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ABSTRACT

Astronomical images suffer a constant presence of multiple defects that are conse-

quences of the intrinsic properties of the acquisition equipments, and atmospheric con-

ditions. One of the most frequent defects in astronomical imaging is the presence of

additive noise which makes a denoising step mandatory before processing data. Dur-

ing the last decade, a particular modeling scheme, based on sparse representations, has

drawn the attention of an ever growing community of researchers. Sparse representa-

tions offer a promising framework to many image and signal processing tasks, especially

denoising and restoration applications. At first, the harmonics, wavelets, and similar

bases and overcomplete representations have been considered as candidate domains to

seek the sparsest representation. A new generation of algorithms, based on data-driven

dictionaries, evolved rapidly and compete now with the off-the-shelf fixed dictionaries.

While designing a dictionary beforehand leans on a guess of the most appropriate rep-

resentative elementary forms and functions, the dictionary learning framework offers

to construct the dictionary upon the data themselves, which provides us with a more

flexible setup to sparse modeling and allows to build more sophisticated dictionaries.

In this paper, we introduce the Centered Dictionary Learning (CDL) method and we

study its performances for astronomical image denoising. We show how CDL out-

performs wavelet or classic dictionary learning denoising techniques on astronomical

images, and we give a comparison of the effect of these different algorithms on the

photometry of the denoised images.
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1. Introduction

1.1. Overview of sparsity in astronomy

The wavelet transform (WT) has been extensively used in astronomical data analysis during

the last ten years, and this holds for all astrophysical domains, from study of the sun

through Cosmic Microwave Background (CMB) analysis (Starck & Murtagh 2006). X-ray

and Gamma-ray sources catalogs are generally based on wavelets (Pacaud et al. 2006; Nolan

et al. 2012). Using multiscale approaches such as the wavelet transform, an image can be

decomposed into components at different scales, and the wavelet transform is therefore well-

adapted to the study of astronomical data (Starck & Murtagh 2006). Furthermore, since

noise in physical sciences is not always Gaussian, modeling in wavelet space of many kinds of

noise such as Poisson noise has been a key motivation for the use of wavelets in astrophysics

(Schmitt et al. 2010). If wavelets represent well isotropic features, they are far from optimal

for analyzing anisotropic objects such as filaments, jets, etc.. This has motivated the

construction of a collection of basis functions generating possibly overcomplete dictionaries,

eg. cosine, wavelets, curvelets (Starck et al. 2003). More generally, we assume that the

data X is a superposition of atoms from a dictionary D such that X = Dα, where α

are the synthesis coefficients of X from D. The best data decomposition is the one which

leads to the sparsest representation, i.e. few coefficients have a large magnitude, while

most of them are close to zero (Starck et al. 2010b). Hence, for some astronomical data

sets containing edges (planetary images, cosmic strings, etc.), curvelets should be preferred

to wavelets. But for a signal composed of a sine, the Fourier dictionary is optimal from

a sparsity standpoint since all information is contained in a single coefficient. Hence, the

representation space that we use in our analysis can be seen as a prior we have on our

observations. The larger the dictionary is, the better data analysis will be, but also the

larger the computation time to derive the coefficients α in the dictionary will be. For some

specific dictionaries limited to a given set of functions (Fourier, wavelet, etc.) we however

have very fast implicit operators allowing us to compute the coefficients with a complexity

of O(N logN), which makes these dictionaries very attractive. But what can we do if our

data are not well represented by these fixed existing dictionaries ? Or if we do not know

the morphology of features contained in our data ? Is there a way to optimize our data

analysis by constructing a dedicated dictionary ? To answer these questions, a new field

has recently emerged, called Dictionary Learning (DL). Dictionary learning techniques

offer to learn an adaptive dictionary D directly from the data (or from a set of exemplars

that we believe to well represent the data). DL is at the interface of machine learning,

optimization and harmonic analysis.
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1.2. Contributions

In this paper, we show how classic dictionary learning for denoising behaves with astro-

nomical images. We introduce a new variant, the Centered Dictionary Learning (CDL),

developed to process more efficiently point-like features that are extremely common in as-

tronomical images. Finally, we perform a study comparing how wavelet and dictionary

learning denoising methods behave regarding sources photometry, showing that dictionary

learning is better at preserving the sources flux.

