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Abstract. Neural networks have become a prominent approach to solve
inverse problems in recent years. Amongst the different existing meth-
ods, the Deep Image/Inverse Priors (DIPs) technique is an unsupervised
approach that optimizes a highly overparametrized neural network to
transform a random input into an object whose image under the forward
model matches the observation. However, the level of overparametriza-
tion necessary for such methods remains an open problem. In this work,
we aim to investigate this question for a two-layers neural network with
a smooth activation function. We provide overparametrization bounds
under which such network trained via continuous-time gradient descent
will converge exponentially fast with high probability, from which re-
covery prediction bounds will be derived. This work is thus a first step
towards a theoretical understanding of overparametrized DIP networks,
and more broadly it participates to the theoretical understanding of neu-
ral networks in inverse problem settings.

Keywords: Inverse problems · Deep Image/Inverse Prior · Overparameteriza-
tion · Gradient Flow.

1 Introduction

1.1 Problem Statement

A linear inverse problem consists in reliably recovering an object x ∈ Rn from
noisy indirect observations

y = Ax+ ε, (1)

where y ∈ Rm is the observation, A ∈ Rm×n is a linear forward operator,
and ε stands for some additive noise. We will denote y = Ax. Without loss of
generality, we will assume throughout that y ∈ Im (A).

In recent years, the use of sophisticated machine learning algorithms, includ-
ing deep learning, to solve inverse problems has gained a lot of momentum and
provides promising results, see e.g., reviews [2, 12]. Most of these methods are
supervised and require extensive datasets for training, which might not be avail-
able. An interesting unsupervised alternative [18] is known as Deep Image Prior,
which is also named Deep Inverse Prior (DIP) as it is not confined to images. In
the DIP framework, a generator network g : (u, θθθ) ∈ Rd × Rp 7→ x ∈ Rn, with
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activation function φ, is optimized to transform some random input u ∈ Rd into
a vector in x ∈ Rn. The parameters θθθ of the network are optimized via (possibly
stochastic) gradient descent to minimize the squared Euclidean loss

L(g(u, θθθ)) = 1

2m
‖Ag(u, θθθ)− y‖2 . (2)

Theoretical understanding of recovery and convergence guarantees for deep learning-
based methods is of paramount importance to make their routine usage in critical
applications reliable [11]. Our goal in this paper is to participate to this endeav-
our by explaining when gradient descent consistently and provably finds global
minima of (2), and how this translates into recovery guarantees of (1). For this,
we focus on a continuous-time gradient flow applied to (2):{

θ̇θθ(t) = −∇θθθL(g(u, θθθ(t))),
θθθ(0) = θθθ0.

(3)

This is an idealistic setting which makes the presentation simpler and it is ex-
pected to reflect the behavior of practical and commonly encountered first-order
descent algorithms, as they are known to approximate gradient flows.

1.2 Contributions

We will deliver a first theoretical analysis of DIP models in the overparametrized
regime. We will first analyze (3) by providing sufficient conditions for y(t) :=
Ag(u, θθθ(t)) to converge exponentially fast to a globally optimal solution in
the observation space. This result is then converted to a prediction error on
y through an early stopping strategy. Our conditions and bounds involve the
conditioning of the forward operator, the minimum and maximum singular val-
ues of the Jacobian of the network, as well as its Lipschitz constant. We will then
turn to evaluating these quantities for the case of a two-layer neural network

g(u, θθθ) =
1√
k
Vφ(Wu), (4)

with V ∈ Rn×k and W × Rk×d, and φ an element-wise nonlinear activation
function. The scaling by

√
k will become clearer later. In this context, the net-

work will be optimized with respect to the first layer (i.e., W) while keeping
the second (i.e., V) fixed. Consequently, θθθ = W. We show that for a proper
random initialization W(0) and sufficient overparametrization, all our condi-
tions are in force and the smallest eigenvalue of the Jacobian is indeed bounded
away from zero independently of time. We provide a characterization of the over-
parametrization needed in terms of (k, d, n) and the conditioning of A. Lastly,
we show empirically that the behavior of real-world DIP networks is consistent
with our theoretical bounds.
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1.3 Relation to Prior Work

