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Abstract Lipschitz continuity of the gradient mapping of a continuously differen-
tiable function plays a crucial role in designing various optimization algorithms.
However, many functions arising in practical applications such as low rank matrix
factorization or deep neural network problems do not have a Lipschitz continuous
gradient. This led to the development of a generalized notion known as the L-
smad property, which is based on generalized proximity measures called Bregman
distances. However, the L-smad property cannot handle nonsmooth functions,
for example, simple nonsmooth functions like |x4 − 1| and also many practical
composite problems are out of scope. We fix this issue by proposing the MAP
property, which generalizes the L-smad property and is also valid for a large class
of structured nonconvex nonsmooth composite problems. Based on the proposed
MAP property, we propose a globally convergent algorithm called Model BPG,
that unifies several existing algorithms. The convergence analysis is based on a
new Lyapunov function. We also numerically illustrate the superior performance
of Model BPG on standard phase retrieval problems and Poisson linear inverse
problems, when compared to a state of the art optimization method that is valid
for generic nonconvex nonsmooth optimization problems.
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1 Introduction

We solve possibly nonsmooth and nonconvex optimization problems of the form

(P) inf
x∈RN

f(x) . (1)

where f : RN → R is a proper lower semicontinuous function that is bounded from
below. Special instances of the above mentioned problem include two broad classes
of problems, namely, additive composite problems (Section 4.1) and composite
problems (Section 4.2). Such problems arise in numerous practical applications such
as, quadratic inverse problems Bolte et al. (2018), low-rank matrix factorization
problems Mukkamala and Ochs (2019), Poisson linear inverse problems Bauschke
et al. (2016), robust denoising problems Mukkamala et al. (2020), deep linear neural
networks Mukkamala et al. (2019), and many more.
In this paper, we design an abstract framework for provable globally convergent
algorithms based on a quality measure for suitable approximation of the objective.
A classical special case is that of a continuously differentiable f : RN → R,
whose gradient mapping is Lipschitz continuous over RN . Such functions enjoy the
well-known Descent Lemma (cf. Lemma 1.2.3 of Nesterov (2004))

−L
2
‖x−x̄‖2 ≤ f(x)−f(x̄)−〈∇f(x̄),x− x̄〉 ≤ L̄

2
‖x−x̄‖2 , for all x, x̄ ∈ RN , (2)

which describes the approximation quality of the objective f by its linearization
f(x̄) + 〈∇f(x̄),x− x̄〉 in terms of a quadratic error estimate with certain L, L̄ > 0.
Such inequalities play a crucial role in designing algorithms that are used to minimize
f . Gradient Descent is one such algorithm. We illustrate Gradient Descent in terms
of sequential minimization of suitable approximations to the objective, based on
the first order Taylor expansion – the linearization of f around the current iterate
xk ∈ RN . Consider the following model function at the iterate xk ∈ RN :

f(x;xk) := f(xk) + 〈∇f(xk),x− xk〉 , (3)

where 〈·, ·〉 denotes the standard inner product in the Euclidean vector space RN
of dimension N and f(·;xk) is the linearization of f around xk. Set τ > 0. Now,
the Gradient Descent update can be written equivalently as follows:

xk+1 = argmin
x∈RN

{
f(x;xk) +

1

2τ
‖x− xk‖2

}
⇔ xk+1 = xk − τ∇f(xk) . (4)

Its convergence analysis is essentially based on the Descent Lemma (2), which we
reinterpret as a bound on the linearization error (model approximation error) of f .
However, obviously (2) imposes a quadratic error bound, which cannot be satisfied
in general. For example, functions like x4 or (x3 + y3)2 or (1− xy)2 do not have a
Lipschitz continuous gradient. The same is true in several of the above-mentioned
practical applications.
This issue was recently resolved in Bolte et al. (2018), based on the initial work in
Bauschke et al. (2016), by introducing a generalization of the Lipschitz continuity
assumption for the gradient mapping of a function, which was termed the “L-smad
property”. In convex optimization, similar notion coined “relative smoothness” was
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proposed in Lu et al. (2018). Such a notion was also independently considered in
Birnbaum et al. (2011), before Lu et al. (2018). However, all these approaches rely
on the model function (3), which is the linearization of the function. In this paper,
we generalize to arbitrary model functions (Definition 5) instead of the linearization
of the function.
We briefly recall the “L-smad property”. The main limitation of the Lipschitz
continuous gradient notion is that it can only allow for quadratic approximation
model errors. To go far beyond this setting, it then appears natural to invoke more
general proximity measures as afforded by Bregman distances Bregman (1967).
Several variants of Bregman distances exist in the literature Censor and Lent (1981);
Bauschke and Borwein (1997); Bolte et al. (2018); Lu et al. (2018). We focus on
those distances that are generated from so-called Legendre functions (Definition 3).
Consider a Legendre function h, then the Bregman distance between x ∈ domh
and y ∈ int domh is given by

Dh(x,y) := h(x)− h(y)− 〈∇h(y),x− y〉 . (5)

A continuously differentiable function f : RN → R is L-smad with respect to a
Legendre function h : RN → R over RN with L̄, L > 0, if we have

− LDh(x, x̄) ≤ f(x)− f(x̄)− 〈∇f(x̄),x− x̄〉 ≤ L̄Dh(x, x̄) ,∀x, x̄ ∈ RN . (6)

Note that with h(x) = 1
2‖x‖

2 in (6) we recover (2). We interpret the inequalities
in (6) as a generalized distance measure for the linearization error of f . Similar to
the Gradient Descent setting, minimization of f(x̄) + 〈∇f(x̄),x− x̄〉+ 1

τDh(x, x̄)
results in the Bregman proximal gradient (BPG) algorithm’s update step Bolte
et al. (2018) (a.k.a. Mirror Descent Beck and Teboulle (2003)).

However, the L-smad property relies on the continuous differentiability of the
function f , thus nonsmooth functions as simple as |x4 − 1| or |1 − (xy)2| or
log(1 + |1− (xy)2|) cannot be captured under the L-smad property. This lead us
to the development of the MAP property (Definition 7), where MAP abbreviates
Model Approximation Property. Consider a function f : RN → R that is proper
lower semicontinuous (lsc), and a Legendre function h : RN → R with domh = RN .
For certain x̄ ∈ RN , we consider generic model function f(x; x̄) that is proper lsc
and approximates the function around the model center x̄, while preserving the
local first order information (Definition 5). The MAP property is satisfied with
constants L̄ > 0 and L ∈ R if for any x̄ ∈ RN the following holds:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ RN . (7)

Note that we do not require the continuous differentiability of the function f . Our
MAP property is inspired from Davis et al. (2018). However, their work considers
only the lower bound with a weakly convex model function. Similar to the BPG
setting, minimization of f(x; x̄) + 1

τDh(x, x̄) essentially results in Model BPG
algorithm’s update step. We illustrate the MAP property with a simple example.
Consider a composite problem f(x) = g(F (x)) := |x4 − 1|, where F (x) := x4 − 1
and g(x) := |x|. Note that neither the Lipschitz continuity of the gradient nor the
L-smad property is valid for this problem. However, the MAP property is valid with
L̄ = L = 4 using f(x; x̄) := g(F (x̄) +∇F (x̄)(x− x̄)), where ∇F (x̄) is the Jacobian
of F at x̄, and Dh(x, x̄) = 1

4x
4 − 1

4 x̄
4 − x̄3(x− x̄), generated by h(x) = 1

4x
4. We

provide further details in Example 6 and in Example 9.
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1.1 Contributions and relations to prior work

Our main contributions are the following.

– We introduce the MAP property, which generalizes the Lipschitz continuity
assumption of the gradient mapping and the L-smad property Bolte et al. (2018);
Bauschke et al. (2016). Earlier proposed notions were restricted to additive
composite problems. The MAP property is essentially an extended Descent
Lemma that is valid for generic composite problems (see Section 4) and beyond,
based on Bregman distances. MAP like property was considered in Davis et al.
(2018), however with focus on stochastic optimization and lower bounds of
their MAP like property. The MAP property relies on the notion of model
function, that serves as a function approximation, and preserves the local first
order information of the function. Our work extends the foundations laid by
Drusvyatskiy et al. (2019); Davis et al. (2018) based on generic model functions
(potentially nonconvex), and Ochs et al. (2019) based on convex model functions.
Taking inspiration from the update steps used in Davis et al. (2018) and based
on the MAP property, we propose the Model based Bregman Proximal Gradient
(Model BPG) algorithm (Algorithm 1). Apart from the work in Davis et al.
(2018), another close variant of Model BPG is the line search based Bregman
proximal gradient method Ochs et al. (2019), however, both the works do not
consider the convergence of the full sequence of iterates.

– The global convergence analysis typically relies on the descent property of the
function values. However, using function values can be restrictive, and alternatives
are sought Pauwels (2016). We fix this issue by introducing a new Lyapunov
function. We show that the (full) sequence generated by Model BPG converges
to a critical point of the objective function. Notably, the usage of a Lyapunov
function is popular for analysis of inertial algorithms Attouch et al. (2000); Ochs
et al. (2014); Mukkamala et al. (2020); Attouch et al. (2020) and through our
work we aim to popularize Lyapunov functions also for noninertial algorithms.

– The global convergence analysis of Bregman proximal gradient (BPG) Bolte
et al. (2018) relies on the full domain of the Bregman distance, which contradicts
their original purpose to represent the geometry of the constraint set. Our
convergence theorem relaxes this restriction under certain assumptions that are
typically satisfied in practice. In general, this requires the limit points of the
sequence to lie in the interior of domain of the employed Legendre function.
While this is certainly still a restriction, nevertheless, the considered setting
is highly nontrivial and novel in the general context of nonconvex nonsmooth
optimization. Moreover, it allows us to avoid the common restriction of requiring
(global) strong convexity of the Legendre function, a severe drawback that rules
out many interesting applications in related approaches (Section 5.2). In the
context of convex optimization, works such as Lu (2019); Gutman and Peña
(2018) use the reference functions (notion similar to the Legendre function)
that are not strongly convex. In nonconvex nonsmooth optimization, Legendre
functions that are not strongly convex are considered in Davis et al. (2018).

