(ỹk, xk) = ∆hk
xk

(ỹk, x̃k)−∆hk
xk

(xk, x̃k) ≤ ∆hk
xk

(ỹk, x̃k)−Dhk(xk, x̃k) , (12)

— 13 —



Asymptotic Convergence Analysis

and Assumptions 1 and 2, we conclude that xk − x̃k → 0, hence also xk − ỹk → 0.

The next step is to show that f(xk) − f(ỹk) → 0 as k → ∞. This follows from the
following estimation:

|f(xk)− f(ỹk)| ≤ |fxk(xk)− fxk(ỹk)|+ ω(|ỹk − xk|)
≤ |fhkxk (xk)− fhkxk (ỹk)|+Dhk(ỹk, xk) + ω(|ỹk − xk|)
= |∆hk

xk
(xk, ỹk)|+Dhk(ỹk, xk) + ω(|ỹk − xk|) ,

(13)

where the right hand side vanishes for k → ∞. Analogously, we can show that f(x̃k) −
f(xk)→ 0 as k →∞.

Let x∗ be the limit point of the subsequence (xk)k∈K for some K ⊂ N. The remainder
of the proof shows that f(ỹk) → f(x∗) as k → ∞. Then f(xk) − f(ỹk) → 0 implies that

xk
f→ x∗ as k

K→ ∞, and by Assumption 3, the slope vanishes, hence the limiting slope
|∇f |(x∗) at x∗ also vanishes, which concludes the proof.

(i) implies f(ỹk)→ f(x∗) as k →∞ by definition. For (ii) and (iii), we make the following
observation:

f(ỹk)−ω(|ỹk−xk|) ≤ fhkxk (ỹk) = fhkxk (x̃k)+(fhkxk (ỹk)−fhkxk (x̃k)) ≤ fhkxk (x∗)+∆hk
xk

(ỹk, x̃k) , (14)

where x̃k = P hk
fxk

(xk). Taking “lim sup
k
K→∞

” on both sides, Dhk(x∗, xk) → 0 (Assump-

tion 2 for (ii) or the assumption in (iii)), and ∆hk
xk

(ỹk, x̃k) → 0 (Assumption 1) shows that
lim sup

k
K→∞

f(ỹk) ≤ f(x∗). Since f is closed, f(ỹk)→ f(x∗) holds.

We consider (iv). For all x ∈ int domh∩ dom f , we have (11) or, reformulated, fhkxk (x)−
Dhk(x, x̃k) ≥ fhkxk (x̃k), which implies the following:

fxk(x) +Dhk(x, xk)−Dhk(x, x̃k)−Dhk(x̃k, xk) ≥ f(x̃k)− ω(|x̃k − xk|) .

Note that for any x the limits for k
K→∞ on the left hand side exist. In particular, we have

Dhk(x, xk)−Dhk(x, x̃k)−Dhk(x̃k, xk)→ 0 as k
K→∞ ,

by the assumption in (iv), and Assumption 2 together with x̃k − xk → 0. The limit of
fxk(x) exists by assumption and coincides with fx∗(x). Choosing a sequence (zk)k∈N in

int domh ∩ dom f with zk → x∗ as k
K→∞, in the limit, we obtain

f(x∗) ≥ lim
k
K→∞

f(x̃k) =: f ∗ ,

since fx∗(zk) → fx∗(x∗) = f(x∗) for zk → x∗ as k
K→ ∞. Invoking that f is closed, we

conclude the f -attentive convergence f ∗ = lim infk→∞ f(xk) ≥ f(x∗) ≥ f ∗.
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Remark 23. Existence of a limit point x∗ is guaranteed by assuming that (xk)k∈N is bounded.
Alternatively, we could require that f is coercive (i.e. f(xk) → ∞ for |xk| → ∞), which
implies boundedness of the lower level sets of f , hence by Proposition 19 the boundedness
of (xk)k∈N.

Remark 24. From Theorem 22, clearly, also ỹk
f→ x∗ and x̃k

f→ x∗ as k
K→ ∞ holds.

Therefore, Assumption 3 could also be stated as the requirement

|∇f |(x̃k)→ 0 or |∇f |(ỹk)→ 0 as k
K→∞ ,

in order to conclude that limit points of (xk)k∈N are stationary points.

As a simple corollary of this theorem, we replace Assumption 3 with the relative error
condition mentioned in Remark 21.

Corollary 25 (Asymptotic stationarity with a growth function). Consider the setting
of Algorithm 1. Let ω in (3) be a growth function. Moreover, let either infk ηk > 0 or ηk
be selected by the Line Search Algorithm 2. Let (xk)k∈N and (ỹk)k∈N be bounded sequences
such that Assumptions 1 and 2 hold and let fxk obey (3) with growth function ω. Suppose
there exists a continuous function ψ : R+ → R+ with ψ(0) = 0 such that |∇f |(xk+1) ≤
ψ(|xk+1 − xk|) is satisfied. If x∗ is a limit point of the sequence (xk)k∈N and one of the
conditions (i)–(iv) in Theorem 22 is satisfied, then x∗ is a stationary point of f .

Proof. Theorem 22 shows that ỹk − xk → 0, thus, infk ηk > 0 implies xk+1 − xk → 0 by (6).
Therefore, the relation |∇f |(xk+1) ≤ ψ(|xk+1−xk|) shows that Assumption 3 is automatically
satisfied and we can apply Theorem 22 to deduce the statement.

Some more results on the limit point set. In Theorem 22 we have shown that limit
points of the sequence (xk)k∈N generated by Algorithm 1 are stationary, and in fact the se-
quence f -converges to its limit points. The following proposition shows some more properties
of the set of limit points of (xk)k∈N. This is a well-known result [10, Lem. 5] that follows
from xk+1 − xk → 0 as k →∞.

