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Abstract

Higher-order regularization problem formulations are popular frameworks used in machine learning,
inverse problems and image/signal processing. In this paper, we consider the computational problem of
finding the minimizer of the Sobolev W1,p semi-norm with a data-fidelity term. We propose a discretiza-
tion procedure and prove convergence rates between our numerical solution and the target function. Our
approach consists of discretizing an appropriate gradient flow problem in space and time. The space dis-
cretization is a nonlocal approximation of the p-Laplacian operator and our rates directly depend on the
localization parameter εn and the time mesh-size τn. We precisely characterize the asymptotic behaviour
of εn and τn in order to ensure convergence to the considered minimizer. Finally, we apply our results to
the setting of random graph models.
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1 Introduction

In machine learning, inverse problems and image/signal processing, one is often confronted with finding
smooth solutions to regression problems. This leads to the introduction of regularization terms in the prob-
lem formulation (see for example [42], [9], [35]). In this paper, we investigate the computation of the solution
to the following regularization problem:

(1) u∞ ∈ argmin
v∈W1,p(Ω)

F(v) :=
µ

p
∥∇v∥pLp(Ω) +

1

2
∥Av − ℓ∥2L2(Ω)

for some µ > 0, linear operator A, data function ℓ ∈ L2(Ω), Ω ⊆ Rd and p ≥ 1. The first term on the right-
hand side of the latter enforces some regularization upon the functions v while the second term is a data-fidelity
term. For A = Id, this is also called a fully supervised machine learning problem or a denoising problem in
image processing. More precisely, in this paper, we prove convergence rates between our numerical discrete
solution and u∞. This type of regularization has been considered for example in [24], [51], [34] and [75]; for
examples involving nonlocal versions of the W1,p semi-norm we refer to [3], [43] and references therein; for
other higher-order regularization problems we refer for example to [67] and references therein.
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The aim of this paper can be seen as the converse to a large part of the discrete-to-continuum work in recent
years: indeed, in [61], [31], [39], [72] and [73] for example, one starts with a discrete problem and analyses the
large data limit of the latter – a point of interest in machine learning settings. Similarly to [33], [44] and [43],
we start from the continuum and explain how the appropriate discretization should be designed as is usually
the case in numerical analysis. In particular, this means that in the former case, emphasis is partly placed on
having as few constraints as possible on different parameters as the latter are usually inferred from the data at
hand: in our case, as we are choosing all the parameters, this concern is less relevant.

The approach we choose in this paper is to discretize the gradient flow (7) associated to (1) which contains
the p-Laplacian operator ∆pu = div(|∇u|p−2∇u) (see [49] and references therein). We note two important
consequences from this reformulation of the task at hand: adding a time dependence to our problem will allow
us to leverage the theory of semigroups in Banach spaces (see Section 2.2) in order to derive rates; the main
problem is to obtain convergence rates between the p-Laplacian operator and its discrete counterpart.

The plan for the discretization follows loosely the strategy in [39] and [61]: after choosing an appropriate
kernel K, we start by introducing a nonlocal version of the p-Laplacian operator in the continuum and then dis-
cretize the latter. The former is inspired by [13], [56], [48] where finite-difference approximations of Sobolev
norms are discussed in the continuum, while the latter step allows us to use existing results on convergence
results in the nonlocal setting as in [33], [44], [43].

Passing from the nonlocal setting to the local one requires a kernel that is appropriately scaled. For some
length-scale εn → 0, it is shown for example in [61], [18] and [2] that, ignoring regularity assumptions,

1

εd+p
n

∫
K

(
|y − x|
εn

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy → ∆pu(x).

The finite-difference structure of the above nonlocal approximation is essential for obtaining rates in the con-
tinuum: indeed, as in [18], for smooth enough functions, we pass from finite-differences to derivatives and the
rates follow from a conceptually basic Taylor expansion.

The discrete-to-continuum step requires more subtle techniques. In fact, one needs a way to compare
functions ūn ∈ RDn and u : Ω 7→ R. We discuss various alternatives in Section 1.2. In this paper, we choose
to partition our space Ω into Dn cells and elements of RDn are injected through the operator I : RDn → L1(Ω)
in the continuum through piecewise constant approximations while continuum functions are projected through
the operator P : L1(Ω) → RDn onto our cells by averaging on each cell. Using this method, establishing
rates between a continuum function and its injected discrete approximation relies on tools from approximation
theory, depending on the partition chosen and the regularity assumption of the continuum function. This topic
is discussed in greater detail in Section 2.4. The other central tool for the discrete-to-continuum rates, where
the discretization is both in space and time, is the semigroup structure of our solutions to the nonlocal gradient
flows. Indeed, relying on some favourable properties of the nonlocal p-Laplacian, we are able to deduce strong
contraction properties as discussed in Section 2.2.

Combining the discrete-to-continuum rates in the nonlocal setting to the nonlocal-to-local rates in the
continuum, we obtain in Corollary 3.10 that for p ≥ 3 and A = Id,

∥InūNn − u∞∥L2 ≤ C

(
εn log(ε

−κ
n ) + εκ/4n (F(u0)−F(u∞))1/2(2)

+ ε−κ
n

[
n−α1 + n−α2 +

log(ε−κ
n )(p−1)

εd+p+α3
n nα3

+ τn
log(ε−κ

n )2p−3

ε
2(d+p)
n

])

where u∞ is the solution to (1), InūNn is the injected discretized solution on a partition indexed by n in space
and N in time, τn is the maximum step-size of the forward Euler time-discretization (we pick 0 = t0 < t1 <
· · · < tN ≈ log(ε−κ

n ) so that N ≥ log(ε−κ
n )/τn), C > 0 is a constant that is independent of n, κ > 0 and

αi > 0 are chosen numerical constants depending on the regularity of the initial condition of the gradient flow
problem (7) u0, the kernel K and the data ℓ.

First, we note that each term in the right-hand side of (2) corresponds to a specific error source, namely
(from left to right) the continuum nonlocal-to-local approximation, the gradient flow convergence, the discrete-
to-continuum approximation of u0, A∗ℓ and K as well as a general discretization error. Furthermore, as the
choices of αi and κ are left to the practitioner, the rates can be enhanced upon implementation.
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Second, while we give the precise statement of this result in Section 3.3, we note that the right-hand side
of (2) tending to 0 involves finding the right interplay between τn → 0 and εn → 0: this is similar to Courant-
Friedrichs-Lewy (CFL) conditions [25] and [29]. In particular, while the classical CFL conditions correspond
to τn ≪ ε2n for the heat equation with the forward Euler time-discretization, we will show in Theorem 3.7 that
our requirement is roughly τn ≪ ε

2(d+p)
n . We also find that εn admits a lower bound and this is analogous to

results in semi-supervised learning discrete-to-continuum phenomena in [61], [31] and [73].
Third, we note that (2) does not cover the linear case of p = 2. This is due to a technicality and indeed,

our well-posedness results both in the nonlocal case (Theorem 3.6) and the local case (Theorem 4.9) only
require p ≥ 2. The p ≥ 2 assumption is particularly helpful since it allows one to have Lp/(p−1)(Ω) ⊆ Lp(Ω)
and W1,p(Ω) ⊆ L2(Ω). When establishing continuum rates in Theorem 4.10 however, similarly to what is
presented in [18], we will have to consider a third-order Taylor expansion of the function x 7→ |x|p−2x, hence
requiring p ≥ 3. We nevertheless remark that the choice of p is left to the practitioner and, as explained in
Remark 3.2, should be made in accordance with the dimension of Ω in order to have a small ratio d/p.

Fourth, we point out that the condition A = Id is not constraining. Indeed, our results in Theorem 3.7
allow us to obtain similar rates for more general A. We refer to the proof of the above-mentioned theorem and
Remark 4.16 for more details.

Lastly, coming back to a more data-centric approach, we apply the above-mentioned results to a random
graph model inspired by graphons. The latter are defined for points in Ω = [0, 1], appear in several applications
and we refer to Section 2.5 for further details. We obtain results equivalent to the ones displayed above in
Theorem 3.13: the main difference is an additional term accounting for the discrete random-to-deterministic
approximation error.

1.1 Contributions

Our main contributions in the paper which we discuss in greater detail in Section 3 are:

1. A rigourous proof of the well-posedness of the nonlocal continuum gradient flow defined in (5);
2. The establishment of rates of convergence between the discrete gradient flow and u∞ through a precise

characterization of the discretization parameters in Corollary 3.10;
3. An application to random graph models in Section 4.3.

1.2 Related works

p-Laplacian operator approximations. Approximating the p-Laplacian operator has been explored in [6],
[41], [71], [5] but always in the context of finite elements. This simplifies some part of the analysis as described
in Remark 3.1 but has the disadvantage of being difficult to apply in higher dimensions. In contrast to these
works references, our paper deals with nonlocal discrete approximations. While this will require some in-
creased regularity considerations (see Remark 3.1), establishing the rate of convergence is conceptually simple
as explained previously.

In the continuum setting, nonlocal-to-local convergence of gradient flows involving the p-Laplacian op-
erator is shown in [2]. This relies heavily on [13] and is a consistency result, without rates. Some rates are
established between the nonlocal and local operators in [18].

Much of the discrete-to-continuum work in recent years has dealt with similar problems in many ways. The
closest results are to be found in [33], [44] and [43] where rates are established for some discrete-to-continuum
problems involving the p-Laplacian in the nonlocal case using the same discretization procedures.

Discrete-to-continuum work. Other energies and operators have also been studied under the discrete-to-
continuum lens, for example the eikonal equation [36], total variation [39], the Ginzburg-Landau functional
[10], [68], [27], [62], the Mumford-Shah functional [22], an application in empirical risk minimization [65],
various Sobolev semi-norms [61], [66], [31], [73] or variants of the Laplacian operator [19], [16], [58], [21].

Discrete-to-continuum consistency and convergence have been studied under various topologies. The sim-
plest one is pointwise convergence. In particular, the idea is to consider the limit of the discrete energies
applied to a (sufficiently regular) continuum function restricted to the discrete domain. This has been explored
for example in [7], [23], [40], [46], [45], [60], [63]. A more elaborate approach is to consider the convergence
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of the operators directly, namely convergence of their spectral properties (eigenvalues and eigenfunctions); we
refer to [38], [20], [66], [69], [55], [70], [28] for illustrations of this type of approach. As eigenfunctions are
obviously themselves functions, these papers rely on pointwise convergence or TLp-convergence which was
introduced in [39]: in the latter, one starts with discrete functions and extends them to the continuum through
the use of optimal transport theory.

The rest of the paper is organized as follows: in Section 2 we introduce the main theoretical tools required
for the proofs; in Section 3 we present our main results; in Section 4 we prove our results. For some technical
results, we will also refer to the supplementary material file whose sections are indexed by roman numbers.

2 Background

2.1 General notation

For Ω ⊆ Rd, we denote by −→n the outward normal vector to the boundary ∂Ω of Ω. We denote the identity
operator by Id and the indicator function of a set A by χA. We will write cl(Ω) to denote the closure of
Ω. For T > 0, let λt and λx respectively be the Lebesgue measure on [0, T ] and Ω. Elements of a discrete
space will be over-lined, for example ū ∈ Rd. The i-th component of ū is denoted by (ū)i. We will denote
Lebesgue spaces by Lp, the space of functions with k-th continuous derivatives by Ck, Hölder spaces by Ck,α

and Sobolev spaces by Wk,p. We write ∥ · ∥Lp(A) for the Lp-norm over a space A and ∥ · ∥Lp when we take the
norm over the whole space Ω or Ω × Ω depending on the domain of the function. We also write that un ⇀ u
if un converges weakly to u.

Functions We define Lambert’s W : [0,∞) 7→ [0,∞) function [53] as the inverse of the function xex:
for every y > 0, we have W (y)eW (y) = y. It is clear that W is increasing on [0,∞). From this, it fol-
lows that the function expW : [0,∞) 7→ [1,∞) defined as expW(y) = eW (y) is also increasing and solves
expW(y) log(expW(y)) = y for every y > 0.

Asymptotics For two functions f : N 7→ [0,∞) and g : N 7→ [0,∞), we will write f(n) ≫ g(n) if
limn→∞

g(n)
f(n) = 0. Therefore, 1 ≫ f means that limn→∞ f(n) = 0.

2.2 Nonlinear semigroup theory

We now introduce a few elements of nonlinear semigroup theory that will be useful in the rest of the paper.
However, we stress that a thorough and proper treatment of the subject can, for example, be found in [1], [4],
[26], [15], [8], [54] and references therein.

In the following, V is a Banach space with its topological dual V ∗ and norm ∥ · ∥. The notation A :
V → 2V means that A is a set-valued operator on V . The domain and range of A are defined respectively
as dom(A) = {v ∈ V |Av ̸= ∅} and ran(A) = {y | y ∈ Av for some v ∈ dom(A)}. The graph of A is
gph(A) = {(v, w) ∈ V × V |w ∈ Av}.

Let us consider the abstract Cauchy problem for an operator A on V :

(CPf,u0)

{
u′(t) +Au(t) ∋ f(t) on t ∈ (0, T ),
u(0) = u0

for some f : (0, T ) 7→ V and u0 ∈ V . Various concepts of solution have been designed for the problem (5)
and we refer to [1] for a brief review of abstract Cauchy problems. We will rely on the following notion of
solution as in [1, Definition A.3]. We note that the following type of solutions are called strong solutions in the
nonlinear semigroup literature.

Definition 2.1 (Solution to (CPf,u0)). A function u is called a strong solution to (CPf,u0) if u(t, x) ∈
C([0, T ];V ) ∩W1,1

loc((0, T );V ), u(0, ·) = u0 and u′(t) +Au(t) ∋ f(t) λt-a.e..
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Our aim is to introduce a class of operators that will be of particular interest when solving the abstract
Cauchy problem (CPf,u0).

Definition 2.2 (Accretive operator). We say that an operator A on V is accretive if

∥v − w∥ ≤ ∥v − w + λ(v̂ − ŵ)∥

for all λ > 0 and (v, v̂), (w, ŵ) ∈ gph(A).

One can see that A is accretive if and only if (Id+λA)−1 is a single-valued nonexpansive (i.e., 1-Lipschitz)
map for λ > 0. (Id + λA)−1 is known as the the resolvent of λA. Observe that dom((Id + λA)−1) =
ran(Id + λA).

We recall that an operator A on a Hilbert space H endowed with the inner product ⟨·, ·⟩H , is monotone if
⟨v−w, v̂−ŵ⟩H ≥ 0 for all (v, v̂), (w, ŵ) ∈ gph(A). Accretivity is a generalization of monotonicity in Hilbert
spaces.

Proposition 2.3 (Equivalence of accretivity and monotonicity). An operator A on a Hilbert space H is accre-
tive if and only if it is monotone.

Definition 2.4 (m-accretive operators). We say that an operator A on V is m-accretive if A is accretive and
ran(Id + λA) = V for all λ > 0.

A m-accretive operator A in V is maximal accretive in the sense that there exists no other accretive operator
whose graph properly contains gph(A). In general, the converse is not true, but it is true in Hilbert spaces due
to the celebrated Minty theorem [15].