– We validate our theory with a numerical section showing the flexibility and the
superior performance of Model BPG compared to a state of the art optimization
algorithm, namely, Inexact Bregman Proximal Minimization Line Search (IBPM-
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LS) Ochs et al. (2013), on standard phase retrieval problems and Poisson linear
inverse problems.

1.2 Preliminaries and notations.

All the notations are primarily taken from Rockafellar and Wets (1998). We
work in a Euclidean vector space RN of dimension N ∈ N∗ equipped with the
standard inner product 〈·, ·〉 and induced norm ‖ · ‖. For a set C ⊂ RN , we define
‖C‖− := infs∈C ‖s‖. For any vector x ∈ RN , the i th coordinate is denoted by xi.
We work with extended-valued functions f : RN → R, R := R∪{+∞}. The domain
of f is dom f :=

{
x ∈ RN | f(x) < +∞

}
and a function f is proper, if dom f 6= ∅.

It is lower semi-continuous (or closed), if lim infx→x̄ f(x) ≥ f(x̄) for any x̄ ∈ RN .
Let intΩ denote the interior of Ω ⊂ RN . We use the notation of f -attentive
convergence x

f→ x̄ ⇔ (x, f(x)) → (x̄, f(x̄)) and the notation k
K→ ∞ for some

K ⊂ N to represent k →∞ where k ∈ K. The indicator function δC of a set C ⊂ RN
is defined by δC(x) = 0, if x ∈ C and δC(x) = +∞, otherwise. The (orthogonal)
projection of x̄ onto C, denoted projC(x̄), is given by a minimizer of minx∈C ‖x−x̄‖,
which is well defined for a non-empty closed C. A set-valued mapping T : RN ⇒ RM
is defined by its graph GraphT :=

{
(x,v) ∈ RN × RM |v ∈ T (x)

}
with domain

given by domT :=
{
x ∈ RN |T (x) 6= ∅

}
. Following (Rockafellar and Wets, 1998,

Def. 6.3), let x̄ ∈ C, a vector v is regular normal to C, written v ∈ N̂C(x̄), if
〈v,x− x̄〉 ≤ o(‖x − x̄‖) for x ∈ C. Here, v would be a normal vector, written
v ∈ NC(x̄), if there exist sequences xk → x̄ and vk → v, such that xk ∈ C

with vk ∈ N̂C(xk) for all k ∈ N. Following (Rockafellar and Wets, 1998, Def.
8.3), we introduce subdifferential notions for nonsmooth functions. The Fréchet
subdifferential of f at x̄ ∈ dom f is the set ∂̂f(x̄) of elements v ∈ RN such that

lim inf
x→x̄
x 6=x̄

f(x)− f(x̄)− 〈v,x− x̄〉
‖x− x̄‖ ≥ 0 .

For x̄ 6∈ dom f , we set ∂̂f(x̄) = ∅. The (limiting) subdifferential of f at x̄ ∈
dom f is defined by ∂f(x̄) :=

{
v ∈ RN | ∃yk

f→ x̄, vk ∈ ∂̂f(yk), vk → v
}
, and

∂f(x̄) = ∅ for x̄ 6∈ dom f . As a direct consequence of the definition of the limiting
subdifferential, we have the following closedness property at any x̄ ∈ dom f :

yk
f→ x̄, vk → v̄, and for all k ∈ N : vk ∈ ∂f(yk) =⇒ v̄ ∈ ∂f(x̄) . (8)

A vector v ∈ RN is a horizon subgradient of f at x̄, if there are sequences xk
f→ x̄,

vk ∈ ∂̂f(xk), one has λkvk → v for some sequence λk ↘ 0. The set of all
horizon subgradients ∂∞f(x̄) is called horizon subdifferential. A point x̄ ∈ dom f
satisfying 0 ∈ ∂f(x̄) is a called a critical point, which is a necessary optimality
condition (Fermat’s rule (Rockafellar and Wets, 1998, Thm. 10.1)) for x̄ being a
local minimizer. The set of critical points is denoted by

critf :=
{
x ∈ RN : 0 ∈ ∂f(x)

}
.
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The set of (global) minimizers of a function f is

Argmin
x∈RN

f(x) :=

{
x ∈ RN | f(x) = inf

x̄∈RN
f(x̄)

}
,

and the (unique) minimizer of f by argminx∈RN f(x) if Argminx∈RN f(x) is a
singleton. We also use for short Argmin f and argmin f .
Our global convergence theory relies on the so-called Kurdyka–Łojasiewicz (KL)
property. It is a standard tool that is essentially satisfied by most of the functions
that appear in practice. We just state the definition here from Attouch et al. (2013)
and refer to Bolte et al. (2006, 2007, 2014); Kurdyka (1998) for more details.

Definition 1 (Kurdyka–Łojasiewicz property). Let f : RN → R and let x̄ ∈
dom ∂f . If there exists η ∈ (0,∞], a neighborhood U of x̄ and a continuous concave
function ϕ : [0, η)→ R+ such that

ϕ(0) = 0, ϕ ∈ C1(0, η), and ϕ′(s) > 0 for all s ∈ (0, η),

and for all x ∈ U ∩ [f(x̄) < f(x) < f(x̄) + η] the Kurdyka–Łojasiewicz inequality

ϕ′(f(x)− f(x̄))‖∂f(x)‖− ≥ 1 (9)

holds, then the function has the Kurdyka–Łojasiewicz property at x̄. If, additionally,
the function is lsc and the property holds at each point in dom ∂f , then f is called
a Kurdyka–Łojasiewicz function.

We abbreviate Kurdyka–Łojasiewicz property as KL property. The function ϕ
in the KL property is known as the desingularizing function. It is well known
that the class of functions definable in an o-minimal structure van den Dries and
Miller (1996) satisfy the KL property (Bolte et al., 2007, Theorem 14). Sets and
functions that are semi-algebraic and globally subanalytic (for example, see (Bolte
et al., 2007, Section 4), (Ochs, 2015, Section 4.5)) can be defined in an o-minimal
structure.
We briefly review the concept of gradient-like descent sequence, that eases the
global convergence analysis of Model BPG. We use the following results from Ochs
(2019). Let F : RN ×RP → R be a proper, lsc function that is bounded from below.

Assumption 1 (Gradient-like Descent Sequence Ochs (2019)). Let (un)n∈N
be a sequence of parameters in RP and let (εn)n∈N be an `1-summable sequence
of non-negative real numbers. Moreover, we assume there are sequences (an)n∈N,
(bn)n∈N, and (dn)n∈N of non-negative real numbers, a non-empty finite index set
I ⊂ Z and θi ≥ 0, i ∈ I, with

∑
i∈I θi = 1 such that the following holds:

(H1) (Sufficient decrease condition) For each n ∈ N, it holds that

F(xn+1,un+1) + and
2
n ≤ F(xn,un) .

(H2) (Relative error condition) For each n ∈ N, it holds that: (set dj = 0 for j ≤ 0)

bn+1‖∂F(xn+1,un+1)‖− ≤ b
∑
i∈I

θidn+1−i + εn+1 .

(H3) (Continuity condition) There exists a subsequence ((xnj ,unj ))j∈N and (x̃, ũ) ∈
RN × RP such that (xnj ,unj )

F→ (x̃, ũ) as j →∞ .
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(H4) (Distance condition) It holds that dn → 0 =⇒ ‖xn+1 − xn‖2 → 0 and ∃n′ ∈
N : ∀n ≥ n′ : dn = 0 =⇒ ∃n′′ ∈ N : ∀n ≥ n′′ : xn+1 = xn .

(H5) (Parameter condition) (bn)n∈N 6∈ `1 , supn∈N
1

bnan
<∞ , infn an =: a > 0 .

We now provide the global convergence statement from Ochs (2019), based on
Assumption 1. The set of limit points of a bounded sequence ((xn,un))n∈N is
ω(x0,u0) := lim supn→∞ {(xn,un)} , and denote the subset of F-attentive limit
points by

ωF (x0,u0) :=
{

(x̄, ū) ∈ ω(x0,u0) | (xnj ,unj )
F→ (x̄, ū) for j →∞

}
.

Theorem 2 (Global convergence (Ochs, 2019, Theorem 10)). Suppose F
is a proper lsc KL function that is bounded from below. Let (xn)n∈N be a bounded
sequence generated by an abstract algorithm parametrized by a bounded sequence
(un)n∈N that satisfies Assumption 1. Assume that F-attentive convergence holds
along converging subsequences of ((xn,un))n∈N, i.e. ω(x0,u0) = ωF (x0,u0). Then,
the following holds:

(i) The sequence (dn)n∈N satisfies
∑∞
k=0 dk < +∞ , i.e., the trajectory of the se-

quence (xn)n∈N has finite length w.r.t. the abstract distance measures (dn)n∈N.
(ii) Suppose dk satisfies ‖xk+1 − xk‖2 ≤ c̄dk+k′ for some k′ ∈ Z and c̄ ∈ R, then

(xn)n∈N is a Cauchy sequence, and thus (xn)n∈N converges to x̃ from (H3).
(iii) Moreover, if (un)n∈N is a converging sequence, then each limit point of the

sequence ((xn,un))n∈N is a critical point of F , which in the situation of (ii) is
the unique point (x̃, ũ) from (H3).

Legendre functions defined below generate Bregman distances, which are generalized
proximity measures compared to the Euclidean distance.

Definition 3 (Legendre function (Rockafellar, 1970, Section 26)). Let
h : RN → R be a proper lsc convex function. It is called:

(i) essentially smooth, if h is differentiable on int domh, with moreover ‖∇h(xk)‖ →
∞ for every sequence (xk)k∈N ∈ int domh converging to a boundary point of
domh as k →∞;

(ii) of Legendre type if h is essentially smooth and strictly convex on int domh.