Proposition 26. Consider the setting of Algorithm 1. Let ω in (3) be a growth function and
infk ηk > 0. Let (xk)k∈N and (ỹk)k∈N be bounded sequences such that Assumptions 1, 2 and 3
hold. Suppose one of the conditions (i)–(iv) in Theorem 22 is satisfied for each limit point

of (xk)k∈N. Then, the set S :=
{
x∗ ∈ RN | ∃K ⊂ N : xk → x∗ as k

K→∞
}

of limit points of

(xk)k∈N is connected, each point x∗ ∈ S is stationary for f , and f is constant on S.

Proof. Theorem 22 shows that ỹk − xk → 0. Thus, boundedness of ηk away from 0 implies
xk+1 − xk → 0 by (6). Now, the statement follows from [10, Lem. 5] and Theorem 22.

4.3.2 Asymptotic Stationarity with a Proper Growth Function

Our proof of stationarity of limit points generated by Algorithm 1 under the assumption
of a proper growth function ω in (3) relies on an adaptation of a recently proved result by

— 15 —



Asymptotic Convergence Analysis

Drusvyatskiy et al. [19, Corollary 5.3], which is stated in Lemma 27 before the main theorem
of this subsection. The credits for this lemma should go to [19].

Lemma 27 (Perturbation result under approximate optimality). Let f : RN → R be
a proper closed function. Consider bounded sequences (xk)k∈N and (ỹk)k∈N with xk− ỹk → 0
for k →∞, and model functions fhkxk according to (3) with proper growth functions. Suppose
Assumption 1 and 2 hold. If (x∗, f(x∗)) is a limit point of (xk, f(xk))k∈N, then x∗ is stationary
for f .

Proof. Recall εk from Assumption 1. Theorem 5.1 from [19] guarantees, for each k and any
ρk > 0, the existence of points ŷk and zk such that the following hold:

(i) (point proximity)

|ỹk − zk| ≤
εk
ρk

and |zk − ŷk| ≤ 2 · ω(|zk − xk|)
ω′+(|zk − xk|)

,

under the convention 0
0

= 0 ,

(ii) (value proximity) f(ŷk) ≤ f(ỹk) + 2ω(|zk − xk|) + ω(|ỹk − xk|), and

(iii) (near-stationarity) |∇f |(ŷ) ≤ ρk + ω′+(|zk − xk|) + ω′+(|ŷk − xk|),

Setting ρk =
√
εk, using εk → 0 and the point proximity, shows that |ỹk−zk| → 0. Moreover

|zk − xk| ≤ |zk − ỹk| + |ỹk − xk| → 0, which implies that |zk − ŷk| → 0. Now, we fix a

convergent subsequence (xk, f(xk)) → (x∗, f(x∗)) as k
K→ ∞ for some K ⊂ N. Using (11),

we observe x̃k − ỹk → 0, hence xk − x̃k → 0. From Proposition 20 and Assumption 1, we
conclude that ∆hk

xk
(ỹk, xk) → 0, and, therefore f(xk) − f(ỹk) → 0 using (13). Consider the

value proximity. Combined with the lower semi-continuity of f , it yields

f(x∗) ≤ lim inf
k
K→∞

f(ŷk) ≤ lim sup
k
K→∞

f(ŷk) ≤ lim sup
k
K→∞

f(ỹk) ≤ f(x∗) ,

hence (ŷk, f(ŷk)) → (x∗, f(x∗)) as k
K→ ∞. Near-stationarity implies that |∇f |(ŷk) → 0,

which proves that |∇f |(x∗) = 0, hence x∗ is a stationary point.

Remark 28. The setting in [19, Corollary 5.3] is recovered when (xk)k∈N is given by xk+1 =
ỹk.

Theorem 29 (Asymptotic stationarity with a proper growth function). Consider
the setting of Algorithm 1. Let ω in (3) be a proper growth function. Moreover, let either
infk ηk > 0 or ηk be selected by the Line Search Algorithm 2. Let (xk)k∈N and (ỹk)k∈N be
bounded sequences such that Assumptions 1 and 2 hold. If x∗ is a limit point of the sequence
xk and one of the conditions (i)–(iv) in Theorem 22 is satisfied, then x∗ is a stationary point
of f .
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Proof. Propositions 19 and 20, and the proof of f -attentive convergence from Theorem 22
only rely on a growth function. Instead of assuming that the slope vanishes, here we apply
Lemma 27 to conclude stationarity of the limit points.

Of course, Proposition 26 can also be stated in the context here.

4.3.3 Asymptotic Analysis with a Global Growth Function

Suppose, for x̄ ∈ int domh for some h ∈ L , the model error can be estimated as follows:

|f(x)− fx̄(x)| ≤ LDh(x, x̄) ∀x . (15)

Since h is Fréchet differentiable on int domh, the right hand side is bounded by a growth
function. Without loss of generality, we restrict ourselves to a fixed function h ∈ L (this sec-
tion analyses a single iteration). In order to reveal similarities to well-known step size rules,
we scale h in the definition of fhx̄ to Dh/α = 1

α
Dh with α > 0 instead of Dh. Here, decreasing

objective values can be assured without the line search procedure (see Proposition 30), i.e.,
ηk = 1 is always feasible.

In order to obtain the result of stationarity of limit points (Theorem 22 or 29), we can
either verify by hand that Assumption 3 holds or we need to assume that Dh(x, x̄) is bounded
by a proper growth function.

Proposition 30. Consider the setting of Algorithm 1 and let (15) be satisfied.

(i) For points ỹ that satisfy ∆h
x̄(ỹ, x̄) < 0,

1− αL
α

Dh(ỹ, x̄) ≤ f(x̄)− f(ỹ)

holds, where the left-hand-side is strictly larger than 0 for α ∈]0, 1/L[.

(ii) For points x̃ = P h
fx̄

(x̄), the following descent property holds:

1 + ρ− αL
α

Dh(x̃, x̄) ≤ f(x̄)− f(x̃) ,

where the left-hand-side is strictly larger than 0 for α ∈]0, (1 + ρ)/L[, and ρ is the

Bregman symmetry factor defined by ρ := inf
{
Dh(x,x̄)
Dh(x̄,x)

|x, x̄ ∈ int domh , x 6= x̄
}

; (see

[6]).