The m-accretivity property of operators is a sufficient condition for the existence of a solution to (CPf,u0)
(see [54, Chapter 2, Theorem 10.2]).

Theorem 2.5 (Existence of a solution to (CPf,u0)). Let V be a reflexive Banach space, A a m-accretive
operator, u0 ∈ dom(A) and f ∈ W1,1(0, T ;V ), then there exists a unique solution as in Definition 2.1 to
(CPf,u0).

In the remainder of this section, we specialize our discussion by considering the Banach spaces Lp(Ω),
where Ω ⊆ Rd. In order to present these results, we first introduce the following elements. Let L0(Ω) be the
set of measurable functions on Ω that map to R and define the two sets of functions

H = {h ∈ C∞(R) | 0 ≤ h′ ≤ 1, supp(h′) is compact, 0 ̸∈ supp(h)}

and
J = {j : R 7→ [0,+∞] | j is convex, lower semi-continuous and satisfies j(0) = 0}.

Then, we can introduce the following relation for two functions v, w ∈ L0(Ω):

v
sgt
≪w if and only if

∫
Ω
j(v(x)) dx ≤

∫
Ω
j(w(x)) dx for all j ∈ J .

Definition 2.6 (Completely accretive operators). We say that an operator A on L0(Ω) is completely accretive

if v − w
sgt
≪ v − w + λ(v̂ − ŵ) for all λ > 0 and (v, v̂), (w, ŵ) ∈ gph(A).

We note that completely accretive operators need not be defined on Banach spaces in contrast to accretive
operators. However, if the graph of a completely accretive operator A is contained in Lp(Ω)×Lp(Ω), and since
Lp(Ω) ⊆ L0(Ω), then A is accretive in Lp(Ω). We refer to Lemma II.2 in Section II for additional details.

In Section 4.1, we will consider operators A such that gph(A) ⊆ L1(Ω) × L1(Ω) with λx(Ω) < ∞. In
this case, another useful characterization of completely accretive operators on L1(Ω) uses H (see [1, Corol-
lary A.38]).
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Proposition 2.7 (Characterization of completely accretive operators). Let A be an operator with gph(A) ⊆
L1(Ω)× L1(Ω) and λx(Ω) < ∞. Then, A is completely accretive if and only if∫

Ω
h(v(x)− w(x))(v̂(x)− ŵ(x) dx ≥ 0

for any h ∈ H and (v, v̂), (w, ŵ) ∈ gph(A).

One can combine Definition 2.4 and Definition 2.6 to define m-completely accretive operators. We now
present a variant of [1, Theorem A.20] whose proof can be found in Section II.

Lemma 2.8 (Contraction property for completely accretive operators). Let Ω ⊆ Rd be bounded, p ≥ 1, A be
a completely accretive operator with gph(A) ⊆ Lp(Ω)× Lp(Ω) and u and v be solutions as in Definition 2.1
that respectively solve (CPf,u0) and (CPg,v0). Then, for any 1 ≤ r ≤ ∞ and 0 ≤ t ≤ T , we have:

(3) ∥u(t)− v(t)∥Lr ≤ ∥u0 − v0∥Lr +

∫ t

0
∥f(s)− g(s)∥Lr ds.

In particular, (CPf,u0) has a unique strong solution.

Our motivation for the use of nonlinear semigroup theory really stems from Lemma 2.8. Indeed, we will
consider Cauchy problems of the form (CPf,u0) for our gradient flows. One could be tempted to use direct
results for the existence of gradient flows such as described in [59, Section 8] for example. However, we would
not obtain the very strong contraction property (3) which will be essential to establish our rates in Section 4.

2.3 Nonlinear problems

In this subsection, we will introduce several results related to nonlinear problems which will be used in Sec-
tion 4.1.

Definition 2.9 (Hemicontinuity). Let A : V → V ∗ be an operator. We say that A is hemicontinous if for all
v, w, z ∈ V , the function λ 7→ ⟨A(v + λw), z⟩V ∗ is continuous from R to R.

A weak version of [37, Lemma 6.2] is as follows and will be used for the well-posedness result of the
solution to the problem (7) in the proof of Theorem 4.9.

Lemma 2.10 (Continuity implies hemicontinuity). Let A : V → V ∗ be an operator. If A is continuous, then
A is hemicontinuous.

The next result deals with the existence of a solution to a nonlinear stationary problem [50, Chapter 2, The-
orem 2.1]. This will be an essential step in the proof of the range condition of our operators in Proposition 3.5.

Theorem 2.11 (Solutions to nonlinear stationary problems). Let V be a separable reflexive Banach space and
A : V → V ∗ an operator which is bounded, hemicontinuous and satisfies

⟨A(v)−A(w), v − w⟩V ∗ ≥ 0 for all v, w ∈ V as well as

⟨A(v), v⟩V ∗

∥v∥V
→ +∞ when ∥v∥V → +∞.

Then, for every f ∈ V ∗, there exists u ∈ V such that

A(u) = f.

For the existence of the local problem, we will use the following result on nonlinear evolution problems
which can be found in [50, Chapter 2, Theorem 1.4 and Remark 1.13].

Theorem 2.12 (Solutions to nonlinear evolution problems). Let H be an Hilbert space and Vi reflexive Banach
spaces with Vi ⊆ H and Vi dense in H for 1 ≤ i ≤ q. Assume that ∩q

i=1Vi is separable and dense in H . For
1 ≤ i ≤ q, let Ai : Vi → V ∗

i be an operator which is bounded, hemicontinuous and, for some 1 < pi < ∞
and ci > 0, satisfies:
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1. ∥Ai(v)∥V ∗
i
≤ ci∥v∥pi−1

Vi
;

2. ⟨Ai(v)−Ai(w), v − w⟩V ∗
i
≥ 0 for all v, w ∈ Vi;

3. there exists a seminorm [·]i on Vi with constants αi, λi, βi > 0 such that [·]i + λi∥ · ∥H ≥ βi∥ · ∥Vi on Vi

and ⟨Ai(v), v⟩V ∗
i
≥ αi[v]

pi
i for all v ∈ Vi.

Then, for u0 ∈ H and f ∈
∑q

i=1 L
p∗i (0, T ;V ∗

i ) where 1/pi + 1/p∗i = 1, there exists a unique function u such
that

u ∈
q⋂

i=1

Lpi(0, T ;Vi), u ∈ L∞(0, T ;H)

that satisfies
∂u

∂t
+

q∑
i=1

Ai(u) = f and u(0) = u0.

2.4 Piecewise constant approximations

We start by introducing a space of functions which will be relevant for our discrete-to-continuum approxima-
tions. We refer to [64] for a detailed discussion.

Definition 2.13 (Lipschitz spaces). Let Ω be an open bounded subset of Rd. For g ∈ Lq(Ω) with q ∈ [1,+∞),
we define the (first-order) Lq(Ω) modulus of smoothness by

ω(g, h)q = sup
z∈Rd,|z|<h

(∫
x,x+z∈Ω

|g(x+ z)− g(x)|q dx
)1/q

.

For 0 < s ≤ 1, the Lipschitz spaces Lip(s,Lq(Ω)) consist of all functions g ∈ Lq(Ω) for which

|g|Lip(s,Lq(Ω)) = sup
h>0

h−sω(g, h)q < +∞.

Lipschitz spaces contain functions with, roughly speaking, s "derivatives" in Lq(Ω). We also note that we
restrict ourselves to 0 < s ≤ 1 since for s ≥ 1, the only functions in Lip(s,Lq(Ω)) are constants by [30,
Chapter 2, Proposition 7.1]. Lipschitz spaces allow for a broad range of functions and namely, Lip(1,L1(Ω))
contains functions of bounded variation, for example [30, Chapter 2, Lemma 9.2].

We will be considering the error rate between a function and its piecewise constant approximation. The
results presented below are part of the broader literature on approximation theory and in particular, spline
approximations (we refer to [30] for a review of such topics). We begin by defining operators that will allow
us to connect discrete and continuum spaces.

Let Ω ⊆ Rd be some bounded set and let Π = {πi}|Π|
i=1 be a disjoint partition of Ω with cardinality |Π|. We

define the projection operator PΠ : L1(Ω) 7→ R|Π| and the injection operator IΠ : R|Π| 7→ L1(Ω) as

(PΠu)i =
1

λx(πi)

∫
πi

u(x) dx and (IΠū)(x) =
|Π|∑
i=1

ūiχπi(x)

respectively for u ∈ L1(Ω) and i = 1, . . . , |Π|, ū ∈ R|Π| and x ∈ Ω. When using the partition {πi × πj}|Π|
i,j=1

of Ω× Ω, by an abuse of notation, we have

(PΠv)i,j =
1

λx(πi)λx(πj)

∫
πi

∫
πj

v(x, y) dydx and (IΠv̄)(x, y) =
|Π|∑

i,j=1

v̄i,jχπi(x)χπj (y)

for v ∈ L1(Ω× Ω), v̄ ∈ R|Π|×|Π| and (x, y) ∈ Ω× Ω.
For a function u, in order to obtain quantitative rates for ∥u−IΠPΠu∥Lp the choice of Π and the regularity

of u are essential. We now describe one construction of a partition Π but refer to [28] and references therein
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for more examples. In order to simplify the discussion, we consider Ω = (0, 1)d although some of the results
described below hold in more general cases.

For n ∈ N, define [n] = 1, . . . , n and let i = (i1, i2, . . . , id) ∈ [n]d be a multi-index. We partition Ω
into nd hypercubes with sides of length n−1 and denote this partition by Πuni,n = {Ωn,i}i∈[n]d . We have the
following approximation lemma whose proof can be found in Section II.

Lemma 2.14 (Approximation on the uniform partition). Let Ω = (0, 1)d, g ∈ Lip(s,Lq(Ω)) and assume the
partition Πuni,n on Ω. For 0 < s ≤ 1 and 1 ≤ q ≤ ∞, we have

∥g − IΠuni,nPΠuni,ng∥Lq ≤ C|g|Lip(s,Lq(Ω))n
−s,

for some constant C > 0 depending only on d.
Furthermore, if g is in C0,α for 0 < α ≤ 1 and ε > 0, then:

∥g(·/ε)− IΠuni,nPΠuni,ng(·/ε)∥Lq ≤ Cε−αn−α

for some C > 0 dependent on d.

Remark 2.15 (Rates for functions on the product space). We note that the conclusions of Lemma 2.14 also
apply to functions g defined on Ω× Ω.

2.5 Random graph models

Whenever we deal with random graph models, we will assume that we have the uniform partition Πuni,n =
{Ωn,i}ni=1 of (0, 1) and shall therefore write Pn = PΠuni,n and In = IΠuni,n .

In some applications, data is represented in the form of an undirected graph. One approach to understanding
the underlying structure is to analyse the convergence properties of the graph as the number of vertices goes
to infinity. We therefore consider graphs through their weight function defined on [0, 1]2: for a graph G
with vertices labelled by [n] and weight matrix {K̄n,ij}ni,j=1 with K̄n,ii = 0 and K̄n,ji = K̄n,ij ≥ 0 for
i ̸= j, for (x, y) ∈ Ωn,i × Ωn,j , we define K̃n(x, y) = K̄n,ij . The objective is now to analyze the limit
of the step-functions K̃n as n → ∞: this is well-known to be a graphon, i.e. a symmetric kernel function
in L1([0, 1]2) (see [12] and references therein). Given a sequence of graphs from a certain graph model, i.e.
a sequence of graphs for which there is a systematic way to determine the graph weights {K̄n,ij}ni,j=1, we
can establish the convergence of the sequence to the corresponding graphon in an appropriate metric. In the
data-centric approach, one tries to fit graph models to data therewith estimating the underlying graphon (see
for example [11], [74]): the intuition here is that graph sequences that have related graphons as limiting points
should share similarities.

In this paper, we consider a general sparse random graph model originally introduced and studied by [12].

Definition 2.16 (Random graph models). For n ∈ N, let ρn > 0 and K̄ ∈ Rn×n be a symmetric matrix with
non-negative entries. Assume ρnK̄ij ≤ 1 for all i, j ∈ [n] and K̄ii = 0 for all i ∈ [n]. Let

(
Λ̄n

)
ij
=

{ 1
ρn

with probability ρnK̄ij

0 else.

We define the random graph G(n, Λ̄n) to be the random graph with vertices [n] and weight matrix Λ̄n.

As a simple example, consider the case where ρn = 1 and the entries of K̄ are K̄ij = p ∈ (0, 1) for
1 ≤ i, j ≤ n. Then, vertices i and j are connected with probability p and G(n, Λ̄n) is the Erdős-Rényi graph
model G(n, p).

Note that in previous papers (for example [33, Section 3.2]), the weight matrix only has 0-1 weights but,
when the graphs are used in evolution problems, the quantities are normalized by ρ−1

n which is related to the
average degree of the graph. Altering the definition as we did in Definition 2.16 leads to more a straight-forward
and clearer problem setting.

In our paper, we will be considering the limit to a local problem and are therefore less concerned with
statements related to the convergence of our random graph models. We refer to [12] and [33, Proposition 3.1]
for more details on the topic however.
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3 Main results

3.1 Assumptions

In this section, we enumerate all the assumptions on the space, operators, kernels and length-scale that we will
be using throughout the paper.

Assumptions 1 (Assumptions on the space).

S.1 The space Ω is a bounded open subset of Rd.
S.2 The space Ω has Lipschitz boundary.

We recall that for an operator A, we denote its adjoint by A∗.

Assumptions 2 (Assumptions on the operator A).

O.1 The operator A : L2(Ω) 7→ L2(Ω) is bounded and linear. We write Cop = ∥A∥op, the operator norm of
A.

O.2 The operator A∗A is order-preserving: for all u ∈ L2(Ω) and almost every x ∈ Ω, sign(A∗Au(x)) =
sign(u(x)) where sign is the sign function.

O.3 For n ∈ N and a partition Πn, there exists a positive semi-definite linear operator Ḡn : R|Πn| 7→ R|Πn|

such that In(Ḡn(ū)) = A∗A(Inū).

From [57, Theorem VI.2 and Theorem VI.3]), if Assumption O.1 holds, it is easy to see that ∥A∗Av∥L2 ≤
C2
op∥v∥L2 for all v ∈ L2(Ω). Assumption O.3 reflects the fact that we require the discretization Ḡn of A∗A to

commute with the injection operator In. This property is for example satisfied in the following case: if A is
unitary, then A∗A = Id so that Ḡn can be chosen to be the identity as well. Furthermore, in Corollary 4.8, we
will use similar properties of the differential operators introduced in Section 3.2.

Assumptions 3 (Assumptions on the kernel K).

K.1 The kernel K : [0,∞) 7→ [0,∞) is bounded in L∞.
K.2 The kernel K : [0,∞) 7→ [0,∞) has supp(K) = [0, 1].

The next set of assumptions concerns the regularity of the solutions to our various gradient flows. While we
rigorously introduce the latter in Section 3.2, for the reader’s convenience, we repeat the continuum nonlocal
and local variants, respectively (5) and (7), below:{

∂
∂tu(t, x) + EK

A,f (u(t, x)) = 0 on (0, T )× Ω,

u(0, x) = u0(x)

and 
∂
∂tu(t, x) + µ∆pu(t, x) +A∗Au(t, x) = A∗ℓ(x), on (0, T )× Ω

|∇u(t, x)|p−2∇u(t, x) · −→n = 0, on (0, T )× ∂Ω

u(0, x) = u0(x).