Some properties of Legendre function include dom ∂h = int domh, and ∂h(x) =
{∇h(x)}, ∀x ∈ int domh. Additional properties can be found in (Bauschke and
Borwein, 1997, Section 2.3). For the purpose of our analysis, we later require that
the Legendre functions are twice continuously differentiable (see Assumption 4).
Legendre function is also referred as kernel generating distance Bolte et al. (2018),
or a reference function Lu et al. (2018). Generic reference functions used in Lu
et al. (2018) are more general compared to Legendre functions, as they do not
require essential smoothness. The Bregman distance associated with any Legendre
function h is defined by

Dh(x,y) = h(x)− h(y)− 〈∇h(y),x− y〉 , ∀x ∈ domh, y ∈ int domh . (10)

In contrast to the Euclidean distance, the Bregman distance is lacking symmetry.
Prominent examples of Bregman distances can be found in (Bauschke et al., 2016,
Example 1, 2) and for additional results, we refer the reader to Bauschke and
Borwein (1997); Bauschke et al. (2001, 2003, 2016). We provide some examples
below.
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– Bregman distance generated from h(x) = 1
2‖x‖

2 is the Euclidean distance.
– Let x, x̄ ∈ RN++, the Legendre function h(x) = −

∑N
i=1 log(xi) (Burg’s entropy)

is helpful in Poisson linear inverse problems Bauschke et al. (2016).
– Let x ∈ RN+ , x̄ ∈ RN++, the Legendre function h(x) =

∑N
i=1 xi log(xi) (Boltzmann–

Shannon entropy), with 0 log(0) := 0 is helpful to handle simplex constraints
Beck and Teboulle (2003).

– Phase retrieval problems Bolte et al. (2018) use the Bregman distance based on
the Legendre function h : RN → R that is given by h(x) = 0.25‖x‖42 + 0.5‖x‖22 .

– Matrix factorization problems Mukkamala and Ochs (2019); Teboulle and
Vaisbourd (2020) use the Bregman distance based on the Legendre function
h : RN1×RN2 → R that is given by h(x,y) = c1(‖x‖2+‖y‖2)2+c2(‖x‖2+‖y‖2)
with certain c1, c2 > 0 and N1, N2 ∈ N.

2 Problem setting and Model BPG algorithm

We consider the optimization problem (1) where f satisfies the following assumption,
which we impose henceforth.

Assumption 2. f : RN → R is proper, lsc (possibly nonconvex nonsmooth) and
coercive, i.e., as ‖x‖ → ∞ we have f(x)→∞.

Due to (Rockafellar and Wets, 1998, Theorem 1.9), the function f satisfying As-
sumption 2 is bounded from below, and Argminx∈RN f(x) is nonempty and compact.
Denote v(P) := minx∈RN f(x) > −∞ . We require the following definitions.

Definition 4 (Growth function Drusvyatskiy et al. (2019); Ochs et al.
(2019)). A differentiable univariate function ς : R+ → R+ is called growth function
if it satisfies ς(0) = ς ′+(0) = 0, where ς ′+ denotes the one sided (right) derivative of ς.
If, in addition, ς ′+(t) > 0 for t > 0 and equalities limt↘0 ς

′
+(t) = limt↘0 ς(t)/ς

′
+(t) =

0 hold, we say that ς is a proper growth function.

Example of a proper growth function is ς(t) = η
r t
r for η, r > 0. Lipschitz continuity

and Hölder continuity can be interpreted with growth functions or, more generally,
with uniform continuity Ochs et al. (2019). We use the notion of a growth function to
quantify the difference between a model function (defined below) and the objective.

Definition 5 (Model Function). Let f be a proper lower semi-continuous (lsc)
function. A function f(·, x̄) : RN → R with dom f(·, x̄) = dom f is called model
function for f around the model center x̄ ∈ dom f , if there exists a growth function
ςx̄ such that the following is satisfied:

|f(x)− f(x; x̄)| ≤ ςx̄(‖x− x̄‖) , ∀x ∈ dom f. (11)

A model function is essentially a first-order approximation to a function f , which
explains the naming as “Taylor-like model” by Drusvyatskiy et al. (2019). The qual-
itative approximation property is represented by the growth function. Informally,
the model function approximates the function well near the model center. Convex
model functions are explored in Ochs et al. (2019); Ochs and Malitsky (2019).
However, in our setting, the model functions can be nonconvex. Nonconvex model
functions were considered in Drusvyatskiy et al. (2019), however only subsequential
convergence was shown.



Global Convergence of Model BPG 9

We refer to (11) as a bound on the model error, and the symbol ςx̄ denotes the
dependency of the growth function on the model center x̄. Typically the growth
function depends on the model center, as we illustrate below.

Example 6 (Running Example). Let f(x) = |g(x)| with g(x) = ‖x‖4−1. With
x̄ ∈ RN as the model center, and the model function

f(x; x̄) := |g(x̄) + 〈∇g(x̄),x− x̄〉 | .

With the growth function is ςx̄(t) = 24‖x̄‖2t2 + 8t4, the model error obtained is

|f(x)− f(x; x̄)| ≤ 24‖x̄‖2‖x− x̄‖2 + 8‖x− x̄‖4 .

It is often of interest to obtain a uniform approximation for the model error
|f(x)− f(x; x̄)|, where the growth function is not dependent on the model center.
In general, obtaining such a uniform approximation is not trivial, and may even be
impossible. Moreover, typically finding an appropriate growth function is not trivial.
For this purpose, it is preferable to have a global bound on the model error that can
be easily verified, the dependency on the model center is more structured, and the
constants arising do not have any dependency on the model center. In the context
of additive composite problems, previous works such as Bauschke et al. (2016); Lu
et al. (2018); Bolte et al. (2018) relied on Bregman distances to upper bound the
model error. Based on this idea, we propose the following MAP property, which is
valid for a huge class of structured nonconvex problems and also generalizes the
previous works.

Definition 7 (MAP: Model Approximation Property). Let h be a Legendre
function that is continuously differentiable over int domh. A proper lsc function f
with dom f ⊂ cl domh and dom f ∩ int domh 6= ∅, and model function f(·, x̄) for f
around x̄ ∈ dom f ∩ int domh satisfy the Model Approximation Property (MAP) at
x̄, with the constants L̄ > 0,L ∈ R, if for any x̄ ∈ dom f ∩ int domh the following
holds:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ dom f ∩ domh . (12)

Remark 8 (Discussion on Definition 7). (i) The design of a model function
is independent of an algorithm. However, algorithms can be governed by the
model function (for example, see Model BPG below). The property of a model
function is rather an analogue to differentiability or a (uniform) first-order
approximation. Note that for x̄ ∈ int domh, the Bregman distance Dh(x, x̄)
is bounded by o(‖x − x̄‖), which is a growth function. Therefore, the MAP
property requires additional algorithm specific properties of the model function.
In particular, we require the constants L̄ and L to be independent of x̄, which
provides a global consistency between the model function approximations.

(ii) The condition dom f ⊂ cl domh is a minor regularity condition. For example,
if dom f = [0,∞) and domh = (0,∞) (e.g., for h in Burg’s entropy), such a
function h can be used in MAP property. However, the L-smad property Bolte
et al. (2018) would require x, x̄ in (12) to lie in int domh (see also Section 4.1).

(iii) Note that the choice of L is unrestricted in MAP property. For nonconvex f , L
is typically a positive real number. For convex f , typically the condition L ≥ 0
holds true. However, note that the values of L, L̄ are governed by the model
function. For convex additive composite problems, L < 0 can hold true for
relatively strongly convex functions Lu et al. (2018).
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Example 9 (Running Example – Contd). We continue Example 6 to illustrate
the MAP property. Let h(x) = 1

4‖x‖
4, we clearly have

g(x)− g(x̄)− 〈∇g(x̄),x− x̄〉 ≤ 4Dh(x, x̄) , ∀x ∈ RN ,

which in turn results in the following upper bound for the model error

|f(x)− f(x; x̄)| ≤ |g(x)− g(x̄)− 〈∇g(x̄),x− x̄〉 | ≤ 4Dh(x, x̄) .

The upper bound is obtained in terms of a Bregman distance. Clearly, the constants
arising do not have any dependency on the model center.

We now propose the Model BPG algorithm, where the update step relies on the
upper bound of the MAP property.

Algorithm 1 (Model BPG: Model based Bregman Proximal Gradient).
– Initialization: Select x0 = x1 ∈ dom f ∩ int domh. Choose τ , τ̄ such that

0 < τ < τ̄ < (1/L̄).
– For each k ≥ 1: Choose τk ∈ [τ , τ̄ ] and compute

xk+1 ∈ Argmin
x∈RN

{
f(x;xk) +

1

τk
Dh(x,xk)

}
. (13)

Remark 10. (i) A closely related work in Davis et al. (2018) considers only the
lower bound of the MAP property and their algorithm terminates by choosing
an iterate based on certain probability distribution. In stark contrast, Model
BPG relies on the upper bound of the MAP property and there is no need to
invoke any probabilistic argument to choose the final iterate. Also, Davis et al.
(2018) considers weakly convex model functions whereas we do not have such a
restriction.

(ii) For the global convergence analysis of Model BPG sequences, in addition to
the condition τk ∈ [τ , τ̄ ] on step-size, the condition that τk → τ , as k →∞ for
certain τ > 0 is required (see Theorem 17 , 18).

(iii) We note that Model BPG is applicable to a broad class of structured nonconvex
and nonsmooth problems. In particular, Model BPG can be efficiently applied
to those nonconvex and nonsmooth problems, for which the update step (13)
involving the Bregman distance can be easily computed.

We now collect all the assumptions required for the global convergence analysis of
a sequence generated by the Model BPG algorithm.

Assumption 3. Let h be a Legendre function that is C2 over int domh. Moreover,
the conditions dom f ∩ int domh 6= ∅, critf ∩ int domh 6= ∅ and dom f ⊂ cl domh
hold true.

(i) The exist L̄ > 0,L ∈ R such that for any x̄ ∈ dom f ∩ int domh, f and the
model function f(·, x̄) satisfy the MAP property at x̄ with constants L̄, L.

(ii) For any x̄ ∈ dom f ∩ int domh, the following qualification condition holds true:

∂∞x f(x; x̄) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f ∩ domh . (14)

(iii) For all x,y ∈ dom f , the conditions (0,v) ∈ ∂∞f(x;y) implies v = 0 , and
(v,0) ∈ ∂∞f(x;y) implies v = 0 hold true. Also, f(x;y) is regular (Rockafellar
and Wets, 1998, Definition 7.25) at any (x,y) ∈ dom f × dom f .
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(iv) The function f(x; x̄) is a proper, lsc function and is continuous over (x, x̄) ∈
dom f × dom f .

By ∂xf(x; x̄) we mean the limiting subdifferential of the model function x 7→ f(x; x̄)
with x̄ fixed and ∂f(x;y) denotes the limiting subdifferential w.r.t (x,y); dito for
the horizon subdifferential.