1.3. Paper organization

This paper is organized as follows. Section 2 presents the sparsity regularization problem

where we introduce notations and the paradigm of dictionary for sparse coding. We intro-

duce in Section 3 the methods for denoising by dictionary learning and we introduce the

CDL technique. We give in Section 4 our results on astronomical images and we conclude

with some perspectives in Section 5.

2. Sparsity regularization

2.1. Notations

We use the following notations. Uppercase letters are used for matrices notation and

lowercase for vectors. Matrices are written column-wise D = [d1, . . . , dm] ∈ Rn×m. If D is

a dictionary matrix, the columns di ∈ Rn represent the atoms of the dictionary. We define

the `p pseudo-norm (p > 0) of a vector x ∈ Rn as ‖x‖p = (
∑n
i=1 |xi|p)

1/p. As an extension,

the `∞ norm is defined as ‖x‖∞ = max1≤i≤n {xi}, and the pseudo-norm `0 stands for the

number of non-zero entries of a vector: ‖x‖0 = # {i, xi 6= 0}. Given an image Y of Q×Q

pixels, a patch size n = τ × τ and an overlapping factor ∆ ∈ [1, . . . , n], we denote by

R(i1,i2)(Y ) the patch extracted from Y at the central position i = (i1, i2) ∈ [0, . . . , Q/∆]2

and converts it into a vector of Rn, such that ∀j1, j2 ∈ [−τ/2, . . . , τ/2],

Y (i1∆ + j1, i2∆ + j2). = Ri(Y )[τj1 + j2], (1)

which corresponds to stacking the extracted square patch into a column vector. Given a

patch Ri,j(Y ) ∈ Rn, we define the centering operator Ci,j as the translation operator

Ci,jRi,j [l] =

 Ri,j [l + δi,j ] if 1 ≤ l ≤ n− δi,j
Ri,j [l + δi,j − n] if n− δi,j < l ≤ n

(2)
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and δi,j is the smallest index verifying
Ci,jRi,j [n/2] = max

l
{Ri,j [l]} if n is even

Ci,jRi,j [(n− 1)/2] = max
l
{Ri,j [l]} if n is odd

(3)

The centering operator translates the original vector values to place the maximum values

in the central index position. In case where the original vector has more than one entry

that reach its maximum values, the smallest index with this value is placed at the center

in the translated vector. Finally, to compare two images M1,M2, we use the Peak Signal

to Noise Ratio PSNR = 10 log10

(
max(M1,M2)

2

MSE(M1,M2)

)
, where MSE(M1,M2) is the mean square

error of the two images and max(M1,M2) is the highest value contained in M1 and M2.

2.2. Sparse recovery

A signal α = [α1, . . . , αn], is said to be sparse when most of its entries αi are equal to zero.

When the observations do not satisfy the sparsity prior in the direct domain, computing

their representation coefficients in a given dictionary might yield a sparser representation

of the data. Overcomplete dictionaries, which contain more atoms than their dimension

and thus are redundant, when coupled with sparse coding framework, have shown in the

last decade to lead to more significant and expressive representations, which help to better

interpret and understand the observations (Starck & Fadili 2009; Starck et al. 2010a).

Sparse coding concentrates around two main axes: finding the appropriate dictionary, and

computing the encodings given this dictionary.

Sparse decomposition requires the summation of the relevant atoms with their appro-

priate weights. However, unlike a transform coder that comes with an inverse transform,

finding such sparse codes within overcomplete dictionaries is non-trivial, in particular be-

cause the decomposition of a signal on an overcomplete dictionary is not unique. The

combination of a dictionary representation with sparse modeling has first been introduced

in the pioneering work of Mallat & Zhang (1993), where the traditional wavelet transforms

have been replaced by the more generic concept of dictionary for the first time.

We use in this paper a sparse synthesis prior. Given an observation x ∈ Rn, and

a sparsifying dictionary D ∈ Rn×k, sparse decomposition refers to finding an encoding

vector α ∈ Rk that represents a given signal x in the domain spanned by the dictionary D,

while minimizing the number of elementary atoms involved in synthesizing it:

α̂ ∈ argmin
α
‖α‖0 s.t. x = Dα . (4)
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When the original signal is to be reconstructed only approximately, the equality constrain

is replaced by an `2 norm inequality constrain:

α̂ ∈ argmin
α
‖α‖0 s.t. ‖x−Dα‖2 ≤ ε , (5)

where ε is a threshold controlling the misfitting between the observation x and the recovered

signal x̂ = Dα̂.

