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Abstract

We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best
of our knowledge, we present the first framework to learn optimization algorithms with
provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between
convergence guarantees and convergence speed, which contrasts with the typical worst-case
analysis. Our learned optimization algorithms provably outperform related ones derived
from a worst-case analysis. The results rely on PAC-Bayesian bounds for general, possibly
unbounded loss-functions based on exponential families. Further, we provide a concrete
algorithmic realization of the framework and new methodologies for learning-to-optimize.
Finally, we conduct four practically relevant experiments to support our theory. With this,
we showcase that the provided learning framework yields optimization algorithms that
provably outperform the state-of-the-art by orders of magnitude.

Keywords: learning-to-optimize, pac-bayes, exponential families, conditioning on con-
vergence, probabilistically constrained sampling

1 Introduction

Typically, optimization algorithms are derived by performing a worst-case analysis on a
specific class of problems. Doing so one obtains theoretical convergence guarantees for any
instance inside the class. However, the abstract class of problems contains an enormous
number beyond the concrete problem of interest, often including also pathological functions
that do not occur in practical applications. Furthermore, since the derivation is done “on
pen and paper”, all modeling steps have to be analytically tractable. This limits the design
of algorithms. Both of these restrictions can impair the performance of the resulting method
on a concrete problem instance. Nevertheless, both restrictions can be alleviated through
learning: Given a concrete application and performance-measure, the algorithm is trained
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PAC-Bayesian Learning-to-Optimize

on examples (data) to improve its performance. This enables the automatic adaptation of
sophisticated algorithms to this particular setting. However, there is no free lunch: If the
algorithm is explicitly based on quantities that are not analytically tractable, one cannot
expect to obtain the same theoretical guarantees as for the worst-case analysis discussed
above. Since the practical usefulness of an optimization algorithm without convergence
guarantees is at least questionable, this is a major problem and poses the first central
question:

What kind of theoretical guarantees can be given for a learned optimization algorithm? Are
we able to ensure its usefulness?

One possible alternative to the common guarantees is of statistical nature: Even if we do
not know exactly what the algorithm does, we can still observe its performance during
training. However, this begs the question whether its performance on the training data
is actually representative for the performance on unseen data. Therefore, in the first part
of this paper we provide a theoretical framework for learning an optimization algorithm
based on its performance on a training set, that is, based on the empirical risk together
with a generalization bound for the (true) risk. A popular framework that provides such
generalization bounds is the PAC-Bayesian approach to learning, which we apply to the
setting of learning-to-optimize. This yields the following informal version of our main the-
oretical result (compare Example 28). It states that, with high probability we will observe
a (training) data set S for which the given bound on the risk of the algorithm’s output will
hold uniformly in a so-called index γ ∈ Γ and distribution Q:

Theorem 1 (Informal) Under mild boundedness assumptions on the optimization algo-
rithm, the Q-average population loss Rσ of the algorithm’s output can be bounded by the
Q-average empirical loss R̂σ of the algorithm’s output plus some remainder term rN that
vanishes with the size N of the data set, that is, for all ε > 0:

PS

{
∀γ ∈ Γ, ∀Q ∈M1 : Q[Rσ] ≤ Q[R̂σ] + rN (γ)

}
≥ 1− ε .

Especially, the uniformity in Q allows for learning such a distribution. This provides one
possible answer to the question about theoretical guarantees for learning-to-optimize. How-
ever, while being a generalization bound, such a guarantee is a statement about relative and
not absolute values, that is, how the true risk compares to the empirical risk. Thus, one
still has to train the optimization algorithm in such a way that the empirical risk is indeed
small enough to be worth the effort. This is particularly important in the area of learning-
to-optimize, as there are already algorithms that can provably solve the given problems in
a rather short amount of time. Hence, the second central question that arises is of a more
practical nature and pertains to the actual training of such an algorithm:

How do we learn an optimization algorithm, such that its performance is clearly superior
to the one achieved by a worst-case analysis?