Assumptions 4 (Assumptions on regularity).

R.1 The function u ∈ C0([0, T ]; Lp(Ω)) solving (5) satisfies u(t) ∈ W1,p(Ω) for 0 < t < T .
R.2 For h ≥ 1, s > 3 + d/p and r > 2 + d/p, the function u ∈ Lp(0, T ;W1,p(Ω)) ∩ L2(0, T ; L2(Ω))

solving (7) satisfies u ∈ Lh(0, T ;Ws,p(Ω)) ∩ L∞(0, T ;Wr,p(Ω)).
R.3 For h ≥ 1 and s > 3 + d/p, there exists C̃ independent of T such that the function

u ∈ Lp(0, T ;W1,p(Ω)) ∩ L2(0, T ; L2(Ω))

solving (7) satisfies

u ∈ Lh(0, T ;Ws,p(Ω)) and max

{
sup

t∈(0,T )
∥∇u∥L∞ , sup

t∈(0,T )
∥∇2u∥L∞

}
≤ C̃

for all T > 0.
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Remark 3.1 (Higher regularity). In Theorem 4.10, we will assume higher regularity on the solutions of (5) and
(7), namely Assumptions R.1, R.2 and R.3. Previous attempts at deriving rates in related problems [6], [41],
[71], [5] have led to similar assumptions.

In the nonlocal case, we require the solutions to be in the same space as the local solution, namely W1,p(Ω).
This is a natural requirement for establishing rates which is fulfilled when approximating local problems by
finite elements as in [41]. This is in contrast with our finite-differences approach for which conservation of
regularity properties of the local problem is not inherent. For a similar problem, regularity of a nonlocal
solution is studied in [3].

In the local case, we extend the regularity from W1,p(Ω) to some fractional Sobolev space Ws,p(Ω). This
will allow us to consider a function u with continuous first, second and third derivatives. In order to align for
example with [41, Section 6] where functions are taken in W2,p(Ω), and due to the regularity of Sobolev spaces
we would like to have s = k + δ for k = 2, 3. As it will turn out, this uncovers a subtle interplay between
regularity and dimension of the underlying space.

Remark 3.2 (Embeddings of Wk+δ,p(Ω) into Ck(Ω)). In view of Remark 3.1, we are interested in the embed-
ding of Wk+δ,p(Ω) into Ck(Ω). In fact, Wk+δ,p(Ω) embeds into Ck(Ω) only when δ > d/p: the weaker we
want our regularity assumption on the local solution to be, the higher the regularization parameter p needs to
be.

Assumptions 5 (Assumptions on the length-scale).

L.1 The length scale ε = εn is positive and converges to 0, i.e. 0 < εn → 0 as n → ∞.

3.2 Setting

3.2.1 Discrete problem

Given a partition Π of Ω and a symmetric K̄ ∈ R|Π|×|Π|, we define the discrete nonlocal p-Laplacian operator
for ū ∈ R|Π| and 1 ≤ i ≤ |Π| as follows:

(∆K̄
p,Πū)i = −

|Π|∑
j=1

λx(πj)K̄i,j |(ū)j − (ū)i|p−2((ū)j − (ū)i).

Let f̄ ∈ R|Π| and ū0 ∈ R|Π|. We will consider the fully discrete nonlocal evolution problem

(4)

{
ūk−ūk−1

τk−1 + µ∆K̄
p,Πū

k + Ḡ(ūk) = f̄ , for 1 ≤ k ≤ N

ū(0) = ū0

for some µ > 0, a positive sequence {τk}N−1
k=1 (with

∑N−1
k=0 τk = T ) and linear operator Ḡ : R|Π| → R|Π|. We

also define τ = maxk=1,...,N τk and will write τn for τ when our sequence {τk}N−1
k=1 will be indexed by n. We

say that ū solves (4) with parameters K̄, f̄ and ū0.
Later we choose τk = tk+1 − tk for a discretisation 0 = t0 < t1 < · · · < tN = T of [0, T ] and we

will need the following two quantities. First, we define the time interpolated version of the injected vectors
{ūk}Nk=1:

uTimeInt(t, x) =
tk − t

τk−1

(
IΠn ū

k−1
)
(x) +

t− tk−1

τk−1

(
IΠn ū

k
)
(x) for (t, x) ∈ (tk−1, tk]× Ω

and uTimeInt(0, x) = IΠn ū0. Second, we define the time injected version of the injected vectors {ūk}Nk=1:

uTimeInj(t, x) =
N∑
i=1

(
IΠn ū

k
)
(x)χ(tk−1,tk](t).

Most of our results will holds for any partition Π but, keeping in mind that we are ultimately interested
in convergence results, meaning the case where maxj≤|Π| λx(πj) → 0, we will index our partition with a

parameter n. We denote the latter by Πn = {πn
j }

|Πn|
j=1 . As an example, one can consider Πuni,n. For ease of

notation we will write ∆K̄
p,n = ∆K̄

p,Πn
, In = IΠn ,Pn = PΠn and similarly for other quantities.
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3.2.2 Nonlocal problem

Given a function a kernel function K : [0,∞) → [0,∞), we define the nonlocal p-Laplacian operator ∆K
p for

a function u ∈ L1(Ω) and x ∈ Ω as follows:

∆K
p u(x) = −

∫
Ω
K(|x− y|)|u(y)− u(x)|p−2(u(y)− u(x)) dy.

For a kernel K, we define the function K̃ : Ω×Ω 7→ [0,∞) by K̃(x, y) = K(|x− y|). For a general function
v : Ω× Ω 7→ [0,∞), we naturally have:

∆v
pu(x) = −

∫
Ω
v(x, y)|u(y)− u(x)|p−2(u(y)− u(x)) dy.

Furthermore, for f ∈ L2(Ω), p ≥ 2 and q such that p−1 + q−1 = 1, we define the following evolution operator
EK
A,f : Lp(Ω) 7→ Lq(Ω) for µ > 0, a function u ∈ Lp(Ω) and some linear operator A : L2(Ω) 7→ L2(Ω):

EK
A,f (u) = µ∆K

p u+A∗Au− f.

The well-posedness of this evolution operator will be discussed in Theorem 3.6.
We will consider the following nonlocal evolution problem:

(5)

{
∂
∂tu(t, x) + EK

A,f (u(t, x)) = 0 on (0, T )× Ω,

u(0, x) = u0(x).

We say that u solves (5) with parameters K, f and u0. In particular, in order to link the above problem with
(1), we will be interested in (5) when EK

A,f (u) = EK
A,A∗ℓ(u) for some ℓ ∈ L2(Ω).

We are interested in the following solution which is just of Definition 2.1 using the evolution operator
appearing in (5).

Definition 3.3 (Nonlocal problem solution). Assume that Assumptions S.1, O.1, O.2 and K.1 hold. For p ≥ 2,
T > 0, µ > 0, f ∈ Lp(Ω), u0 ∈ Lp(Ω), a function u(t, x) is a solution to the nonlocal problem (5) if
u(t, x) ∈ C([0, T ]; Lp(Ω)) ∩W 1,1

loc ((0, T ); L
p(Ω)), u(0, x) = u0(x) λx-a.e. on Ω and λt-a.e.:

∂

∂t
u(t, x) + µ∆K

p u(t, x) +A∗Au(t, x) = f(x) λx-a.e..

If we are further given a positive sequence {εn}∞n=1, we will write Kεn = 2

c(p,d)εd+p
n

K(·/εn) where

(6) c(p, d) =

∫
Rd

K(|x|)|xd|p dx.

3.2.3 Local problem

The local p-Laplacian operator is defined as

∆pu = −div(|∇u|p−2∇u).

For p ≥ 2, µ > 0, ℓ ∈ L2(Ω) and u0 ∈ Lp(Ω), we will consider the following local evolution problem:

(7)


∂
∂tu(t, x) + µ∆pu(t, x) +A∗Au(t, x) = A∗ℓ(x), on (0, T )× Ω

|∇u(t, x)|p−2∇u(t, x) · −→n = 0, on (0, T )× ∂Ω

u(0, x) = u0(x)

for some linear operator A : L2(Ω) 7→ L2(Ω).
The following definition is inspired by the results of [50, Chapter 2, Theorem 1.4] which we have stated as

Theorem 2.12.
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Definition 3.4 (Local weak solution). Assume that Assumptions S.1 and O.1 hold. For p ≥ 2, T > 0,
ℓ ∈ L2(Ω), u0 ∈ L2(Ω), a function u(t, x) is a weak solution to (7) if u ∈ Lp(0, T ;W1,p(Ω))∩L2(0, T ; L2(Ω)),
u ∈ L∞(0, T ; L2(Ω)), u(0, ·) = u0 λx-a.e. on Ω and if λt-a.e.:∫
Ω

∂

∂t
u(t, x)ζ(x) dx+µ

∫
Ω
|∇u(t, x)|p−2∇u(t, x) ·∇ζ(x) dx+

∫
Ω
A∗Au(t, x)ζ(x) dx =

∫
Ω
A∗ℓ(x)ζ(x) dx

for all ζ ∈ W1,p(Ω).

The derivative ∂
∂tu makes sense thanks to Theorem 2.12. Indeed, applying the latter to (7), and in view

of assumption O.1, we have that ∂
∂tu ∈ Lp∗(0, T ;W−1,p∗(Ω)) + L2(0, T ; L2(Ω)). It then follows using the

same arguments as in [50, Chapter 2, Remark 1.2] that the solution u is (up to a modification on a Lebesgue
measure zero set) a continuous function from [0, T ] → L2(Ω) in such a way that the initial condition in (7)
makes perfectly sense.

3.2.4 Random graphs problem

Given a graph G(n, Λ̄n), ū0 ∈ Rn and f̄ ∈ Rn, we can also consider the following evolution problem:

(8)

{
ūk−ūk−1

τk−1 + µ∆Λ̄n
p,nū

k + Ḡ(ūk) = f̄ , for 1 ≤ k ≤ N

ū(0) = ū0

for some µ > 0, linear operator Ḡ : Rn → Rn, partition 0 = t0 < t1 < · · · < tN = T and where
τk−1 = tk − tk−1. We say that ū solves (4) with parameters Λ̄n, f̄ and ū0.

3.3 Main results

3.3.1 Well-posedness of the nonlocal continuum gradient flow

In order to prove well-posedness, we loosely follow the strategy in [2]. Our main contribution lies in the
verification of the range condition in Proposition 3.5: we propose an alternative proof for a generalization
of the commonly used [2, Theorem 2.4] based on principles related to Γ-convergence (see [14] or [52]). In
particular, showing the range condition boils down to solving a PDE which is unsolvable by direct methods.
We therefore modify the latter by adding a term that will make the operators involved coercive. We then use
a compactness argument to show that the solutions to the PDE approximations converge to a limiting function
which solves the initial PDE by the lim inf-inequality of Γ-convergence.

Proposition 3.5 (Complete accretivity and range condition). Assume that Assumptions S.1, O.1, O.2 and K.1
hold. Let p ≥ 2 and assume that f ∈ Lp(Ω). Then, the evolution operator EK

A,f is completely accretive and
satisfies the range condition Lp(Ω) ⊆ ran(Id + λEK

A,f ) for λ > 0.

The proof of the proposition is given in Section 4.1.1. From the proposition one easily deduces the existence
of solutions to the nonlocal problem. The proof of the theorem is also given in Section 4.1.1.

Theorem 3.6 (Existence and uniqueness of a solution for the nonlocal problem). Assume that Assumptions
S.1, O.1, O.2 and K.1 hold. Let p ≥ 2, T > 0, u0 ∈ Lp(Ω) and assume that f ∈ Lp(Ω). Then, there exists a
unique solution u as in Definition 3.3 to the evolution problem (5) with the operator EK

A,f and initial value u0.
Furthermore, if v is a solution as above solving (5) with the operator EK

A,g and initial value v0, we have

(9) ∥u(t)− v(t)∥Lr ≤ ∥u0 − v0∥Lr + t∥f − g∥Lr

for 1 ≤ r ≤ ∞ and 0 ≤ t ≤ T .
In addition, we also have

(10) ∥u(t)∥Lr ≤ ∥u0∥Lr + t∥f∥Lr

for 1 ≤ r ≤ ∞ and 0 ≤ t ≤ T .
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3.3.2 Rates of convergence

The rates are established by combining two intermediate results. On one hand, we obtain nonlocal-to-local
continuum rates by switching from finite-differences to derivatives which allows one to prove the convergence
of the nonlocal p-Laplacian operator to the local one. On the other hand, the central point of the proofs is to
leverage the fact that the injected discrete gradient flow solution solves a nonlocal continuum gradient flow
with particular parameters. We then rely on the contraction properties (9) and (10) to express the rates of
convergence of discrete-to-continuum solutions in the nonlocal setting in terms of the discretization error of
the initial condition, data and kernel functions.

The next result precisely describes the interplay between our space-localization parameter εn and our time-
discretization parameter τn in order to ensure convergence of the discrete solution to the solution of (7).

Theorem 3.7 (Discrete-to-continuum local rates). Assume that assumptions S.1, O.1, O.2, O.3, K.1 and L.1
hold. Let p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω), Ω′ be compactly contained in Ω and assume that
A∗ℓ ∈ Lp(Ω). Furthermore, let n ∈ N and define K̄εn = PnK̃εn , f̄ = PnA∗ℓ, ū0 = Pnu0.

Then, for any partition 0 = t0 < t1 < · · · < tN = T , there exists a sequence {ūkn}Nk=0 satisfying (4) with
K̄εn , f̄ , ū0 and Ḡn chosen as above, a solution uεn to (5) with kernel Kεn and a solution u to (7).

In addition, assume that Assumptions S.2 and K.2 hold, p ≥ 3, that we are using the partition Πuni,n, that
uεn satisfies Assumption R.1 for all T > 0 and that u satisfies Assumption R.3. For some 1 ≤ q1 < ∞ and
1 ≤ q2 < ∞ and 0 < αi ≤ 1 for 1 ≤ i ≤ 3, assume furthermore that u0 ∈ Lip(α1,L

q1(Ω)) ∩ L∞(Ω), A∗ℓ ∈
Lip(α2,L

q2(Ω))∩L∞(Ω) and K ∈ C0,α3(Ω). Then, if for some κ > 0 we set T (n) =
(

1
1+C4

op

)
log(ε−κ

n ) and
assume that

(11) τn ≪ ε
2(d+p)+κ
n

log(ε−κ
n )(2p−3)

as well as

εn ≫ max

{
n−α1/κ, n−α2/κ,

[
expW

(
n

α3
max(1+(d+p+α3)/κ,p−1)

)]−1/κ
}
,

for n large enough, we have:

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − u(t, ·)∥L2(Ω′) ≤ C

(
εn log(ε

−κ
n )

+ ε−κ
n

[
n−α1 + n−α2 +

log(ε−κ
n )(p−1)

εd+p+α3
n nα3

+ τn
log(ε−κ

n )2p−3

ε
2(d+p)
n

])
(12)

for some C > 0 that might be dependent on Ω (and d), u0 and A∗ℓ and the latter right-hand side tends to 0 as
n → ∞.