The sparse prior can also be used from an analysis point of view (Elad et al. 2007). In

this case, the computation of the signal coefficient is simply obtained by the sparsifying

dictionary and the problem becomes

ŷ ∈ argmin
y
‖D∗y‖0 s.t. y = x (6)

or

ŷ ∈ argmin
y
‖D∗y‖0 s.t. ‖x− y‖2 ≤ ε (7)

whether the signal x is contaminated by noise or not. This approach has been explored

more recently than the synthesis model and has thus far yielded promising results (Rubin-

stein et al. 2012). We chose to use the synthesis model for our work because it offers more

guarantees as it has been proved to be an efficient model in many different contexts.

Solving (5) proves to be conceptually Np-hard and numerically intractable. Nonethe-

less, heuristic methods called greedy algorithms were developed to approximate the sparse

solution of the `0 problem, while considerably reducing the resources requirements. The

process of seeking a solution can be divided into two effective parts: finding the support of

the solution and estimating the values of the entries over the selected support (Mallat &

Zhang 1993). Once the support of the solution is found, estimating the signal coefficients

becomes a straightforward and easier problem since a simple least-squares application can

often provide the optimal solution regarding the selected support. This class of algorithms

includes matching pursuit (MP), orthogonal matching pursuit (OMP), gradient pursuit

(GP) and their variants.

A popular alternative to the problem (5) is to use the `1−norm instead of the `0 to

promote a sparse solution. Using the `1 norm as a sparsity prior results on a convex

optimization problem (Basis Pursuit De-Noising or Lasso) that is that is computationally

tractable, finding

α̂ ∈ argmin
α
‖α‖1 s.t. ‖x−Dα‖2 ≤ ε. (8)
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The optimization problem (8) can also be written in its unconstrained penalized form:

α̂ ∈ argmin
α
‖x−Dα‖22 + λ ‖α‖1 (9)

where λ is a Lagrange multiplier, controlling the sparsity of the solution (Chen et al.

1998). The larger λ is, the sparser the solution becomes. Many frameworks have been

proposed in this perspective, leading to multiple basis pursuit schemes. Readers interested

in an in-depth study of sparse decomposition algorithms can be referred to Starck et al.

(2010a); Elad (2010).

2.3. Fixed dictionaries

A data set can be decomposed in many dictionaries, but the best dictionary to solve (5)

is the one with the sparsest (most economical) representation of the signal. In practice, it

is convenient to use dictionaries with fast implicit transform (such as Fourier transform,

wavelet transform, etc.) which allow us to directly obtain the coefficients and reconstruct

the signal from these coefficients using fast algorithms running in linear or almost lin-

ear time (unlike matrix-vector multiplications). The Fourier, wavelet and discrete cosine

transforms provide certainly the most well known dictionaries.

Most of these dictionaries are designed to handle specific contents, and are restricted

to signals and images that are of a certain type. For instance, Fourier represents well

stationary and periodic signals, wavelets are good to analyze isotropic objects of different

scales, curvelets are designed for elongated features, etc.. They can not guarantee sparse

representations of new classes of signals of interest, that present more complex patterns and

features. Thus, finding new approaches to design these sparsifying dictionaries becomes

of the utmost importance. Recent works have shown that designing adaptive dictionaries

and learning them upon the data themselves instead of using predesigned selections of

analytically-driven atoms leads to state-of-the-art performances in various tasks such as

image denoising (Elad & Aharon 2006), inpainting (Mairal et al. 2010), source separation

(Bobin et al. 2008, 2012) and so forth.