Data-Driven Methods to Solve Inverse Problems Data-driven approaches
to solve inverse problems come in various forms [2, 12]. The first type trains an
end-to-end network to directly map the observations to the signals for a specific
problem. While they can provide impressive results, these methods can prove
very unstable as they do not use the physics of the problem which can be severely
ill-posed. To cope with these problems, several hybrid models that mix model-
and data-driven algorithms were developed in various ways. One can learn the
regularizer of a variational problem [15] or use Plug-and-Play methods [19] for
example. Another family of approaches, which takes inspiration from classical
iterative optimization algorithms, is based on unrolling (see [10] for a review of
these methods). Still, all these methods requires extensive amount of training
data, which may not always be available. Their theoretical recovery guarantees
are also not well understood [11].

Deep Inverse Prior The DIP model [18] (and its extensions that mitigate
some of its empirical issues [8, 9, 16, 20]) is an unsupervised alternative to
the supervised approches briefly reviewed above. The empirical idea is that the
architecture of the network acts as an implicit regularizer and will learn a more
meaningful transformation before overfitting to artefacts or noise. With an early
stopping strategy, one can get the network to generate a vector close to the
sought signal. However, this remains purely empirical and there is no guarantee
that a network trained in such manner converges in the observation space (and
even less in the signal space). Our work aims at reducing this theoretical gap,
by analyzing the behaviour of the network in the observation (prediction) space.

Theory of Overparametrized Networks In parallel to empirical studies,
there has been a lot of effort to develop some theoretical understanding of the
optimization of overparametrized networks [3, 6]. Amongst the theoretical mod-
els that emerged to analyze neural networks, the Neural Tangent Kernel (NTK)
captures the behavior of neural networks in the infinite width limit during op-
timization via gradient descent. In the NTK framework, the neural network be-
haves as its linearization around the initialization, thus yielding a model equiva-
lent to learning with a specific positive-definite kernel (so called NTK). In [7], it
was shown that in a highly overparametrized regime and random initialization,
parameters θθθ(t) stay near the initialization, and are well approximated by their
linearized counterparts at all times (also called the “lazy” regime in [4]). With
a similar aim, several works characterized the overparametrization necessary to
obtain similar behaviour for shallow networks for different tasks, see e.g., [1, 5,
13, 14]. All these works provide lower bounds on the number of neurons from
which they can prove convergence rates to a zero-loss solution. Despite some
apparent similarities, our setting has important differences. On the one hand,
we have indirect measurements through (fixed) A, the output is not scalar, and
there is no supervision. On the other hand, unlike all above works which deal
with a supervised training setting, in the DIP model the dimension d of the
input is a free parameter, while it is imposed in a supervised setting.
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2 DIP Guarantees

2.1 Notations

For a matrix M ∈ Ra×b we denote, when dimension requirements are met, by
λmin(M) and λmax(M) (resp. σmin(M) and σmax(M)) its smallest and largest
eigenvalues (resp. non-zero singular values), and by κ(M) = σmax(M)

σmin(M) its condi-
tion number. We also denote by ‖·‖F the Frobenius norm and ‖·‖ the Euclidean
norm of a vector (or operator norm of a matrix). We use Mi (resp. Mi) as the
i-th row (resp. column) of M. We represent a ball of radius r and center x by
B(x, r). We also define y(t) = Ag(u, θθθ(t)). The Jacobian of the network is de-
noted J (θθθ (t)). The Lipschitz constant of a mapping is denoted Lip(·). We set
Cφ =

√
Eg∼N (0,1) [φ(g)2] and Cφ′ =

√
Eg∼N (0,1) [φ′(g)2] with E [X] the expected

value of X.

2.2 Main Result

Standing Assumptions In the rest of this work, we assume that:

A-1 u is drawn uniformly on Sd−1;
A-2 W(0) has iid entries from N (0, 1);
A-3 V has iid columns with identity covariance and D-bounded entries;
A-4 φ is a twice differentiable function with B-bounded derivatives.

