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Abstract. This paper introduces a generalized forward-backward splitting algorithm for finding
a zero of a sum of maximal monotone operators B +

Pn
i=1 Ai, where B is cocoercive. It involves the

computation of B in an explicit (forward) step and of the parallel computation of the resolvents of
the Ai’s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension,
and robustness to summable errors on the computed operators in the explicit and implicit steps. In
particular, this allows efficient minimization of the sum of convex functions f +

Pn
i=1 gi, where f

has a Lipschitz-continuous gradient and each gi is simple in the sense that its proximity operator is
easy to compute. The resulting method makes use of the regularity of f in the forward step, and
the proximity operators of the gi’s are applied in parallel in the backward step. While the forward-
backward algorithm cannot deal with more than n = 1 non-smooth function, we generalize it to
the case of arbitrary n. Examples on inverse problems in imaging demonstrate the advantage of the
proposed methods in comparison to other splitting algorithms.

Key words. Forward-backward algorithm, monotone operator splitting, non-smooth convex
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1. Introduction. Throughout this paper, H denotes a real Hilbert space en-
dowed with scalar product 〈· | ·〉 and associated norm || · ||, Id is the identity operator
on H, and n is a positive integer.

1.1. Structured Monotone Inclusion and Minimization Problems. We
consider the following monotone inclusion problem

Find x ∈
{

zer (B +
∑n
i=1Aix) def= {x ∈ H | 0 ∈ Bx+

∑n
i=1Aix}

}
, (1.1)

where B : H 7→ H is cocoercive, and for all i, Ai : H 7→ 2H is a maximal monotone
set-valued map. While such inclusion problems arise in various fields, our main mo-
tivation is to solve convex minimization problems. Indeed, it is well-known that the
subdifferential ∂gi of a function gi ∈ Γ0(H) is a maximal monotone map; Γ0(H) be-
ing the class of lower semicontinuous, proper, convex function from H to ]−∞,+∞].
If moreover f ∈ Γ0(H) is differentiable with a Lipschitz continuous gradient, then
Baillon-Haddad’s theorem [5] asserts that ∇f is cocoercive. Defining F def= f+

∑n
i=1gi,

the set of minimizers of F verifies

argminF = zer (∇f +
∑n
i=1∂gi) ,

provided that the following conditions hold
(H1) argminF 6= ∅,
(H2) (0, . . . , 0) ∈ sri{(x− y1, . . . , x− yn)

∣∣x ∈ H and ∀ i, yi ∈ dom gi},
where dom g

def= {x ∈ H
∣∣g(x) < +∞} denotes the domain of a function g and sriC

denotes the strong relative interior of a non-empty convex subset C ofH [6]. Therefore,
identifying B with ∇f and the Ai’s with the ∂gi’s, solving (1.1) allows to solve

min
x∈H
{F (x) def= f(x) +

∑n
i=1gi(x)} . (1.2)
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The structured monotone inclusion problem (1.1) is fairly general, and a wide
range of iterative algorithms to solve it take advantage of the specific properties of
the operators involved in the summand. As we will see, one crucial property is the
possibility to compute the resolvent of a maximal monotone operator A, denoted JA.
It is defined as (see Section 4.1 for details)

JAx = y
def⇔ x ∈ y +Ay .

For a given x ∈ H, computing JAx is in itself a monotone inclusion problem, but it
turns out that it can be solved explicitly for many operators, e.g. the action of the
resolvent can be easily computed in closed form. Our interest is in splitting methods to
solve (1.1): iterative algorithms that evaluate individually the operator B (cocoercive)
and the resolvents JAi , at various points of H, but not the resolvents of sums.

The next section recall several important previous works on splitting algorithms,
focusing on their application to convex optimization.

1.2. Splitting Methods for Minimization Problems. If g is a function in
Γ0(H), the resolvent of its subdifferential, J∂g, can be shown (see Section 4.1) to be
equal to the Moreau’s proximity operator of g [60], defined for all x ∈ H as

proxg(x) def= argmin
y∈H

1
2 ||x− y||

2 + g(y) .

Again, this can be solved explicitly for many functions; such functions are dubbed
“simple”.

Another important property of some part of a functional to be minimized is
differentiability. Recalling (1.2), the forward-backward algorithm applies if f is differ-
entiable with a Lipschitz continuous gradient, and n ≡ 1 with g1 simple. This scheme
consists in performing alternatively a gradient-descent (corresponding to an explicit
step on the function f) followed by a proximal step (corresponding to an implicit step
on the function g1). Such a scheme can be understood as a generalization of the pro-
jected gradient method. This algorithm, which finds its roots in numerical analysis
for PDE’s, has been well studied for solving monotone inclusion and convex optimiza-
tion problems [9, 19, 27, 45, 57, 62, 73, 75]. Accelerated multistep versions or convex
optimization have been proposed [8, 61, 76], that enjoy a faster convergence rate of
O(1/k2) on the objective F in the general case, where k is the iteration counter.

Other splitting methods do not require any smoothness on any part of the com-
posite functional F . The Douglas-Rachford scheme was originally developed to find
the zeros of the sum of two linear operators [31], and then two non-linear operators in
[53] or two maximal monotone operators in [55], see also [20, 37]. This scheme applies
to minimizing g1 + g2, provided that g1 and g2 are simple. The backward-backward
algorithm [1, 7, 20, 54, 62] can be used to minimize F = g1 +g2 when the functions in-
volved are the indicator functions of non-empty closed convex sets, or involve Moreau
envelopes. Interestingly, if one of the functions g1 or g2 is a Moreau envelope and the
other is simple, the backward-backward algorithm amounts to a forward-backward
scheme.

If L is a bounded injective linear operator, it is possible to minimize F = g1◦L+g2
by applying these splitting schemes on the Fenchel-Rockafellar dual problem. It was
shown that applying the Douglas-Rachford scheme leads to the alternating direction
method of multipliers (ADMM) [37, 44, 45, 46, 47]. For non-necessarily injective L
and g2 strongly convex with a Lipschitz continuous gradient, the forward-backward
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algorithm can be applied to the Fenchel-Rockafellar dual [22, 40]. Dealing with an
arbitrary bounded linear operator L can be achieved using primal-dual methods mo-
tivated by the classical Kuhn-Tucker theory. Starting from methods to solve saddle
function problems such as the Arrow-Hurwicz method [3] and its modification [66], the
extragradient method [49], this problem has received a lot of attention more recently
[11, 14, 18, 59, 70, 74].

It is also possible to extend the Douglas-Rachford algorithm to an arbitrary num-
ber n > 2 of simple functions. Inspired by the method of partial inverses [71, Sec-
tion 5], most methods rely either explicitly or implicitly on introducing auxiliary vari-
ables and bringing back the original problem to the case n ≡ 2 in the product space
Hn. Doing so yields iterative schemes in which one performs independent parallel
proximal steps on each of the simple functions and then computes the next iterate by
essentially averaging the results. Variants have been proposed in [24], and in [38] who
describe a general projective framework that does not reduce the problem to the case
n ≡ 2. These extensions however do not apply to the forward-backward scheme that
can only handle n ≡ 1. It is at the heart of this paper to present such an extension.

Recently proposed methods extend existing splitting schemes to handle the sum
of any number of n ≥ 2 composite functions of the form gi = hi ◦ Li, where the
hi’s are simple and the Li’s are bounded linear operators. Let us denote Li∗ the
adjoint operator of Li. If Li satisfies LiLi∗ = ν Id for any ν > 0 (it is a so-called
tight frame), hi ◦Li is simple as soon as hi is simple and Li∗ is easy to compute [23].
This case thus reduces to the previously reviewed ones. If Li is not a tight frame
but (Id +Li∗Li) or (Id +LiLi∗) is easily invertible, it is again possible to reduce
the problem to the previous cases by introducing as many auxiliary variables as the
number of Li’s each belonging to the range of Li. Note however that, if solved with
the Douglas-Rachford algorithm on the product space, the auxiliary variables are
also duplicated, which would increase significantly the dimensionality of the problem.
Some dedicated parallel implementations were specifically designed for the case where
(
∑
i Li
∗Li) or (

∑
i LiLi

∗) is (easily) invertible, see for instance [36, 63]. If the Li’s
satisfy none of the above properties, it is still possible to call on primal-dual methods,
either by writing F =

∑n
i=1 hi ◦ Li = g ◦ L with L(x) = (Li(x))i and g

(
(xi)i

)
=∑

i hi(xi), see for instance [33]; or on the product space F
(

(xi)i
)

=
∑
i hi (Lixi) +

ιS
(

(xi)i
)
[11], where ιS is the indicator function of the closed convex set S defined

in Section 4.2.
In spite of the wide range of already existing proximal splitting methods, none

seems satisfying to address explicitly the case where n > 1 and f is smooth but not
necessarily simple. A workaround that has been proposed previously used nested
algorithms to compute the proximity operator of

∑
i gi within sub-iterations, see for

instance [17, 34]; this leads to practical as well as theoretical difficulties to select the
number of sub-iterations. More recently, [59] proposed an algorithm for minimizing
F = f + g under linear constraints. We show in Section 2.3 how this can be adapted
to address the general problem (1.2) while achieving full splitting of the proximity
operators of the gi’s and using the gradient of f . In preparing a first draft of this
manuscript, we became aware that other authors [26, 28, 77] have independently and
concurrently developed primal-dual algorithms to solve problems that encompass the
one we consider here. These approaches and algorithms are however different from
ours in many important ways. This will be discussed in detail in Section 2.3 especially
in relation to [26]. We also report a suite of numerical experiments in Section 3 which
suggest that our primal algorithm is more adapted for imaging problems of the form
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(1.2).