2.4. Learned dictionaries

The problem of dictionary learning, in its non-overcomplete form (that is when the number

of atoms in the dictionary is smaller or equal to the dimension of the signal to decompose),

has been studied in depth and can be approached using many viable techniques, such

as principal component analysis (PCA) and its variants, which are based on algorithms

minimizing the reconstruction errors upon a training set of samples, while representing

them as a linear combination of the dictionary elements (Bishop 2007). Inspired from

an analogy to the learning mechanism in the simple cells in the visual cortex, Olshausen
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& Field (1996) proposed a minimization process based on a cost function that balances

between a misfitting term and a sparsity inducing term. The optimization process is

performed by alternating the optimization with respect to the sparse encodings, and to

the dictionary functions. Most of the overcomplete dictionary learning methods are based

on a similar alternating optimization scheme, while using specific techniques to induce the

sparsity prior and update the dictionary elements. This problem shares many similarities

with the Blind Sources Separation problem (Zibulevsky & Pearlmutter 1999), although in

BSS the sources are assumed to be sparse in a fixed dictionary and the learning is performed

on the mixing matrix.

A popular approach is to learn patch-sized atoms instead of a dictionary of image-sized

atoms. This allows a faster processing and makes the learning possible even with a single

image to train on as many patch exemplars can be extracted from a single training image.

Section 3 gives more details about the variational problem of patch learning and denoising.

This patch-based approach lead to different learning algorithms such as MOD (Engan et al.

1999), Pojected Gradient Descent methods (Lin 2007), or K-SVD (Aharon et al. 2006) that

have proven efficient for image processing (Elad & Aharon 2006; Mairal et al. 2010; Peyré

et al. 2010).

3. Denoising by centered dictionary learning

3.1. General variational problem

The goal of denoising with dictionary learning is to build a suitable n× k dictionary D, a

collection of atoms [di]i=1,...,P ∈ RN×P , that offers a sparse representation to the estimated

denoised image. As is it not numerically tractable to process the whole image as a large

vector, Elad & Aharon (2006); Mairal et al. (2010); Peyré et al. (2010) propose to break

down the image into smaller patches and learn a dictionary of patch-sized atoms. When

simultaneously learning a dictionary and denoising an image Y , the problem amounts to

solving

(
X̂, Â, D̂

)
∈ argmin

X,A,D
E(X,A,D) (10)

where

E(X,A,D) =
λ

2
‖Y −X‖22 +

∑
i,j

(µi,j
2
‖Ci,jRi,j(X)−Dαi,j‖22 + ‖αi,j‖1

)
(11)

such that the learned dictionary D is in D, the set of dictionaries whose atoms are

scaled to the unit `2-ball

∀j ∈ [1, . . . , k], ‖dj‖2 =

N∑
i=1

|dj [i]|2 ≤ 1. (12)
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Here, Y is the noisy image, X the estimated denoised image, A = (αi,j)i,j is the sparse

encoding matrix such that αi,j is a sparse encoding of Ri,j(X) in D and Ci,j is a centering

operator defined by (2). The parameters λ and (µi,j)i,j balance the energy between sparsity

prior, data fidelity between the learned dictionary and the training set, and denoising.

The dictionary is constrained to obey (12) to avoid classical scale indeterminacy in the

bilinear model (the so-called equivalence class corresponds to scaling, change of sign and

permutation). Indeed, if (A,D) is a pair of sparsifying dictionary and coefficients, then the

pair
(
νA, 1νD

)
, for any non-zero real ν, leads to the same data fidelity. Thus, discarding

the normalization constraint in the minimization problem (11) would favor arbitrary small

coefficients and arbitrary large dictionaries. It is also worth mentioning that the energy (11)

is not minimized with respect to the translation operators (Ci,j)i,j . Rather, we chose to

use fixed translation operators that translate the patch such that the pixel of its maximum

value is at its center. The rationale behind this is to increase the sensitivity of the algorithm

to isotropic structures such as stars, which are ubiquitous in astronomical imaging. This

will be clearly shown in the numerical results described in Section 4.

It is possible to learn a dictionary without denoising the image simultaneously, thus

minimizing

∑
i,j

(
1

2
‖Ri(X)−Dαi‖2 + λ ‖αi‖1

)
(13)

with respect to D and A. This allows to learn a dictionary from a noiseless training

set, or learn from a small noisy training set extracted from a large noisy image when

it is numerically not tractable to process the whole image directly. Once the dictionary

learned, an image can be denoised solving (5) as we show in Section 4. The classical scheme

of dictionary learning for denoising dos not include the centering operators and has proven

to be an efficient approach (Elad & Aharon 2006; Peyré et al. 2010).

An efficient way to find a minimizer of (11) is to use a alternating minimization scheme.