Remark 11 (Discussion on Assumption 3). The qualification condition in
(14) is required for the applicability of the subdifferential summation rule (see
(Rockafellar and Wets, 1998, Corollary 10.9)). Assumption 3(iii) and (Rockafellar
and Wets, 1998, Corollary 10.11) ensure that for all x,y ∈ dom f , the following
holds true:

∂f(x;y) = ∂xf(x;y)× ∂yf(x;y) , ∂∞f(x;y) = ∂∞x f(x;y)× ∂∞y f(x;y) .
(Assumption 3(iii)’)

Our analysis relies on (Assumption 3(iii)’). However, note that Assumption 3(iii) is
a sufficient condition for (Assumption 3(iii)’) to hold. Certain classes of functions
mentioned in Section 4 satisfy (Assumption 3(iii)’) directly, instead of Assump-
tion 3(iii). Assumption 3(iv) is typically satisfied in practice and plays a key role
in Lemma 30. Based on Assumption 3(iii), for any fixed x̄ ∈ dom f , the model
function f(x; x̄) is regular at any x ∈ dom f . Using this fact, we deduce that the
model function preserves the first order information of the function, in the sense
that for x ∈ dom f the condition ∂yf(y;x)|y=x = ∂̂f(x) holds true (based on
(Ochs and Malitsky, 2019, Lemma 14)).

Many popular algorithms such as Gradient Descent, Proximal Gradient Method,
Bregman Proximal Gradient Method, Prox-Linear method are special cases of Model
BPG depending on the choice of the model function and the choice of Bregman
distance, thus making it a unified algorithm (also c.f. Ochs et al. (2019)). Examples
of model functions are provided in Section 4. Let τ > 0, x̄ ∈ dom f ∩ int domh, the
update mapping (as in (13)) is defined by

Tτ (x̄) := Argmin
x∈RN

f(x; x̄) +
1

τ
Dh(x, x̄) . (15)

Denote εk :=
(

1
τk
− L̄

)
> 0 and clearly ε ≤ εk ≤ ε̄, where ε̄ := 1

τ − L̄ and

ε := 1
τ̄ − L̄. Well-posedness of the update step (13) is given by the following result.

Lemma 12. Let Assumption 2, 3 hold true and let x̄ ∈ dom f ∩ int domh. Then,
for all 0 < τ < 1

L̄
the set Tτ (x̄) is a nonempty compact subset of dom f ∩ int domh.

Proof. As a consequence of MAP property due to Assumption 3(i) and nonnega-
tivity of Bregman distances, the following property is satisfied

f(x) ≤ f(x; x̄) +
1

τ
Dh(x, x̄) ,∀x ∈ dom f ∩ domh .

Coercivity of f transfers to that of the objective in (15), and we get the conclusion
from standard arguments; see (Rockafellar and Wets, 1998, Theorem 1.9).

The conclusion of the lemma remains true under other sufficient conditions. For
instance, if the model has an affine minorant and h is supercoercive (for example,
see (Bolte et al., 2018, Section 3.1)). We now show that Model BPG results in
monotonically nonincreasing function values.
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Lemma 13 (Sufficient Descent Property in Function values). Let Assump-
tions 2, 3 hold. Also, let (xk)k∈N be a sequence generated by Model BPG, then for
k ≥ 1, the following holds

f(xk+1) ≤ f(xk)− εkDh(xk+1,xk) .

Proof. Due to (13), we have f(xk+1;xk) + 1
τk
Dh(xk+1,xk) ≤ f(xk;xk) = f(xk) .

From MAP property, we have f(xk+1) ≤ f(xk+1;xk)+ L̄Dh(xk+1,xk) . The result
follows by combining the previous arguments.

Remark 14. Under Assumptions 2, 3, the coercivity of f , Lemma 13 implies that
the iterates of Model BPG lie in the compact set {x : f(x) ≤ f(x0)}.

Assumption 4.

(i) For any bounded set B ⊂ dom f . There exists c > 0 such that for any x,y ∈ B
we have

‖∂yf(x;y)‖− ≤ c‖x− y‖ .

(ii) The function h has bounded second derivative on any bounded subset B ⊂
int domh.

(iii) For bounded (uk)k∈N, (vk)k∈N in int domh, the following holds as k →∞:

Dh(uk,vk)→ 0 ⇐⇒ ‖uk − vk‖ → 0 .

We now illustrate Assumption 4(i), which governs the variation of the model
function w.r.t. model center.

Example 15. We continue Example 6 to illustrate Assumption 4(i). Note that that
∇2g(x) is bounded over bounded sets. Consider any bounded set B ⊂ RN . Define
c := supx̄∈B ‖∇2g(x̄)‖ and choose any x̄ ∈ B, then consider the model function
f(x; x̄) := |g(x̄) + 〈∇g(x̄),x− x̄〉 | . The subdifferential of the model function
is given by ∂x̄f(x; x̄) = u∇2g(x̄)(x − x̄) , where u ∈ ∂g(x̄)+〈∇g(x̄),x−x̄〉|g(x̄) +
〈∇g(x̄),x− x̄〉 |. Considering the fact that ‖u‖ ≤ 1 and by the definition of c we
have ‖∂x̄f(x; x̄)‖− ≤ c‖x− x̄‖ , which verifies Assumption 4(i).

In order to exploit the power of KL property in the global convergence analysis of
Model BPG, we make the following assumption.

Assumption 5. Let O be an o-minimal structure. The functions f̃ : RN × RN →
R , (x, x̄) 7→ f(x; x̄) with dom f̃ := dom f×dom f , and h̃ : RN×RN → R , (x, x̄) 7→
h(x̄) + 〈∇h(x̄),x− x̄〉 with dom h̃ := domh× int domh are definable O.
An important feature of our analysis is that the Legendre function h satisfying As-
sumption 3 is not required to be strongly convex. Instead, we impose a significantly
weaker condition in Assumption 6 provided below.

Assumption 6. For any compact convex set B ⊂ int domh, there exists σB > 0
such that h is σB-strongly convex over B, i.e., for any x,y ∈ B the condition
Dh(x,y) ≥ σB

2 ‖x− y‖2 holds.

Remark 16 (Discussion on Assumption 4 - 6). Assumption 4(i) is illustrated
in Example 15. Assumption 4(ii) is typically used in the analysis of Bregman
proximal methods Bolte et al. (2018); Ochs et al. (2019); Mukkamala et al. (2020).
Assumption 4(iii) (also see (Ochs et al., 2019, Remark 18)) essentially states that
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the asymptotic behavior of vanishing Bregman distance is equivalent to that of
vanishing Euclidean distance. Note that Assumption 4(iii) already uses bounded
sequences in int domh, and thus it is satisfied for many Bregman distances, such
as distances based on Boltzmann–Shannon entropy (Ochs et al., 2019, Example
40) and Burg’s entropy (Ochs et al., 2019, Example 41). However, such distances
may not satisfy Assumption 4(iii) if the sequences are bounded only in domh or
in cl domh (for example, see Section 5.2). Assumption 5 is used in Lemma 28 to
deduce that FhL̄ satisfies KL property. Assumption 6 plays a key role in proving
the global convergence of the sequence generated by Model BPG.

3 Global convergence analysis of Model BPG algorithm

3.1 Main results

Our goal is to show that the sequence generated by Model BPG is a gradient-like
descent sequence such that Theorem 2 is applicable. The convergence analysis of
some popular algorithms (for example, PGM, BPG, PALM Bolte et al. (2014) etc) in
nonconvex optimization is based on a descent property. Usually, the objective value
is shown to decrease (for example, see (Bolte et al., 2018, Lemma 4.1)). However,
techniques used for additive composite setting relying on function values do not
work anymore for general composite problems, hence alternatives like Pauwels
(2016) are sought after. We analyse Model BPG using a Lyapunov function as our
measure of progress. Our Lyapunov function FhL̄ is given by

FhL̄ : RN × RN → R , (x, x̄) 7→ f(x; x̄) + L̄Dh(x, x̄) , (16)

and domFhL̄ = (dom f)2 × (domh× int domh) . The set of critical points of FhL̄ is
given by

critFhL̄ :=
{

(x, x̄) ∈ RN × RN : (0,0) ∈ ∂FhL̄(x, x̄)
}
. (17)

The set of limit points of some sequence (xk)k∈N is denoted as follows ω(x0) :={
x ∈ RN | ∃K ⊂ N : xk

K→ x
}
, and its subset of f -attentive limit points

ωf (x0) :=
{
x ∈ RN | ∃K ⊂ N : (xk, f(xk))

K→ (x, f(x))
}
.

To this regard, denote the following

ωint domh(x0) := ω(x0) ∩ int domh and ωint domh
f (x0) := ωf (x0) ∩ int domh .

Before we start with the convergence analysis, we present our main results. We
defer their proofs to Section 3.2. Informally, the following results state that the
sequence generated by Model BPG converges to a point x such that (x,x) is the
critical point of FhL̄ and x is a critical point of f .

Theorem 17 (Global convergence to a critical point of the Lyapunov
function). Let Assumptions 2, 3, 4, 5, 6 hold. Let the sequence (xk)k∈N be
generated by Model BPG (Algorithm 1) with τk → τ for certain τ > 0 and the
condition ωint domh(x0) = ω(x0) holds true. Then, convergent subsequences are
FhL̄ -attentive convergent, and

∑∞
k=0 ‖xk+1 − xk‖ < +∞ (finite length property) .

The sequence (xk)k∈N converges to x such that (x,x) is a critical point of FhL̄ .
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Theorem 18 (Global convergence to a critical point of the objective
function). Under the conditions of Theorem 17, the sequence generated by Model
BPG converges to a critical point of f .

It is possible to deduce convergence rates for a certain class of desingularizing
functions. Based on Attouch and Bolte (2009); Bolte et al. (2014); Frankel et al.
(2014), we provide the following convergence rates for Model BPG sequences.