Proof. The following relations hold:

∆h
x̄(ỹ, x̄) ≤ 0 ⇔ fhx̄ (ỹ) ≤ fhx̄ (x̄) ⇔ fx̄(ỹ) +

1

α
Dh(ỹ, x̄) ≤ fx̄(x̄) = f(x̄) . (16)

Bounding the left hand side of the last expression using (15), we obtain

f(ỹ)− LDh(ỹ, x̄) +
1

α
Dh(ỹ, x̄) ≤ f(x̄) , (17)
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which proves part (i). Part (ii) follows analogously. However, thanks to the three point
inequality from Proposition 11 and optimality of x̃ the rightmost inequality of (16) improves
to

fx̄(x̃) +
1

α
Dh(x̃, x̄) +

1

α
Dh(x̄, x̃) ≤ fx̄(x̄) = f(x̄) ,

and the statement follows.

4.4 A Remark on Convex Optimization

In this section, let f be convex, and consider the following global model assumption

0 ≤ f(x)− fx̄(x) ≤ LDh(x, x̄) . (18)

We establish a convergence rate of O(1/k) for Algorithm 1 with ηk ≡ 1. For Forward–
Backward Splitting, this has been shown by Bauschke et al. [6]. We only require fx̄ to be a
model w.r.t. (18).

Proposition 31. Consider Algorithm 1 with ηk ≡ 1 and model functions that obey (18).

For xk+1 = P
h/α
fxk

(xk) and α = 1
L

, the following rate of convergence on the objective values

holds:

f(xk+1)− f(x) ≤ LDh(x
∗, x0)

2k
(= O(1/k)) .

Proof. The three point inequality in Proposition 11 combined with the model assumption
(18) yields the following inequality:

f(x̃) +
1− αL
α

Dh(x̃, x̄) +
1

α
Dh(x, x̃) ≤ f(x) +

1

α
Dh(x, x̄)

for all x. Restricting to 0 < α ≤ 1
L

, we obtain

f(x̃)− f(x) ≤ 1

α
(Dh(x, x̄)−Dh(x, x̃)) . (19)

Let x∗ be a minimizer of f . We make the following choices:

x = x∗ , x̃ = xk+1 , and x̄ = xk .

Summing both sides up to iteration k and the descent property yield the convergence rate:

f(xk+1)− f(x) ≤ Dh(x
∗, x0)

2αk

α= 1
L=
LDh(x

∗, x0)

2k
. (20)

Example 32. This section goes beyond the Forward–Backward Splitting setting, e.g., we
may specialize Example 35 to convex problems of the form minx g(F (x)), for instance, using
F (x) = (f1(x), f2(x)) and g(z1, z2) = max{z1, z2}.
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5 Examples

We discuss several classes of problems that can be solved using our framework. To apply Al-
gorithm 1, in Section 5.1, we define a suitable model and mention the associated algorithmic
step that arises from exactly minimizing the sum of the model and an Euclidean proximity
measure. However our algorithm allows for inexact solutions and very flexible (also itera-
tion dependent) Bregman proximity functions. Examples are provided in Section 5.2. For
brevity, we define the symbols Γ0 for the set of proper, closed, convex functions and C1 for
the set of continuously differentiable functions.

5.1 Examples of Model Functions

Example 33 (Forward–Backward Splitting). Problems of the form

f = f0 + f1 with f0 ∈ Γ0 and f1 ∈ C1

can be modeled by
fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 .

This model is associated with Forward–Backward Splitting (FBS). We assume that one of
the following error models is satisfied:

|f(x)−fx̄(x)| = |f1(x)−f1(x̄)−〈x− x̄,∇f1(x̄)〉 | ≤


L
2
|x− x̄|2 , if ∇f1 is L-Lipschitz ;∫ 1

0
ϕ(t|x−x̄|)

t
dt , if∇f1 is ψ-uniformly

continuous ;
ω(|x− x̄|) , otherwise ,

which is the linearization error of the smooth part f1. The first case obeys a global (proper)
growth function, derived from the common Descent Lemma. The second case is the general-
ization to a ψ-uniformly continuous gradient with ϕ(s) = sψ(s) as in Lemma 4. The bound∫ 1

0
ϕ(t|x−x̄|)

t
dt is a growth function but not necessarily a proper growth function. The third

case is the most general and assumes that the error obeys a growth function. In any case,
the model satisfies the model consistency required in Theorem 22(iv). For any x ∈ dom f
and x̄→ x∗,

|f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉 − (f0(x) + f1(x∗) + 〈x− x∗,∇f1(x∗)〉)| → 0

holds, thanks to the continuous differentiability of f1 and continuity of the inner product.

In order to verify Assumption 3, we make use of Remark 24 and show that |∇f |(x̃k)→ 0

as k
K→∞ where K ⊂ N is such that xk

K→ x∗. Note that x̃k satisfies the following relation:

0 ∈ ∂f0(x̃k) +∇f1(xk) +∇hk(x̃k)−∇hk(xk)
⇒ ∇f1(x̃k)−∇f1(xk) +∇hk(xk)−∇hk(x̃k) ∈ ∂f0(x̃k) +∇f1(x̃k) = ∂f(x̃k)
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Moreover, we know that x̃k − xk → 0 as k
K→ ∞. Since ∇f1 is continuous, if |∇hk(xk) −

∇hk(x̃k)| → 0 for k
K→ ∞, then Assumption 3/Remark 24 is satisfied. The condition

|∇hk(xk) − ∇hk(x̃k)| → 0 is naturally fulfilled by many Legendre functions, e.g., if ∇hk is
ψ-uniformly continuous (uniformly in k) with α > 0 or uniformly continuous (independent
of k) on bounded sets or continuous at x∗ (uniformly w.r.t. k), and will be discussed in more
detail in Section 5.2.