1.3. Applications in Image Processing. Many imaging applications require
solving ill-posed inverse problems to recover high quality images from low-dimensional
and noisy observations. These challenging problems necessitate the use of regular-
ization through prior models to capture the geometry of natural signals, images or
videos. Numerical solution of inverse problems can be achieved through minimization
of objective functionals, with respect to a high-dimensional variable, that takes into
account both a fidelity term to the observations and regularization terms reflecting
the priors. Clearly, such functionals are composite by construction, hence fitting in
the framework of (1.2). Section 3 details several examples of such inverse problems.

In many situations, this leads to the optimization of a convex functional that
can be split into the sum of convex smooth and nonsmooth terms. The smooth
part of the objective is in some cases a data fidelity term and reflects some specific
knowledge about the forward model, i.e. the noise and the measurement/degradation
operator. This is for instance the case if the operator is linear and the noise is additive
Gaussian, in which case the data fidelity is a quadratic function. The most successful
regularizations that have been advocated are nonsmooth, which typically allow to
preserve sharp and intricate structures in the recovered data. Among such priors,
sparsity-promoting ones have become popular, e.g. the `1-norm of coefficients in a
wisely chosen dictionary [56], or total variation (TV) prior [69]. To better model the
data, composite priors can be constructed by summing several suitable regularizations,
see for instance the morphological diversity framework [72]. The proximity operator
of the `1-norm penalization is a simple soft-thresholding [30], whereas the use of
complex or mixed regularization priors justifies the splitting of nonsmooth terms in
several simpler functions (see Section 3 for concrete examples).

The composite structure of convex optimization problems raising when solving
inverse problems in the form of a sum of simple and/or smooth functions involving lin-
ear operators explains the popularity of proximal splitting schemes in imaging science.
Depending on the structure of the objective functional as detailed in the previous sec-
tion, one can resort to the appropriate splitting algorithm. For instance, the forward-
backward algorithm and its modifications has become popular for sparse regularization
with a smooth data fidelity, see for instance [8, 10, 16, 27, 29, 41, 43]. The Douglas-
Rachford and its parallelized extensions were also used in a variety of inverse problems
implying only nonsmooth functions, see for instance [12, 17, 23, 24, 32, 34, 35, 67].
The ADMM (which is nothing but Douglas-Rachford on the dual) was also applied to
some linear inverse problems in [2, 42]. Primal-dual schemes [14, 33] are among the
most flexible schemes to handle more complicated priors. The interested reader may
refer to [72, Chapter 7] and [25] for extensive reviews.

1.4. Contributions and Paper Organization. This paper introduces a novel
generalized forward-backward (GFB) algorithm to solve the monotone inclusion (1.1).
The algorithm achieves full splitting where all operators are used separately: an
explicit step for B (single-valued) and a parallelized implicit step through the resolvent
of the Ai’s. We prove convergence of the algorithm even when summable errors
may contaminate the iterations. To the best of our knowledge, it is among the first
algorithms to tackle the case where n > 1 (see Section 2.3 for relation to other
works). Although our numerical results are reported only on imaging applications,
the algorithm may prove useful for many other applications such as machine learning,
statistical estimation or optimal control.

Section 2 presents the algorithm and states our main theoretical result, before
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commenting on some relevant aspects and on alternatives in the literature. Numer-
ical examples are reported in Section 3 to show the usefulness of this approach for
imaging problems. The convergence proof is deferred to Section 4, after recalling some
preliminary results on monotone operator theory.

2. Generalized Forward-Backward Splitting.

2.1. The Algorithmic Scheme. We consider problem (1.1) where all operators
are maximal monotone, B is β-cocoercive with β ∈ ]0,+∞[, i.e.

∀x, y ∈ H, β||Bx−By||2 ≤ 〈Bx−By |x− y〉 ,

and for all i and all γ > 0, JγAi (the resolvent of γAi) is easy to compute. Our
proposed generalized forward-backward algorithm is detailed in Algorithm 1.

Algorithm 1 A Generalized Forward-Backward Algorithm for solving (1.1).
β ∈ ]0,+∞[ is a cocoercivity constant of B.

Require
(zi)i∈J1,nK ∈ Hn, (wi)i∈ J1,nK ∈ ]0, 1]n s.t.

∑n
i=1 wi = 1,

γ ∈ ]0, 2β[, λk ∈
]
0,min

(
3
2 ,

1
2 + β

γ

)[
∀k ∈ N .

Initialization
x←

∑
i wizi;

k ← 0.
Main iteration
repeat

for i ∈ J1, nK do
zi ← zi + λk

(
J γ
wi
Ai

(
2x− zi − γBx

)
− x
)

; (2.1)

x←
∑
i wizi;

k ← k + 1.
until convergence ;
Return x.

To state our main theorem that ensures the convergence of the algorithm and its
robustness to summable errors, for each i let ε1,k,i be the error at iteration k when
computing J γ

wi
Ai , and let ε2,k be the error at iteration k when computing B. An

inexact GFB algorithm generates sequences (zi,k)k∈N, i ∈ J1, nK and (xk)k∈N, such
that for all i ∈ J1, nK and k ∈ N,

zi,k+1 = zi,k + λk
(
J γ
wi
Ai

(
2xk − zi,k − γk (Bxk + ε2,k)

)
+ ε1,k,i − xk

)
. (2.2)

Theorem 2.1. Suppose that zer (B +
∑n
i=1Ai) 6= ∅. Suppose that the following

assumptions are satisfied:
(i) 0 < infk∈N λk ≤ supk∈N λk < min

(
3
2 ,

1
2 + β

γ

)
, and

(ii)
∑+∞
k=0 ||ε2,k|| < +∞, and for all i,

∑+∞
k=0 ||ε1,k,i|| < +∞.

Then the sequence (xk)k∈N defined in (2.2) converges weakly towards a solution of
(1.1). Moreover, if ∀ k ∈ N, λk ≤ 1, then the convergence is strong if either B
is uniformly monotone, or×n

i=1
w−1
i Ai is uniformly monotone. The latter is true

for instance if ∀i ∈ J1, nK, Ai is uniformly monotone with its modulus ϕ being also
subadditive or convex.
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The definition of uniform monotonicity and the function ϕ is provided in Sec-
tion 4.1.

The following corollary specializes Theorem 1 to the case of convex optimization
problems of the form (1.2).

Corollary 2.2. Suppose that ∇f is Lipschitz continuous with constant 1/β, and
that (H1)-(H2) are verified. Substitute, in Algorithm 1 and in (2.2), B with ∇f and Ai
with ∂gi (i.e. J γ

wi
Ai with prox γ

wi
gi). Then under assumptions (i)-(ii) of Theorem 2.1,

the sequence (xk)k∈N converges weakly towards a minimizer of (1.2). Moreover, if
∀ k ∈ N, λk ≤ 1, then (xk)k∈N converges strongly to the unique minimizer of (1.2) if
either f is uniformly convex, or×n

i=1
w−1
i ∂gi is uniformly monotone. The latter is

true for instance if ∀i ∈ J1, nK, gi is uniformly convex with its modulus ϕ being also
subadditive or convex.

The proofs are detailed in Section 4.

Remark 2.1. Recall that a function f ∈ Γ0(H) is uniformly convex of modulus
ϕ : [0,+∞[→ [0,+∞] if ϕ is a non-decreasing function that vanishes only at 0, such
that for all x and y in dom f , the following holds

∀ ρ ∈]0, 1[, f(ρx+ (1− ρ)y) + ρ(1− ρ)ϕ(||x− y||) ≤ ρf(x) + (1− ρ)f(y) .

The formulation of Algorithm 1 is general, but it can be simplified for practical
purposes. In particular, the auxiliary variables zi can all be initialized to 0, the
weights wi set equally to 1/n, and for simplicity the relaxation parameters λk can
be set to 1, constant along iterations. This is what has been done in the numerical
experiments described in Section 3.

2.2. Special instances. Our GFB algorithm can be viewed as a hybrid splitting
algorithm whose special instances turn out to be classical splitting methods; namely
the forward-backward and Douglas-Rachford algorithms.