Assumptions A-1, A-2 and A-3 are standard. Assumptions A-4 is met by
many activations such as the softmax, sigmoid or hyperbolic tangent. Including
the ReLU would require more technicalities that will be avoided here.

Well-posedness In order for our analysis to hold, the Cauchy problem (3)
needs to be well-defined. This is easy to prove upon observing that under (A-4),
the gradient of the loss is both Lipschitz and continuous. Thus, the Cauchy-
Lipschitz theorem applies, ensuring that (3) has a unique global continuously
differentiable solution trajectory.

Our main result establishes the prediction error for the DIP model.

Theorem 1. Consider a network g(u, θθθ), with φ obeying (A-4), optimized via
(3).

(i) Let σA = infz∈Im(A)

∥∥A>z∥∥ / ‖z‖ > 0. Suppose that

‖y −Ag(u, θθθ0)‖
σA

<
σmin(J (θθθ0))2

4Lip(J )
. (5)

Then for any ε > 0

‖y(t)− y‖ ≤ 2 ‖ε‖ for all t ≥ 4m log (‖y −Ag(u, θθθ0)‖ / ‖ε‖)
σ2
Aσmin(J (θθθ0))2

. (6)
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(ii) Let the one-hidden layer network (4) with architecture parameters obeying

k ≥ C1κ(A)2n
(√

n
(√

log(d) + 1
)
+
√
m
)2

Then

‖y(t)− y‖ ≤ 2 ‖ε‖ for all t ≥ C2m log (‖y −Ag(u,W(0))‖)
σ2
AC

2
φ′

with probability at least 1− n−1 − d−1, where Ci are positive constants that
depend only on the activation function and the bound D.

Before proceeding with the proof, a few remarks are in order.

Remark 1. • We start with the scaling of the network architecture parame-
ters required. First, the bound on k, the number of neurons of the hidden
layer, scales quadratically in n2 and linearly in m. We thus have the bound
k & n2m. The probability of success in our theorem is also dependent on
the architecture parameters. More precisely, this probability increases with
growing number of observations.

• The other scaling of the theorem is on the input size d and informs us that its
influence is logarithmic. The bound is more demanding as A becomes more
ill-conditioned. The latter dependency can be interpreted as follows: the more
ill-conditioned the original problem is, the larger the network needs to be.
Let us emphasize that, contrary to other learning settings in the literature,
the size d of the random input u is free, and so far it has remained unclear
how to choose it. Our result provides a first answer for shallow networks in
the overparametrized setting: most of the overparametrization necessary for
the optimization to converge is due to k.

• On our way to prove (1), we actually show that y(t) converges exponentially
to y, which is converted to a recovery of y through an early stopping strategy.
This ensures that the network does not overfit the noise and provides a
solution in a ball around y whose radius is linear in the noise level (so-
called prediction linear convergence in the inverse problem literature). This
provides a first result on convergence of wide DIP networks that ensures they
behave well in the observation space.

• One has to keep in mind, however, that Theorem 1 does not say anything
about the recovered vector generated by the network and its relation to x (in
absence of noise and at convergence, it might be any element of x+ker(A)).
Of course, when A is invertible, then we are done. In the general case, this
is a much more challenging question which requires a more involved analysis
and a restricted-type injectivity assumption. This will be the subject of a
forthcoming paper.

3 Proof

The proof consists of two main steps. First, we prove that under (5), y(t) con-
verges exponentially fast with a time-independent rate. We then use a triangle
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inequality and an early stopping criterion to show our result. The proof of the
second claim will consist in verifying that (5) holds with high probability for our
random model of the two-layer network under our scaling.