Example 34 (Variable metric FBS). We consider an extension of Examples 33. An
alternative feasible model for a twice continuously differentiable function f1 is the following:

fx̄(x) = f0(x) + f1(x̄) + 〈x− x̄,∇f1(x̄)〉+
1

2
〈x− x̄, B(x− x̄)〉 ,

where B := [∇2f1(x̄)]+ is a positive definite approximation to ∇2f1(x̄), which leads to
a Hessian driven variable metric FBS. It is easy to see that the model error satisfies the
growth function ω(s). Again, Theorem 22(iv) obviously holds and the same conclusions
about Assumption 3 can be made as in Example 33.

Example 35 (ProxDescent). Problems of the form

f0 + g ◦ F with f0 ∈ Γ0 , F ∈ C1 , and g ∈ Γ0 finite-valued ,

which often arise from non-linear inverse problems, can be approached by the model function

fx̄(x) = f0(x) + g(F (x̄) +DF (x̄)(x− x̄)) ,

where DF (x̄) is the Jacobian matrix of F at x̄. The associated algorithm is connected to
ProxDescent [25, 20]. If g is a quadratic function, the algorithm reduces to the Levenberg–
Marquardt algorithm [27]. The error model can be computed as follows:

|f(x)− fx̄(x)| = |g(F (x))− g(F (x̄) +DF (x̄)(x− x̄))|
≤ `|F (x)− F (x̄)−DF (x̄)(x− x̄)|

≤


`L
2
|x− x̄|2 , if DF is L-Lipschitz and g is `-Lipschitz ;

`
∫ 1

0
ϕ(t|x−x̄|)

t
dt , if DF is ψ-uniform continuous and g is `-Lipschitz ;

ω(|x− x̄|) , otherwise ,

(21)

where ` is the (possibly local) Lipschitz constant of g around F (x̄). Since g is convex and
finite-valued, it is always locally Lipschitz continuous. Since F is continuously differentiable,
for x sufficiently close to x̄, both F (x) and F (x̄)+DF (x̄)(x−x̄) lie in a neighborhood of F (x̄)
where the local Lipschitz constant ` of g is valid, which shows the first inequality in (21).
The second case uses the concept of ψ-uniform continuity from Definition 2 and Lemma 4.
The third case is the assumption that the error obeys a growth function. With a similar
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reasoning, we can show that Theorem 22(iv) is satisfied.

We consider Assumption 3 (see also Remark 24). Let xk → x∗ as k
K→ ∞ for K ⊂ N

and x̃k − xk → 0. Since g is finite-valued, using [7, Corollary 16.38] (sum-rule for the
subdifferential), and [36, Theorem 10.6], we observe that

0 ∈ ∂f0(x̃k) +DF (xk)
∗∂g(F (xk) +DF (xk)(x̃k − xk)) +∇hk(x̃k)−∇hk(xk) , (22)

where DF (xk)
∗ denotes the adjoint of DF (xk). We can assume that, for k large enough,

F (xk)+DF (xk)(x̃k−xk) and F (x̃k) lie a neighborhood of F (x∗) on which g has the Lipschitz
constant ` > 0. By [36, Theorem 9.13], ∂g is locally bounded around F (x∗), i.e. there exists
a compact set G such that ∂g(z) ⊂ G for all z in a neighborhood of F (x∗). We conclude
that

sup
v∈∂g(F (xk)+DF (xk)(x̃k−xk))

w∈∂g(F (x̃k))

|DF (xk)
∗v −DF (x̃k)

∗w| ≤ sup
v,w∈G

|DF (xk)
∗v −DF (x̃k)

∗w| → 0

for k
K→ ∞ since DF (xk) → DF (x∗) and DF (x̃k) → DF (x∗). Again assuming that

∇hk(x̃k) − ∇hk(xk) → 0 we conclude that the outer set-limit of the right hand side of

(22) is included in ∂f(x̃k) and, therefore, the slope |∇f |(x̃k) vanishes for k
K→∞.

Example 36. Problems of the form

f0+g◦F with f0 ∈ Γ0 , g ∈ C1 ,∇gi ≥ 0 , and F = (F1, . . . , FM) is Lipschitz with Fi ∈ Γ0

can be modeled by

fx̄(x) = f0(x) + g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉 .

Such problems appear for example in non-convex regularized imaging problems in the context
of iteratively reweighted algorithms [33]. For the error of this model function, we observe
the following:

|f(x)− fx̄(x)| = |g(F (x))− (g(F (x̄)) + 〈F (x)− F (x̄),∇g(F (x̄))〉)|

≤


`
2
|F (x)− F (x̄)|2 , if ∇g is `-Lipschitz ;∫ 1

0
ϕ(t|F (x)−F (x̄)|)

t
dt , if ∇g is ψ-uniform continuous ;

ω(|F (x)− F (x̄)|) , otherwise ;

≤


`L2

2
|x− x̄|2 , if ∇g is `-Lipschitz and F is L-Lipschitz ;∫ 1

0
ϕ(tL|x−x̄|))

t
dt , if ∇g is ψ-uniformly continuous and

F is L-Lipschitz ;
ω(|x− x̄|) , otherwise ,

which shows the same growth functions are obeyed as in Example 33 and 35. The explana-
tion for the validity of the reformulations are analogue to those of Example 35. It is easy to
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see that Theorem 22(iv) holds.

We consider Assumption 3/Remark 24. Let xk → x∗ as k
K→ ∞ for K ⊂ N and x̃k −

xk → 0. Since g is continuously differentiable, the sum-formula for the subdifferential holds.
Moreover, we can apply [36, Corollary 10.09] (addition of functions) to see that x̃k satisfies
the following relation:

0 ∈ ∂f0(x̃k) +
M∑
i=1

∂Fi(x̃k)(∇g(F (xk)))i +∇hk(x̃k)−∇hk(xk) ,

Note that by [36, Theorem 10.49] the subdifferential of g◦F at x̃k is
∑M

i=1 ∂Fi(x̃k)(∇g(F (x̃k)))i.
As in Example 35, using the Lipschitz continuity of F , hence local boundedness of ∂F , and
using the continuous differentiability of g, the sequence of sets

∑M
i=1 ∂Fi(x̃k)(∇g(F (xk)))i −

∂Fi(x̃k)(∇g(F (x̃k)))i vanishes for k
K→ ∞, which implies that the slope |∇f |(x̃k) vanishes

for k
K→∞.