Relaxed Forward-Backward. For n ≡ 1, the core update operator (2.1) of Algo-
rithm 1 specializes to

x← x+ λk (JγA (x− γBx)− x) ,

so that xk given by (2.2) follows the iterations of the relaxed forward-backward al-
gorithm [20, Section 6]. In this case, convergence can be ensured with step-size γ
varying along iterations, see discussion in Remark 4.3. For convex minimization
problems, known results on convergence rate analysis (on the objective in general)
and accelerated versions of the forward-backward algorithm [8, 9, 61, 76] might be
inspiring to study those of our GFB (for the case where β > 0).

Relaxed Douglas-Rachford. If we set B ≡ 0, the update of the auxiliary variables
in (2.1) becomes

zi ← zi + λk
(
J γ
wi
Ai

(
2x− zi

)
− x
)
,

so that (zi,k)i given by (2.2) follow the iterations of the relaxed Douglas-Rachford
algorithm on the product space Hn for solving 0 ∈

∑
iAix [24, 71]. The convergence

statements of Theorem 4.17-(a)-(c) hold by replacing the conditions on the relax-
ation parameters by ∀ k ∈ N, λk ∈]0, 2[ and

∑
k∈N λk(2 − λk) = +∞; this extends

Remark 4.1 to α = 1
2 , by Proposition 4.12 (see Section 4.5).



Generalized Forward-Backward Splitting 7

Resolvents of the sum of monotone operators. Our GFB scheme provides yet
another way for computing the resolvent of the sum of maximal monotone operators
(Ai)i. Given a point y ∈ ran (Id +

∑
iAi), set in (1.1) B : x 7→ x − y and β ≡ 1.

It would be interesting to compare this algorithm with the Douglas-Rachford and
Dykstra-based variants [21]. This is left to a future work.

2.3. Relation to other works.
Relation to [59]. The authors in [59, Section 5.3, (51)] describe an instance of the

“block-decomposition” hybrid proximal extragradient (HPE) for minimizing F = f+g
under linear constraints. (1.2) can be cast in an equivalent linearly constraint convex
programming

min
z=(zi)i∈Hn

f (P
iwizi) +

∑
i

gi(zi) such that PS⊥(z) = 0 , (2.3)

where PS⊥ is the orthogonal projector on the subspace S⊥ def= {z = (zi)i ∈ Hn |
∑
i wizi = 0}.

As PS⊥ is self-adjoint, z is an optimal solution if and only if there exists v = (vi)i ∈ Hn
such that

0 ∈
(
∇f

(P
jwjzj

) )
i
+ (∂gi(zi)/wi)i + PS⊥(v) and PS⊥(z) = 0 ,

and the minimizer of F is given by x =
∑
i wizi.

Let ς ∈]0, 1] and γ = ς 2ςβ

1+
√

1+4ς2β2
. Transposed to our setting, their iterations are

presented in Algorithm 2.

Algorithm 2 Iterations of Block-Decomposition HPE [59].
repeat

for i ∈ J1, nK do
zi ← prox γ

wi
gi

(
γ2x+

(
1− γ2

)
zi − γ∇f(x) + γ (vi − u)

)
;

for i ∈ J1, nK do
vi ← vi − γzi + γx;

x←
∑
i wizi;

u←
∑
i wivi.

until convergence ;

The update of the zi’s in this iteration bears similarities with the one in Algorithm 1,
where the γ’s play analogous roles. Nonetheless, the two algorithms are different. For
instance, our algorithm solves the primal problem while theirs solves both the primal
and dual problems. In addition, the objective in [59] is to study complexity, hence
the different set of assumptions.

In preparing a revised draft of this manuscript, it came to our attention that an
other adaptation of the block-decomposition HPE, exploiting the specific properties
of the linear constraints PS⊥(z) = 0 and changing the metric, leads to the iterations
(2.2) with ∀ k ∈ N, λk = 1, i.e. no under- nor over-relaxation. This could be an other
framework to study convergence properties of GFB.

Relation to [26]. These authors independently developed another algorithm to
solve a general class of problems that covers (1.1). They rely on the classical Kuhn-
Tucker theory and propose a primal-dual splitting algorithm for solving monotone
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inclusions involving a mixture of sums, linear compositions, and parallel sums (inf-
convolution in convex optimization) of set-valued and Lipschitz operators. More pre-
cisely, the authors exploit the fact that the primal and dual problems have a similar
structure, cast the problem as finding a zero of the sum of a Lipschitz continuous
monotone map with a maximal monotone operator whose resolvent is easily com-
putable. They solve the corresponding monotone inclusion using an inexact version
of Tseng’s forward-backward-forward splitting algorithm [75].

Removing the parallel sum, taking the linear operators as the identity in [26,
(1.1)], and assuming that the Lipschitz part is also cocoercive, one recovers problem
(1.1). For the sake of simplicity and space saving we do not reproduce here in full their
algorithm. However, adapted to the optimization problem minx∈H f(x)+

∑
i gi(Lix),

where each Li is a bounded linear operator, their scheme is presented in Algorithm 3
(gi∗ is the Legendre-Fenchel conjugate of gi).

Algorithm 3 Iterations of Primal-Dual Algorithm of [26].

Choose a sequence (γk)k∈N in [ε, (1 − ε)/ζ], where ζ def= β−1 +
√∑

i ||Li||2 and ε ∈
]0, 1/(1 + ζ)[.
k ← 0.
repeat

y ← x− γk (∇f(x) +
∑n
i=1 Li

∗ (vi))
for i ∈ J1, nK do

zi ← vi + γkLi (x);
vi ← vi − zi + proxγkgi∗(zi) + γkLi (y);

x← x− γk
(
∇f (y) +

∑n
i=1 Li

∗( proxγkgi∗(zi)
))
;

k ← k + 1
until convergence ;

Recall that the proximity operator of gi∗ can be easily deduced from that of gi using
Moreau’s identity. Taking Li = Id in Algorithm 3 solves (1.2). While we solve the
primal problem, their algorithm solves both the primal and dual ones. Note however
that it requires two calls to the gradient of f per iteration.

3. Numerical experiments. This section exemplifies the applicability of our
GFB splitting algorithm on image processing problems by solving some regularized
inverse problems. The problems are selected so that other splitting algorithms can be
applied as well and compared fairly. The parameters involved were manually selected
for each compared algorithm to achieve its best performance, for instance in terms of
energy decay. In the following, Id denotes the identity operator on the appropriate
space to be understood from the context, N is a positive integer and I ≡ RN×N is
the set of images of size N ×N pixels.

3.1. Variational Image Restoration. We consider a class of inverse prob-
lem regularizations, where one wants to recover an (unknown) high resolution image
y0 ∈ I from noisy low resolution observations y = Φy0 + w ∈ I. We report results
using several ill-posed linear operators Φ : I → I, and focus our attention on convo-
lution and masking operator, and a combination of these operators. In the numerical
experiments, the noise vector w ∈ I is a realization of an additive white Gaussian
noise of variance σ2

w.
The restored image ŷ0 = Wx̂ is obtained by optimizing the coefficients x̂ ∈ H in

a redundant wavelet frame [56], where W : H → I is the wavelet synthesis operator.
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The wavelet atoms are normalized so that W is a Parseval tight frame, i.e. it satisfies
WW ∗ = Id. In this setting, the coefficients are vectors x ∈ H ≡ IJ where the
redundancy J = 3J0 +1 depends on the number of resolutions levels J0 of the wavelet
transform.

The general variational problem for the recovery reads

min
x∈H
{F (x) ≡ 1

2 ||y − ΦWx||2 + µ||x||B1,2 + ν||Wx||TV} . (3.1)

The first term in the summand is the data-fidelity term, which is taken to be a squared
`2-norm to reflect the additive white Gaussianity of the noise. The second and third
terms are regularizations, enforcing priors assumed to be satisfied by the original
image. The first regularization is a `1/`2-norm by blocks, inducing structured sparsity
on the solution. The second regularization is a discrete total variation semi-norm,
inducing sparsity on the gradient of the restored image. The scalars µ and ν are
weights – so-called regularization parameters – to balance between each terms of the
energy F . We now detail the properties of each of these three terms.

3.1.1. Data-Fidelity 1
2 ||y − ΦWx||2. For the inpainting inverse problem, one

considers a masking operator

(M y)p
def=

{
0 if p ∈ Ω ,

yp otherwise ,

where Ω is a set of pixels, taking into account missing or defective sensors; we will
denote ρ = |Ω|/N2 the ratio of missing pixels. For the deblurring inverse problem, we
consider a convolution with a discrete Gaussian filter of width σK , K : y 7→ GσK ∗ y,
normalized to a unit mass. In the following, Φ will be eitherM , K or the composition
of both MK.

Denoting L def= ΦW , the fidelity term thus reads f(x) = 1
2 ||y−Lx||

2. The function
f corresponds to the smooth term in (1.2). Its gradient ∇f : x 7→ L∗ (Lx− y) is
Lipschitz continuous with constant β−1 ≤ ||ΦW ||2 = 1.