The proof of the theorem can be found in Section 4.2.3.

Remark 3.8 (Asymptotics of N ). It is a natural requirement that N → ∞ as T (n) → ∞ as in Theorem
3.7. This is indeed the case (and also will be for Corollary 3.12 by the same argument) since by definition
N ≥ T (n)/τn and (11) ensures that τn → 0 with εn → 0.

Remark 3.9 (Parameters in Theorem 3.7). Despite their appearances, the conditions on εn and τn in Theorem
3.7 are not constraining. Indeed, all parameters involved are chosen by the practitioner prior to the implemen-
tation of the numerical procedure.

The regularity requirements of both the nonlocal solution and the local solution are discussed in greater
detail in Remarks 3.1 and 3.2. The nonlocal regularity assumption is linked to our approximation through finite
differences. Indeed, the expression (5) does not contain any differential term in the space component leading
our solution to be in Lp(Ω) as opposed to W1,p(Ω): when using finite elements, the approximations are in the
same space as the solutions to original problem, which in our case is W1,p by Theorem 4.9. The local regularity
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assumption is a typical one and actually induces an interesting relationship between the regularity requirement
and the regularization parameter p.

The rates are formulated for n large enough. This is discussed in Remark 4.11 and is essentially dependent
on the choice of our compactly contained set Ω′ ⊆ Ω.

A simple additional step allows one to deduce the convergence of the discrete gradient flow to u∞. The
proof is given in Section 4.2.3.

Theorem 3.10 (Rates for u∞). Assume the same setting as in Theorem 3.7 and furthermore that A = Id. Then,
for n large enough, we have

∥InūNn − u∞∥L2(Ω′) ≤ C

(
εn log(ε

−κ
n ) + εκ/4n (F(u0)−F(u∞))1/2

+ ε−κ
n

[
n−α1 + n−α2 +

log(ε−κ
n )(p−1)

εd+p+α3
n nα3

+ τn
log(ε−κ

n )2p−3

ε
2(d+p)
n

])
(13)

for some C > 0 that might be dependent on Ω (and d), u0 and ℓ and the latter right-hand side tends to 0 as
n → ∞.

Remark 3.11 (Curse of dimensionality). We note the presence of terms of the form ε−γ−δd
n with γ, δ > 0 in

the right-hand sides of both (12) and (13). For fixed n and εn < 1, as d → ∞, ε−γ−δd
n will tend to infinity.

While we can control this behaviours when d is fixed, for high dimensions the rates deteriorate.

3.3.3 Application to random graphs

Everything discussed until now was determinisitic. In particular, the discretization procedure was based on
partitioning the space into cells in a pre-defined way that would allow us to control the discretization error
as described in Section 2.4. An alternative setting is the one of random graph models present in various
applications.

Obtaining results in the random graph setting is split in two steps: (1) prove rates of convergence between
the discrete random and deterministic gradient flows and then (2) use the deterministic rates of Proposition
4.13 and Theorem 4.10. The first part is conceptually similar to how the results in the nonlocal case are derived
while adding the necessary probabilistic estimates. The main results are to be found in Theorems 3.12 and
3.13. The proofs of the latter are given in Section 4.3.

Theorem 3.12 (Discrete random-to-continuum local rates). Assume that Assumptions O.1, O.2, O.3 and L.1
hold. Let p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω), Ω′ be compactly contained in Ω and assume that
A∗ℓ ∈ Lp(Ω). Furthermore, let n ∈ N and define K̄εn = PnK̃εn , f̄ = PnA∗ℓ, ū0 = Pnu0. We also suppose
that ρn is a positive sequence with ρn → 0 and ρn ≪ ε1+p

n . Let Λn ∈ Rn×n be the weight matrix defined as in
Definition 2.16 with K̄ = K̄εn .

Then, for any partition 0 = t0 < t1 < · · · < tN = T , there exists a sequence {ūkn}Nk=0 solving (8) with
parameters Λ̄n, f̄ and ū0, a solution uεn to (5) with kernel Kεn and a solution u to (7).

In addition, assume that Assumptions S.2 and K.2 hold, p ≥ 3, that we are using the partition Πuni,n, that
uεn satisfies Assumption R.1 for all T > 0 and that u satisfies Assumption R.3. For some 1 ≤ q1 < ∞ and
1 ≤ q2 < ∞ and 0 < αi ≤ 1 for 1 ≤ i ≤ 3, assume furthermore that u0 ∈ Lip(α1,L

q1(Ω)) ∩ L∞(Ω),
A∗ℓ ∈ Lip(α2,L

q2(Ω)) ∩ L∞(Ω) and K ∈ C0,α3(Ω). For some κ > 0, let T (n) =
(

2
2+3C4

op

)
log(ε−κ

n ) and
assume that

τn ≪ 1

log(ε−κ
n )(2p−3)

ε2+2p+κ
n ,

εn ≫ max

{
n−α1/κ, n−α2/κ,

[
expW

(
n

α3
max(1+(1+p+α3)/κ,p−1)

)]−1/κ
,

[
expW

(
(n log(n))1/max(4(p−1),4+(2+4p)/κ)

)]−1/κ
}
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and
log(n)ε2pn

n
≪ ρ2n ≪ ε2(p+1)

n as well as
log(ε−κ

n )2(p−1)

ε1+2p
n log(n)1/2n1/2

≪ θ2n ≪ ε2κn .

Then, for n large enough, we have:

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − u(t, ·)∥L2(Ω′) ≤ C

(
εn log(ε

−κ
n )

+ ε−κ
n

[
n−α1 + n−α2 +

log(ε−κ
n )(p−1)

ε1+p+α3
n nα3

+ τn
log(ε−κ

n )2p−3

ε
2(1+p)
n

+ θn

])
(14)

for some C > 0 that might be dependent on Ω, u0 and A∗ℓ and with probability larger than

1−
C log(ε−κ

n )2(p−1)
(
1 +

3C4
op

2

)2(1−p)

θ2nε
1+p
n nρn

.

Furthermore, the right-hand side of (14) tends to 0 as n → ∞ and the probability tends to 1.

Theorem 3.13 (Rates for u∞ using the random graph model). Assume the same setting as in Theorem 3.12
and furthermore that A = Id. Then, for n large enough, we have:

∥InūNn − u∞∥L2(Ω′) ≤ C

(
εn log(ε

−κ
n ) + εκ/5n (F(u0)−F(u∞))1/2

+ ε−κ
n

[
n−α1 + n−α2 +

log(ε−κ
n )(p−1)

ε1+p+α3
n nα3

+ τn
log(ε−κ

n )2p−3

ε
2(1+p)
n

+ θn

])
for some C > 0 that might be dependent on Ω (and d), u0 and ℓ and with probability larger than

1− C log(ε−κ
n )2(p−1)

θ2nε
1+p
n nρn

.

Furthermore, the latter right-hand side tends to 0 as n → ∞ and the probability tends to 1.

4 Proofs

4.1 Well-posedness

Well-posedness of all our gradient flows is a central question. For the continuum nonlocal case, we will make
use of nonlinear semigroup theory. The discrete case will follow from the continuum nonlocal case by using
the interplay between the p-Laplacian and injection operators. Lastly, the continuum local case will follow
from classical results.

4.1.1 Nonlocal problem

The following proposition, an extension of [47, Theorem 3.9], will allow us to characterize certain functions
both by an equation they satisfy as well as a variational problem they minimize. The proof follows the above-
mentioned reference but has been included in Section III.1 for completeness.

Proposition 4.1 (Dirichlet principles). Assume that Assumptions S.1, K.1 and O.1 hold. Let p ≥ 2, µ > 0 and
f ∈ L2(Ω). Given n ∈ N, λ > 0 and functions u, ϕ ∈ Lp(Ω), consider the equations

(15)
|u|p−2u

n
+ λ

(
µ∆K

p u+A∗Au− f
)
+ u− ϕ = 0

and

(16) λ(µ∆K
p u+A∗Au− f) + u− ϕ = 0

15



as well as their variational counterparts

En,λ,A,f (u) =
1

np

∫
Ω
|u|p dx+

λµ

2p

∫
Ω×Ω

K(|x− y|)|u(x)− u(y)|p dx dy + λ

2

∫
Ω
(Au)2 dx(17)

− λ

∫
Ω
fudx+

1

2

∫
Ω
(u− ϕ)2 dx

and

Eλ,A,f (u) =
λµ

2p

∫
Ω

∫
Ω
K(|x− y|)|u(x)− u(y)|p dydx+

λ

2

∫
Ω
(Au)2 dx(18)

− λ

∫
Ω
fudx+

1

2

∫
Ω
(u− ϕ)2 dx.

1. If u ∈ Lp(Ω) satisfies (15) λx-a.e., then we have En,λ,A,f (u) ≤ En,λ,A,f (v) for all v ∈ Lp(Ω).
2. If for u ∈ Lp(Ω) we have Eλ,A,f (u) ≤ Eλ,A,f (v) for all v ∈ Lp(Ω), then u satisfies (16) λx-a.e..

Remark 4.2 (Dirichlet principles). It is clear from the proof of Proposition 4.1 that the converse of the two
statements of Proposition 4.1 can be shown analogously.

In the next step, our aim will be to show that if un ⇀ u, we have lim infn→∞En,λ,A,f (un) ≥ Eλ,A,f (u),
where En,λ,A,f and Eλ,A,f are respectively defined in (17) and (18).

Proposition 4.3 (lim inf-inequality for En,λ,A,f ). Assume that Assumptions S.1, K.1 and O.1 hold. Let p ≥ 2,
µ > 0, f ∈ L2(Ω), λ > 0 and ϕ ∈ Lp(Ω). Let {un}∞n=1 ⊂ Lp(Ω) and u ∈ Lp(Ω) be functions so that un ⇀ u.
Then,

Eλ,A,f (u) ≤ lim inf
n→∞

En,λ,A,f (un)

where En,λ,A,f and Eλ,A,f are respectively defined in (17) and (18).

Proof. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might be) dependent on
the kernel K, p, λ, µ, A and/or Ω, that may change from line to line.

We start by recalling (17) for v ∈ Lp(Ω):

En,λ,A,f (v) =
1

np

∫
Ω
|v|p dx+

λµ

2p

∫
Ω×Ω

K(|x− y|)|v(x)− v(y)|p dx dy + λ

2

∫
Ω
(Av)2 − 2fv dx

+
1

2

∫
Ω
(v − ϕ)2 dx

=: T1(v) + T2(v) + T3(v) + T4(v).

For the T1 term, by weak lower semi-continuity of norms, we have

lim inf
n→∞

T1(un) = lim inf
n→∞

1

np
∥un∥pLp = 0.

For the T2 term, we first note that T2 is proper and convex. Next, let 0 < r < R. We claim that T2 is
bounded on the ball BLp(u,R). Indeed, for v ∈ BLp(u,R):

|T2(v)| ≤ C

∫
Ω

∫
Ω
2p−1(|v(y)|p + |v(x)|p) dy dx ≤ C(R+ ∥u∥Lp) ≤ C.

Combining the above, by [52, Proposition 5.11], we have that T2 is Lipschitz continuous on BLp(u, r) which
in turn implies that T2 is continuous and convex in Lp(Ω). By [32, Corollary 2.2], we deduce that T2 is
weakly lower-semicontinuous. Analogously, T3 and T4 are convex and continuous and therefore weakly lower
semi-continuous by [32, Corollary 2.2].

Collecting all the latter results, we obtain:

lim inf
n→∞

En,λ,A,f (un) ≥ T2(u) + T3(u) + T4(u) = Eλ,A,f (u).
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The next properties are easily checked: in particular, monotony and coercivity follow from [2, Lemma 2.3]
and [17, Lemma 3.4 and Lemma 3.6]. For completeness, the proof may be found in Section III.1.

Lemma 4.4 (Properties of En,λ,A,f ). Assume Assumptions S.1, K.1 and O.1 hold. Let p ≥ 2, µ > 0 and
f ∈ L2(Ω). For n ∈ N and λ > 0, we define the operator:

(19) En,λ,A,f (u) =
|u|p−2u

n
+ u+ λ(µ∆K

p u+A∗Au− f).

The following properties are satisfied:

1. For q such that p−1 + q−1 = 1, En,λ,A,f : Lp(Ω) 7→ Lq(Ω) and

∥En,λ,A,f (u)∥Lq ≤ C

((
1 +

1

n

)
∥u∥

p
q

Lp + ∥u∥Lp + ∥f∥L2

)
;

2. En,λ,A,f is hemicontinuous, monotone and coercive.

We now proceed to show a range condition on our evolution operator which will allow us to deduce the
existence of a solution to the nonlocal problem.

Proof of Proposition 3.5. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might
be) dependent on the kernel K and/or Ω, that may change from line to line.

We begin by showing complete accretivity of EK
A,f . Let u, v ∈ Lp(Ω), h ∈ H and consider:∫

Ω

(
EK
A,f (u)− EK

A,f (v)
)
h(u− v) dx = µ

∫
Ω

(
∆K

p u−∆K
p v
)
h(u− v) dx

+

∫
Ω
(A∗Au−A∗Av)h(u− v) dx

=: T1 + T2.

For the T1 term, we obtain:

T1 = µ

∫
Ω×Ω

K(|x− y|)

(
|u(x)− u(y)|p−2(u(x)− u(y))− |v(x)− v(y)|p−2(v(x)− v(y))

)
h(u(x)− v(x)) dx dy

=
µ

2

∫
Ω×Ω

K(|x− y|)

(
|u(x)− u(y)|p−2(u(x)− u(y))− |v(x)− v(y)|p−2(v(x)− v(y))

)
[h(u(x)− v(x))− h(u(y)− v(y))] dx dy.

Since h and t 7→ |t|p−2t are both increasing then by splitting the latter equation in cases where u(y)− v(y) ≥
u(x) − v(x) (and conversely) we see that T1 ≥ 0. By Assumptions O.1 and O.2, we know that T2 ≥ 0 and
therefore, by Proposition 2.7 and Assumption S.1, EK

A,f is completely accretive.
For the range condition, let ϕ ∈ Lp(Ω) ⊆ Lq(Ω) where q = p/(p − 1) since p ≥ 2 . We first show that

there exists a solution to the equation

|u|p−2u

n
+ u+ λ

(
µ∆K

p u+A∗Au− f
)
= En,λ,A,f (u) = ϕ.

where En,λ,A,f is defined in (19). By Lemma 4.4, the operator En,λ,A,f satisfies all the conditions required
to apply Theorem 2.11 and we deduce that for all n ∈ N, there exists a function un ∈ Lp(Ω) such that
En,λ,A,f (un) = ϕ, or formulated otherwise: un satisfies (15).