Example 37 (Problem adaptive model function). Our framework allows for a problem
specific adaptation using a combination of Examples 33, 34, 35, and 36. Consider the
following objective function3 f : RN × R2 → R with a ∈ RN and b ∈ R:

f(x, z) = f1(z) + δ[−1,1]2(z) + f2(x) with

{
f1 ∈ C2(R2) is strongly convex ;

f2(x) := max{(〈a, x〉 − b)2, 1− exp(−|x|)} .

We define our model function as: f(x̄,z̄)(x, z) = f̄1(z; z̄) + δ[−1,1](z) + f̄2(x; x̄) with

f̄1(z; z̄) := f1(z̄) + 〈∇f1(z̄), z − z̄〉+
1

2

〈
z − z̄,∇2f1(z̄)(z − z̄)

〉
;

f̄2(x; x̄) := max{(〈ai, x〉 − bi)2, 1 + exp(−|x̄|)(|x| − |x̄| − 1)} .

The strong convexity of f1 allows for a convex second order approximation with positive
definite Hessian. We linearize only the second component of the “max” (w.r.t. |x|) in f2 to
obtain a convex approximation that is as close as possible to original function f2.

As ∇f1 is Lipschitz continuous on the compact set [0, 1]2, the growth function w.r.t. z is
of the form L|z − z̄|2. Moreover, using 1-Lipschitz continuity of exp on R−, we can bound
| exp(−|x|) − exp(−|x̄|)(1 + |x̄| − |x|)| by ||x| − |x̄||2 and, using Lipschitz continuity of |x|,
by |x− x̄|2. Therefore, the model error is given by a growth function w(t) = max{1, L}t2.

5.2 Examples of Bregman functions

Let us explore some of the Bregman functions, that are most important to our applications
and show that our assumptions are satisfied.

3The example is not meant to be meaningful and the model function to be algorithmically the best choice.
This example shall demonstrate the flexibility and problem adaptivity of our framework.
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Example 38 (Euclidean Distance). The most natural Bregman proximity function is the
Euclidean distance

Dh(x, x̄) =
1

2
|x− x̄|2 ,

which is generated by the Legendre function h(x) = 1
2
|x|2. The domain of h is the whole

space RN , which implies that Condition (ii) in Theorem 22 is satisfied for any limit point.
Assumption 2 is trivial, and for the model functions in Section 5.1, Assumption 3 is satisfied,
if xk− x̄k → 0 implies ∇h(xk)−∇h(x̄k)→ 0, which is clearly true. Therefore, for the models
in Section 5.1 combined with the Euclidean proximity measure, we conclude subsequential
convergence to a stationary point.

Example 39 (Variable Euclidean Distance). A simple but far-reaching extension of
Example 38 is the following. Let (Ak)k∈N be a sequence of symmetric positive definite
matrices such that the smallest and largest eigenvalues are in [c1, c2] for some 0 < c1 < c2 <
+∞, i.e. 0 < infk 〈x,Akx〉 < supk 〈x,Akx〉 < +∞ for all x ∈ RN . Each matrix Ak induces a
metric on RN via the inner product 〈x,Ax̄〉 for x, x̄ ∈ RN . The induced norm is a Bregman
proximity function

Dhk(x, x̄) =
1

2
|x− x̄|2Ak

:=
1

2
〈x− x̄, Ak(x− x̄)〉 ,

generated analogously to Example 38. Except the boundedness of the eigenvalues of (Ak)k∈N
there are no other restrictions. All the conditions mentioned in Example 38 are easily verified.

From now on, we restrict to iteration-independent Bregman distance functions, knowing
that we can flexibly adapt the Bregman distance in each iteration.

Example 40 (Boltzmann–Shannon entropy). The Boltzmann-Shannon entropy is

Dh(x, x̄) =
N∑
i=1

(
x(i)(log(x(i))− log(x̄(i)))− (x(i) − x̄(i))

)
where x(i) denotes the i-th coordinate of x ∈ RN . Dh is generated by the Legendre function
h(x) =

∑N
i=1 x

(i) log(x(i)), which has the domain [0,+∞[N . Since h is additively separable,
w.l.o.g., we restrict the discussion to N = 1 in the following.

We verify Assumption 2. Let (xk)k∈N and (x̄k)k∈N be bounded sequences in int domh =
]0,+∞[ with xk − x̄k → 0 for k → ∞. For any convergent subsequence xk → x∗ as

k
K→ ∞ for some K ⊂ N also x̄k → x∗ as k

K→ ∞ and x∗ ∈ [0,+∞[. Since h is continuous
on cl domh = [0,+∞[ (define h(0) = 0 log(0) = 0), Dh(xk, x̄k) → 0 for any convergent
subsequence, hence for the full sequence. The same argument shows that the converse
implication is also true, hence the Boltzmann-Shannon entropy satisfies Assumption 2.

For the model functions from Section 5.1, we show that Assumption 3 holds for x∗ ∈
int domh, i.e. ∇h(xk) − ∇h(x̄k) → 0 for sequence (xk)k∈N and (x̄k)k∈N with xk → x∗ and
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xk−x̄k → 0 for k
K→∞ for some K ⊂ N. This condition is satisfied, because∇h is continuous

on int domh, hence lim
k
K→∞
∇h(xk) = lim

k
K→∞
∇h(x̄k) = ∇h(x∗).