The dictionary D, the sparse coding coefficient matrix A and the denoised image X are

alternatively updated one at a time, the other being fixed. We give more details about

each step and how we tuned the parameters below.

3.2. Alternating minimization

3.2.1. Sparse coding

We consider here that the estimated image X and the dictionary D are determined to

minimize E with respect to A. Estimating the sparse encoding matrix A comes down to

solve (9), that can be solved using iterative soft thresholding (Daubechies et al. 2004) or

interior point solver (Chen et al. 1998). We chose to use the Orthogonal Matching Pursuit

algorithm (Pati et al. 1993), a greedy algorithm that find an approximate solution of (5).
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OMP yields satisfying results while being very fast and parameters simple to tune. When

learning on a noisy image, we let OMP find the sparsest representation of a vector up to

an error threshold set depending on the noise level. In the case of learning an image on a

noiseless image, we reconstruct an arbitrary number of component of OMP.

3.2.2. Dictionary update

We consider that the encoding matrix A and the training image Y are fixed here, and we

explain how the dictionary D can be updated. The dictionary update consists in finding

D̂ ∈ argmin
D∈D

∑
i,j

µi,j
2
‖Ci,jRi,j(X)−Dαi,j‖22 , (14)

which can be rewritten in a matrix form as

D̂ ∈ argmin
D∈D

‖P −DA‖2F (15)

where each columns of P contain a the patch Ci,jRi,j(X). We chose to use the Method of

Optimal Directions that minimizes the mean square error of the residuals, introduced in

Engan et al. (1999). The MOD algorithm uses a single conjugate gradient step and gives

the following dictionary update

D = ProjD

(
PAT

(
AAT

)−1)
(16)

where ProjD is the projection on D such that for D2 = ProjD (D1), d2i = d1i/ ‖d1i‖2
for each atom d2j of D2.The MOD algorithm is simple to implement and fast. An exact

minimization is possible with an iterative projected gradient descend (Peyré et al. 2010) but

the process is slower and require precise parameter tuning. Another successful approach,

the K-SVD algorithm, updates the atoms of the dictionary one by one, using for the

update of a given atom only the patches that use significantly this atom in their sparse

decomposition (Aharon et al. 2006).

3.2.3. Image update

When D and A are fixed, the energy (11) is a quadratic function of X minimized by the

closed -form solution

X̂ =

∑
i,j

µi,jR
∗
i,jRi,j + λId

−1∑
i,j

µi,jR
∗
i,jC

∗
i,jDαi,j + λY

 . (17)

UpdatingX with (17) simply consists in applying on each patch the "de-centering" operator

C∗i,j and reconstruct the image by averaging overlapping patches.
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3.2.4. Algorithm summary

The centered dictionary learning for denoising algorithm is summarized in Algorithm 1.

It takes as input a noisy image to denoise and an initial dictionary, and iterates the three

steps previously described to yield a noiseless image, a dictionary, and an encoding matrix.

Algorithm 1 Alternating scheme for centered dictionary learning and denoising
Input: noisy image Y ∈ RQ×Q, number of iterations K, assumed noise level σ
Output: sparse coding matrix A, sparsifying dictionary D, denoised image X
Initialize D ∈ Rn×p with patches randomly extracted from Y , set αi,j = 0 for all i, j,
set X = Y , compute centering operators (Ci,j)i,j by locating the maximum pixel of each
patch (Ri,j(X))i,j
for k = 1 to K do

Step 1: Sparse coding
Compute the sparse encoding matrix A of (Ri,j(X))i,j in D solving (5) or (8)
Step 2: Dictionary update
Update dictionary D solving (15)
Step 3: Image update
Update denoised image X using (17)

end for

3.3. Parameters

Algorithm 1 requires several parameters. All images are 512× 512 in our experiments.

Patch size and overlap We use n = 9× 9 patches for our experiments and take an overlap

of 8 pixels between two consecutive patches. A odd number of pixels is more convenient

for patch centering, and this patch size has proven to be a good trade off between speed

and robustness. A high overlap parameter allows to reduce block artifacts.

Dictionary size We learn a dictionary of p = 2n = 162 atoms. A ratio 2 between the

size of the dictionary and the dimension of its atoms. It makes the dictionary redundant

and allows to capture different morphologies, without inducing an unreasonable computing

complexity.