Next, we claim that un
sgt
≪ϕ+ λf . Indeed, let h ∈ H and, using (15), we compute as follows:∫

Ω
(ϕ+ λf)h(un) dx =

∫
Ω
unh(un) dx+ λµ

∫
Ω
∆K

p unh(un) dx
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+
1

n

∫
Ω
|un|p−2unh(un) dx+ λ

∫
Ω
A∗Aunh(un) dx

≥
∫
Ω
unh(un) dx(20)

where we used the same argument as to show T1 ≥ 0 (using v = 0) to infer
∫
Ω∆K

p unh(un) dx ≥ 0, the fact
that sign(un) = sign(h(un)) and the Assumption O.2 for (20). By Lemma II.2 and since f ∈ Lp(Ω), we

therefore obtain un
sgt
≪ϕ+ λf ∈ Lp(Ω) and consequently ∥un∥Lp ≤ ∥ϕ+ λf∥Lp ≤ C. From this, we deduce

that the set {un}∞n=1 is uniformly bounded in Lp(Ω) and hence, there exists u∗ ∈ Lp(Ω) and a subsequence
{unm}∞m=1 such that unm ⇀ u∗ in Lp(Ω).

By Proposition 4.1, for each n, un minimizes En,λ,A,f in Lp(Ω). We will now show that u∗ minimizes
Eλ,A,f in Lp(Ω). Let v ∈ Lp(Ω). In fact, by Proposition 4.3 we have

Eλ,A,f (u
∗) ≤ lim inf

m→∞
Enm,λ,A,f (unm) ≤ lim inf

m→∞
Enm,λ,A,f (v) = Eλ,A,f (v).

Therefore, by Proposition 4.1, u∗ satisfies (16) which concludes the proof of the range condition.

The straight-forward proof of the next result may be found in Section III.1.

Corollary 4.5 (Special cases of EK
A,f ). Assume that Assumptions S.1, O.1, O.2 and K.1 hold. Let p ≥ 2, µ > 0

and assume that f ∈ Lp(Ω). Then, the operators EK
A,f , EK

A,0 and EK
0,0 are m-completely accretive.

Finally, we can deduce the following existence and uniqueness result.

Proof of Theorem 3.6. First, we note that if we find a solution to

(21)

{
∂
∂tu+ EK

A,0(u) = f

u(0, ·) = u0,

then, u solves (5) with the operator EK
A,f . From Corollary 4.5, we know that EK

A,0 is m-completely accretive.
We can therefore apply Theorem 2.5 to deduce the existence of a unique solution u as in Definition 2.1. We
obtain (9) by applying Lemma 2.8.

For the last part, we note that v = 0 solves (21) with f = 0 and u0 = 0, so that by inserting v = 0 in (9),
we obtain (10).

The next result is a stability result for solutions to (5) which can be considered an extension of [33, Theorem
5.1] whose proof can be found in Section III.1.

Proposition 4.6 (Stability of solutions to (5)). Assume that Assumptions S.1, O.1 and O.2 hold. Let p ≥ 2,
µ > 0 and T ≥ 1. Furthermore, for i = 1, 2, let Ki satisfy Assumption K.1, u0,i ∈ Lp(Ω) and fi ∈ Lp(Ω).
Then, for i = 1, 2, there exists a unique solution ui to the nonlocal problem (5) with evolution operator EKi

A,fi
and initial condition u0,i and we have the following stability estimates for some C > 0 dependent on Ω, u0
and fi:

1. if, for either i = 1 or i = 2, we have u0,i ∈ L2(p−1)(Ω) and fi ∈ L2(p−1)(Ω) then

∥u2(t, ·)− u1(t, ·)∥L2 ≤ Ctp
(
sup
x∈Ω

∥K2(x− ·)−K1(x− ·)∥L2 + ∥f1 − f2∥L2

)
+ ∥u0,2 − u0,1∥L2 ;

2. if, for either i− 1 or i = 2, we have u0,i ∈ L∞(Ω) and fi ∈ L∞(Ω) then

∥u2(t, ·)− u1(t, ·)∥L2 ≤ Ctp (∥K2 −K1∥L2 + ∥f1 − f2∥L2) + ∥u0,2 − u0,1∥L2 .

Remark 4.7 (Generality of f in (5)). In Section 4.1, we have considered a general function f in (5). We
could continue to do so below, but for ease of exposition, from now on, we will only consider f = A∗ℓ or
f = PnA∗ℓ.
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4.1.2 Discrete nonlocal problem

As a corollary of Proposition 3.5, we can prove the well-posedness of the discrete problem (4) in the case that
is of interest to us. The proof of the next corollary also displays the importance of accretivity of our operator.

Corollary 4.8 (Well-posedness of (4)). Assume that Assumptions S.1, O.1, O.2, O.3 and K.1 hold. Let p ≥ 2,
µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore, let n ∈ N and define
K̄ = PnK̃, f̄ = PnA∗ℓ, ū0 = Pnu0. Then, for any partition 0 = t0 < t1 < · · · < tN = T , there exists a
sequence {ūkn}Nk=0 satisfying (4) with the above parameters that is well-defined and unique. We also have

(22) ∥Inūkn∥Lr ≤ ∥u0∥Lr + T∥A∗ℓ∥Lr

for 1 ≤ r ≤ ∞.

Proof. We first start by considering the well-posedness of the sequence {ukn}Nk=0 defined iteratively by u0n =
Inū0 = InPnu0 and

(23) (Id + τk−1EInK̄
A,Inf̄

)(ukn) = ukn + τk−1(µ∆InK̄
p ukn +A∗Aukn − Inf̄) = uk−1

n .

This can be reformulated as ukn = (Id + τk−1EInK̄
A,0 )−1(uk−1

n + τk−1Inf̄)
By [33, Lemma 2.1], we have that ∥InK̄∥L∞ ≤ ∥K∥L∞ < ∞, so we can apply Corollary 4.5 to deduce

that EInK̄
A,0 is m-completely accretive. In particular, by Proposition 3.5 and [8, Section 2], for λ > 0, we have

that (Id + λEInK̄
A,0 )−1 is single-valued on dom((Id + λEInK̄

A,0 )−1) = ran(Id + λEInK̄
A,0 ) = Lp(Ω) and, for

1 ≤ r ≤ ∞:
∥(Id + λEInK̄

A,0 )−1(g1)− (Id + λEA,0)
−1(g2)∥Lr ≤ ∥g1 − g2∥Lr

for any gi ∈ Lp(Ω). We have that (Id + λEInK̄
A,0 )−1(0) = 0 so that, combining with the above,

∥(Id + λEInK̄
A,0 )−1(g)∥Lr ≤ ∥g∥Lr

for any g ∈ Lp(Ω).
Since by [33, Lemma 2.1], we have that ∥Inf̄∥Lr ≤ ∥A∗ℓ∥Lr and ∥Inū0∥Lp ≤ ∥u0∥Lp , we can now

proceed to show that ukn is well-posed by induction. For k = 0, we have that ukn = Inū0 ∈ Lp(Ω). Now,
assume that for 1 ≤ m ≤ k − 1, umn ∈ Lp(Ω) is well-defined. Then, uk−1

n + τk−1Inf̄ ∈ Lp(Ω) and, since
(Id + τk−1EInK̄

A,0 )−1 is single-valued on Lp(Ω), ukn is well-defined with

∥ukn∥Lr =

∥∥∥∥(Id + τk−1EInK̄
A,0

)−1
(uk−1

n + τk−1Inf̄)
∥∥∥∥
Lr

≤
∥∥∥uk−1

n + τk−1Inf̄
∥∥∥
Lr

≤
∥∥∥uk−1

n

∥∥∥
Lr

+ τk−1
∥∥Inf̄∥∥Lr .

By induction

∥ukn∥Lr ≤ ∥u0n∥Lr +
k−1∑
m=0

τm∥Inf̄∥Lr = ∥u0n∥Lr + tk∥Inf̄∥Lr ≤ ∥u0n∥Lr + T∥Inf̄∥Lr .

The well-posedness implies that {ukn}Nk=0 is the unique sequence that is defined iteratively by (23) and such
that u0n = Inū0.

Now, assume that there exists {ūkn}Nk=0 that solves (4) with f̄ , ū0, Ḡn and K̄ as defined above. Then, we
have Inū0 = InPnu0 = u0n and

(Id + τk−1EInK̄
A,0 )Inūkn = Inūkn + τk−1

(
In(µ∆K̄

p,nū
k
n) + In(Ḡn(ū

k
n))
)

(24)

=

|Πn|∑
i=1

χπn
i

[
(ūk−1

n )i + τk−1(f̄)i

]
(25)
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= Inūk−1
n + τk−1Inf̄

where we used Assumption O.3 and [33, Lemma 6.1] for (24) and (4) for (25). By the uniqueness of the
sequence {ukn}Nk=0, we have that ukn = Inūkn.

To conclude the proof, we show the existence of {ūkn}Nk=0. First, recall from (4) that ū0n = ū0 and

ūkn = (Id + τk−1(µ∆K̄
p,n + Ḡn))

−1(ūk−1
n + τk−1f̄).

By the same argument as above, we need to show that the operator µ∆K̄
p,n + Ḡn is accretive on R|Πn| for

(Id + τk−1(µ∆K̄
p,n + Ḡn))

−1 to be well-defined and unique. It is clear that ran(∆K̄
p,n + Ḡn) ⊆ R|Πn|. By

Proposition 2.3, we know that accretivity is equivalent to monotony in R|Πn| and it therefore only remains to
verify that for v̄, w̄ ∈ R|Πn|:

⟨(µ∆K̄
p,n + Ḡn)(v̄)− (µ∆K̄

p,n + Ḡn)(w̄), v̄ − w̄⟩ = ⟨µ∆K̄
p,n(v̄)− µ∆K̄

p,n(w̄), v̄ − w̄⟩
+ ⟨Ḡn(v̄)− Ḡn(w̄), v̄ − w̄⟩
=: T1 + T2 ≥ 0.

The proof of T1 ≥ 0 is analogous to what we have shown for the continuum nonlocal Laplacian in the proof of
Proposition 3.5; T2 ≥ 0 is due to Assumption O.3.

4.1.3 Local problem

Theorem 4.9 (Well-posededness of (7)). Assume that Assumptions S.1 and O.1 hold. Let p ≥ 2, µ > 0, T > 0,
ℓ ∈ L2(Ω) and u0 ∈ Lp(Ω). Then, there exists a unique weak solution u(t, x) to the evolution problem (7).

Proof. We begin the proof by verifying some properties of the operator A∗A. By Assumption O.1, A∗A is
linear and we know that A∗A is bounded, hence continuous and therefore hemicontinuous by Lemma 2.10.
Since A is linear, we can define the seminorm S(v) := ∥Av∥L2 on L2(Ω). By the boundedness of A, we then
note that S(·)+∥·∥L2 and ∥·∥L2 are equivalent. Finally, we have that A∗A is monotone since for u, v ∈ L2(Ω):

⟨A∗Au−A∗Av, u− v⟩L2 = ⟨A∗A(u− v), u− v⟩L2 = ∥A(u− v)∥2L2 ≥ 0.

We deduce that A∗A satisfies the assumptions of Theorem 2.12 with V1 = H = V ∗
1 = L2(Ω) and p1 = 2.

We now define the operator D by

D(u)(v) =

∫
Ω
|∇u|p−2∇u · ∇v dx

for u, v ∈ W1,p. It is straight-forward (similarly to Lemma 4.4) to check that D : W1,p 7→ (W1,p)∗ is
bounded, hemicontinuous and satisfies ∥D(u)∥(W1,p)∗ ≤ C∥u∥p−1

W1,p as well as (D(u) − D(v))(u − v) ≥ 0
for all u, v ∈ W1,p (the last claim follows from [17, Lemma 3.6]). Furthermore, we define the Sobolev
seminorm [v] = ∥∇v∥Lp and one can show that there exists λ > 0 such that [v] + λ∥v∥L2 ≥ ∥v∥W1,p (see
for example [50, Chapter 2, Section 1.5.1]) for all v ∈ W1,p. It is also clear that D(v)(v) ≥ [v]p. Hence D
satisfies the assumptions of Theorem 2.12 with V2 = W1,p(Ω) ⊆ L2(Ω) ⊆ W1,p(Ω)∗ (where the inclusion is
made possible by the fact that p ≥ 2) and p2 = p.

After an application of Theorem 2.12, we therefore obtain the existence of a unique function

u ∈ Lp(0, T ;W1,p(Ω)) ∩ L2(0, T ; L2(Ω)) and u ∈ L∞(0, T ; L2(Ω))

satisfying Definition 3.4 (see [50, Chapter 2, Section 1.5.1 or Example 1.7.2] for the treatment of the boundary
term).

4.2 Rates

We now turn our attention to establishing rates between our gradient flows defined on [0, T ]. However, all of
our rates will be expressed explicitly as a function of T as our aim will be to take T → ∞ as to approximate
the solution of (1). We begin with the continuum-to-continuum case.
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4.2.1 Continuum nonlocal to local rates

The proof of the next result follows the same structure as the proof of Proposition 4.13 in order to apply
Gronwall’s lemma. The terms involving the application of ∆Kεn

p −∆p on a regular function give rise to rates
through Taylor expansions as in [18, Theorem A.1]. For completeness, the full proof is included in Section
III.2.

Theorem 4.10 (Continuum nonlocal-to-local rates). Assume that Assumptions S.1, O.1, O.2, K.1 and L.1
hold. Let p ≥ 2, µ > 0, T > 0, ℓ ∈ L2(Ω), u0 ∈ Lp(Ω), Ω′ be compactly contained in Ω and assume that
A∗ℓ ∈ Lp(Ω). Then, for all n, there exists a solution uεn to (5) with kernel Kεn and f = A∗ℓ and a solution
u to (7).

In addition, assume that Assumptions S.2 and K.2 hold, p ≥ 3, that uεn satisfies Assumption R.1 and u
satisfies Assumption R.2. Then, for n large enough, we have:

(26) ∥uεn(t, ·)− u(t, ·)∥L2(Ω′) ≤ O
(
εntC

p−3
1

[
C1 + C2

2

])
where C1 = supt∈(0,T ) ∥∇u(t, ·)∥L∞ and C2 = supt∈(0,T ) ∥∇2u(t, ·)∥L∞ .

Remark 4.11 (Asymptotic rates in Theorem 4.10). In Theorem 4.10, the rates hold for n large enough, but this
is not constraining in practice. Indeed, the latter condition is derived from Lemma I.1. This implies that the
rates are relevant as soon as εn < m/c where m is the minimum distance between the closure of the compactly
contained set and the boundary of Ω and c is chosen so that cl(Ω′) ⊂ B(0, c).

4.2.2 Discrete-to-continuum nonlocal rates

Here we loosely follow [33, Section 6.2.2]. By using [33, Lemma 6.1], we easily check that the time interpo-
lated version of the injected discrete problem satisfies an evolution problem. The proof can be found in Section
III.2.

Lemma 4.12 (Evolution problem for uTimeInt). Assume that Assumptions S.1, O.1, O.2, O.3 and K.1 hold.
Let p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore, let n ∈ N
and define K̄ = PnK̃, f̄ = PnA∗ℓ, ū0 = Pnu0. Then, for any partition 0 = t0 < t1 < · · · < tN = T , the
sequence {ūkn}Nk=0 is unique and well-defined by (4) with the above parameters. Furthermore, uTimeInt solves
the following evolution problem:{

∂
∂t uTimeInt+µ∆InK̄

p (uTimeInj) +A∗A(uTimeInj) = Inf̄ in (0, T )× Ω

uTimeInt(0, ·) = Inū0.