Since domh = cl domh, it suffices to verify Condition (iii) of Theorem 22 to guarantee
subsequential convergence to a stationary point. For x∗ ∈ [0,+∞[ and a bounded sequence

(ỹk)k∈N in int domh as in Theorem 22, we need to show that Dh(x
∗, ỹk) → 0 as k

K→ ∞ for

K ⊂ N such that ỹk → x∗ as k
K→ ∞. This result is clearly true for x∗ > 0, thanks to the

continuity of log. For x∗ = 0, we observe x∗ log(ỹk)→ 0 for k
K→∞, hence Condition (iii) of

Theorem 22 holds, and subsequential convergence to a stationary point is guaranteed.

Example 41 (Burg’s entropy). For optimization problems with non-negativity constraint,
Burg’s entropy is a powerful distance measure. The associated Bregman distance

Dh(x, x̄) =
N∑
i=1

(
x(i)

x̄(i)
− log

(x(i)

x̄(i)

)
− 1

)

is generated by the Legendre function h(x) = −
∑N

i=1 log(x(i)) which is defined on the domain
]0,+∞[N . Approaching 0, the function h grows towards +∞. In contrast to the Bregman
functions in the examples above, Burg’s entropy does not have a Lipschitz continuous gra-
dient, and is therefore interesting for objective functions with the same deficiency.

W.l.o.g. we consider N = 1. Assumption 2 for two bounded sequences (xk)k∈N and
(x̄k)k∈N in ]0,+∞[ reads

xk − x̄k → 0 ⇔ xk
x̄k
− log

(xk
x̄k

)
→ 1 ,

which is satisfied if the limit points lie in ]0,+∞[ since xk− x̄k → 0⇔ xk/x̄k → 1 for k
K→∞

and log is continuous at 1.
For the model functions in Section 5.1, Assumption 3 requires ∇h(xk) − ∇h(x̄k) → 0

for sequence (xk)k∈N and (x̄k)k∈N in int domh with xk → x∗ and xk − x̄k → 0 for k
K→ ∞

for some K ⊂ N. By continuity, this statement is true for any x∗ > 0. For x∗ = 0, the
statement is in general not true. Also Condition (iv) in Theorem 22 can, in general, not
be verified. Therefore, if a model functions is complemented with Burg’s entropy, then the
objective should be continuous on the cl domh. Stationarity of limit points is obtained, if
they lie in int domh.

6 Applications

We discuss in this section some numerical experiments whose goal is to illustrate the wide
applicability of our algorithmic framework. The applicability of our results follows from the
considerations in Section 5. Actually, the considered objective functions are all continuous,
i.e. Theorem 22(i) is satisfied.
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6.1 Robust Non-linear Regression

We consider a simple non-smooth and non-convex robust regression problem [22] of the form

min
u:=(a,b)∈RP×RP

M∑
i=1

‖Fi(u)− yi‖1 , Fi(u) :=
P∑
j=1

bj exp(−ajxi) , (23)

where (xi, yi) ∈ R×R, i = 1, . . . ,M is a sequence of covariate-observation pairs. We assume
that (xi, yi) are related by yi = Fi(u) + ni, where ni is the error term and u = (a, b) are
the unknown parameters. We assume that the errors are iid with Laplacian distribution, in
which case the data fidelity devised by a maximum likelihood argument is `1-norm as used
in (23).

We define model functions by linearizing the inner functions Fi as suggested by the model
function in Example 35. Complemented by an Euclidean proximity measure (with τ > 0)
the convex subproblem (5) to be solved inexactly is the following:

ũ = argmin
u∈RP×RP

M∑
i=1

‖Kiu− y�i ‖1 +
1

2τ
|u− ū|2 , y�i := yi − F (ū) +Kiū ,

where Ki := DFi(ū) : RP × RP → R is the Jacobian of Fi at the current parameters ū.
We solve the (convex) dual problem (cf. [14, 18]) with warm starting up to absolute step
difference 10−3.

As mentioned in Remark 12, backtracking on τ could be used (cf. ProxDescent [25]);
denoted prox-linear and prox-linear2 in the following. This requires to solve the sub-
problem for each trial step. This is the bottleneck compared to evaluating the objective.
The line search in Algorithm 2 only has to evaluate the objective value. This variant is de-
noted prox-linear-LS in the following. A representative convergence result in terms of the
number of accumulated iterations of the subproblems is shown in Figure 1. For this random
example, the maximal noise amplitude is 12.18, and the maximal absolute deviation of the
solution from the ground truth is 0.53, which is reasonable for this noise level. Algorithm
prox-linear-LS requires significantly fewer subproblem iterations than prox-linear and
prox-linear2. For prox-linear2 the initial τ is chosen such that initially no backtracking
is required.

For large scale problems, frequently solving the subproblems can be prohibitively expen-
sive. Hence, ProxDescent cannot be applied, whereas our algorithm is still practical.

6.2 Image Deblurring under Poisson Noise

Let b ∈ Rnx×ny represent a blurry image of size nx×ny corrupted by Poisson noise. Recovering
a clean image from b is an ill-posed inverse problem. It is a common problem, for example,
in fluorescence microscopy and optical/infrared astronomy; see [8] and references therein. A
popular way to solve it is to formulate an optimization problem [40] of the form

min
u∈Rnx×ny

f(u) := DKL(b,Au) +
λ

2

nx∑
i=1

ny∑
j=1

φ(|(Du)i,j|2) , s.t. ui,j ≥ 0 , (24)
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Figure 1: Objective value vs. accumulated
number of subproblem iterations for (23).

Figure 2: Deblurring and Poisson noise removal by solving
(24). From left to right: clean, noisy, and reconstructed
image (PSNR: 25.86).

where A is a circular convolution (blur) operator. The first term (coined data term) in
the objective f is the Kullback–Leibler divergence (Bregman distance generated by the
Boltzmann–Shannon entropy x log(x)), which, neglecting additive constant terms, is given
by

f1(u) := DKL(b,Au) :=
∑
i,j

(Au)i,j − bi,j log((Au)i,j) ,

f1 is well-suited for Poisson noise removal [38]. The second term (coined regularization term)
involves a penalty φ : R2 → R applied to spatial finite differences (Du)i,j := ((Du)1

i,j, (Du)2
i,j)
>

in horizontal direction (Du)1
i,j := ui+1,j − ui,j for all (i, j) with i < nx, and 0 otherwise; and

vertical direction (Du)2
i,j (defined analogously). The function φ in the regularization is usu-

ally chosen to favor “smooth” images with sharp edges. The relative importance of both the
data and regularization terms is weighted by λ > 0.