(i) Since the solution trajectory θθθ(t), hence y(t), is continuously differentiable,
and thus

d 1
2 ‖y(t)− y‖2

dt
= (y(t)− y)ẏ(t)

= (y(t)− y)AJ (θθθ (t))θ̇θθ(t)
= −(y(t)− y)AJ (θθθ (t))∇θθθL(g(u, θθθ(t)))

= − 1

m
(y(t)− y)>AJ (θθθ (t))J (θθθ (t))>A>(y(t)− y)

= − 1

m

∥∥J (θθθ (t))>A>(y(t)− y)
∥∥2 ≤ −σmin(J (θθθ (t)))2σ2

A

m
‖y(t)− y‖2 .

(7)

where we used that y(t) − y ∈ Im (A). In view of Lemma 1(iii), we have
σmin(J (θθθ (t))) ≥ σmin(J (θθθ0))/2 for all t ≥ 0 if the initialization error verifies
(5), and in turn

d ‖y(t)− y‖2

dt
≤ −σmin(J (θθθ0))2σ2

A

2m
‖y(t)− y‖2 .

Integrating, we obtain

‖y(t)− y‖ ≤ ‖y(0)− y‖ e−
σmin(J (θθθ0))

2σ2
A

4m t. (8)

Using

‖y(t)− y‖ ≤ ‖y(t)− y‖+ ‖ε‖ ≤ ‖y(0)− y‖ e−
σmin(J (θθθ0))

2σ2
A

4m t + ‖ε‖ ,

we get the early stopping bound by bounding the exponential term by ‖ε‖.
(ii) To show the statement, it is sufficient to check that (5) holds under our

scaling. From Lemma 2, we have

σmin(J (θθθ0)) ≥ Cφ′/2

with probability at least 1 − n−1 provided k ≥ C0n log(n) for C0 > 0.
Combining this with Lemma 3 and Lemma 4 and the union bound, it is
sufficient for (5) to be fulfilled with probability at least 1− n−1 − d−1, that

C1κ(A)
(√

n
(√

log(d) + 1
)
+
√
m
)
<

C2
φ′

√
k

16BD
√
n
.

We now prove the main intermediate lemmas invoked in the proof.
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Lemma 1. (i) If θθθ ∈ B(θθθ0, R) with R = σmin(J (θθθ0))
2Lip(J ) , then

σmin(J (θθθ)) ≥ σmin(J (θθθ0))/2.

(ii) If for all s ∈ [0, t], σmin(J (θθθ (s))) ≥ σmin(J (θθθ0)
2 , then

θθθ(t) ∈ B(θθθ0, R′) with R′ =
2

σAσmin(J (θθθ0))
‖y(0)− y‖ .

(iii) If R′ < R, then for all t ≥ 0, σmin(J (θθθ (t))) ≥ σmin(J (θθθ0))/2.

Proof. (i) Since θθθ ∈ B(θθθ0, R), we have

‖J (θθθ)− J (θθθ0)‖ ≤ Lip(J ) ‖θθθ − θθθ0‖ ≤ Lip(J )R.

By using that σmin(A) is 1-Lipschitz, we obtain

σmin(J (θθθ)) ≥ σmin(J (θθθ0))− ‖J (θθθ)− J (θθθ0)‖ ≥
σmin(J (θθθ0)

2
.

(ii) From (7), we have for all s ∈ [0, t]

d ‖y(s)− y‖
ds

= − 1

m

∥∥J (θθθ (s))>A>(y(s)− y)
∥∥2

‖y(s)− y‖

≤ −σmin(J (θθθ0))σA
2m

∥∥J (θθθ (s))>A>(y(s)− y)
∥∥ .

The Cauchy-Schwarz inequality and (3) imply that

d ‖θθθ(s)− θθθ0‖
ds

=
θ̇θθ(s)> (θθθ(s)− θθθ0)
‖θθθ(s)− θθθ0‖

≤
∥∥∥θ̇θθ(s)∥∥∥ =

1

m

∥∥J (θθθ (s))>A>(y(s)− y)
∥∥ .

We therefore get

d ‖θθθ(s)− θθθ0‖
ds

+
2

σmin(J (θθθ0))σA
d ‖y(s)− y‖

ds
≤ 0.