Theorem 19 (Convergence rates). Under the conditions of Theorem 17, let
the sequence (xk)k∈N generated by Model BPG converge to x ∈ dom f ∩ int domh,
and let FhL̄ satisfy KL property with the desingularizing function: ϕ(s) = cs1−θ ,
for certain c > 0 and θ ∈ [0, 1). Then, we have the following:

– If θ = 0, then (xk)k∈N converges in finite number of steps.
– If θ ∈ (0, 1

2 ], then ∃ ρ ∈ [0, 1), G > 0 such that ∀ k ≥ 0 we have ‖xk−x‖ ≤ Gρk .
– If θ ∈ (1

2 , 1), then ∃G > 0 such that ∀ k ≥ 0 we have ‖xk − x‖ ≤ Gk−
1−θ
2θ−1 .

The proof is only a slight modification to the proof of (Attouch and Bolte, 2009,
Theorem 5), hence we skip it for brevity. In the above theorem θ is the so-called
KL exponent (also called Łojasiewicz exponent in classical algebraic geometry) of
the Lyapunov function FhL̄ and not that of the function f . Thus the KL exponent
of FhL̄ is nontrivial to deduce even if the KL exponent of f is known, as it has
dependency on the model function and the Bregman distance. In this regard, we
refer the reader to Li and Pong (2017); Li et al. (2015).

3.2 Additional results and proofs

We now look at some properties of FhL̄ .

Proposition 20. The Lyapunov function defined in (16) satisfies the following:

(i) For all x ∈ dom f∩domh and y ∈ dom f∩ int domh, we have f(x) ≤ FhL̄(x,y) .

(ii) For all x ∈ dom f ∩ int domh, we have FhL̄(x,x) = f(x) .

(iii) Moreover, we have inf(x,y)∈RN×RN F
h
L̄(x,y) ≥ v(P) > −∞ .

Proof. (i) This follows from MAP property and the definition of FhL̄ .
(ii) Substituting y = x in (16) gives the result.
(iii) By MAP property, we have v(P) ≤ f(x) ≤ f(x;y) + L̄Dh(x,y) , for all

(x,y) ∈ domFhL̄ . Furthermore, we obtain the following:

inf
x∈dom f ∩ domh

f(x) ≤ inf
(x,y)∈domFh

L̄

(
f(x;y) + L̄Dh(x,y)

)
.

The statement follows using infx∈RN f(x) = v(P) > −∞ due to Assumption 2 .

We proved the sufficient descent property in terms of function values in Lemma 13.
We now prove the sufficient descent property of the Lyapunov function.

Proposition 21 (Sufficient descent property). Let Assumptions 2, 3 hold and
let (xk)k∈N be a sequence generated by Model BPG, then for k ≥ 1 we have

FhL̄(xk+1,xk) ≤ FhL̄(xk,xk−1)− εkDh(xk+1,xk) . (18)
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Proof. From (13), we have f(xk+1;xk) + 1
τk
Dh(xk+1,xk) ≤ f(xk;xk) = f(xk).

From MAP property, we have f(xk) ≤ f(xk;xk−1) + L̄Dh(xk,xk−1). Thus, the
result follows from the definition of FhL̄ in (16).

Proposition 22. Let Assumptions 2, 3 hold and let (xk)k∈N be a sequence gener-
ated by Model BPG. The following assertions hold:

(i)
{
FhL̄ (xk+1,xk)

}
k∈N is nonincreasing and converges to a finite value.

(ii)
∑∞
k=1Dh(xk+1,xk) <∞ and {Dh(xk+1,xk)}k∈N converges to zero.

(iii) For any n ∈ N, we have min1≤k≤nDh(xk+1,xk) ≤ Fh
L̄

(x1,x0)−v(P)

εn .

Proof. (i) Nonincreasing property follows trivially from Proposition 21 and as
εk > 0. We know from Proposition 20(iii) that the Lyapunov function is lower
bounded, which implies convergence of

{
FhL̄ (xk+1,xk)

}
k∈N to a finite value.

(ii) Summing (18) from k = 1 to n (a positive integer) and using ε ≤ εk we get
n∑
k=1

Dh(xk+1,xk) ≤ 1

ε

(
FhL̄ (x1,x0)− v(P)

)
, (19)

since FhL̄ (xn+1,xn) ≥ v(P). Taking the limit as n → ∞, we obtain the first
assertion, from which we deduce that {Dh(xk+1,xk)}k∈N converges to zero.

(iii) Follows from (19) and nmin1≤k≤n (Dh(xk+1,xk)) ≤
∑n
k=1 (Dh(xk+1,xk)).

Lemma 23 (Relative error). Let Assumptions 2, 3, 4 hold. Let the sequence
(xk)k∈N be generated by Model BPG, then there exists a constant C > 0 such that
for certain k ≥ 0, we have

‖∂FhL̄(xk+1,xk)‖− ≤ C‖xk+1 − xk‖ . (20)

Proof. As per (Rockafellar and Wets, 1998, Exercise 8.8) or (Mordukhovich, 2018,
Theorem 2.19), ∂FhL̄(xk+1,xk) is given by

∂FhL̄(xk+1,xk) = ∂f(xk+1;xk) + L̄∇Dh(xk+1,xk) , (21)

because the Bregman distance is continuously differentiable around xk ∈ dom f ∩
int domh. Using (Rockafellar and Wets, 1998, Corollary 10.11), Assumption 3(iv),
and using the fact that h is C2 over int domh (cf. Assumption 3) we obtain

∂FhL̄(xk+1,xk) =
(
∂xk+1f(xk+1;xk) + L̄

(
∇h(xk+1)−∇h(xk)

)
,

∂xkf(xk+1;xk)− L̄∇2h(xk)(xk+1 − xk)
)
. (22)

Consider the following:

‖∂FhL̄(xk+1,xk)‖− = inf
ξ∈∂f(xk+1;xk)

‖ξ + L̄∇Dh(xk+1;xk)‖ ,

= inf
(ξx,ξy)∈∂f(xk+1;xk)

‖(ξx, ξy) + L̄∇Dh(xk+1, xk)‖ ,

≤ inf
ξx∈∂xk+1

f(xk+1;xk)
‖(ξx + L̄

(
∇h(xk+1)−∇h(xk)))‖

+ inf
ξy∈∂xk

f(xk+1;xk)
‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖ , (23)



16 Mahesh Chandra Mukkamala et al.

where in the first equality we use (21), in the second equality we use the result in (22)
with ξ := (ξx, ξy) such that ξx ∈ ∂xk+1f(xk+1,xk) and ξy ∈ ∂xkf(xk+1,xk), and in
the last step we used∇Dh(xk+1,xk) = (∇h(xk+1)−∇h(xk),∇2h(xk)(xk+1−xk)) .
The optimality of xk+1 in (13) implies the existence of ξk+1

xk+1
∈ ∂xk+1f(xk+1;xk)

such that the following condition holds: ξk+1
xk+1

+ 1
τ
k

(∇h(xk+1) − ∇h(xk)) = 0 .

Therefore, the first block coordinate in (22) satisfies

ξk+1
xk+1

+ L̄
(
∇h(xk+1)−∇h(xk)

)
= εk

(
∇h(xk+1)−∇h(xk)

)
. (24)

Now consider the first term of the right hand side in (23). We have

inf
ξx∈∂xk+1

f(xk+1;xk)
‖(ξx + L̄

(
∇h(xk+1)−∇h(xk)))‖

≤ ‖ξk+1
xk+1

+ L̄
(
∇h(xk+1)−∇h(xk)

)
‖ ,

≤ εk‖
(
∇h(xk+1)−∇h(xk)

)
‖ ≤ εkL̃h‖xk+1 − xk‖ ,

where in the second step we used (24) and in the last step we applied mean value
theorem along with the fact that the entity ‖∇2h(xk+1 +s(xk+1−xk))‖ is bounded
by a constant L̃h > 0 for certain s ∈ [0, 1], due to Assumption 4(ii). Considering
the second term of the right hand side in (23), we have

inf
ξy∈∂xk

f(xk+1;xk)
‖(ξy + L̄∇2h(xk)(xk+1 − xk))‖

≤ inf
ξy∈∂xk

f(xk+1;xk)
‖ξy‖ + ‖L̄∇2h(xk)(xk+1 − xk)‖ ,

≤ c‖xk+1 − xk‖ + L̄Lh‖(xk+1 − xk)‖ ,

where in the last step we used Assumption 4(i) and the fact that ‖∇2h(xk)‖ is
bounded by Lh. The result follows from combining the results obtained for (24).

We now consider results on generic limit points and show that stationarity can
indeed be attained for iterates produced by Model BPG.

Proposition 24. For a bounded sequence (xk)k∈N such that ‖xk+1 − xk‖ → 0 as
k →∞, the following holds:

(i) ω(x0) is connected and compact,
(ii) limk→∞ dist(xk, ω(x0)) = 0.

The proof relies on the same technique as the proof of (Bolte et al., 2014, Lemma
3.5) (also see (Bolte et al., 2014, Remark 3.3)). We now show that the sequence
generated by Model BPG (xk)k∈N indeed attains ‖xk+1 − xk‖ → 0 as k → ∞,
which in turn enables the application of Proposition 24 to deduce the properties of
the sequence generated by Model BPG crucial for the proof of global convergence.

Proposition 25. Let Assumption 2, 3, 4 hold. Let (xk)k∈N be a sequence generated
by Model BPG. Then, xk+1 − xk → 0 as k →∞.

Proof. The result follows as a simple consequence of Proposition 22(ii) along with
Assumption 4(iii).
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Analyzing the full set of limit points of the sequence generated by Model BPG is
difficult, as illustrated in Ochs et al. (2019). Obtaining the global convergence is
still an open problem. Moreover, the work in Ochs et al. (2019) relies on convex
model functions. In order to simplify slightly the setting, we restrict the set of limit
points to the set int domh. Such a choice may appear to be restrictive, however,
Model BPG when applied to many practical problems results in sequences that
have this property as illustrated in Section 5. The subset of FhL̄ -attentive (similar
to f -attentive) limit points is

ωFh
L̄

(x0) :=
{

(y,x) ∈ RN × RN | ∃K ⊂ N : (xk, F
h
L̄(xk,xk−1))

K→ (x, FhL̄(y,x))
}
.

Also, we define ω(int domh)2

Fh
L̄

:= ωFh
L̄
∩ (int domh× int domh).

Proposition 26. Let Assumptions 2, 3, 4 hold. Let (xk)k∈N be a sequence gener-
ated by Model BPG. Then, the following holds:

(i) ωint domh(x0) = ωint domh
f (x0),

(ii) x ∈ ωint domh
f (x0) if and only if (x,x) ∈ ω(int domh)2

Fh
L̄

(x0).