For any γ > 0, the proximity operator of f reads

proxγf (x) = (Id +γL∗L)-1 (x+ γL∗y) . (3.2)

The vector L∗y can be precomputed, but inverting Id +γL∗L may be in general
computationally demanding. For inpainting or deblurring alone, as W is associated
to a Parseval tight frame, the Sherman-Morrison-Woodbury formula gives

(Id +γL∗L)-1 = Id−L∗(Id +γLL∗)-1L

= Id−W ∗Φ∗(Id +γΦΦ∗)-1ΦW . (3.3)

Since M (resp. K) is a diagonal operator in the pixel domain (resp. Fourier domain),
(3.3) can be computed in O(N2) (resp. O(N2 logN)) operations. However, the
composite case L ≡MKW is more involved. A possible workaround1 is to introduce
an auxiliary variable, replacing f : H → R by f̃ : H× I →]−∞,+∞] defined by

f̃(x, u) = 1
2 ||y −Mu||2 + ιCKW (x, u) = g1(u) + g2(x, u) , (3.4)

1In this special case where Φ = MK, an alternative would be to reapply the inversion lemma to
(3.3). But this does not work in general unlike the auxiliary variables approach.
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where CKW
def= {(x, u) ∈ H × I | u = KWx}, and ιC is the indicator function of the

closed convex set C, i.e. ιC(v) = 0 if v ∈ C, and +∞ otherwise. Only then,
proxγg1 can be computed from (3.2), and proxγg2 is the orthogonal projection on
ker([Id,−KW ]) [12, 33], which involves a similar inversion as in (3.3).

3.1.2. Regularization µ||x||B1,2. Sparsity-promoting regularizations with a syn-
thesis-type prior over wavelet (or other transformed) coefficients are popular to solve
a wide range of inverse problems [56]. Figure 3.1(a) shows an example of orthogo-
nal wavelet coefficients of a natural image where most of the coefficients have small
amplitude. A way to enforce this “sparsity” is to include in (3.1) the `1-norm of the
coefficients ||x||1 =

∑
p |xp|.

The presence of edges or textures creates structured local dependencies in the
wavelet coefficients of natural images. A way to take into account those dependencies
is to replace the absolute value of the coefficients in the `1-norm by the `2-norm of
groups (or blocks) of coefficients [64, 78, 50, 15, 39]. This is known as the mixed
`1/`2-norm, defined here as

||x||B1,2 =
∑
b∈B

µb||xb|| =
∑
b∈B

µb

√∑
p∈b

x2
p , (3.5)

where p indexes the coefficients, the blocks b are sets of indices, the block-structure B is
a collection of blocks and xb

def= (xp)p∈b is a subvector of x indexed by b. The positive
scalars µb are weights tuning the influence of each block. (3.5) defines a norm on H as
soon as B covers the whole space, i.e. ∀ p ∈ J1, NK2×J1, JK, ∃b ∈ B : p ∈ b and µb > 0.
Note that for B ≡

⋃
p {p} and µ{p} ≡ 1 for all p, it reduces to the `1-norm.

We mentioned in the introduction that the proximal operator of the `1-norm is
the coefficient-wise soft-thresholding. Similarly, it is easy to show that whenever B is
a disjoint partition where the blocks are non-overlapping, i.e. ∀b,b′ ∈ B, b ∩ b′ = ∅,
the proximity operator of || · ||B1,2 is the block-wise soft-thresholding

proxµ||·||B1,2
(

(xb)b
)

=
(
Θµb·µ(xb)

)
b
,

with

Θτ (xb) =

{
0 if ||xb|| < τ ,(

1− τ
||xb||

)
xb otherwise ,

and the coefficients xp not covered by B are left unaltered.
Non-overlapping block structures break the translation invariance that is under-

lying most traditional image models. To restore this invariance, one can consider
overlapping blocks, as illustrated in Figure 3.1(c). Computing prox||·||B1,2 in this case
is not as simple as for the non-overlapping case, because the blocks cannot be treated
independently. For tree-structured blocks (i.e. b ∩ b′ 6= ∅ ⇒ b ⊂ b′ or b′ ⊂ b),
[48] proposes a method involving the computation of a min-cost flow. This could be
computationally expensive and do not address the general case anyway. Instead,
it is always possible to decompose the block structure as a finite union of non-
overlapping sub-structures B =

⋃
i Bi. The resulting term can finally be split into

||x||B1,2 =
∑

b∈B ||xb|| =
∑
i

∑
b∈Bi ||xb|| =

∑
i ||x||

Bi
1,2, where each || · ||Bi1,2 is simple.

In our numerical experiments where H ≡ IJ , coefficients within each resolution
level (from 1 to J0) and each subband are grouped according to all possible square
spatial blocks of size S × S; which can be decomposed into S2 non-overlapping block
structures.
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(a) ||x||1 =
P

p|xp| (b) ||x||B1,2 =
P

b∈B ||xb|| (c) ||x||B1,2 = ||x||B1
1,2 + ||x||B2

1,2

Figure 3.1: Illustration of the block `1/`2-norm. (a) sparsity of the image in an
orthogonal wavelet decomposition (gray pixels corresponds to low coefficients); (b) a
non-overlapping block structure; (c) splitting of a more complex overlapping block
structure into two non-overlapping layers.

3.1.3. Regularization ν||Wx||TV. The second regularization favors piecewise-
smooth images, by inducing sparsity on its gradient [69]. The total variation semi-
norm can be viewed as a specific instance of `1/`2-norm, ||y||TV = || grad y||BTV

1,2 , with

grad :
{
I −→ I2

y 7−→ (V ∗ y,H ∗ y) and || (v, h) ||BTV
1,2 =

∑
p∈J1,NK2

√
vp2 + hp

2 ,

where the image gradient is computed by finite differences through convolution with
a vertical filter V and a horizontal filter H, and BTV is clearly non-overlapping. For
some special gradient filters, the modified TV semi-norm can be split into simple
functions, see for instance [24, 67]. However, we consider more conventional filters

V =
(
−1 0
1 0

)
and H =

(
−1 1
0 0

)
centered in the upper-left corner. Introducing an auxiliary variable as advocated in
(3.4), the main difficulty remains to invert the operator (Id +γ grad ◦grad∗), where
grad∗ is the adjoint of the gradient (i.e. − the divergence operator). Under appro-
priate boundary conditions, this can be done in the Fourier domain in O(N2 log(N))
operations.

3.2. Resolution with Splitting Methods.

3.2.1. Tested Algorithms. We now give the details of the different splitting
strategies required to apply the three tested algorithms to (3.1).

Generalized Forward-Backward (GFB). The problem is rewritten under the form
(1.2) as

min
x∈H
u∈I2

1
2 ||y −MKWx||2 + µ

S2∑
i=1

||x||Bi1,2 + ν||u||BTV
1,2 + ιCgrad ◦W (x, u) , (3.6)

with f(x) ≡ 1
2 ||y −MKWx||2 and n ≡ S2 + 2. The indicator function ιCgrad ◦W is

defined similarly as in (3.4). In Algorithm 1, we set equal weights wi ≡ 1/n, a constant
gradient step-size γ ≡ 1.8β and a constant relaxation parameter to λ ≡ 1.
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Relaxed Douglas-Rachford (DR). Here the problem is split as

min
x∈H
u1∈I
u2∈I2

1
2 ||y −M u1||2 + ιCKW (x, u1) + µ

S2∑
i=1

||x||Bi1,2 + ν||u2||BTV
1,2 + ιCgrad ◦W (x, u2) ,

and solved with Algorithm 1, where f ≡ 0 and n ≡ S2+4. As mentioned in Section 2.2,
this corresponds to a relaxed version of the Douglas-Rachford algorithm. In our
experiments, the best results were obtained for γ ≡ 1/n.

Primal-Dual Chambolle-Pock (ChPo). A way to avoid operator inversions is to
rewrite the original problem as

min
x∈H

g(Λx)

where

Λ :

{
H −→ I × (H)S

2

× I2

x 7−→
(
MKWx, x, . . . , x, grad ◦Wx

) ,

and

g :

{
I × (H)S

2

× I2 −→ R+(
u1, x1, . . . , xS2 , g

)
7−→ 1

2 ||y − u1||2 + µ
∑S2

i=1 ||xi||
Bi
1,2 + ν||g||BTV

1,2

.

The operator Λ is a concatenation of linear operators and its adjoint is easy to com-
pute, and g is simple, being a separable sum of simple functions. Note that this is
not the only splitting possible. For instance, one can write the problem on a product
space as min

(xi)i∈H
ιS((xi)i) +

∑
i gi(Λixi), where gi is each of the functions in g above,

and Λi is each of the linear operators in Λ.
To solve this, we here use the primal-dual relaxed Arrow-Hurwicz algorithm de-

scribed in [14]. According to the notations in that paper, we set the parameters σ ≡ 1,
τ ≡ 0.9

σ(1+S2+8) and θ ≡ 1.
Block-Decomposition Hybrid Proximal Extragradient (HPE). We split the prob-

lem written in (3.6) according to (2.3), and set equals weights wi ≡ 1/n. According
to Section 2.3, we set the parameter ς ≡ 0.9.