While our final results in Theorems 3.7 and 3.10 will be concerned with letting T → ∞, τn → 0 and
εn → 0, the next proposition presents more general non-asymptotic results that are valid for any kernel K,
time-discretization τ and time T .

Proposition 4.13 (Discrete-to-continuum nonlocal rates). Assume that Assumptions S.1, O.1, O.2, O.3 and K.1
hold. Let p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore, let
n ∈ N and K̄ = PnK̃, f̄ = PnA∗ℓ, ū0 = Pnu0. Then, for any partition 0 = t0 < t1 < · · · < tN = T , there
exists a sequence {ūkn}Nk=0 satisfying (4) with the above parameters. Furthermore, there exists a solution uK
to (5). We also have the following rates for some C > 0 dependent on Ω, u0 and A∗ℓ:

1. if u0 ∈ L2p−2/(p−1)(Ω) and A∗ℓ ∈ L2p−2/(p−1)(Ω):

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uK(t, ·)∥L2 ≤ Ce(1+C4
op)T

(
∥InPnu0 − u0∥L2 + ∥InPnA∗ℓ−A∗ℓ∥L2

+ (1 + T p−1) sup
x∈Ω

∥InPnK(|x− ·|)−K(|x− ·|)∥L2 + τ(1 + ∥K∥L∞)(1 + T p−1)

(27)

+ τp/(2p−1)∥K∥p/(2p−1)
L∞ (1 + ∥K∥L∞)p/(2p−1)(1 + T p−1)p/(2p−1)(1 + T p−1−1/p)p/(2p−1)

+ τ (p+1)/(2p)∥K∥1/2L∞

(
1 + T p−1−1/p

)1/2
(1 + ∥K∥L∞)(p+1)/(2p)(1 + T p−1)(p+1)/(2p)

)
;
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2. if u0 ∈ L∞(Ω) and A∗ℓ ∈ L∞(Ω):

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uK(t, ·)∥L2 ≤ Ce(1+C4
op)T

(
∥InPnu0 − u0∥L2 + ∥InPnA∗ℓ−A∗ℓ∥L2

+ (1 + T p−1)∥InPnK̃ − K̃∥L2(Ω×Ω)(28)

+ τ(1 + ∥K∥L∞)(1 + T p−1)
[
1 + ∥K∥∞(1 + T p−2) +

(
∥K∥L∞(1 + T p−2)

)1/2])
.

Proof. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might be) dependent on
Ω, u0 or/and A∗ℓ, that may change from line to line.

The existence and well-posedness of {ūkn}Nk=0 and uK follow from Corollary 4.8 and Theorem 3.6 respec-
tively. Also, note that for p ≥ 2, we have 2p− 2/(p− 1) ≥ 2(p− 1) ≥ p. Let αi > 0 for 1 ≤ i ≤ 3 be such
that α1 + µ(α2 + α3) =

1
2 .

We start by noticing that for t ∈ (tk−1, tk], we have

∥uTimeInt(t, ·)∥Lp ≤ tk − t

τk−1
∥Inūk−1

n ∥Lp +
t− tk−1

τk−1
∥Inūkn∥Lp ≤ C (∥u0∥Lp + T∥A∗ℓ∥Lp) < C(C + TC)

where we used (22) for the second inequality and also:

(29) ∥ uTimeInj(t, ·)∥Lp = ∥Inūk−1
n ∥Lp ≤ ∥u0∥Lp + T∥A∗ℓ∥Lp < C + TC

again by (22). This, together with ∥Inū0∥L2 ≤ ∥u0∥Lp by [33, Lemma 2.1], implies that for any 0 ≤ t < T ,
we have that uTimeInj(t, ·), uTimeInt(t, ·) ∈ Lp(Ω) uniformly in t.

Define ζTimeInt(t, x) = uTimeInt(t, x)− uK(t, x) and compute as follows:

1

2

∂

∂t
∥ζTimeInt(t, ·)∥2L2 = −µ

∫
Ω

(
∆InK̄

p uTimeInj(t, x)−∆InK̄
p uK(t, x)

)
(uTimeInj(t, x)− uK(t, x)) dx

− µ

∫
Ω

(
∆InK̄

p uTimeInj(t, x)−∆InK̄
p uK(t, x)

)
(uTimeInt(t, x)− uTimeInj(t, x)) dx

− µ

∫
Ω

(
∆InK̄

p uK(t, x)−∆K
p uK(t, x)

)
ζTimeInt(t, x) dx(30)

−
∫
Ω
A∗A(uTimeInj(t, x)− uK(t, x))ζTimeInt(t, x) dx

+

∫
Ω
(Inf̄(x)−A∗ℓ(x))ζTimeInt(t, x) dx

=: T1 + µT2 + µT3 + T4 + T5

where we used Lemma 4.12, (5) and the fact that uTimeInj(t, ·),uTimeInt(t, ·) ∈ Lp(Ω) for (30). Arguing as in
Proposition 3.5 or Proposition 4.6 (which relies on [2, Lemma 2.3]), we obtain that T1 ≤ 0. Furthermore, by
Young’s inequality for products,

(31) T5 ≤ C∥InPnA∗ℓ−A∗ℓ∥22 + α1∥ζTimeInt(t)∥2L2 .

We continue our estimates by showing some auxiliary results first. For t ∈ (tk−1, tk]:

∥ uTimeInt(t, ·)− uTimeInj(t, ·)∥L2 = |tk − t|
∥∥∥∥Inūkn − Inūk−1

n

τk−1

∥∥∥∥
L2

= |tk − t|
∥∥∥µ∆InK̄

p Inūkn +A∗AInūkn − Inf̄
∥∥∥
L2

(32)

≤ τ
[
µ∥∆InK̄

p Inūkn∥L2 + ∥A∗AInūkn∥L2 + ∥Inf̄∥L2

]
(33)

where we used the proof of Corollary 4.8 for (32). Now, by Assumption O.1 and (29) we have that

∥A∗AInūkn∥L2 = ∥A∗AuTimeInj(t, ·)∥L2 ≤ C∥ uTimeInj(t, ·)∥L2 ≤ C∥ uTimeInj(t, ·)∥Lp ≤ C(C + TC)
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as well as ∥Inf̄∥L2 ≤ ∥A∗ℓ∥L2 ≤ C∥A∗ℓ∥Lp ≤ C by [33, Lemma 2.1]. Furthermore, re-using [33, Lemma
2.1] and Assumption S.1 we have

∥∆InK̄
p Inūkn∥L2 = ∥∆InK̄

p uTimeInj(t, ·)∥L2 ≤ C∥K∥L∞∥ uTimeInj(t, ·)∥p−1

L2(p−1) .(34)

Now, in either case, u0 ∈ L2p−2/(p−1)(Ω) and A∗ℓ ∈ L2p−2/(p−1)(Ω) or u0 ∈ L∞(Ω) and A∗ℓ ∈ L∞(Ω), we
get from (22) that ∥ uTimeInj(t, ·)∥p−1

L2(p−1) ≤ C+T p−1C as was shown in (29). Injecting the above observation
in (34) and then starting from (33), we obtain that:

∥ uTimeInt(t, ·)− uTimeInj(t, ·)∥L2 ≤ τ(C + TC + ∥K∥L∞(C + T p−1C)).(35)

For the T4 term, by Young’s inequality of products:

|T4| ≤
1

2
∥ζTimeInt(t)∥2L2 +

1

2
∥A∗A(uTimeInj(t)− uK(t))∥2L2

≤ 1

2
∥ζTimeInt(t)∥2L2 +

C4
op

2
∥ uTimeInj(t)− uTimeInt+uTimeInt−uK(t)∥2L2(36)

≤
(
1

2
+ C4

op

)
∥ζTimeInt(t)∥2L2 + C∥ uTimeInj(t)− uTimeInt ∥2L2

≤
(
1

2
+ C4

op

)
∥ζTimeInt(t)∥2L2 +

[
τ(C + TC + ∥K∥L∞(C + T p−1C))

]2(37)

where we used Assumption O.1 for (36) and (35) for (37).
We will now tackle the T2 and T3 terms. First, assume that u0, A∗ℓ ∈ L2p−2/(p−1)(Ω).We want to estimate

T6 := ∥∆InK̄
p uTimeInj(t, ·)−∆InK̄

p uK(t, ·)∥L2 :

T 2
6 ≤ C∥InK̄∥2L∞

∫
Ω

∫
Ω

∣∣| uTimeInj(y)− uTimeInj(x)|p−2(uTimeInj(y)− uTimeInj(x))

− |uK(y)− uK(x)|p−2(uK(y)− uK(x))
∣∣2 dydx

≤ C∥K∥2L∞

∫
Ω

∫
Ω
| uTimeInj(y)− uTimeInj(x)− uK(y) + uK(x)|2/p

× (| uTimeInj(y)− uTimeInj(x)|+ |uK(y)− uK(x)|)2(p−1)−2/p dydx(38)

≤ C∥K∥2L∞

[∫
Ω

∫
Ω
|uTimeInj(y)− uTimeInj(x)− uK(y) + uK(x)|2 dydx

]1/p
×
[∫

Ω

∫
Ω
(|uTimeInj(y)− uTimeInj(x)|+ |uK(y)− uK(x)|)2p−2/(p−1) dydx

]1/q
(39)

≤ C∥K∥2L∞

[∫
Ω
|uTimeInj(x)− uK(x)|2 dx

]1/p
×
[∫

Ω

∫
Ω
(|uTimeInj(y)|+ | uTimeInj(x)|+ |uK(y)|+ |uK(x)|)2p−2/(p−1) dydx

]1/q
(40)

≤ C∥K∥2L∞∥ uTimeInj(t, ·)− uK(t, ·)∥2/p
L2 ∥|uTimeInj(t, ·)|+ |uK(t, ·)|∥2(p−1)−2/p

L2p−2/(p−1)(41)

≤ C∥K∥2L∞∥ uTimeInj(t, ·)− uK(t, ·)∥2/p
L2

(
C + T 2(p−1)−2/pC

)
(42)

where we used [33, Lemma 4.1, (ii)] with α = 1/p for (38), Hölder’s inequality for (39), Assumption S.1 for
(40) and (41), and (22) as well as (10) with r = 2p− 2/(p− 1) for (42).

We now return to T2 and estimate as follows:

|T2| ≤ ∥∆InK̄
p uTimeInj(t, ·)−∆InK̄

p uK(t, ·)∥L2∥ uTimeInt(t, ·)− uTimeInj(t, ·)∥L2

≤ τ∥K∥L∞
(
C + TC + ∥K∥L∞(C + T p−1C)

) (
C + T (p−1)−1/pC

)
∥uTimeInj(t, ·)− uK(t, ·)∥1/p

L2(43)

≤ τ∥K∥L∞
(
C + TC + ∥K∥L∞(C + T p−1C)

) (
C + T (p−1)−1/pC

)[
∥ uTimeInt(t, ·)− uK(t, ·)∥1/p

L2
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+
(
τ(C + TC + ∥K∥L∞(C + T p−1C))

)1/p](44)

≤ α2∥ζTimeInt(t)∥2L2 +
[
τ∥K∥L∞

(
C + TC + ∥K∥L∞(C + T p−1C)

) (
C + T (p−1)−1/pC

)]2p/(2p−1)

+

[
τ
(
∥K∥L∞

(
C + T (p−1)−1/pC

))p/(p+1) (
C + TC + ∥K∥L∞(C + T p−1C)

)](p+1)/p

(45)

where we used (35) and (42) for (43), (35) again for (44) and Young’s inequality for products for (45).
For T3, relying on the fact that for p ≥ 2 we have 2p− 2/(p− 1) ≥ 2(p− 1), we proceed as in Proposition

4.6 to obtain (9):

|T3| ≤ C(C + T p−1C)

[
sup
x∈Ω

∥InK̄(|x− ·|)−K(|x− ·|)∥L2

]
∥ζTimeInt(t)∥L2

≤ (C + T 2(p−1)C) sup
x∈Ω

∥InK̄(|x− ·|)−K(|x− ·|)∥2L2 + α3∥ζTimeInt(t)∥2L2(46)

using Young’s inequality for products for (46).
Combining (45), (46), (37) and (31), we obtain:

∂

∂t
∥ζTimeInt(t)∥2L2 ≤ 2

(
α1 + µ(α2 + α3) +

1

2
+ C4

op

)
∥ζTimeInt(t)∥2L2

+
[
τ(C + TC + ∥K∥L∞(C + T p−1C))

]2
+
[
τ∥K∥L∞

(
C + TC + ∥K∥L∞(C + T p−1C)

) (
C + T (p−1)−1/pC

)]2p/(2p−1)

+

[
τ
(
∥K∥L∞

(
C + T (p−1)−1/pC

))p/(p+1) (
C + TC + ∥K∥L∞(C + T p−1C)

)](p+1)/p

+ (C + T 2(p−1)C) sup
x∈Ω

∥InK̄(|x− ·|)−K(|x− ·|)∥2L2 + C∥InPnA∗ℓ−A∗ℓ∥2L2

=:
(
2 + 2C4

op

)
∥ζTimeInt(t)∥2L2 + T7.

We continue by applying Gronwall’s lemma on the latter to deduce:

(47) ∥ζTimeInt(t)∥L2 ≤ e(1+C4
op)T

(
∥InPnu0 − u0∥L2 + C · T 1/2

7

)
.

We conclude that

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uK(t, ·)∥L2 = sup
0<t≤T

∥uTimeInj(t, ·)− uK(t, ·)∥L2

≤ sup
0<t≤T

∥uTimeInt−uK(t, ·)∥L2 + sup
0<t≤T

∥uTimeInj−uTimeInt ∥L2

≤ e(1+C4
op)T

(
∥InPnu0 − u0∥L2 + C · T 1/2

7

)
+ τ

(
C + TC + ∥K∥L∞(C + T p−1C)

)
(48)

where we used (47) and (35) for (48).
Let us now assume that u0 ∈ L∞(Ω) and A∗ℓ ∈ L∞(∞). We will slightly change the estimates for T6 and

T3.