Training set size We extract 80n training patches when learning patches of n pixels. Ex-

tracting more training samples allows to better capture the image morphology, and while

it leads to very similar dictionaries, it allows a slightly sparser representation and a slightly

better denoising. Reducing the size of the training set might lead to miss some features

from the image to learn from, depending on the diversity of the morphology it contains.

Sparse coding stop criterion: We stop OMP when the sparse coding xs of a vector x verifies

‖xs − x‖2 ≤ Cσ
√
n (18)
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and we use C = 1.15 as gain parameter, similarly to Elad & Aharon (2006). When learning

on noiseless images, we stop OMP computation when it finds the 3 first components of xs.

Training set We do not use every patch available in Y as it would be too computationally

costly, so we select a random subset of patch positions that we extract from Y . We

extract 80n training patches and after learning, we perform a single sparse coding step

with the learned dictionary on every noisy patch from Y that are then averaged using (17).

Extracting more training sample does not have a significant effect on the learned dictionary

in our examples. Reducing the size of the training set might lead to miss some features

from the image to learn from, depending on the diversity of the morphology it contains.

4. Application to astronomical imaging

In this section, we report the main results of the experiments we conducted to study

the performances of the presented strategy of centering dictionary learning and image

denoising, in the case of astronomical observations. We performed our tests on several

Hubble images and cosmic string simulations (see Figure 1). Cosmic string maps are not

standard astronomical images, but present the interest to have a complex texture and

to be extremely difficult to detect. Wavelet filtering has been proposed to detect them

(Hammond et al. 2009) and it is interesting to investigate if DL could eventually be an

alternative to wavelets for this purpose. It should however be clear that the level of noise

that we are using here are not realistic, and this experiment has to be seen as a toy-model

example rather than a cosmic string scientific study which would require to consider as

well CMB and also more realistic cosmic string simulations. The three Hubble images

are the Pandora’s Galaxy Cluster Abell 2744, an ACS image of 47 Tucanae star field,

and a WFC3 UVIS Full Field Nebula image. These images contain a mixture of isotropic

and linear features, which make them difficult to process with the classical wavelets or

curvelets-based algorithms.

We study two different case, where we perform dictionary learning and image denoising

at the same time, and where the dictionary is learned on a noiseless image and used

afterward to denoise a noisy image. We show for these two cases how DL is able to

capture the natural features contained in the image, even in presence of noise, and how it

outperforms wavelet-based denoising techniques.

4.1. Joint learning and denoising

We give several examples of astronomical images denoised with the method presented

above. For all experiments, we show the noisy image, the learned dictionary and the

denoised images, processed respectively with the wavelet shrinkage and the dictionary

learning algorithms. We add a white Gaussian noise to a noiseless image. We then denoise
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them using Algorithm 1 and a wavelet shrinkage algorithm, and compare their performances

in term of PSNR. Figure 2 shows the processing of a Hubble image of the Pandora galaxies

cluster, Figure 3 show our results on a star cluster image, and Figure 4 shows our results on

a nebula image. The CDL proves to be superior to the wavelet-based denoising algorithm

on each examples. The dictionary learning methods is able to capture the morphology of

each kind of images and manages to give a good representation of point-like features.

(a) (b)

(c) (d)

Fig. 1. Hubble images used for numerical experiments. Figure (a) is the Pandora’s Cluster
Abell 2744, Figure (b) is an ACS image of 47 Tucanae, Figure (c) is a image of WFC3 UVIS Full
Field, and Figure (d) is a cosmic strings simulation.

4.2. Separate learning and denoising

We now apply the presented method to cosmic string simulations. We use a second image

similar to the cosmic string simulation from Figure 1 to learn a noiseless dictionary shown

on Figure 5. We add a high-level white Gaussian noise on the cosmic string simulation

from Figure 1 and we compare how classic DL and wavelet shrinkage denoising perform

on Figure 6. We chose not to use CDL because the cosmic string images do not contain

stars but more textured features. We give in Figure 7 a benchmark of the same process

repeated for different noise levels. The PSNR between the denoised and source image is

displayed as a function of the PSNR between the noisy and the original source image. The

reconstruction score is higher for the dictionary learning denoising algorithm than for the
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(a) (b)

(c) (d)