Primal-Dual Combettes-Pesquet (CoPe). Finally, the problem takes its simplest
form

min
x∈H

1
2 ||y −MKWx||2 + µ

S2∑
i=1

||x||Bi1,2 + ν|| grad ◦Wx||BTV
1,2 . (3.7)

As long as ν ≡ 0 (no TV-regularization), this is exactly (3.6); we apply Algorithm 3
where Li ≡ Id for all i and γ ≡ 0.9/(1 + S). However with TV-regularization,
we avoid the introduction of the auxiliary variable u with LS2+1 ≡ grad ◦W and
γ ≡ 0.9/(1 +

√
S2 + 8).

3.2.2. Results. All experiments were performed on discrete images of width
N ≡ 256, with values in the range [0, 1]. The additive white Gaussian noise has
standard-deviation σw ≡ 2.5 ·10−2. The reconstruction operatorW uses separable bi-
dimensional Daubechies wavelets with 2 vanishing moments. It is implemented such
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that each atom has norm 2−j , with j ∈ J1, J0K and where J0 is the coarsest resolution
level. Accordingly, we set the weights µb in the `1/`2-norm to 2−j at the resolution
level j of the coefficients in block b. We use J0 ≡ 4, resulting in a dictionary with
redundancy J = 3J0 + 1 = 13. All algorithms are implemented in Matlab2.

Results are presented in Figures 3.2, 3.3, 3.4 and 3.5, Only one image is shown
here, but we obtained very similar results on other natural images (see http://www.
ceremade.dauphine.fr/~raguet/gfb/). For each problem, the five algorithms were
run 1000 iterations (initialized at zero), while monitoring their objective functional
values F along iterations. Fmin is fixed as the minimum value reached over the five
algorithms (in our experiments, this was always that of GFB), and evolution of the
objectives compared to Fmin is displayed for the first 100 iterations. Because the
computational complexity of an iteration may vary between algorithms, computation
times for 100 iterations (no parallel implementation) are given beside the curves.
Below the objective decay graph, one can find from left to right the original image,
the degraded image and the restored image after 100 iterations of generalized forward-
backward. Degraded and restored images quality are given in term of signal-to-noise
ratio (SNR).

Comparison to algorithms that do not use the (gradient) explicit step (ChPo,
DR). For the first three experiments, there is no total variation regularization. In the
deblurring task (Figure 3.2), blocks of size 2×2 are used. GFB is slightly faster than
the others while the iteration cost of ChPo is much higher for this problem. When
increasing the block size (inpainting, Figure 3.3, size 4×4) computation times tend to
be similar but the decay of the objective provided by GFB is clearly faster than that
of other algorithms. The advantage of using the gradient information becomes even
more salient in the composite case (i.e. Φ ≡MK): in Figure 3.4, DR performs hardly
better than ChPo. Indeed, in contrast to the previous cases (see Section 3.1.1), f
is not simple anymore and the introduction of the auxiliary variable decreases the
efficiency of each iteration of DR. This phenomenon is further illustrated in the last
case, where the total variation is added, introducing another auxiliary variable.

Comparison to algorithms that use the (gradient) explicit step (HPE, CoPe). In
the first experiment where n is small, the iterations of the suggested block-decompo-
sition HPE and CoPe are almost as efficient as those of GFB but take more time
to compute, especially for CoPe that needs two calls to ∇f . Recall however that
HPE and CoPe solve both the primal and dual problems. In the second setting,
HPE and CoPe are hardly better than DR. They perform better in the composite
setting (i.e. Φ ≡ MK), but require more computational time than GFB. In the last
setting, iterations of CoPe are still not as efficient as those of GFB, despite the
higher computational load due to the composition by the linear operator grad ◦W .

Finally, let us note that in the composite case, the SNR of the restored image
is greater when using both regularizations rather than one or the other separately.
Moreover, we observed that it yields restorations more robust to variations of the
parameters µ and ν. Those arguments seem to be in favor of mixed regularizations.

4. Convergence Proofs. This section is dedicated to the proof of convergence
of the GFB. We first recall some essential definitions and properties of monotone
operator theory that are necessary to our exposition. The interested reader may refer
to [6, 65] for a comprehensive treatment. As we will deal with maximal monotone

2The codes for reproducing the experiments, as well as results on other images, are available at
http://www.ceremade.dauphine.fr/~raguet/gfb/.
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(a) log(F − Fmin) vs. iteration #
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HPE
CoPe
GFB

(b) computing time

tChPo = 153 s
tDR = 95 s
tHPE = 148 s
tCoPe = 235 s
tGFB = 73 s

(c) LaBoute y0 (d) y = Ky0 + w, 19.63 dB (e) by0 = W bx, 22.45 dB

Figure 3.2: Deblurring: σ = 2; µ = 1.3 · 10−3; S = 2; ν = 0.

(a) log(F − Fmin) vs. iteration #
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(b) computing time

tChPo = 229 s
tDR = 219 s
tHPE = 352 s
tCoPe = 340 s
tGFB = 203 s

(c) LaBoute y0 (d) y = My0 + w, 1.54 dB (e) by0 = W bx, 21.66 dB

Figure 3.3: Inpainting: ρ = 0.7; µ = 2.6 · 10−3; S = 4; ν = 0.
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(a) log(F − Fmin) vs. iteration #
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HPE
CoPe
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(b) computing time

tChPo = 313 s
tDR = 256 s
tHPE = 342 s
tCoPe = 268 s
tGFB = 233 s

(c) LaBoute y0 (d) y = MKy0 + w, 3.93 dB (e) by0 = W bx, 20.77 dB

Figure 3.4: Composite: σ = 2; ρ = 0.4; µ = 1.0 · 10−3; S = 4; ν = 0.

(a) log(F − Fmin) vs. iteration #
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(b) computing time

tChPo = 358 s
tDR = 294 s
tHPE = 409 s
tCoPe = 441 s
tGFB = 286 s

(c) LaBoute y0 (d) y = MKy0 + w, 3.93 dB (e) by0 = W bx, 22.48 dB

Figure 3.5: Composite: σ = 2; ρ = 0.4; µ = 5.0 · 10−4; S = 4; ν = 5.0 · 10−3.
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operator splitting, we then introduce specific notations on the product space Hn. Fi-
nally, the proof itself is detailed in two steps. First, we derive an equivalent fixed point
equation satisfied by any solution of (1.1). From this, we draw an algorithmic scheme
(equivalent to GFB) and establish its convergence properties and its robustness to
summable errors.

4.1. Definitions and Properties. In the following, A : H → 2H is a set-valued
operator and T : domT = H → H is a full-domain (see below), single-valued operator.
Id denotes the identity operator on H.

Definition 4.1 (Graph, inverse, domain, range and zeros). The graph of A
is the set graA def=

{
(x, y) ∈ H2

∣∣ y ∈ Ax}. The inverse of A is the operator whose
graph is graA-1 def=

{
(x, y) ∈ H2

∣∣ (y, x) ∈ graA
}
. The domain of A is domA

def=
{x ∈ H | Ax 6= ∅}. The range of A is ranA def= {y ∈ H | ∃x ∈ H : y ∈ Ax}, and its
zeros set is zerA def= {x ∈ H | 0 ∈ Ax} = A-1 (0).

Definition 4.2 (Resolvent and reflection operators). The resolvent of A is the
operator JA

def=
(

Id +A
)-1. The reflection operator associated to JA is the operator

RA
def= 2JA − Id.
Definition 4.3 (Maximal monotone operator). A is monotone if

∀x, y ∈ H, (u ∈ Ax and v ∈ Ay)⇒ 〈u− v |x− y〉 ≥ 0 .

It is moreover maximal monotone if its graph is not strictly contained in the graph of
any other monotone operator.

Definition 4.4 (Uniformly monotone operator). A is uniformly monotone of
modulus ϕ : [0,+∞[→ [0,+∞] if ϕ is a non-decreasing function that vanishes only at
0, such that

∀x, y ∈ H, (u ∈ Ax and v ∈ Ay)⇒ 〈u− v |x− y〉 ≥ ϕ(||x− y||) .

Definition 4.5 (Non-expansive and α-averaged operators). T is non-expansive
if

∀x, y ∈ H, ||Tx− Ty|| ≤ ||x− y|| .

For α ∈]0, 1[, T is α-averaged if there exists R non-expansive such that T = (1 −
α) Id +αR. We denote A(α) the class of α-averaged operators on H. In particular,
A
(

1
2

)
is the class of firmly non-expansive operators.

Definition 4.6 (cocoercive operator). For β ∈ ]0,+∞[, T is β-cocoercive if
βT ∈ A

(
1
2

)
.

The following lemma gives some useful characterizations of firmly non-expansive
operators.