T 2
6 ≤ C∥K∥2L∞

∫
Ω
|
∫
Ω
|uTimeInj(y)− uTimeInj(x)− uK(y) + uK(x)|

× (|uTimeInj(y)− uTimeInj(x)|+ |uK(y)− uK(x)|)p−2 dy|2dx(49)

≤ C∥K∥2L∞ (∥u0∥L∞ + T∥A∗ℓ∥L∞)2(p−2)

×
∫
Ω

∫
Ω
| uTimeInj(y)− uTimeInj(x)− uK(y) + uK(x)|2 dydx(50)

≤ (C + T 2(p−2)C)∥K∥2L∞∥ uTimeInj(t, ·)− uK(t, ·)∥2L2(51)
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where we used [33, Lemma 4.1 (ii)] with α = 1 and [33, Lemma 2.1] for (49), (10) and (22) for (50) and
Assumption S.1 for (51). We can then return to T2 and estimate as follows:

|T2| ≤ τ∥K∥L∞
(
C + TC + ∥K∥L∞(C + T p−1C)

)
(C + T (p−2)C)∥ uTimeInj(t, ·)− uK(t, ·)∥L2

(52)

≤ τ∥K∥L∞
(
C + TC + ∥K∥L∞(C + T p−1C)

)
(C + T (p−2)C)

[
∥uTimeInt(t, ·)− uK(t, ·)∥L2

+ τ(C + TC + ∥K∥L∞(C + T p−1C))

](53)

≤ α2∥ uTimeInt(t, ·)− uK(t, ·)∥2L2 +
[
τ∥K∥L∞

(
C + TC + ∥K∥L∞(C + T p−1C)

)
(C + T (p−2)C)

]2

+

[(
∥K∥L∞(C + T (p−2)C)

)1/2
τ
(
C + TC + ∥K∥L∞(C + T p−1C)

)]2(54)

where we used (35) and (51) for (52), (35) again for (53) and Young’s inequality for products for (54).
For T3, we proceed as in Proposition 4.6 in order to obtain (11):

|T3| ≤ C(C + T p−1C)∥InK̄ − K̃∥L2(Ω×Ω)∥ζTimeInt(t)∥L2

≤ (C + T 2(p−1)C)∥InK̄ − K̃∥2L2(Ω×Ω) + α3∥ζTimeInt(t)∥2L2(55)

where we used Young’s inequality for products for (55). We proceed as above to conclude.

4.2.3 Discrete-to-continuum local rates

In this section we will derive rates between the fully discrete problem and the continuum problem. In particular,
by combining the results of Proposition 4.13 and Theorem 4.10, one obtains general rates for fixed T > 0 and
several classes of u0, A∗ℓ.

Of greater interest is the question of the possibility of letting T → ∞, as the solution of the gradient
flow (7) solved for large T converges to the minimizer of the original regularization problem (1). Theorem
3.7 answers that question in a positive way: indeed, this can be achieved by correctly choosing the partition,
the functions u0, A∗ℓ and the kernel K as well as indexing the time T (n) in a meaningful way and imposing
conditions between the time and space discretization parameters τn and εn.

Proof of Theorem 3.7. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might be)
dependent on Ω, u0 or/and A∗ℓ, that may change from line to line. We also briefly comment on some notation:
uεn in (26) is a short-hand for uKεn

appearing in (28) when using the kernel Kεn .
We have

(56) ∥InK̄εn∥L∞ ≤ ∥K̃εn∥L∞ ≤ ε−(d+p)
n ∥K∥L∞

by [33, Lemma 2.1]. The latter is finite by Assumption K.1 and the existence claims then follow from Propo-
sition 4.13 and Theorem 4.10.

When combining (28) and (26), we note that the constant is independent of T and therefore, we have that
for large T ≥ 1 and small εn ≤ e−1/κ ≤ 1:

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − u(t, ·)∥L2(Ω′) ≤ Ce(1+C4
op)T

(
∥InPnu0 − u0∥L2

+ ∥InPnA∗ℓ−A∗ℓ∥2 +
T (p−1)

εd+p
n

∥InPnK̃(·/εn)− K̃(·/εn)∥L2(Ω×Ω)

+ τ
T p−1

εd+p
n

[
T p−2

εd+p
n

+
T (p−2)/2

ε
(d+p)/2
n

])
+ CTεn(57)
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≤ Ce(1+C4
op)T

(
n−α1 + n−α2 +

T (p−1)

εd+p+α3
n nα3

+ τ
T (2p−3)

ε
2(d+p)
n

)
+ CTεn(58)

=: C(T1 + T2 + T3 + T4 + T5)(59)

where we used Assumption K.1 and Assumption R.3 for (57), Lemma 2.14 and the fact that for p ≥ 3,

2p− 3 ≥


p− 1

p/2

3p/2− 2

for (58).
We now want all the terms in (59) to tend to 0. By choosing T = T (n) =

(
1 + C4

op

)−1
log(ε−κ) for some

κ > 0, we now derive sufficient conditions on εn and τ = τn such that Ti → 0 for 1 ≤ i ≤ 5.
We have that εn ≫ n−α1/κ implies that T1 → 0. Indeed, from the latter, 1 ≫ ε−κ

n n−α1 = e(1+C4
op)Tn−α1 .

Analogously, εn ≫ n−α2/κ implies that T2 → 0.

We have that εn ≫
[
expW

(
n

α3
max(1+(d+p+α3)/κ,p−1)

)]−1/κ
implies that T3 → 0. Indeed, similarly to the

above, the latter is equivalent to

1 ≫
[
ε−κ
n log(ε−κ

n )
]max(1+(d+p+α3)/κ,p−1) (

1 + C4
op

)(1−p)
n−α3

≥ 1

εκ+d+p+α3
n

log(ε−κ
n )(p−1)

(
1 + C4

op

)(1−p)
n−α3

= T3.

We have that

τ ≪
(

1

1 + C4
op

)(3−2p) ε
2(d+p)+κ
n

log(ε−κ
n )(2p−3)

= e−(1+C4
op)T ε

2(d+p)
n

T (2p−3)

which implies that T4 → 0.
Lastly, we have that limn→∞ εn log(ε

−κ
n ) = 0 implying that T5 → 0 which concludes the proof.

Remark 4.14 (Generality of Theorem 3.7). The choice of T (n) in Theorem 3.7 is arbitrary: by considering
the general rates obtained by combining the results of Proposition 4.13 and Theorem 4.10, one could derive
similar results to (12) with other T (n). Furthermore, by combining (27) with (26), one could extend the results
to more general u0 and A∗ℓ.

Proof of Theorem 3.10. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might
be) dependent on Ω, u0 or/and A∗ℓ, that may change from line to line.

We have:

∥InūNn − u∞∥L2(Ω′) ≤ ∥InūNn − u(T, ·)∥L2(Ω′) + ∥u(T, ·)− u∞∥L2

≤ sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − u(t, ·)∥L2(Ω′) + ∥u(T, ·)− u∞∥L2

=: T1 + T2.

We note that Cop = 1 since A = Id. For the T1 term, we can apply Theorem 3.7. For the T2 term, we note
from Lemma I.3 and first order conditions that:

C∥u(T, ·)− u∞∥2L2 + ⟨∇F(u∞), u(T, ·)− u∞⟩ = ∥u(T, ·)− u∞∥2L2 ≤ F(u(T, ·))−F(u∞).

Furthermore, by standard considerations of gradient flows [59] we obtain that

F(u(T, ·))−F(u∞) ≤ e−T (F(u0)−F(u∞)) = εκ/2n (F(u0)−F(u∞))

so that combining the latter yields the claim.
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Remark 4.15 (Asymptotic rates in Theorems 3.7 and 3.10.). The asymptotic aspect in Theorems 3.7 and 3.10
are not very restrictive: indeed, one part comes from Theorem 4.10 and discussed in Remark 4.11 while the
second part comes from our estimates in Theorem 3.7. The latter are related to finding the smallest n such that
εn ≤ e−1/κ and T ≥ 1 which for all reasonable choices of εn should occur for a very small n.

Remark 4.16 (gn when A = Id). In Theorem 3.10, we pick A = Id for the following two reasons: first,
Cop = 1 so that Tn can be explicitly defined; second, the Assumption O.3 simplifies greatly as we can just
pick Ḡn = Id in this case. The latter part also works for any unitary operator A as discussed in Section 3.1.

4.3 Application to random graph models

Let us now consider the evolution problem (8). We recall that we will now be working on (0, 1) with the
uniform partition so that Assumptions S.1 and S.2 will always be satisfied and we have d = 1.

4.3.1 Well-posedness

Corollary 4.17 (Well-posedness of (8)). Assume that Assumptions S.1, O.1, O.2, and O.3 hold. Let K :
[0,∞) 7→ [0,∞), p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore,
let n ∈ N and define K̄ = PnK̃, K̃(x, y) = K(|x − y|), f̄ = PnA∗ℓ, ū0 = Pnu0. Then, P-a.e., for any
partition 0 = t0 < t1 < · · · < tN = T , there exist a sequence {ūkn}Nk=0 satisfying (8) with parameters Λ̄n, f̄
and ū0 that is well-defined and unique. We also have

∥Inūkn∥Lr ≤ ∥u0∥Lr + T∥A∗ℓ∥Lr

for 1 ≤ r ≤ ∞.

Proof. Since ∥InΛ̄n∥L∞ is bounded we proceed exactly as in Corollary 4.8 by considering (23) with kernel
InΛ̄n.

4.3.2 Rates

As an intermediate step in establishing the rates between the random discrete and continuum local problems,
we will have to compare random and deterministic discrete solutions which is what we discuss in the next
proposition. The proof of the latter is similar to the proof of Proposition 4.13 but requires a few additional
probabilistic estimates. Furthermore, on the results side, some of terms in the error bounds of Proposition 4.18
only differ from terms in (27) and (28) by having supx∈Ω ∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞ instead of ∥K̃εn∥L∞ .
For completeness, the full proof can be found in Section III.2.

Proposition 4.18 (Random-to-deterministic rates). Assume that Assumptions O.1, O.2, O.3 and K.1 hold. Let
p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore, let n ∈ N and
define K̄εn = PnK̃

εn , f̄ = PnA∗ℓ, ū0 = Pnu0. We also suppose that ρn is a positive sequence with ρn → 0
and ρn ≪ ε1+p

n . Let Λn ∈ Rn×n be the weight matrix defined as in Definition 2.16 with K̄ = K̄εn .
Then, for any partition 0 = t0 < t1 < · · · < tN = T , there exists a sequence {v̄kn}Nk=0 satisfying (4) with

parameters K̄εn , f̄ and ū0. In addition, P-a.e., there exists a sequence {ūkn}Nk=0 solving (8) with parameters
Λ̄n, f̄ and ū0.

For any θ > 0, we have the following rates with probability larger than 1 − (C+T 2(p−1)C)
θ2nρn

∥K̃εn∥L∞ for
some C > 0 dependent on Ω, u0 and A∗ℓ:

1. if u0 ∈ L2p−2/(2p−1)(Ω) and A∗ℓ ∈ L2p−2/(2p−1)(Ω):

sup
0≤t≤T

∥uTimeInt− vTimeInt ∥L2 ≤ Ce

(
2+3C4

op
2

)
T
(
θ

+ τp/(2p−1) sup
x∈Ω

∥InΛ̄n(x, ·)∥p/(2p−1)
L1 (1 + T p−1−1/p)p/(2p−1)

× (1 + T p−1)p/(2p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞

)p/(2p−1)
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+ τ (p+1)/(2p)(1 + T p−1−1/p)1/2 sup
x∈Ω

∥InΛ̄n(x, ·)∥1/2L1

× (1 + T p−1)(p+1)/(2p)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞

)(p+1)/(2p)

+ τ(1 + T p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞

))
;

2. if u0 ∈ L∞(Ω) and A∗ℓ ∈ L∞(Ω):

sup
0≤t≤T

∥ uTimeInt− vTimeInt ∥L2 ≤ Ce

(
2+3C4

op
2

)
T
(
θ

+ τ(1 + T p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞

)
×

[
1 +

(
sup
x∈Ω

∥InΛ̄n(x, ·)∥L1(1 + T p−2)

)1/2

+ sup
x∈Ω

∥InΛ̄n(x, ·)∥L1(1 + T p−2)

])
.

Corollary 4.19 (Discrete random-to-continuum nonlocal rates). Assume that Assumptions O.1, O.2, O.3 and
K.1 hold. Let p ≥ 2, µ > 0, T > 0, u0 ∈ Lp(Ω), ℓ ∈ L2(Ω) and assume that A∗ℓ ∈ Lp(Ω). Furthermore,
let n ∈ N and define K̄εn = PnK̃

εn , f̄ = PnA∗ℓ, ū0 = Pnu0. We also suppose that ρn is a positive
sequence with ρn → 0 and ρn ≪ ε1+p

n . Let Λn ∈ Rn×n be the weight matrix defined as in Definition 2.16 with
K̄ = K̄εn .

Then, for any partition 0 = t0 < t1 < · · · < tN = T , there exists a sequence {ūkn}Nk=0 solving (8) with
parameters Λ̄n, f̄ and ū0, and a solution uεn to (5) with kernel Kεn .

For any θ > 0, we have the following rates with probability larger than 1 − (C+T 2(p−1)C)
θ2nρn

∥K̃εn∥L∞ for
some C > 0 dependent on Ω, u0 and A∗ℓ:
1. if u0 ∈ L2p−2/(2p−1)(Ω) and A∗ℓ ∈ L2p−2/(2p−1)(Ω), then:

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uεn∥L2 ≤ τC(1 + T p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 +

∥K∥L∞

ε1+p
n

)

+ Ce

(
2+3C4

op
2

)
T
(
θ

+ τp/(2p−1) sup
x∈Ω

∥InΛ̄n(x, ·)∥p/(2p−1)
L1 (1 + T p−1−1/p)p/(2p−1)

× (1 + T p−1)p/(2p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 +

∥K∥L∞

ε1+p
n

)p/(2p−1)

+ τ (p+1)/(2p)(1 + T p−1−1/p)1/2 sup
x∈Ω

∥InΛ̄n(x, ·)∥1/2L1

× (1 + T p−1)(p+1)/(2p)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 +

∥K∥L∞

ε1+p
n

)(p+1)/(2p)

+ τ(1 + T p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 +

∥K∥L∞

ε1+p
n

))

+ Ce(1+C4
op)T

(
∥InPnu0 − u0∥L2 + ∥InPnA∗ℓ−A∗ℓ∥L2

(60)

+
(1 + T p−1)

ε1+p
n

sup
x∈Ω

∥InPnK(|x− ·|/εn)−K(|x− ·|/εn)∥L2 + τ

(
1 +

∥K∥L∞

ε1+p
n

)
(1 + T p−1)

+ τp/(2p−1)

(
∥K∥L∞

ε1+p
n

)p/(2p−1)(
1 +

∥K∥L∞

ε1+p
n

)p/(2p−1)

(1 + T p−1)p/(2p−1)(1 + T p−1−1/p)p/(2p−1)
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+ τ (p+1)/(2p)

(
∥K∥L∞

ε1+p
n

)1/2 (
1 + T p−1−1/p

)1/2(
1 +

∥K∥L∞

ε1+p
n

)(p+1)/(2p)

(1 + T p−1)(p+1)/(2p)

)
;

2. if u0 ∈ L∞(Ω) and A∗ℓ ∈ L∞(Ω), then:

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uεn∥L2 ≤ Ce

(
2+3C4

op
2

)
T
(
θ

+ τ(1 + T p−1)

(
1 + sup

x∈Ω
∥InΛ̄n(x, ·)∥L1 +

∥K∥L∞

ε1+p
n

)
×

[
1 +

(
sup
x∈Ω

∥InΛ̄n(x, ·)∥L1(1 + T p−2)

)1/2

+ sup
x∈Ω

∥InΛ̄n(x, ·)∥L1(1 + T p−2)

])

+ Ce(1+C4
op)T

(
∥InPnu0 − u0∥L2 + ∥InPnA∗ℓ−A∗ℓ∥L2(61)

+
(1 + T p−1)

εd+1
n

∥InPnK̃(·/εn)− K̃(·/εn)∥L2(Ω×Ω)

+ τ

(
1 +

∥K∥L∞

ε1+p
n

)
(1 + T p−1)

[
1 +

∥K∥L∞

ε1+p
n

(1 + T p−2) +

(
∥K∥L∞

ε1+p
n

(1 + T p−2)

)1/2
])

.