Integration over s ∈ [0, t], we get the claim.
(iii) Actually, we prove the stronger statement that θθθ(t) ∈ B(θθθ0, R′) for all t ≥ 0,

whence our claim will follow thanks to (i). Let us assume for contradiction
that R′ < R and ∃ t < +∞ such that θθθ(t) /∈ B(θθθ0, R′). By (ii), this means
that ∃ s ≤ t such that σmin(J (θθθ (s))) < σmin(J (θθθ0))/2. In turn, (i) implies
that θθθ(s) /∈ B(θθθ0, R). Let us define

t0 = inf{τ ≥ 0 : θθθ(τ) /∈ B(θθθ0, R)},

which is well-defined as it is at most s. Thus, for any small ε > 0 and for all
t′ ≤ t0−ε, θθθ(t′) ∈ B(θθθ0, R) which, in view of (i) entails that σmin(J (θθθ)(t′)) ≥
σmin(J (θθθ0))/2. In turn, we get from (ii) that θθθ(t0− ε) ∈ B(θθθ0, R′). Since ε is
arbitrary and θθθ is continuous, we pass to the limit as ε → 0 to deduce that
θθθ(t0) ∈ B(θθθ0, R′) ( B(θθθ0, R) hence contradicting the definition of t0. �



8 N. Buskulic et al.

Lemma 2 (Bound on σmin(J (θθθ0))). For the one-hidden layer network (4),
under assumptions (A-1)-(A-4). We have

σmin(J (θθθ0)) ≥ Cφ′/2

with probability at least 1− n−1 provided k ≥ Cn log(n) for C > 0 large enough
that depends only on φ and the bound on the entries of V.

Proof. Define the matrix H = J (θθθ0)J (θθθ0)>. For the two-layer network, and
since u is on the unit sphere, H reads

H =
1

k

k∑
i=1

φ′(Wi(0)u)2ViV
>
i .

It follows that

E [H] = Eg∼N (0,1)

[
φ′(g)2

] 1
k

k∑
i=1

E
[
ViV

>
i

]
= C2

φ′In,

where we used A-1-A-2 and orthogonal invariance of the Gaussian distribution,
hence Wi(0)u are iid N (0, 1), as well as A-3 and independence between V and
W(0). Moreover,

λmax(φ
′(Wi(0)u)2ViV

>
i ) ≤ B2D2n.

We can then apply the matrix Chernoff inequality [17, Theorem 5.1.1] to get

P (σmin(J (θθθ0)) ≤ δCφ′) ≤ ne−
(1−δ)2kC2

φ′
2B2D2n .

Taking δ = 1/2 and k as prescribed, we conclude. �

Lemma 3 (Lipschitz constant of the Jacobian). For the one-hidden layer
network (4), under assumptions (A-1), (A-2) and (A-4), we have

Lip(J ) ≤ BD
√
n

k
.

Proof. We have for all W,W̃ ∈ Rk×d,∥∥∥J (W)− J (W̃)
∥∥∥2 ≤ 1

k

k∑
i=1

|φ′(Wiu)− φ′(W̃iu)|2
∥∥Viu

>∥∥2
F

=
1

k

k∑
i=1

|φ′(Wiu)− φ′(W̃iu)|2 ‖Vi‖2

≤ B2D2n

k

k∑
i=1

|Wiu− W̃iu|2

≤ B2D2n

k

k∑
i=1

∥∥∥Wi − W̃i
∥∥∥2 = B2D2n

k

∥∥∥W − W̃
∥∥∥2
F
.

�
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Lemma 4 (Bound on the initial error). Under the main assumptions, the
initial error of the network is bounded by

‖y(0)− y‖ ≤ ‖A‖
(
C
√
n log(d) +

√
n ‖x0‖∞ +

√
m ‖ε‖∞

)
,

with probability at least 1− d−1.