(iii) FhL̄ is constant and finite on ω(int domh)2

Fh
L̄

(x0) and f is constant and finite on

ωint domh
f (x0) with same value.

Proof. (i) We show the inclusion ωint domh(x0) ⊂ ωint domh
f (x0) and ωint domh

f (x0) ⊂
ωint domh(x0) is clear by definition. Let x? ∈ ωint domh(x0), then we obtain

f(x?) +

(
L+

1

τk

)
Dh(x?,xk)

(12)
≥ f(x?;xk) +

1

τk
Dh(x?,xk)

(13)
≥ f(xk+1;xk) +

1

τk
Dh(xk+1,xk)

(12)
≥ f(xk+1)−

(
L̄− 1

τk

)
Dh(xk+1,xk)

εk>0

≥ f(xk+1) .

By Assumption 4(iii) combined with the fact that xk
K→ x?, we haveDh(x?,xk)→ 0

as k K→∞, which, together with the lower semicontinuity of f , implies the following:
f(x?) ≥ lim inf

k
K→∞

f(xk+1) ≥ f(x?) , thus x? ∈ ωint domh
f (x0).

(ii) If x ∈ ωint domh
f (x0), then we have xk

K→ x for K ⊂ N, and f(xk)
K→ f(x). As a

consequence of Proposition 22 and Assumption 4(iii), Dh(xk+1,xk)→ 0 as k →∞,
which implies that xk+1

K→ x. The first part of the proof implies f(xk+1)
K→ f(x).

We also have FhL̄(xk+1,xk)
K→ f(x) which we prove below, which implies that

(x,x) ∈ ωint domh
Fh
L̄

(x0). Note that by definition of FhL̄ we have

FhL̄(xk+1,xk) = f(xk+1;xk) + L̄Dh(xk+1,xk) ,

= f(xk+1) + (f(xk+1;xk)− f(xk+1)) + L̄Dh(xk+1,xk) .

MAP property gives f(xk+1) ≤ FhL̄(xk+1,xk) ≤ f(xk+1) + (L̄+ L)Dh(xk+1,xk) .

Thus, we have that FhL̄(xk+1,xk)
K→ f(x) as Dh(xk+1,xk)

K→ 0. Conversely,
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suppose (x,x) ∈ ωint domh
Fh
L̄

(x0) and xk
K→ x for K ⊂ N. This, together with

Dh(xk+1,xk)→ 0 as k K→∞, induces FhL̄(xk+1,xk)
K→ f(x), which further implies

f(xk+1)
K→ f(x) due to the following. Note that we have

f(xk+1) = FhL̄(xk+1,xk) + (f(xk+1)− f(xk+1;xk)) + L̄Dh(xk+1,xk)

≥ FhL̄(xk+1,xk) + (L̄− L)Dh(xk+1,xk) .

Finally we have FhL̄(xk+1,xk) + (L̄−L)Dh(xk+1,xk) ≤ f(xk+1) ≤ FhL̄(xk+1,xk) .

Thus, with Dh(xk+1,xk) → 0 as k K→ ∞ and FhL̄(xk+1,xk)
K→ f(x), we deduce

that f(xk+1)
K→ f(x). And therefore x ∈ ωint domh

f (x0).

(iii) By Proposition 21, the sequence (FhL̄(xk+1,xk))k∈N converges to a finite value
F . Note that Dh(xk+1,xk) → 0 as k K→ ∞ due to Proposition 22 (ii), when
combined with Assumption 4(iii) implies that ‖xk+1 − xk‖ → 0. For (x?,x?) ∈
ω

(int domh)2

Fh
L̄

(x0,x0) there exists K ⊂ N such that xk
K→ x? and FhL̄(xk+1,xk)

K→

FhL̄(x?,x?) = f(x?), i.e., the value of the limit point is independent of the choice
of the subsequence. The result follows directly and by using (i).

The following result states that FhL̄ -attentive sequences converge to a critical point.

Theorem 27 (Sub-sequential convergence). Let Assumptions 2, 3, 4 hold. If
the sequence (xk)k∈N is generated by Model BPG, then

ω
(int domh)2

Fh
L̄

(x0) ⊂ crit(FhL̄) . (25)

Proof. From (20), we have ‖∂FhL̄(xk+1,xk)‖− ≤ C‖xk+1 − xk‖ for some constant
C > 0. Using ‖xk+1 − xk‖ → 0, convergence of (τk)k∈N, and Proposition 26(i)
yields (25), by the closedness property of the limiting subdifferential (8).

Discussion. Subsequential convergence to a stationary point was already consid-
ered in few works. In particular, the work in Drusvyatskiy et al. (2019) already
provides such a result, however, it relies on certain abstract assumptions. Even
though such assumptions are valid for some practical algorithms, the authors do
not consider a concrete algorithm. Moreover, their abstract update step depends
on the minimization of the model function, which can require additional regularity
conditions on the problem. For example, if the model function is linear, then
the domain must be compact to guarantee the existence of a solution. A related
line-search variant of Model BPG was considered in Ochs et al. (2019), for which
subsequential convergence to a stationarity point was proven. The subsequential
convergence results in Ochs et al. (2019) are more general than our work, as they
analyse the behavior of limit points in domh, cl domh, int domh (cf. (Ochs et al.,
2019, Theorem 22)). Our analysis is restricted to limit points in int domh, as typi-
cally such an assumption holds in practice (see Section 5). Though subsequential
convergence is satisfactory, proving global convergence is nontrivial, in general.

Lemma 28. Let Assumptions 2, 3, 4, 5 hold. Then, the Lyapunov function FhL̄ is
definable in O, and satisfies KL property at any point of dom ∂FhL̄ .
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The proof is straightforward application of (Ochs, 2015, Corollary 4.32) and (Bolte
et al., 2007, Theorem 14). For additive composite problems, the global convergence
analysis of BPG based methods Bolte et al. (2018); Mukkamala et al. (2020) relies
on strong convexity of h. However, in our setting we relax such a requirement on h,
via Assumption 6. Note that imposing such an assumption is weaker than imposing
the strong convexity of h, as we only need the strong convexity property to hold
over a compact convex set. Such a property can be satisfied even if h is not strongly
convex, for example, Burg’s entropy (see Section 5.2). We now present the proof of
Theorem 17, result pertaining to the global convergence of the sequence generated
by Model BPG.

Proof of Theorem 17. Note that the sequence (xk)k∈N generated by Model BPG is
a bounded sequence (see Remark 14). The proof relies on Theorem 2, for which we
need to verify the conditions (H1)–(H5). Due to Lemma 28, FhL̄ satisfies Kurdyka–
Łojasiewicz property at each point of dom ∂FhL̄ . Note that as ωint domh(x0) =

ω(x0) holds true, there exists a sufficiently small ε > 0 such that B̃ := {x :
dist(x, ω(x0)) ≤ ε} ⊂ int domh. As ω(x0) is compact due to Proposition 24(i),
the set B̃ is also compact. Moreover, the convex hull of the set B̃ denoted by
B := conv B̃ is also compact, as the convex hull of a compact set is also compact
in finite dimensional setting. A simple calculation reveals that the set B lies
in the set int domh. Thus, due to Proposition 25 along with Proposition 24(ii),
without loss of generality, we assume that the sequence (xk)k∈N generated by
Model BPG lies in the set B. By definition of σB as per Assumption 6 we have
Dh(xk+1,xk) ≥ σB

2 ‖xk+1 − xk‖2 , through which we obtain

FhL̄(xk+1,xk) ≤ FhL̄(xk,xk−1)− εkσB
2
‖xk+1 − xk‖2 ,

which is (H1) with dk = εkσB
2 ‖xk+1 − xk‖2 and ak = 1. We also have existence

of wk+1 ∈ ∂FhL̄(xk+1,xk) such that the conclusion of Lemma 23 holds true for
some C > 0, which is (H2) with b = C, since the coefficients for both Euclidean
distances are bounded from above. The continuity condition (H3) is deduced from a
converging subsequence, whose existence is guaranteed by boundedness of (xk)k∈N,
and Proposition 26 guarantees that such convergent subsequences are FhL̄ -attentive
convergent. The distance condition (H4) holds trivially as εk > 0 and σB > 0. The
parameter condition (H5), holds because bn = 1 in this setting, hence (bn)n∈N 6∈ `1
and also we have supn∈N

1
bnan

= 1 <∞ , infn an = 1 > 0 . Theorem 2 implies the
finite length property from which we deduce that the sequence (xk)k∈N generated
by Model BPG converges to a single point, which we denote by x. As (xk+1)k∈N
also converges to x, the sequence ((xk+1,xk))k∈N converges to (x,x), which is a
critical point of FhL̄ due to Theorem 27.

The global convergence result in Theorem 17 shows that Model BPG converges to
a point, which in turn can be used to represent a critical point of the Lyapunov
function. However, our goal is to find a critical point of the objective function f .
Firstly, we need the following result, which establishes the connection between
fixed points of the update mapping and critical points of f .

Lemma 29. Let Assumptions 2, 3 hold. For any 0 < τ < (1/L̄) and x̄ ∈ dom f ∩
int domh, the fixed points of the update mapping Tτ (x̄) are critical points of f .
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Proof. Let x̄ ∈ dom f ∩ int domh be a fixed point of Tτ , in the sense the condition
x̄ ∈ Tτ (x̄) holds true. By definition of Tτ (x̄), the following condition holds true:
0 ∈ ∂f(x; x̄) + 1

τ (∇h(x)−∇h(x̄)) at x = x̄, which implies that 0 ∈ ∂f(x̄; x̄). We
know that ∂f(x̄; x̄) ⊂ ∂f(x̄), thus x̄ is a critical point of the function f .

We also require the following technical result. The following lemma proves the
sequential closedness property of the update mapping.

Lemma 30 (Continuity property). Let Assumptions 2, 3, 4 hold. Let the
sequence (xk)k∈N be bounded such that xk → x̄, where xk ∈ dom f ∩ int domh
∀ k ∈ N, and x̄ ∈ dom f ∩ int domh. Let τk → τ , such that 0 < τ ≤ τk ≤
τ̄ < 1/L̄. Assume that there exists a bounded set B ⊂ int domh, such that
Tτk(xk) ⊂ B, xk ∈ B, ∀k ∈ N. If lim supk→∞ Tτk(xk) ⊂ dom f ∩ int domh, then
lim supk→∞ Tτk(xk) ⊂ Tτ (x̄).