Proof. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might be) dependent on
Ω, u0 or/and A∗ℓ, that may change from line to line.

The existence of {ūkn}Nk=0 follows from Proposition 4.18. Let {v̄kn}Nk=0 be as in Proposition 4.18 as well.
The existence of uεn follows from Theorem 3.7. We note that

sup
1≤k≤N

sup
t∈(tk−1,tk]

∥Inūkn − uεn∥L2 = sup
0<t≤T

∥ uTimeInj−uεn∥L2

≤ sup
0<t≤T

∥ uTimeInj−uTimeInt ∥L2 + sup
0<t≤T

∥uTimeInt− vTimeInt ∥L2

+ sup
0<t≤T

∥ vTimeInt − vTimeInj ∥L2 + sup
0<t≤T

∥ vTimeInj −uεn∥L2

≤ τ

(
C + CT + (C + T p−1C)

[
sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 + ∥K̃εn∥L∞

])
+ sup

0<t≤T
∥ uTimeInt− vTimeInt ∥L2 + sup

0<t≤T
∥ vTimeInj −uεn∥L2(62)

where we used (21) for (62).
Relying on (56), it is possible to apply Proposition 4.13 with the kernel K̄εn and obtain the same bounds

(with the scaling factor ε−(1+p)
n ). Combining the latter with Proposition 4.18 we obtain (60) and (61).

Similarly to the setting in Section 4.2.3, we can combine the results of Corollary 4.19 and Theorem 4.10
to obtain precise rates for fixed T > 0. Recalling the discussion in Remark 4.14, the analogous results to
Theorems 3.7 and 3.10 are Theorems 3.12 and 3.13. Before proceeding to the proof of the latter two results,
we present two probabilistic lemmas that are essential for the establishment of the rates.

First, we start a variant of [33, Lemma 3.1], by explicitly writing out the estimates for the scaled kernels.
In this section, we recall that we will be working on (0, 1) with the uniform partition so that Assumptions S.1
and S.2 will always be satisfied and we have d = 1. In this setting the operators In and Pn can be defined

(Inu)(x) =
∑
i∈[n]

uiχΩn,i(x) (Inu)(x, y) =
∑

i∈[n],j∈[n]

uijχΩn,i(x)χΩn,j (y)

(Pnu)i = n

∫
Ωn,i

u(x) dx (Pnu)ij = n2

∫
Ωn,i×Ωn,j

u(x, y) dx dy

where Ωn,i = ( i−1
n , i

n).
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Lemma 4.20 (Convergence of the random weight matrix). Assume K satisfies Assumption K.1, p > 1, d = 1,
ρn and εn are positive sequences with εn → 0 and ρn → 0 and define K̃εn(x, y) = 2

c(p,1)εp+1
n

K
(
|x−y|

ε

)
,

where c(p, 1) is defined by (6). Define K̄εn = PnK̃εn and let Λn ∈ Rn×n be the weight matrix defined as in
Definition 2.16 with K̄ = K̄εn . Assume that

log(n)ε2pn
n

≪ ρ2n ≪ εp+1
n .

Then, with probability one, for n large enough, we have

(63) | sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 − sup
x∈Ω

∥InK̄εn(x, ·)∥L1 | < ε−p
n .

Furthermore, with probability one, for n large enough, we have

sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 ≤ C

εpn
.

Proof. We can estimate as follows:

P

(
| sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 − sup
x∈Ω

∥InK̄εn(x, ·)∥L1 | > ε−p
n

)

= P

|max
i∈[n]

1

n

∑
j∈[n]

Λ̄n,ij −max
i∈[n]

1

n

∑
j∈[n]

K̄εn
ij | > ε−p

n


≤ P

max
i∈[n]

| 1
n

∑
j∈[n]

(
Λ̄n,ij − K̄εn

ij

)
| > ε−p

n


≤
∑
i∈[n]

P

| 1
n

∑
j∈[n]

(
Λ̄n,ij − K̄εn

ij

)
| > ε−p

n


≤ 2

∑
i∈[n]

exp

−
1
2n

2ε−2p
n∑

j∈[n]
K̄εn

ij

ρn
(1− ρnK̄

εn
ij ) +

n
3εpn

( 1
ρn

+ C

εp+1
n

)

(64)

≤ 2
∑
i∈[n]

exp

(
− cn2ε−2p

n
n
ρ2n

+ n
εpn
( 1
ρn

+ 1

εp+1
n

)

)

≤ 2
∑
i∈[n]

exp

− cnε−2p
n ρ2n

1 + ρn
εpn

+ ρ2n
ε2p+1
n


≤ 2

∑
i∈[n]

exp

(
−cnρ2n

ε2pn

)

where we used Bernstein’s lemma for (64) after noticing that E[Λ̄n,ij − K̄εn
ij ] = 0,

∣∣∣Λ̄n,ij − K̄εn
ij

∣∣∣ ≤ 1
ρn

+ C

εp+1
n

and E[Λ̄n,ij − K̄εn
ij ]

2 =
K̄εn

ij

ρn
(1− ρnK̄

εn
ij ) ≤

1
4ρ2n

. Choosing γ > 2 such that cnρ2n
ε2pn

≥ γ log(n) we have

P

(
| sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 − sup
x∈Ω

∥InK̄εn(x, ·)∥L1 | > ε−p
n

)
≤ 2

∑
i∈[n]

n−γ

which is summable. By the Borel-Cantelli Lemma, with probability one, for all but finitely many n,

| sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 − sup
x∈Ω

∥InK̄εn(x, ·)∥L1 | < ε−p
n .
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For the furthermore part of the lemma we note that we can write∥∥InK̄εn(x, ·)
∥∥
L1 =

∫
Ω
InK̄εn(x, y) dy

=

∫
Ω

n∑
i.j=1

(PnK̃
εn)i,jχΩn,i(x)χΩn,j (y) dy

=
n2C(p, 1)

εp+1
n

∫
Ω

n∑
i,j=1

∫
Ωn,i×Ωn,j

K

(
|w − z|

εn

)
dw dz χΩn,i(x)χΩn,j (y) dy

=
nC(p, 1)

εp+1
n

n∑
i,j=1

∫
Ωn,i×Ωn,j

K

(
|w − z|

εn

)
dw dz χΩn,i(x).

So,

sup
x∈Ω

∥InK̄εn(x, ·)∥L1 ≤ C(p, 1)

εp+1
n

∫
R
K

(
|z|
ε

)
dz =

C(p, 1)

εpn

∫
R
K(|z|) dz.

Combining with the first part of the lemma, this completes the proof.

Remark 4.21. Asymptotic rates and Borel-Cantelli arguments. The asymptotic claim in (63), i.e. the existence
of some N such that for all n ≥ N (63) holds, comes from a Borel-Cantelli argument. All we know is that,
with probability one, N < ∞. This can be circumvented with the following trade-off: either one argues with a
Borel-Cantelli Lemma and obtains an P-a.e. statement with an asymptotic part or one does not and is then left
with a claim holding with high probability.

Similarly to what was discussed in Section 4.2.3 we want to find conditions under which we will be able
to take the right-hand side of (61) to 0. To that purpose, we explicit a choice of θ = θn that is compatible with
the conditions derived in Lemma 4.20.

Lemma 4.22 (Rates for θn). Let d = 1, p > 1, ρn and εn be positive sequences with εn → 0 and ρn → 0. For
some κ > 0, let T (n) =

(
2

2+3C4
op

)
log(ε−κ

n ). Assume that

εn ≫
[
expW

(
(n log(n))1/max(4(p−1),4+(2+4p)/κ)

)]−1/κ
.

Then, [log(ε−κ
n )]2(p−1)

ε1+2p
n log(n)

≪ ε2κn . Moreover, for a positive sequence θn satisfying

[log(ε−κ
n )]2(p−1)

ε1+2p
n log(n)1/2n1/2

≪ θ2n ≪ ε2κn ,

and assuming
log(n)ε2pn

n
≪ ρ2n

we have that e

(
2+3C4

op
2

)
T
θn ≪ 1 and T 2(p−1)

θ2nnρnε
1+p
n

≪ 1.

Proof. We start by assuming [log(ε−κ
n )]2(p−1)

ε1+2p
n log(n)

≪ ε2κn holds, take εn, ρn, T = T (n) and ρn satisfying the

appropriate assumptions and show e

(
2+3C4

op
2

)
T
θn ≪ 1 and T 2(p−1)

θ2nnρnε
1+p
n

≪ 1. The former is equivalent to

ε−κ
n θn ≪ 1 or θ2n ≪ ε2κn .

For the latter, by assumption, we have that ρ−1
n ≪ n1/2 log(n)−1/2ε−p

n so that

T 2(p−1)

θ2nnρnε
1+p
n

≪ T 2(p−1)

θ2nn
1/2ε1+2p

n log(n)1/2
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and therefore, the lower bound

T 2(p−1)

n1/2ε1+2p
n log(n)1/2

=

(
2

2+3C4
op

)2(p−1)
[log(ε−κ

n )]2(p−1)

n1/2ε1+2p
n log(n)1/2

≪ θ2n

is sufficient.
It remains to check under which conditions we have

log(ε−κ
n )2(p−1)

n1/2ε1+2p
n log(n)1/2

≪ ε2κn .

This is equivalent to
log(ε−κ

n )2(p−1)

ε2κ+1+2p
n

≪ n1/2 log(n)

which, for n large enough, is implied by(
1

εκn
log(ε−κ

n )

)max(2(p−1),2+(1+2p)/κ)

≪ n1/2 log(n)1/2.

In turn this leads to

εn ≫
[
expW

(
(n log(n))1/max(4(p−1),4+(2+4p)/κ)

)]−1/κ
.

Proof of Theorem 3.12. In the proof C > 0 will denote a constant that can be arbitrarily large, (which might
be) dependent on Ω, u0 or/and A∗ℓ, that may change from line to line.

The existence claims follow from Corollary 4.19 and Theorem 4.9.
In view of Theorem 3.7, let T1 be the terms in the combination of (26) and (61) that are not included in the

combination of (26) and (28).
Since the constant in the combination of (26) and (61) is independent of T , we have that for large T ≥ 1

and small εn ≤ 1:

T1 ≤ Ce

(
2+3C4

op
2

)
T
(
θn + τnT

p−1

(
sup
x∈Ω

∥InΛ̄n(x, ·)∥L1 +
∥K∥L∞

ε1+p
n

)

×

[(
sup
x∈Ω

∥InΛ̄n(x, ·)∥L1T p−2

)1/2

+ sup
x∈Ω

∥InΛ̄n(x, ·)∥L1T p−2

])

≤ Ce

(
2+3C4

op
2

)
T
(
θn + τn

T p−1

ε1+p
n

×

[
T (p−2)/2

ε
p/2
n

+
T p−2

εpn

])
(65)

≤ Ce

(
2+3C4

op
2

)
T
(
θn + τn

T 2p−3

ε1+2p
n

)
(66)

=: T2 + T3

where we used Lemma 4.20 for (65) similar reasoning for p ≥ 3 as in Theorem 3.7 for (66).
By assumption, we can apply Lemma 4.22 to see that T2 → 0. We have that T3 → 0 is equivalent to

τn ≪ ε1+2p+κ
n

log(ε−κ
n )2p−3

which holds by assumption. We conclude the proof by combining (66) and (12) to obtain (14). The probability
claim follows from Lemma 4.22.

Remark 4.23 (CFL condition for random-to-deterministic error convergence). Using the notation of Theorem
3.12, we see from the proof of the latter that the requirement on τn that ensures T1 → 0 (note that T1 here is
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the error bound arising from the comparison of the random solution to the deterministic one) is slightly better
than the CFL condition for our complete problem. Indeed, for T1 → 0, we only need

τn ≪ ε1+2p+κ
n

log(ε−κ
n )2p−3

as opposed to τn ≪ ε2+2p+κ
n

log(ε−κ
n )2p−3

for the rest of the terms.

Proof of Theorem 3.13. We proceed as in the proof of Theorem 3.10 with Theorem 3.12.

Remark 4.24 (Asymptotics in Theorems 3.12 and 3.13). The rates in Theorem 3.13 are formulated for large n.
This is partly non-restrictive in practice as described in Remark 4.15 and in the proof of the theorem itself. The
non-desirable part of this requirement stems from the application of Lemma 4.20 as discussed in Remark 4.21.
We conclude from these results that when considering random graph models, one loses the full traceability of
the asymptotic aspect of the rates as opposed to the results in Theorem 3.10.
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[66] Nicolás García Trillos and Dejan Slepčev. A variational approach to the consistency of spectral clustering.
Applied and Computational Harmonic Analysis, 45(2):239–281, 2018.

[67] Nicolás García Trillos, Ryan Murray, and Matthew Thorpe. Rates of convergence for regression with the
graph poly-laplacian, 2022.

36



[68] Yves van Gennip and Andrea Bertozzi. Gamma-convergence of graph ginzburg-landau functionals. Ad-
vances inDifferential Equations, 17, 04 2012.

[69] Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clustering. The
Annals of Statistics, 36(2):555 – 586, 2008.

[70] Xu Wang. Spectral convergence rate of graph laplacian, 2015.

[71] Dongming Wei. Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic
problem. SIAM Journal on Numerical Analysis, 29(2):484–497, 1992.

[72] Adrien Weihs and Matthew Thorpe. Consistency of fractional graph-laplacian regularization in semi-
supervised learning with finite labels, 2023.

[73] Adrien Weihs and Matthew Thorpe. Consistency of fractional graph-laplacian regularization in semi-
supervised learning with finite labels, 2023.

[74] Patrick J. Wolfe and Sofia C. Olhede. Nonparametric graphon estimation, 2013.

[75] Dengyong Zhou and Bernhard Schölkopf. Regularization on discrete spaces. In Walter G. Kropatsch,
Robert Sablatnig, and Allan Hanbury, editors, Pattern Recognition, pages 361–368, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

37


	Introduction
	Contributions
	Related works

	Background
	General notation
	Nonlinear semigroup theory
	Nonlinear problems
	Piecewise constant approximations
	Random graph models

	Main results
	Assumptions
	Setting
	Discrete problem
	Nonlocal problem
	Local problem
	Random graphs problem

	Main results
	Well-posedness of the nonlocal continuum gradient flow
	Rates of convergence
	Application to random graphs


	Proofs
	Well-posedness
	Nonlocal problem
	Discrete nonlocal problem
	Local problem

	Rates
	Continuum nonlocal to local rates
	Discrete-to-continuum nonlocal rates
	Discrete-to-continuum local rates

	Application to random graph models
	Well-posedness
	Rates