Fig. 2. Results of denoising with galaxy cluster image. Figure (a) shows the image noisy image,
with a PSNR of 26.52 dB. The learned dictionary is shown Figure (b). Figure (c) shows the result
of the wavelet shrinkage algorithm that reaches a PSNR of 38.92 dB, Figure (d) shows the result
of denoising using the dictionary learned on the noisy image, with a PSNR of 39.35 dB.

wavelet shrinkage algorithm, for any noise level. This shows that the atoms computed

during the learning are more sensitive to the features contained in the noisy image than

wavelets. The dictionary learned was able to capture the morphology of the training

image, which is similar to the morphology of the image to denoise. Hence, the coefficients

of the noisy image’s decomposition in the learned dictionary are more significant that its

coefficient in the wavelet space, which leads to a better denoising.

We show now how DL behaves when learning on real astronomical noiseless images, that

is images that present an extremely low level of noise or that have been denoised and thus

are considered noiseless. We give several benchmarks to show how the centered dictionary

learning is able to outperforms the classic approach. We denoise two previously presented

images, and two additional images shown in Figure 8. We perform the learning step on

similar noiseless images, see Figure 9. The benchmark results are presented in Figures 10,

11, 12 and 13. Figure 13 illustrates a particular case where the classical dictionary learning

becomes less efficient than the wavelet-based denoising algorithm while using the centered

learning and denoising yields better results at any noise level. For each benchmark, we

added a white Gaussian noise with a varying standard deviation to one image and learn a

centered dictionary and a non-centered dictionary on a second similar noiseless image. We
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(a) (b)

(c) (d)

Fig. 3. Results of denoising with star cluster image. Figure (a) shows the image noisy image,
with a PSNR of 27.42 dB. The learned dictionary is shown Figure (b). Figure (c) shows the result
of the wavelet shrinkage algorithm that reaches a PSNR of 37.28 dB, Figure (d) shows the result
of denoising using the dictionary learned on the noisy image, with a PSNR of 37.87 dB.

use the same set of parameters for both learning. CDL performs better than the classic DL

method and wavelet-based denoising. A consequence of the better sparsifying capability of

the centered dictionary is a faster computation during the sparse coding step. The noiseless

dictionaries prove to be efficient for any level of noise.

4.3. Photometry and source detection

Although the final photometry is generally done on the raw data Pacaud et al. (2006);

Nolan et al. (2012), it is important that the denoising does not introduce a strong bias

on the flux of the different sources because it would dump their amplitude and reduce the

number of detected sources.

We provide in this section a photometric comparison of the wavelet and dictionary

learning denoising algorithms. We use the top left quarter of the nebula image from

4. We run Sextractor (Bertin & Arnouts 1996) using a 3σ detection threshold on the

noiseless image, and we store the detected sources with their respective flux. We then

add a white Gaussian noise with a standard deviation of 0.07 to the image which has

a standard deviation of 0.0853 (SNR = 10.43 dB), and use the different algorithms to
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(a) (b)

(c) (d)

Fig. 4. Results of denoising with nebula image. Figure (a) shows the image used both for
learning a noisy dictionary and denoising, with a PSNR of 26.67 dB. The learned dictionary is
shown Figure (b). Figure (c) shows the result of the wavelet shrinkage algorithm that reaches a
PSNR of 33.61 dB, Figure (d) shows the result of denoising using the dictionary learned on the
noisy image, with a PSNR of 35.24 dB.

Fig. 5. Figure (a) shows a simulated cosmic string map (1"x1"), and Figure (b) shows the
learned dictionary.

denoise it. We then use Sextractor, using the source location stored from the clean image

analysis and processing the denoised images. We show in Figure 14 two curves. The

first one is the number of sources in the image with a flux above a varying threshold, for

the original, wavelet denoised and CDL denoised images. The second curve shows how

the flux is dampened by the different denoising methods. We also show in Figures 15,

16 and 17 several features after denoising the galaxy cluster images using the different
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(a) (b)

(c) (d)

Fig. 6. Example of cosmic string simulation denoising with a high noise level, using the learned
dictionary from Figure 5 and the wavelet algorithm. Figure (a) is the source image, Figure (b)
shows the noisy image with a PSNR of 17.34 dB, Figure (c) shows the wavelet denoised version
with a PSNR of 30.19 dB and Figure (d) shows the learned dictionary denoised version with a
PSNR of 31.04 dB.

methods. It appears that the centered dictionary learning denoising restores objects with

better contrast, less blur, and is more sensitive to small sources. We finally give several

benchmarks to show how the centered dictionary learning is able to overcome the classic

approach.