Lemma 4.7. The following statements are equivalent:
(i) T is firmly non-expansive;
(ii) 2T − Id is non-expansive;
(iii) ∀x, y ∈ H, ||Tx− Ty||2 ≤ 〈Tx− Ty |x− y〉;
(iv) T is the resolvent of a maximal monotone operator A, i.e. T = JA.
Proof. (i) ⇔ (ii), T ∈ A

(
1
2

)
⇔ T = Id +R

2 for some R non-expansive. (i) ⇔ (iii),
see [79]. (i) ⇔ (iv), see [58].

Note that with (iii), one retrieves the characterization of the cocoercivity given in
Section 2.1. It follows by the Cauchy-Schwarz inequality that β-cocoercivity implies
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1/β-Lipschitz continuity, but the converse is not true in general. It turns however to
be the case for gradients of convex functionals. We summarize here some properties
of the subdifferential.

Lemma 4.8. Let f : H → R be a convex differentiable function, with 1/β-
Lipschitz continuous gradient, β ∈ ]0,+∞[, and let g ∈ Γ0(H). Then,

(i) β∇f ∈ A
(

1
2

)
, i.e. is firmly non-expansive;

(ii) ∂g is maximal monotone;
(iii) The resolvent of ∂g is the proximity operator of g, i.e. proxg = J∂g.
Proof. (i) This is Baillon-Haddad theorem [5]. (ii) See [68]. (iii) See [60].

4.2. Product Space. Let (wi)i∈J1,nK ∈ ]0, 1]n such that
∑n
i=1 wi = 1. We

consider H def= Hn endowed with the scalar product 〈〈· || ·〉〉, defined as

∀x = (xi)i ,y = (yi)i ∈H, 〈〈x ||y〉〉 =
n∑
i=1

wi 〈xi | yi〉

and with the corresponding norm ||·||. S ⊂H denotes the non-empty closed convex set
defined by S def= {x = (xi)i ∈H | x1 = x2 = · · · = xn}, whose orthogonal complement
is the closed linear subspace S⊥. We denote by Id the identity operator on H, and
we define the canonical isometry

C : H → S, x 7→ (x, . . . , x) .

ιS : H→]−∞,+∞] and NS : H → 2H are respectively the indicator function and
the normal cone of S, that is

ιS(x) def=

{
0 if x ∈ S ,

+∞ otherwise ,
and NS(x) def=

{
S⊥ if x ∈ S ,

∅ otherwise .

Since S is non-empty closed and convex, it is straightforward to see that NS is
maximal monotone.

We also introduce the following concatenated operators. Fix B and the Ai’s in
problem (1.1). Given γ = (γi)i∈J1,nK ∈ ]0,+∞[n, we define

γ•A : H→ 2H,x = (xi)i 7→
n×
i=1

γiAi(xi) ,

i.e. its graph is

graγ•A def=
n×
i=1

gra γiAi

=
{

(x,y) ∈H2
∣∣ x = (xi)i ,y = (yi)i , and ∀ i, yi ∈ γiAixi

}
,

and B : H → H,x = (xi)i 7→ (Bxi)i. Using the maximal monotonicity of the Ai’s
and the β-cocoercivity of B, it is an easy exercise to establish that γ•A is maximal
monotone and B is β-cocoercive on H.

4.3. Fixed Point Equation. Now that we have all necessary material, let us
characterize solutions of (1.1).
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Proposition 4.9. Let (wi)i∈J1,nK ∈ ]0, 1]n. For any γ > 0, x ∈ H is a solution
of (1.1) if and only if there exists (zi)i∈J1,nK ∈ Hn such that{ ∀ i, zi = R γ

wi
Ai(2x− zi − γBx)− γBx ,

x =
∑
iwizi .

(4.1)

Proof. set γ > 0, we have the equivalence

0 ∈ Bx+
∑
i

Aix⇔ ∃ (zi)i ∈ H
n :
{
∀ i, wi (x− zi − γBx) ∈ γAix ,
x =

∑
i wizi .

Now,

wi (x− zi − γBx) ∈ γAix⇔ (2x− zi − γBx)− x ∈ γ

wi
Aix

(by Lemma 4.7 (iv))⇔ x = J γ
wi
Ai(2x− zi − γBx)

⇔ 2x− (2x− zi) = 2J γ
wi
Ai(2x− zi − γBx)

− (2x− zi − γBx)− γBx
⇔ zi = R γ

wi
Ai(2x− zi − γBx)− γBx .

From now on, to lighten the notation, we denote PS
def= JNS and RS

def= RNS .
Before formulating our fixed point equation, we need the following preparatory lemma.

Lemma 4.10. For all z = (zi)i ∈H, b = (b)i ∈ S, and γ = (γi)i ∈ ]0,+∞[n,
(i) PS is the orthogonal projector on S, and PSz = C

(∑
i wizi

)
;

(ii) RS (z − b) = RSz − b;
(iii) Rγ•Az =

(
RγiAi(zi)

)
i
.

Proof.
(i). From Lemma 4.8 (iii), we have for z ∈H,

PS(z) = argminy∈S ||z − y|| def= projS(z) .

Now, argminy∈S ||z − y||2 = C
(
argminy∈H

∑
i wi||zi − y||2

)
, where the unique mini-

mizer of
∑
i wi||zi − y||2 is the barycenter of (zi)i, i.e.

∑
i wizi.

(ii). PS is obviously linear, and so is RS . Since b ∈ S, RSb = b and the result
follows.

(iii). This is a consequence of the separability of γ•A in terms of the components
of z implying that Jγ•Az = (JγiAizi)i. The result follows from the definition of Rγ•A.

In the sequel, we denote the set of fixed points of an operator T : H → H by
fixT def= {z ∈H | Tz = z}.

Proposition 4.11. (zi)i∈J1,nK ∈ Hn satisfies (4.1) if and only if z = (zi)i is a
fixed point of the following operator

H −→ H
z 7−→ 1

2

[
Rγ•ARS + Id

][
Id− γBPS

]
(z) , (4.2)

with γ =
(
γ
wi

)
i
.
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Proof. Using Lemma 4.10 in (4.1), we have C(x) = PSz, C(Bx) = BPS(z) and
RS − γBPS = RS [Id− γBPS ]. Altogether, this yields,

z satisfies (4.1)⇔ z = Rγ•ARS
[
Id− γBPS

]
z − γBPSz

⇔ 2z = Rγ•ARS
[
Id− γBPS

]
z +

[
Id− γBPS

]
z

⇔ z = 1
2

[
Rγ•ARS + Id

][
Id− γBPS

]
z .

4.4. Properties of the Fixed Point Operator. Expression (4.2) gives us the
operator on which is based our GFB scheme. We first study the properties of this
operator that will play a crucial role in the convergence proof.

Proposition 4.12. For any γ ∈ ]0,+∞[n, define

T1,γ :
H −→ H
z 7−→ 1

2 [Rγ•ARS + Id] z . (4.3)

Then, T1,γ is firmly non-expansive, i.e. T1,γ ∈ A
(

1
2

)
.

Proof. From Lemma 4.7 (i)⇔(ii), RγiAi and RS are non-expansive, and so is Rγ•A
in view of Lemma 4.10 (iii). Finally, as a composition of non-expansive operators,
Rγ•ARS is also non-expansive, and the proof is complete by definition of A

(
1
2

)
.

Proposition 4.13. For any γ ∈]0, 2β[, define

T2,γ :
H −→ H
z 7−→ [Id− γBPS ] z . (4.4)

Then, T2,γ ∈ A
(
γ
2β

)
.

Proof. By hypothesis, βB ∈ A
(

1
2

)
and so is βB. Then, from Lemma 4.7 (iii), we

have for any x,y ∈H

||βBPSx− βBPSy||2 ≤ 〈〈βBPSx− βBPSy ||PSx− PSy〉〉
= 〈〈βPSBPSx− βPSBPSy ||x− y〉〉
= 〈〈βBPSx− βBPSy ||x− y〉〉 , (4.5)

where we derive the first equality from the fact that PS is self-adjoint (Lemma 4.10 (i)),
and the second equality using that for all x ∈H,BPSx ∈ S. From Lemma 4.7 (iii)⇔(i),
we establish that βBPS ∈ A

(
1
2

)
. We conclude using [20, Lemma 2.3].

Proposition 4.14. For all γ ∈ ]0,+∞[n and γ ∈ ]0, 2β[, T1,γT2,γ ∈ A(α), with
α = max

(
2
3 ,

2
1+2β/γ

)
.

Proof. As T1,γ and T2,γ are α-averaged operators by Proposition 4.12 and Proposi-
tion 4.13, it follows from [20, Lemma 2.2 (iii)] that their composition is also α-averaged
with the given value of α.

The following proposition defines a maximal monotone operator A′γ which will be
useful for characterizing the operator T1,γ .