For convex penalties φ, algorithms for solving problem (24) are available (e.g. primal-
dual proximal splitting) provided that φ is simple (in the sense that its Euclidean proximal
mapping can be computed easily). But if one would like to exploit the gradient of f1

explicitly, things become more intricate. The difficulty comes from the lack of global Lipschitz
continuity of ∇f1(u). A remedy is provided by Bauschke et al. [6]. They have shown that,
instead of the global Lipschitz continuity, the key property is the convexity of Lh − f1 for
a Legendre function h and sufficiently large L, which can be achieved using Burg’s entropy
h(u) = −

∑
i,j log(ui,j) ([6, Lemma 7]).

However, non-convex penalties φ are known to yield a better solution [21, 9, 29]. In this
case, the algorithmic framework of Bauschke et al. [6] is not applicable anymore, whereas
our framework is applicable. Due to the lack of strong convexity of Burg’s entropy also
the algorithm of Bonettini et al. [11] cannot be used. Note that Burg’s entropy is strongly
convex on bounded subsets of ]0,+∞[, however, the subset cannot be determined a priori.

The abstract framework proposed in this paper appears to be the first algorithm with
convergence guarantees for solving (24) with a smooth non-convex regularizer.

In our framework, we choose φ : t ∈ R2 7→ log(1+ρ|t|2), which is smooth but non-convex.
The model functions are defined as in Example 33. We also use h as the Burg’s entropy
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to generate the Bergman proximity function (see Example 41). Thus, the subproblems (5)
which emerge from linearizing the objective f in (24) around the current iterate ū

ũ = argmin
u∈Rnx×ny

〈u− ū,∇f(ū)〉+
1

τ

∑
i,j

(
ui,j
ūi,j
− log

(ui,j
ūi,j

))
can be solved exactly in closed-form ũi,j = ūi,j/(1 + τ(∇f(ū))i,jūi,j) for all i, j. A result for
the successful Poisson noise removal and deblurring is shown in Figure 2.

6.3 Structured Matrix Factorization

Structured matrix factorization problems are crucial in data analysis. It has many applica-
tions in various areas including blind deconvolution in signal processing, clustering, source
separation, dictionary learning, etc.. There is a large body of literature on the subject and
we refer to e.g. [17, 15, 37, 39] and references therein for a comprehensive account.

The problem. Given a data matrix A ∈ RM×N whose N M -dimensional columns are the
data vectors. The goal is to find two matrices U ∈ RM×K and Z ∈ RK×N such that

A = UZ +Q ,

where Q ∈ RM×N accounts for an unknown error. The matrices U and Z (called also factors)
enjoy features arising in a specific application at hand (see more below).

To solve the matrix factorization problem, we adopt the optimization approach and we
consider the non-convex and non-smooth minimization problem

min
U∈U ,Z∈Z

f(A,UZ) + λg(Z) , f(A,UZ) :=
1

2
‖A− UZ‖2

F . (25)

The term f(A,UZ) stands for proximity function that measures fidelity of the approximation
of A by the product UZ of the two factors. We here focus on the classical case where the
fidelity is measured via the Frobenius norm ‖ · ‖F , but other data fidelity measures can also
be used just as well in our framework, such as divergences (see [17] and references therein).
The sets U , Z, which are non-empty closed and convex, and the function g ∈ Γ0 are used to
capture specific features of the matrices U and Z arising in a specific application as we will
exemplify shortly. The influence of g is weighted by the parameter λ > 0.

Many (if not most) algorithms to solve the matrix factorization problem (25) are based
on Gauss-Seidel alternating minimization with limited convergence guarantees [17, 15, 37]4.
The PALM algorithm proposed recently by Bolte et al. [10], was designed specifically for
the structure of the optimization problem (25). It can then be successfully applied to solve

4For very specific instances, a recent line of research proposes to lift the problem to the space of low-rank
matrices, and then use convex relaxation and computationally intensive conic programming that are only
applicable to small-dimensional problems; see, e.g., [1] for blind deconvolution.
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instances of such a problem with provably guaranteed convergence under some assumptions
including the Kurdyka- Lojasiewicz property. However, though it can handle non-convex
constraint sets and functions g, it does not allow to incorporate Bregman proximity functions.

In the following, we show how our algorithmic framework can be applied to a broad class
of matrix factorization instances. In particular, a distinctive feature of our algorithm is that
it can naturally and readily accommodate for different Bregman proximity functions and it
has no restrictions on the choice of the step size parameters (except positivity). A descent
is enforced in the line search step, which follows the proximal step.

A generic algorithm. We apply Algorithm 1 to solve this problem, where the model func-
tions are chosen to linearize the data fidelity function f(A,UZ), according to Example 33.
The convex subproblems to be solved in the algorithm have the following form:

(Ũ , Z̃) = argmin
U∈U ,Z∈Z

λg(Z)+
〈
Z − Z̄, Ū>(Ū Z̄ − A)

〉
F

+DhZ (Z, Z̄)

+
〈
U − Ū , (Ū Z̄ − A)Z̄>

〉
F

+DhU (U, Ū)

where 〈·, ·〉F stands for the Frobenius inner product. The Bregman proximity functions
DhZ (·, ·) and DhU (·, ·) provide the flexibility to handle a variety of constraint sets U and
Z. In the following, we list different choices for the constraint sets and explain how to
incorporate them into the optimization procedure. Due to the structure of the optimization
problem, the variables U and Z can be handled separately. The only coupling is the data
fidelity function f , which is linearized and therefore easy to incorporate.

Examples of constraints U . There are many possible choices for the set U depending on
the application at hand.

• Unconstrained case:
U1 = RM×K .