Proof. We first observe that

‖y(0)− y‖ ≤ ‖A‖ ‖g(u,W(0))‖+ ‖A‖
(√
n ‖x0‖∞ +

√
m ‖ε‖∞

)
,

where g(u,W(0)) = 1√
k

∑k
i=1 φ(W

iu)Vi. We now prove that this term concen-
trates around its expectation. First, we have by independence

E [‖g(u,W(0))‖]2 ≤ 1

k
E

∥∥∥∥∥
k∑
i=1

φ(Wiu)Vi

∥∥∥∥∥
2
 = E

[
φ(W1u)2 ‖V1‖2

]
= C2

φn.

In addition,

∣∣∣‖g(u,W)‖ − ‖g(u,W̃)‖
∣∣∣ ≤ 1√

k

∥∥∥∥∥
k∑
i=1

(
φ(Wiu)− φ(W̃iu)

)
Vi

∥∥∥∥∥
≤ BD

√
n

(
1√
k

k∑
i=1

∥∥∥Wi − W̃i
∥∥∥) ≤ BD√n∥∥∥W − W̃

∥∥∥
F
.

We then get

P
(
‖g(u,W(0))‖ ≥ Cφ

√
n log(d) + τ

)
≤ P (‖g(u,W(0))‖ ≥ E [‖g(u,W(0))‖] + τ)

≤ e−
τ2

2Lip(‖g(u,W(0))‖)2 ≤ e−
τ2

2nB2D2 .

Taking τ =
√
2BD

√
n log(d), we get the desired claim. �

4 Numerical Experiments

We realized numerical experiments to verify our theoretical finding by evaluating
the convergence of networks with different architecture parameters in the noise-
free context. Every network was initialized in accordance with the assumptions
of our work and we used the sigmoid activation function. Both A and x entries
were drawn i.i.d fromN (0, 1). We used gradient descent to optimize the networks
with a fixed step size of 1. A network was trained until it reached a loss of 10−7
or after 25000 optimization steps. For each set of architecture parameters, we
did 50 runs and calculated the frequency at which the network arrived at the
error threshold of 10−7. We present in Figure 1 two experiments: in the first one
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(a) k vs n (b) k vs m

Fig. 1: Probability of arriving at a zero loss solution for networks with different
architecture parameters. This emphasizes the linear dependence between k and
m and the at least quadratic dependence between k and n.

we fix m = 10 and d = 500 and let k and n vary while in the second we fix
n = 60, d = 500 and we let k and m vary.

We observe in Figure 1a the relationship between k and n for a fixed m. In
this setup where n � m and A is Gaussian, we expect, by our main theorem,
a quadratic relationship which seems to be the case in the plot. It is however
surprising that with values of k restricted to the range [20, 1000], the network
converges to a zero-loss solution with high probability for situations where n > k
which goes against our intuition for these underparametrized cases.

Additionally, the observation of Figure 1b provides a very different picture
when the ratio m/n increases from 0. We first see clearly the expected linear
relationship between k andm. However, contrary to Figure 1a where we observed
convergence for high values of n (up to 3000) with a fixed m, this new setting
where m grows gives very different results. For the same range of values for k,
the networks only converge for small values of n (60 in this case). This indicates
that the ratio m/n plays an important role in the level of overparametrization
necessary for the network to converge. It is clear from these results that the order
of our bounds is consistent with experiments, yet our bounds are not really tight,
as we observe convergence for lower values of k than expected.

5 Conclusion and Future Work

This paper studied the convergence of shallow DIP networks and provided bounds
on the level of overparametrization, both in the input dimension and the hid-
den layer dimension, under which the method converges exponentially fast to
a zero-loss solution. The proof relies on bounding the minimum singular values
of the Jacobian of the network through an overparametrization that ensures a
good initialization of the network. These bounds are not tight, as demonstrated
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by the numerical experiments, but they provide an important step towards the
theoretical understanding of DIP methods, and neural networks for inverse prob-
lems resolution in general. In the future, this work will be extended in several
directions. First, we will study recovery guarantees of the signal x. Second, we
will investigate the DIP model with unrestricted linear layers and possibly in
the multilayer setting.
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