Proof. Consider any sequence (yk)k∈N such that for any k ∈ N, the condition
yk ∈ Tτk(xk) holds true. Recall that f(x;y) is continuous on its domain due to
Assumption 3(iv). By optimality of yk ∈ Tτk(xk), for any z ∈ RN we have

f(yk;xk) +
1

τk
Dh(yk,xk) ≤ f(z;xk) +

1

τk
Dh(z,xk) . (26)

As a consequence of boundedness of the sequence (yk)k∈N, by Bolzano–Weierstrass
Theorem there exists a convergent subsequence. Let yk

K→ π such that π ∈
dom f ∩ int domh. Note that τk

K→ τ for some K ⊂ N. Applying limit on both sides
of (26) using the continuity of the model function and the Bregman distance gives

f(π; x̄) +
1

τ
Dh(π, x̄) ≤ f(z; x̄) +

1

τ
Dh(z, x̄) , ∀ z ∈ dom f ∩ domh , (27)

which implies that π minimizes the function f(·; x̄) + 1
τDh(·, x̄). This implies that

π ∈ Tτ (x̄) and the result follows.

We now provide the proof of Theorem 18, that states that the sequence generated
by Model BPG indeed converges to a critical point of the objective function.

Proof of Theorem 18. The sequence (xk)k∈N generated by Model BPG under the
assumptions as in Theorem 17 is globally convergent, thus let xk → x and also
xk+1 → x. As xk+1 ∈ Tτk(xk) and τk converges to τ , with Lemma 30 we deduce
that x ∈ Tτ (x) . Additionally, with the result in Lemma 30, we deduce that x is
the fixed point of the mapping Tτ (x), i.e., x ∈ Tτ (x). Then, using Lemma 29 we
conclude that x is a critical point of the function f .

4 Examples

In this section we consider special instances of (P), namely, additive composite
problems and a broad class of composite problems. The goal is to quantify assump-
tions for these problems such that the global convergence result (Theorem 18) of
Model BPG is applicable. We enforce the following blanket assumptions.
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(B1) The function h is a Legendre function that is C2 over int domh. For any
compact convex set B ⊂ int domh, there exists σB > 0 such that h is σB-
strongly convex with bounded second derivative on B. Moreover, for bounded
(uk)k∈N, (vk)k∈N in int domh, the following holds as k →∞:

Dh(uk,vk)→ 0 ⇐⇒ ‖uk − vk‖ → 0 .

(B2) The function f is coercive and additionally the conditions dom f∩int domh 6=
∅, critf ∩ int domh 6= ∅, dom f ⊂ cl domh hold true.

(B3) The functions f̃ : RN × RN → R , (x, x̄) 7→ f(x; x̄) with dom f̃ := dom f ×
dom f , and h̃ : RN×RN → R , (x, x̄) 7→ h(x̄)+〈∇h(x̄),x− x̄〉 with dom h̃ :=
domh× int domh are definable in an o-minimal structure O.

4.1 Additive composite problems

We consider the following nonconvex additive composite problem:

inf
x∈RN

f(x) , f(x) := f0(x) + f1(x) , (28)

which is a special case of (P). Additive composite problems arise in several ap-
plications, such as standard phase retrieval Bolte et al. (2018), low rank matrix
factorization Mukkamala and Ochs (2019), deep linear neural networks Mukkamala
et al. (2019), and many more. We present below the BPG algorithm, a specialization
of Model BPG that is applicable for additive composite problems.

BPG is Model BPG (Algorithm 1) with

f(x;xk) := f0(x) + f1(xk) + 〈∇f1(xk),x− xk〉 . (29)

We impose the following conditions that are common in the analysis of forward–
backward algorithms Ochs et al. (2014), which are used to optimize additive
composite problems.

(C1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0 and

∂∞f0(x) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f0 ∩ domh . (30)

(C2) f1 : RN → R is a proper, lsc function and is C2 on an open set that contains
dom f0. Also, there exist L̄, L > 0 such that for any x̄ ∈ dom f0 ∩ int domh,
the following holds:

− LDh(x, x̄) ≤ f1(x)− f1(x̄)− 〈∇f1(x̄),x− x̄〉 ≤ L̄Dh(x, x̄) , (31)

for all x ∈ dom f0 ∩ domh .

Note that with Assumption (C1), (C2) it is easy to deduce that dom f0 = dom f .
For x̄ ∈ dom f , the model function f(·; x̄) : RN → R at x ∈ dom f is given by

f(x; x̄) := f0(x) + f1(x̄) + 〈∇f1(x̄),x− x̄〉 . (32)
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Using the model function in (32) and the condition (31), we deduce that there
exist L, L̄ > 0 such that for any x̄ ∈ dom f ∩ int domh, MAP property is satisfied
at x̄ with L, L̄ as the following holds true:

− LDh(x, x̄) ≤ f(x)− f(x; x̄) ≤ L̄Dh(x, x̄) , ∀x ∈ dom f ∩ domh , (33)

as f(x)−f(x; x̄) := f1(x)−f1(x̄)−〈∇f1(x̄),x− x̄〉, thus satisfying Assumption 3(i).
The condition in (33) is similar to the popular L-smad property in Bolte et al.
(2018). The main addition is that x ∈ dom f ∩ domh and x̄ ∈ dom f ∩ int domh,
whereas the L-smad property requires x, x̄ ∈ dom f ∩ int domh.
Remark. Consider f1(x) := 1

2x
2, f0(x) := δ[0,∞)(x) and h(x) = x log(x) with

domh = [0,∞) under 0 log(0) = 0. Clearly, domh ⊂ dom f1 and dom f ⊂ domh
hold true. The function f1 is differentiable at x = 0, and MAP condition in (31)
holds true for x = 0. This scenario is not considered in the L-smad property.
It is straightforward to verify that Assumptions (C1), (C2), (B1), (B2), (B3) imply
Assumptions 2, 3, 4, 5, 6. Thus, due to Theorem 18, the sequence generated by
BPG globally converges to a critical point of the function.

4.2 Composite problems

We consider the following nonconvex composite problem:

inf
x∈RN

f(x) , f(x) := f0(x) + g(F (x)) , (34)

which is a special case of the problem (P). Composite problems arise in robust phase
retrieval, robust PCA, censored Z2 synchronization Drusvyatskiy (2017); Lewis
and Wright (2016); Nesterov (2007); Drusvyatskiy and Lewis (2018); Drusvyatskiy
and Paquette (2019). We present below Prox-Linear BPG, specialization of Model
BPG that is applicable for generic composite problems.

Prox-Linear BPG is Model BPG (Algorithm 1) with

f(x;xk) := f0(x) + g(F (xk) +∇F (xk)(x− xk)) . (35)

We require the following conditions.

(D1) f0 : RN → R is a proper, lsc function and is regular at any x ∈ dom f0 and:

∂∞f0(x) ∩ (−Ndomh(x)) = {0} , ∀x ∈ dom f0 ∩ domh . (36)

(D2) g : RM → R is a Q-Lipschitz continuous and regular function. There exists
P > 0 such that at any x ∈ RM , the following holds:

sup
v∈∂g(x)

‖v‖ ≤ P . (37)

(D3) F : RN → RM is C2 over RN and there exist L > 0 such that for any
x̄ ∈ dom f0 ∩ int domh, the following condition holds true:

‖F (x)− F (x̄)−∇F (x̄)(x− x̄)‖ ≤ LDh(x, x̄) , ∀x ∈ dom f0 ∩ domh ,

where ∇F (x̄) is the Jacobian of F at x̄.
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The properties (D1), (D2), (D3) along with (B2) imply proper, lsc property and
lower-boundedness of f , thus satisfying Assumption 2. Note that with Assump-
tion (D1), (D2), (D3) it is easy to deduce that dom f0 = dom f . Let x̄ ∈ dom f
and the model function with x̄ as model center evaluated at x ∈ dom f is given by:

f(x; x̄) = f0(x) + g(F (x̄) +∇F (x̄)(x− x̄)) . (38)

Using (D2), (D3) we deduce that there exists L̄ := LQ > 0 such that for any
x̄ ∈ dom f ∩ int domh, the following MAP property holds at x̄ with L̄:

|f(x)− f(x; x̄)| = |g(F (x))− g(F (x̄) +∇F (x̄)(x− x̄))| ≤ L̄Dh(x, x̄) ,

for all x ∈ dom f ∩ domh, as g is Q-Lipschitz continuous and (D3) holds true.
Thus, Assumption 3(i) is satisfied with L̄ = L = LQ.
It is straightforward to verify that Assumptions (D1), (D2), (D3), (B1), (B2), (B3)
imply Assumptions 2, 3, 4, 5, 6. Thus, due to Theorem 18, the sequence generated
by Prox-Linear BPG globally converges to a critical point of the function.

5 Experiments

For the purpose of empirical evaluation we consider standard phase retrieval
problems and Poisson linear inverse problems. We compare our algorithms with
Inexact Bregman Proximal Minimization Line Search (IBPM-LS) Ochs et al. (2013),
which is a popular algorithm to solve generic nonsmooth nonconvex problems. Before
we provide the empirical results, we comment below on a variant of Model BPG
based on the backtracking technique, which we used in the experiments.
Model BPG with backtracking. It is possible that the value of L̄ in the MAP
property is unknown. This issue can be solved by using a backtracking technique,
where in each iteration a local constant L̄k is found such that the following holds:

f(xk+1) ≤ f(xk+1;xk) + L̄kDh(xk+1,xk) . (39)

The value of L̄k is found by taking an initial guess L̄0
k. If the condition (39) fails

to hold, then with a scaling parameter ν > 1, we set L̄k to the smallest value in
the set {νL̄0

k, ν
2L̄0

k, ν
3L̄0

k, . . .} such that (39) holds true. Enforcing L̄k ≥ L̄k−1 for
k ≥ 1 ensures that after finite number of iterations there is no change in the value
of L̄k, which takes us to the situation that we analyzed in the paper. The condition
L̄k ≥ L̄k−1 can be enforced by choosing L̄0

k = L̄k−1.
Code. The code is open sourced at the following link: https://github.com/
mmahesh/composite-optimization-code. It contains the implementation of the
algorithms, the random synthetic datasets generation process, the choices for
hyper-parameters, the plots generation process and all the other related details.