The learned dictionary based techniques show a much better behavior in term of flux

comparison. This is consistent with the aspect of the features showed in Figures 15, 16

and 17. The CDL method induces less blurring of the sources and is more sensitive to

point-like features.

5. Software

We provide the matlab functions and script related to our numerical experiment at the

URL http://www.cosmostat.org/software.html.

6. Conclusion

We introduce a new variant of dictionary learning, the centered dictionary learning method,

for denoising astronomical observations. Centering the training patches yields an approx-
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Fig. 7. Benchmark comparing the wavelet shrinkage algorithm to the dictionary learning
denoising algorithm when dealing with various noise levels, using dictionary from Figure 5. Each
experiment is repeated 100 times and the results are averaged. We use the maximum value for
the patch overlaping parameter. The sparse coding uses OMP and is set to reach an error margin
(Cσw)2 where σ is the noise standard deviation and C is a gain factor set to 1.15. The wavelet
algorithm uses 5 scales of undecimated bi-orthogonal wavelets, with three bands per scale. The red
and blue lines correspond respectively to wavelet and learned dictionary denoising. The horizontal
axe is the PSNR between the noised and the source images, and the horizontal axe is the PSNR
between the denoised and the source images.

imate translation invariance inside the patches and lead to significant improvements in

terms of global quality as well as photometry or feature restoration. We conduct a com-

parative study of different dictionary learning and denoising schemes, as well as comparing

the performance of the adaptive setting to the state of the art in this matter. The dic-

tionary learning appears as a promising paradigm that can be exploited for many tasks.

We showed its efficiency in astronomical image denoising and how it overcomes the perfor-

mances of stat-of-the-art denoising algorithms that use non-adaptive dictionaries. The use

of dictionary learning requires to chose several parameters like the patch size, the number

of atoms in the dictionary or the sparsity imposed during the learning process. Those

parameters can have a significant impact on the quality of the denoising, or the computa-

tional cost of the processing. The patch-based framework also brings additional difficulties

as one have to adapt it to the problem to deal with. Some tasks require a more global

processing of the image and might require a more subtle use of the patches than the sliding

window used for denoising.
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Fig. 8. Images used in CDL benchmarks. Figure (a) is a Panoramic View of a Turbulent
Star-making Region, and Figure (b) is an ACS/WFC image of Abell 1689.

(a) (b)

(c) (d)

Fig. 9. Hubble images used for noiseless dictionary learning. Figure (b) is a Pandora’s Cluster
Abell, Figure (b) is a galaxy cluster, Figure (c) is a region in the Large Magellanic Cloud , and
Figure (d) is a second Pandora’s Cluster Abell.
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depending on the level of noise that was added. 100 experiments were repeated for each value of
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Fig. 14. Source photometry comparison between CDL and wavelet denoising. Figure (a) shows
how many sources have a flux above a varying threshold after denoising. Figure (b) shows how
the flux is dampened by denoising, representing the source flux after denoising as a function of
the source flux before denoising
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Fig. 15. Zoomed features extracted from a galaxy cluster image. (a) shows the full source
image before adding noise, (b) shows the noiseless source, (c) shows the noisy version, and (d), (e)
and (f) respectively show the denoised feature using wavelet denoising, classic dictionary learning
and centered dictionary learning.
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(a) (b) (c)

(d) (e) (f)

Fig. 16. Zoomed features extracted from the previously shown nebular image. (a) shows the full
source image before adding noise, (b) shows the noiseless source, (c) shows the noisy version, and
(d), (e) and (f) respectively show the denoised feature using wavelet denoising, classic dictionary
learning and centered dictionary learning.

(a) (b) (c)

(d) (e) (f)

Fig. 17. Zoomed features extracted from the previously shown nebular image. (a) shows the full
source image before adding noise, (b) shows the noiseless source, (c) shows the noisy version, and
(d), (e) and (f) respectively show the denoised feature using wavelet denoising, classic dictionary
learning and centered dictionary learning.
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