Proposition 4.15. For all γ ∈ ]0,+∞[n there exists a maximal monotone
operator A′γ such that T1,γ = JA′γ . Moreover for all γ > 0,

y = T1,γT2,γz ⇔ z − y − γBPSz ∈ A′γy . (4.6)

In particular,

fixT1,γT2,γ = zer
(
A′γ + γBPS

)
.
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Proof. The existence of A′γ is ensured by Proposition 4.12 and Lemma 4.7 (iv).
Then for z ∈H,

y = T1,γT2,γz ⇔ y =
(
Id +A′γ

)-1(
Id− γBPS

)
z

⇔ z − γBPSz − y ∈ A′γy .

Taking y = z proves the second statement.
Now, let us examine the properties of A′γ .

Proposition 4.16. For all γ ∈ ]0,+∞[n and (u,y) ∈H2

u ∈ A′γy ⇔ uS − y⊥ ∈ γ•A
(
yS − u⊥

)
, (4.7)

where we denote for any v ∈H, vS def= PS (v) and v⊥ def= PS⊥ (v).
Proof. First of all, by definition of T1,γ we have

T1,γ = 1
2 [(2Jγ•A − Id) (2PS − Id) + Id]

= 1
2 [2Jγ•A(PS − PS⊥)− (PS − PS⊥) + PS + PS⊥ ]

= Jγ•A(PS − PS⊥) + PS⊥ . (4.8)

Therefore,

u ∈ A′γy ⇔ T1,γ (u+ y) = y

(by (4.8))⇔ Jγ•A

(
(u+ y)S − (u+ y)⊥

)
= y − (u+ y)⊥ = yS − u⊥

⇔ (u+ y)S − (u+ y)⊥ − yS + u⊥ ∈ γ•A
(
yS − u⊥

)
⇔ uS − y⊥ ∈ γ•A

(
yS − u⊥

)
.

4.5. Convergence. We are now ready to state the main convergence result of
our relaxed and inexact GFB splitting algorithm (2.2) to solve (1.1).

Theorem 4.17. Let γ ∈]0, 2β[, and set γ =
(
γ
wi

)
i
∈ ]0,+∞[n,

let (λk)k∈N be a sequence in
]
0,min

(
3
2 ,

1
2 + β

γ

)[
,

set z0 ∈H, and for every k ∈ N, set

zk+1 = zk + λk
(
T1,γ

(
T2,γzk + ε2,k

)
+ ε1,k − zk

)
(4.9)

where T1,γ (resp. T2,γ) is defined in (4.3) (resp. in (4.4)), and ε1,k, ε2,k ∈H. If
(i) zer

(
B +

∑
iAi
)
6= ∅;

(ii) 0 < infk∈N λk ≤ supk∈N λk < min
(

3
2 ,

1
2 + β

γ

)
;

(iii)
∑+∞
k=0 ||ε1,k|| < +∞ and

∑+∞
k=0 ||ε2,k|| < +∞.

are satisfied, then
(a)

(
T1,γT2,γzk − zk

)
k∈N converges strongly to 0;

(b) (zk)k∈N converges weakly to a point z ∈ fixT1,γT2,γ ;
(c)

(
xk

def=
∑
i wizi,k

)
k∈N converges weakly to x def=

∑
i wizi ∈ zer

(
B +

∑
iAi
)
.
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(d) Moreover, if ∀ k ∈ N, λk ≤ 1, (xk)k∈N converges strongly in each of the
following cases:
(1) B is uniformly monotone.
(2)×n

i=1
w−1
i Ai is uniformly monotone. For instance, this is true if ∀i ∈

J1, nK, Ai is uniformly monotone with the same modulus ϕ being also
subadditive or convex.

Proof. (a). Denoting T def= T1,γT2,γ , we have for all k ∈ N,

zk+1 = zk + λk
(
Tzk + εk − zk

)
, (4.10)

with εk
def= T1,γ

(
T2,γzk + ε2,k

)
− T1,γ

(
T2,γzk

)
+ ε1,k. Proposition 4.12 shows that

T1,γ ∈ A
(

1
2

)
is in particular non-expansive, so that ||εk|| ≤ ||ε2,k|| + ||ε1,k||, and we

deduce from (iii) that
∑+∞
k=0 ||εk|| < +∞. Moreover, by Proposition 4.14, T ∈ A(α)

with α = max
(

2
3 ,

2
1+2β/γ

)
. In particular, T is non-expansive and thus fixT is closed

and convex. Now, for k ∈ N, set Tk
def= Id + λk (T − Id), the iterations (4.10) can be

rewritten

zk+1 = Tkzk + λkεk . (4.11)

Since (ii) provides for all k ∈ N, αk
def= λkα < 1, [20, Lemma 2.2 (i)] shows that Tk ∈

A(αk), and (4.11) is thus a particular instance of [20, Algorithm 4.1]. Also, it is clear
that for all k ∈ N, fixTk = fixT . Thus with Proposition 4.9 and Proposition 4.11, (i)
provides

⋂
k∈N fixTk = fixT 6= ∅. According to (ii), infk∈N λk > 0 and supk∈N αk < 1,

so we deduce from [20, Theorem 3.1 and Remark 3.4] that∑
k∈N

∣∣∣∣∣∣Tkzk − zk∣∣∣∣∣∣2 < +∞. (4.12)

and that (zk)k∈N is quasi-Fejér monotone with respect to fixT . By definition of Tk,

(4.12) gives
∑
k∈N λk

2
∣∣∣∣∣∣Tzk − zk∣∣∣∣∣∣2 < +∞, which in turn implies Tzk − zk −→ 0

since infk∈N λk > 0.

(b). T being non-expansive, it follows from the demiclosed principle [13][6, Corol-
lary 4.18] that any weak cluster point of (zk)k∈N belongs to fixT , so that [6, Theo-
rem 5.5] provides weak convergence towards z ∈ fixT .

(c). For any y ∈ H, 〈y |xk − x〉 = 〈y |
∑
i wi(zi,k − zi)〉 =

∑
i wi 〈y | zi,k − zi〉 =

〈〈C(y) || zk − z〉〉. So, (b) provides weak convergence of (xk)k∈N towards x, which is a
zero of B +

∑
iAi by Proposition 4.9.

(d). If moreover ∀ k ∈ N, λk ≤ 1, in view of Proposition 4.12 and Proposition 4.13,
(4.9) is immediately a particular instance of [20, Algorithm 4.1]. In particular, [20,
Theorem 3.1 and Remark 3.4] provides∑
k∈N

∣∣∣∣∣∣(Id− T2,γ)zk − (Id− T2,γ)z
∣∣∣∣∣∣2 =

∑
k∈N

γ2
∣∣∣∣∣∣BPSzk −BPSz∣∣∣∣∣∣2 < +∞ , (4.13)

(d)(1). Now, if B is uniformly monotone, then we have for all k ∈ N,

〈〈BPSzk −BPSz || zk − z〉〉 =
∑
iwi
〈
B
(∑

iwizi,k
)
−B

(∑
iwizi

) ∣∣ zi,k − zi〉
=
〈
B
(∑

iwizi,k
)
−B

(∑
iwizi

) ∣∣∑
iwi(zi,k − zi)

〉
≥ ϕ

(
||xk − x||

)
.



22 H. Raguet, J. Fadili, G. Peyré

From (b) and (4.13), we deduce that the right-hand side of the last inequality converges
to 0. In view of the properties of ϕ, we obtain strong convergence of (xk)k∈N towards
x.

(d)(2). Let u = −γBPSz and ∀ k ∈ N,

yk = T1,γT2,γzk and uk = (zk − yk)− γBPSzk .

We then have ∣∣∣∣∣∣uk − u∣∣∣∣∣∣ ≤ ||yk − zk|| + γ
∣∣∣∣∣∣BPSzk −BPSz∣∣∣∣∣∣ .

It then follows from (a) and (4.13) that uk converges strongly to u. On the other
hand, by Proposition 4.15, we have

u ∈ A′γz and uk ∈ A′γyk .

Therefore, applying Proposition 4.16 to the pairs (z,u) and (yk,uk), and using the
fact that×n

i=1
w−1
i Ai is uniformly monotone, we obtain

〈
(uS − z⊥)− (uSk − y⊥k )

∣∣ (zS − u⊥)− (ySk − u⊥k )
〉
≥ ϕ

(∣∣∣∣∣∣(zS − u⊥)− (ySk − u⊥k )
∣∣∣∣∣∣) .

for some non-decreasing function ϕ : [0,+∞[→ [0,+∞] that vanishes only at 0. We
then have〈
(uS − z⊥)− (uSk − y⊥k )

∣∣ (zS − u⊥)− (ySk − u⊥k )
〉

=
〈
(uS − uSk )− (z⊥ − y⊥k )

∣∣ (zS − ySk )− (u⊥ − u⊥k )
〉

=
〈
uS − uSk

∣∣ zS − ySk 〉+
〈
z⊥ − y⊥k

∣∣u⊥ − u⊥k 〉
= 〈u− uk | z − yk〉 .