In the unconstrained case, a suitable Bregman proximity function is given by the
Euclidean distance DhU (U, Ū) = 1

2τU
‖U − Ū‖2

F with step size parameter τU . The
resulting update step with respect to the dictionary U is a gradient descent step.

• Zero-mean and normalization:

U2 =

{
U ∈ RM×K | ∀j :

M∑
i=1

U2
i,j ≤ 1 ,∀j ≥ 2:

M∑
i=1

Ui,j = 0

}
.

This choice of the constraint set leads to a natural normalization of the columns of
U that removes the scale ambiguity due to bilinearity. This choice is very classical in
dictionary learning, see, e.g., [39]. As in dictionary learning, the average of the first
column may not be enforced to be zero, in order to allow the first column to absorb
the mean value of the data points.
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By separability of U2, the Euclidean projection onto it is simple. This projector is
column-wise achieved by subtracting the mean, and then projecting the result onto
the Euclidean unit ball. Thus we advocate DhU (U, Ū) = 1

2τU
‖U − Ū‖2

F with step size
parameter τU . In turn, the subproblem with respect to U amounts to a projected
gradient descent step.

• Non-negativity and normalization:

U3 =

{
U ∈ RM×K | ∀j :

M∑
i=1

Ui,j = 1 , ∀i, j : Ui,j ≥ 0

}
.

This choice is adopted in non-negative matrix factorization (NMF) [24]. The constraint
set U3 is column-wise a unit simplex constraint. This constraint can be conveniently
handled by choosing DhU (U, Ū) = 1

τU

∑
i,j Ui,j(log(Ui,j)− log(Ūi,j))− Ui,j + Ūi,j, which

is the Bregman function generated by the entropy hU(U) = 1
τU

∑
i,j Ui,j log(Ui,j) with

step size parameter τU . This is a more natural choice than the Euclidean proximity
distance. Indeed, the update step with respect to U results in

Ũi,j =
Ūi,j exp(−τU(CU)i,j)∑M
p=1 Ūp,j exp(−τU(CU)p,j)

∀i = 1, . . . ,M ; ∀j = 1, . . . , K ,

where we use the shorthand notation CU := ∇Uf(A, ŪZ̄) = Ū>(Ū Z̄−A) for the partial
gradient of f with respect to U . The exponential function is applied entry-wise, hence
naturally preserving positivity. Note that the Euclidean projector onto U3 necessitates
to compute the projector on the simplex which can be achieved with sorting [28].

Examples of constraints Z. There are also several possible choices for the set Z and
regularizing function g depending on the application at hand.

• Unconstrained case:
Z1 = RK×N and g(Z) = 0 .

This case can be handled using a gradient descent step, analogously to the related
update step with the constraint set U1.

• Non-negativity:

Z2 =
{
Z ∈ RK×N | ∀i, j : Zi,j ≥ 0

}
and g(Z) = 0 .

This constraint is used in conjunction with U3 in NMF. It can be handled either with
a Euclidean proximity function (which amounts to projecting on the non-negative or-
thant), or via a Bregman proximity function DhZ (Z, Z̄) generated by the Boltzmann–
Shannon entropy (hZ(Z) = 1

τZ

∑
i,j Zi,j log(Zi,j)) or, alternatively, Burg’s entropy
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(hZ(Z) = − 1
τZ

∑
i,j log(Zi,j)), with step size parameter τZ . The update with respect

to Z then reads

Z̃i,j = Z̄i,j exp(−τZ(CZ)i,j) ∀i = 1, . . . , K ; ∀j = 1, . . . , N ,

where we use the shorthand notation CZ := ∇Zf(A, ŪZ̄) = (Ū Z̄−A)Z̄> for the partial
gradient of f with respect to Z.

• Sparsity constraints:

Z3 = RK×N and g(Z) = ‖Z‖1 .

The introduction of sparsity has been of prominent importance in several matrix fac-
torization problems, including dictionary learning [34], NMF [23] 5 and source sepa-
ration [37]. The Euclidean proximal mapping of the `1-norm is the entry-wise soft-
thresholding, hence giving the update step with respect to Z as

Z̃i,j = max{0, 1−λτZ/|Z̄i,j−τZ(CZ)i,j|}(Z̄i,j−τZ(CZ)i,j) ∀i = 1, . . . , K ; ∀j = 1, . . . , N .

• Low rank constraint:

Z3 = RK×N and g(Z) = ‖Z‖∗ .

The nuclear norm or 1-Schatten norm ‖Z‖∗ is the sum of the singular values. It is
known to be the tightest convex relaxation to the rank and was shown to promote
low rank solutions [35]. Such a regularization would be useful in the situation where
columns of A are (to a good approximation) clustered on a few linear subspaces spanned
by the columns of U , i.e. the columns of A can be explained by columns of U from the
same subspace (“cluster”).

The Euclidian proximal mapping of the nuclear norm is the soft-thresholding applied
to the singular values. In turn, the update step with respect to Z reads

Z̃i,j = Wdiag((max{0, 1− λτZ/σi}σi)i)V >,

where W , V are respectively the matrices of left and right singular vectors of Z̄−τZCZ ,
and σ is the associated vector of singular values.

5Strictly speaking, Z3 should be the non-negative orthant for sparse NMF. But this does not change
anything to our discussion since computing the Euclidean proximal mapping of the `1 norm restricted to the
non-negative orthant is easy.
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Conclusions

7 Conclusions

We have presented an algorithmic framework, that unifies the analysis of several first order
optimization algorithms in non-smooth non-convex optimization such as Gradient Descent,
Forward–Backward Splitting, ProxDescent, and many more. The algorithm combines se-
quential Bregman proximal minimization of model functions, which is the key concept for
the unification, with an Armijo-like line search strategy. The framework reduces the differ-
ence between algorithms to the model approximation error measured by a growth function.
For the developed abstract algorithmic framework, we establish subsequential convergence
to a stationary point and demonstrate its flexible applicability in several difficult inverse
problems from machine learning, signal and image processing.
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