5.1 Standard phase retrieval

The phase retrieval problem involves approximately solving a system of quadratic
equations. Let bi ∈ R and Ai ∈ RN×N be a symmetric positive semi-definite
matrix, for all i = 1, . . . ,M . The goal of standard phase retrieval problem is to

https://github.com/mmahesh/composite-optimization-code
https://github.com/mmahesh/composite-optimization-code
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(a) `1 reg (b) Squared `2 reg

(c) `1 reg (d) Squared `2 reg

Fig. 1: In this experiment we compare the performance of Model BPG, Model BPG
with Backtracking (denoted as Model BPG-WB), and IBPM-LS Ochs et al. (2013)
on standard phase retrieval problems, with both `1 and squared `2 regularization.
For this purpose, we consider M1 model function as in (41) without absolute sign
(which is the same setting as Bolte et al. (2018)), and with M2 model function as
in (44). Model BPG with M2 (44) is faster in both the settings and Model BPG
variants perform significantly better than IBPM-LS. By reg, we mean regularization.

find x ∈ RN such that the following system of quadratic equations is satisfied:
xTAix ≈ bi, for i = 1, . . . ,M , where bi’s are measurements and Ai’s are so-called
sampling matrices. In the context of Bregman proximal algorithms, regarding the
phase retrieval problem, we refer the reader to Bolte et al. (2018); Mukkamala et al.
(2020). Further references regarding the phase retrieval problem include Candes
et al. (2015); Wang et al. (2018); Luke (2017). The standard technique to solve
such system of quadratic equations is to solve the following optimization problem:

min
x∈RN

P0(x) , P0(x) :=
1

M

M∑
i=1

(xTAix− bi)2 +R(x) , (40)

where R(x) is the regularization term. We use `1 regularization with R(x) = λ‖x‖1
and squared `2 regularization with R(x) = λ

2 ‖x‖
2, with some λ > 0. We consider

two model functions in order to solve the problem in (40).
Model 1. Here, the analysis falls under the category of additive composite problems
(Section 4.1), where we set f0(x) := R(x) , and f1(x) := 1

M

∑M
i=1 (xTAix− bi)2 .
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(a) `1 reg (b) Squared `2 reg

(c) `1 reg (d) Squared `2 reg

Fig. 2: We illustrate that when Model BPG applied to standard phase retrieval
problem in (40), with model function chosen to be either Model 1 in (41) or Model
2 in (44), result in sequences where the Lyapunov function value evaluations are
monotonically nonincreasing. In terms of iterations, Model BPG with Model 2
(Model BPG M2) is better than Model BPG with Model 1 (Model BPG M1). In
terms of time, Model BPG M1 and Model BPG M2 perform almost the same,
however, towards the end Model BPG M2 is faster in both the cases. By reg we
mean regularization, and by Lyapunov f.v. we mean Lyapunov function values.

Consider the standard model for additive composite problems Bolte et al. (2018),
where around y ∈ RN , the model function P0(·;y) : RN → R is given by

P0(x;y) :=
1

M

M∑
i=1

(
(yTAiy − bi)2 + (yTAiy − bi) 〈2Aiy,x− y〉

)
+R(x) . (41)

We use the Legendre function: h(x) = 1
4‖x‖

4 + 1
2‖x‖

2 . Then, due to (Bolte et al.,
2018, Lemma 5.1) the following L-smad/MAP property is satisfied:

|P0(x)− P0(x;y)| ≤ L0Dh(x,y) , for all x,y ∈ RN , (42)

where L0 ≥
∑M
i=1(3‖Ai‖2F + ‖Ai‖F |bi|). In this setting, Model BPG subproblems

have closed form solutions (see Bolte et al. (2018); Mukkamala et al. (2020)).
Model 2. The importance of finding better models suited to a particular problem
was emphasized in Asi and Duchi (2019). The above provided model function in
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(41) is satisfactory, however, we would like take advantage of the structure of the
function (40). Taking inspiration from Asi and Duchi (2019), a simple observation
that the objective is nonnegative can be exploited to create a new model function.
We incorporate such a behavior in our second model function provided below. We
use the Prox-Linear setting described in Section 4.2, where for any x ∈ RN we set

f0(x) := R(x) , (F (x))i = (xTAix− bi)2 , for all i = 1, . . . ,M , (43)

and, for any ỹ ∈ RM we set g(ỹ) := 1
M ‖ỹ‖1 , for ỹ ∈ RM . Based on (38), for fixed

y ∈ RN , the model function P1(·;y) : RN → R is given by

P1(x;y) :=
1

M

M∑
i=1

|(yTAiy − bi)2 + (yTAiy − bi) 〈2Aiy,x− y〉 |+R(x) . (44)

Considering the Legendre function h(x) = 1
4‖x‖

4 + 1
2‖x‖

2 and (Bolte et al., 2018,
Lemma 5.1) shows that the L-smad (or MAP) property holds true:

|P0(x)− P1(x;y)| ≤ L0Dh(x,y) , for all x,y ∈ RN , (45)

with L0 ≥
∑M
i=1(3‖Ai‖2F + ‖Ai‖F |bi|). Unlike the Model 1 setting, we do not have

closed form solutions for Model BPG subproblems in Model 2 setting. Here, we
solve such subproblems using Primal-Dual Hybrid Gradient Algorithm (PDHG)
Pock and Chambolle (2011). We use a random synthetic dataset, for which we
provide empirical results in Figure 1, where we show superior performance of
Model BPG variants compared to IBPM-LS, in particular, with the model function
provided in (44). For simplicity, we choose a constant step-size τ in all the iterations,
such that τ ∈ (0, 1/L0). We empirically validate Proposition 21 in Figure 2. All
the assumptions required to deduce the global convergence of Model BPG are
straightforward to verify, and we leave it as an exercise to the reader. Note that
here int domh = RN , thus ωint domh(x0) = ω(x0) holds trivially.

5.2 Poisson linear inverse problems

We now consider a broad class of problems with varied practical applications, known
as Poisson inverse problems Bertero et al. (2009); Bauschke et al. (2016); Ochs
et al. (2019); Nikolova (2005). For all i = 1, . . . ,M , let bi > 0, ai 6= 0 and ai ∈ RN+
be known. Moreover, we have for any x ∈ RN+ , 〈ai,x〉 > 0 and

∑M
i=1(ai)j > 0,

for all j = 1, . . . , N , i = 1, . . . ,M . Equipped with these notions, the optimization
problem of Poisson linear inverse problems as following:

min
x∈R+

{
f(x) :=

M∑
i=1

(〈ai,x〉 − bi log(〈ai,x〉)) + φ(x)

}
, (46)

where φ is the regularizing function, which is potentially nonconvex. For simplicity,
we set φ = 0. The function f1 : RN → R at any x ∈ RN is defined as:

f1(x) :=
M∑
i=1

(〈ai,x〉 − bi log(〈ai,x〉)) .
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(a) `1 regularization (b) Squared `2 regularization (c) No regularization

Fig. 3: In this experiment we compare the performance of Model BPG, Model BPG
with Backtracking (denoted as Model BPG-WB) and IBPM-LS Ochs et al. (2013)
on Poisson linear inverse problems with `1 regularization, squared `2 regularization
and with no regularization. We set the regularization parameter λ to 0.1. The plots
illustrate that Model BPG-WB is faster in all the settings, followed by Model BPG.

(a) `1 regularization (b) Squared `2 regularization (c) No regularization

Fig. 4: Under the same setting as in Figure 3, we illustrate here that Model BPG
results in sequences that have monotonically nonincreasing Lyapunov function
value evaluations. By Lyapunov f.v. we mean Lyapunov function values.

Note that the function f1 is coercive. The Legendre function h : RN++ → R (Burg’s
entropy) that is given by

h(x) = −
N∑
i=1

log(xi) , for all x ∈ RN++, (47)

where xi is the ith coordinate of x.

Lemma 31. Let h be defined as in (47). For L ≥
∑M
i=1 bi, the function Lh − f1

and Lh+ f1 is convex on RN++, or equivalently the following L-smad property or
the MAP property holds true:

−LDh(x, x̄) ≤ f1(x)− f1(x̄)− 〈∇f1(x̄),x− x̄〉 ≤ LDh(x, x̄) , for all x, x̄ ∈ RN++ .

Proof. The proof of convexity of Lh − f1 follows from (Bauschke et al., 2016,
Lemma 7). The function Lh+ f1 is convex as f1 is convex.

When Model BPG is applied to solve (46) with h given in (47), if the limit points
of the sequence generated by Model BPG lie in int domh, our global convergence
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result is valid. However, it is difficult to guarantee such a condition. This is because,
there can exist subsequences for which certain components of the iterates can
tend to zero. In such a scenario, some components of ∇2h(xk) will tend to ∞,
which will lead to the failure of the relative error condition in Lemma 23. In
that case, our analysis cannot guarantee the global convergence of the sequence
generated by Model BPG. Thus, in such a scenario it is important to guarantee
that the iterates of Model BPG lie in RN++. To this regard, we could modify the
problem (46), by adding certain constraint set, such that all the limit points lie
in int domh. In particular, with certain ε > 0, we use the constraint set given by
Cε = {x : xi ≥ ε, ∀i = 1, . . . , N} ,

6 Conclusion

Bregman proximal minimization framework is prominent in solving additive compos-
ite problems, in particular, using BPG Bolte et al. (2018) algorithm or its variants
Mukkamala et al. (2020). However, extensions to generic composite problems was
an open problem. To this regard, based on foundations of Drusvyatskiy et al.
(2019); Ochs et al. (2019), we proposed Model BPG algorithm that is applicable
to a vast class of structured nonconvex nonsmooth problems, including generic
composite problems. Model BPG relies on certain function approximation, known
as model function, which preserves first order information about the function. The
model error is bounded via certain Bregman distance, which drives the global
convergence analysis of the sequence generated by Model BPG. The analysis is
nontrivial and requires significant changes compared to the standard analysis of
Bolte et al. (2018, 2014); Attouch and Bolte (2009); Attouch et al. (2013). Moreover,
we numerically illustrate the superior performance of Model BPG on various real
world applications.
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