Moreover,

ϕ
(∣∣∣∣∣∣(zS − u⊥)− (ySk − u⊥k )

∣∣∣∣∣∣) = ϕ
(∣∣∣∣∣∣(zS − ySk )− (u⊥ − u⊥k )

∣∣∣∣∣∣)
= ϕ

(√∣∣∣∣∣∣zS − ySk ∣∣∣∣∣∣2 +
∣∣∣∣∣∣u⊥ − u⊥k ∣∣∣∣∣∣2

)
≥ ϕ

(∣∣∣∣∣∣zS − ySk ∣∣∣∣∣∣)
since ϕ ◦

√
· : [0,+∞[→ [0,+∞] is non-decreasing. Altogether, we arrive at

ϕ
(∣∣∣∣∣∣zS − ySk ∣∣∣∣∣∣) ≤ 〈u− uk | z − yk〉 .

By (a) and (b), yk converges weakly to z and we have shown that uk converges
strongly to u. This proves that 〈u− uk | z − yk〉 → 0 and therefore ySk converges
strongly to zS = x in view of the properties of ϕ. The latter in conjunction with (a)
implies that zSk = xk converges strongly to x.

It remains to show the special cases implying uniform monotonicity in (d)(2).
Indeed, if ∀ i ∈ J1, nK, Ai is uniformly monotone with the same modulus ϕ which is
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also convex, then for (x,u) ∈ graγ•A and (y,v) ∈ graγ•A,

〈〈u− v ||x− y〉〉 =
∑
i

wi 〈ui − vi |xi − yi〉 ≥
∑
i

wiγiϕ (||xi − yi||)

(0 < inf
i
γi <∞) ≥ inf

i
γi
∑
i

wiϕ (||xi − yi||)

(ϕ is convex) ≥ inf
i
γi ϕ

(∑
i

wi||xi − yi||

)

(ϕ is non-decreasing) ≥ inf
i
γi ϕ

inf
i
wi

√∑
i

||xi − yi||2


(ϕ is non-decreasing and wi ∈]0, 1]) ≥ inf

i
γi ϕ

inf
i
wi

√∑
i

wi||xi − yi||2


= inf

i
γi ϕ

(
inf
i
wi ||x− y||

)
.

The proof for the case where ϕ is subadditive follows the same lines using subad-
ditivity instead of convexity in the inequalities, and replacing infi γi by γ (since by
definition γiwi = γ) and infi wi by 1.

Remark 4.1. For statements (a)-(c), assumptions (ii) can be weakened. More
precisely, (ii) can be replaced by

∑
k∈N λk(1−αλk) = +∞ where α = max

(
2
3 ,

2
1+2β/γ

)
,

and (iii) by
∑
t∈N λk(||ε1,k|| + ||ε2,k||) < +∞. The proof would follow the same lines

as [20, Lemma 5.1].
Remark 4.2 (Strong Convergence). We have proved strong convergence of the

sequence (xk)k∈N, but we did not elaborate on strong convergence of (zk)k∈N. It turns
out that the sequence (zk)k∈N is indeed quasi-Fejér monotone with respect to fixT .
Thus, if int (fixT ) 6= ∅, [20, Lemma 2.8(iv)] provides strong convergence of (zk)k∈N,
and therefore of (xk)k∈N. An alternative sufficient condition is thatA′γ is demiregular;
see [4, Definition 2.3] and also [27, Condition 3.2] in the case of convex optimization.
Demiregularity occurs for instance if the operator has a boundedly relatively compact
domain (the intersection of its closure with any closed ball is compact); see [4, Propo-
sition 2.4]. However, this condition is rather abstract and it is not easy to translate
it in terms of the properties of the individual Ai’s when n > 1.

Remark 4.3 (Non-stationary GFB). Convergence of the non-stationary version
of our inexact GFB splitting algorithm, i.e. for a varying sequence (γk)k∈N, can also
be established. More precisely, it can be shown that the statements of Theorem 4.17
hold under the additional assumption that 0 < γ ≤ γk ≤ γ < 2β and (γk − γ)k∈N
is absolutely summable where γ ∈ [γ, γ]. The key idea underlying the proof consists
in viewing the non-stationary method as a perturbed version of the stationary method
with an additional error term (beside those previously considered in the implicit and
explicit steps), and to ensure that this error is also summable; see the initial work of
[51, 52] in this direction. This absolute summability assumption on (γk − γ)k∈N can
be dropped for n ≡ 1, in which case we recover the forward-backward algorithm.

Finally, let us explicit the relationship between Theorem 4.17 and the claims of
Section 2.1.

Proof of Theorem 2.1. It is straightforward to see that the vector whose co-
ordinates are the sequences (zi,k)k∈N defined in (2.2) follows iterations (4.9), with
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ε1,k = (ε1,k,i)i and ε2,k = C (−γε2,k), which are of course summable under the
required assumptions. Applying Theorem 4.17, the claimed convergence properties
follow.

Proof of Corollary 2.2. Under (H1)-(H2), [6, Theorem 16.2 and Theorem 16.37(i)]
provides that argmin(f+

∑
i gi) = zer (∇f +

∑
i ∂gi) 6= ∅. Furthermore, in Lemma 4.8(i)

provides that ∇f is β-cocoercive and Lemma 4.8(iii) shows that J γ
wi
Ai corresponds to

prox γ
wi
gi . Hence, weak convergence of (xk)k∈N towards a minimizer of (1.2) follows

from Theorem 4.17 (c). The proof of strong convergence is a consequence of Theo-
rem 4.17 (d) together with the fact that uniform convexity of a function in Γ0(H)
implies uniform monotonicity of its subdifferential [6].

5. Conclusion. We have introduced in this paper a novel splitting method for
finding a zero of a sum of an arbitrary number of maximal monotone operator. It
takes advantage of either the cocoercivity, or the possibility to compute the resolvent
of each operator separately. We provided theoretical guarantees on the convergence of
the algorithm and its robustness to summable errors. We emphasized the correspond-
ing novel primal proximal splitting method for minimizing convex functionals that are
the sum of a smooth term and several simple functions. It generalizes some existing
schemes and enlarges the class of problems that can be solved efficiently with prox-
imal splitting methods. Numerical experiments on convex optimization for inverse
problems show evidence of the advantages of our approach for large-scale imaging
problems.

REFERENCES

[1] F. Acker and M. A. Prestel, Convergence d’un schéma de minimisation alternée, Annales
de la faculté des sciences de Toulouse, 5,2 (1980), pp. 1–9.

[2] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, Fast image recovery using
variable splitting and constrained optimization, IEEE Transactions on Image Processing,
19 (2010), pp. 2345–2356.

[3] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and non-linear programming,
Stanford University Press, 1958.

[4] H. Attouch, L. M. Briceño-Arias, and P. L. Combettes, A parallel splitting method for
coupled monotone inclusions, SIAM J. Control Optim., 48 (2010), pp. 3246–3270.

[5] J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-
cycliquement monotones, Israel J. Math, 26 (1977), pp. 137–150.

[6] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces., Springer-Verlag, New York, 2011.

[7] H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the com-
position of two resolvents, Nonlinear Analysis-theory Methods & Applications, 60 (2005),
pp. 283–301.

[8] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems, SIAM J. Img. Sci., 2 (2009), pp. 183–202.

[9] K. Bredies and D. A. Lorenz, Linear convergence of iterative soft-thresholding, J. Fourier
Anal. Appl., 14 (2008). 813–837.

[10] L. M. Briceño-Arias and P. L. Combettes, Convex variational formulation with smooth
coupling for multicomponent signal decomposition and recovery, Numer. Math. Theory
Methods Appl., 2 (2009), pp. 485–508.

[11] , A monotone+skew splitting model for composite monotone inclusions in duality, SIAM
J. Opt., 21 (2011), pp. 1230–1250.

[12] L. M. Briceño-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustelnik, Proximal
algorithms for multicomponent image recovery problems, Journal of Mathematical Imaging
and Vision, (2010), pp. 1–20.

[13] F. E. Browder, Convergence theorems for sequences of nonlinear operators in banach spaces,
Mathematische Zeitschrift, 100 (1967), pp. 201–225.



Generalized Forward-Backward Splitting 25

[14] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120–145.

[15] C. Chaux, A. Benazza-Benyahia, and J.-C. Pesquet, A block-thresholding method for
multispectral image denoising, in SPIE Conference, vol. 5914, San Diego, CA, 2005, pp. 1H–
1–1H–13.

[16] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, A variational formulation
for frame based inverse problems, Inverse Problems, 23 (2007), pp. 1495–1518.

[17] C. Chaux, J.-C. Pesquet, and N. Pustelnik, Nested iterative algorithms for convex con-
strained image recovery problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 730–
762.

[18] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization
problems, Math. Program., 64 (1994), pp. 81–101.

[19] G. H.-G. Chen and R. T. Rockafellar, Convergence rates in forward–backward splitting,
SIAM Journal on Optimization, 7 (1997), pp. 421–444.

[20] P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged
operators, Optimization, 53 (2004), pp. 475–504.

[21] , Iterative construction of the resolvent of a sum of maximal monotone opera- tors, J.
Convex Anal., 16 (2009), pp. 727–748.
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