Therefore, in the second part of this work, we develop a concrete algorithmic realization,
which allows for learning an optimization algorithm and evaluating the corresponding the-
oretical guarantee. This involves several key design choices that have not been used be-
fore and which are of interest in their own right. Furthermore, as empirical evaluation
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Figure 1: Some numerical results: Loss over iterations (mean as dashed and median as
dotted line) of the learned algorithm compared to a standard choice.

of our claims, we conduct four practically relevant experiments, all dealing with very dif-
ferent classes of functions, thereby demonstrating the wide applicability and strong prac-
tical performance of our approach. Figure 1 provides a preview of some experimental
results, and the details will be provided in Section 7. Each subplot compares the per-
formance of the learned algorithm (yellow) to that of a standard algorithm on differ-
ent problems ranging from smooth and strongly convex to non-smooth and non-convex.
Since the learned algorithm is clearly superior in each case, this provides a possible an-
swer to the question about how to train optimization algorithms. In summary, we pro-
vide a complete framework to train optimization algorithms with theoretical guarantees
that are (in a certain sense) provably faster than their worst-case optimal counterparts.
In particular, this work is a far reaching extension of our conference paper (Sucker and
Ochs, 2023) by extending and clarifying the theoretical results in Sections 3, and, in
particular, by the algorithmic realization together with its evaluation in Sections 6 and
7, which additionally includes a probabilistic constraining procedure for sampling algo-
rithms in Subsection 5.1. The entire code associated with this paper can be found at
https://github.com/MichiSucker/Learning-to-Optimize-with-PAC-Bayes.

1.1 Related Work

The literature on both learning-to-optimize and the PAC-Bayes learning approach is vast.
Hence, for learning-to-optimize we will mainly focus on approaches that provide some theo-
retical guarantees. Especially, this excludes many model-free approaches, which replace the
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whole update step with a learnable mapping such as a neural network. Chen et al. (2022)
provide a good overview about the variety of approaches in learning-to-optimize, and good
introductory references for the PAC-Bayesian approach are given by Guedj (2019), Hell-
ström et al. (2025), and Alquier (2024).

1.1.1 Broader Context of Learning-to-Optimize

Optimization is an integral part of machine learning. Thus, learning-to-optimize has sig-
nificant overlap with the areas of meta-learning (or “learning-to-learn”) and AutoML. The
first one is a subset of learning-to-optimize, because it is mostly concerned with determining
parameters of machine learning models (Vilalta and Drissi, 2002; Hospedales et al., 2022).
AutoML, however, more broadly refers to automating all steps necessary to create a ma-
chine learning application, which also includes the choice of an optimization algorithm and
its hyperparameters (Yao et al., 2018; Hutter et al., 2019; He et al., 2021).

1.1.2 Learning-to-Optimize with Guarantees

Learned optimization methods may lack theoretical guarantees for the sake of convergence
speed (Chen et al., 2022). Yet, there are applications where a convergence guarantee is
of highest priority: Möller et al. (2019) provide an example where a purely learning-based
approach fails to reconstruct the crucial details in a medical image. Also, they prove con-
vergence of their method by restricting the output to descent directions, for which mathe-
matical guarantees exist. The basic idea is to trace the learned object back to, or constrain
it to, a mathematical object with convergence guarantees. Similarly, Sreehari et al. (2016)
provide sufficient conditions under which the learned mapping is a proximal mapping. Re-
lated schemes, under different assumptions and guarantees, are given by Chan et al. (2017),
Teodoro et al. (2017), Tirer and Giryes (2019), Buzzard et al. (2018), Ryu et al. (2019),
Sun et al. (2019), Terris et al. (2021) and Cohen et al. (2021). A major advantage of these
methods is the fact that the number of iterations is not restricted a priori. However, a ma-
jor drawback is their restriction to specific algorithms and problems. This contrasts with
the approach of unrolling, pioneered by Gregor and LeCun (2010), which limits the num-
ber of iterations, yet in principle can be applied to every iterative optimization algorithm.
Here, Xin et al. (2016) study the convergence properties of the IHT algorithm, while Chen
et al. (2018) consider the unrolled ISTA. However, a difficulty in the theoretical analysis
of unrolled algorithms is actually the notion of convergence itself, such that one rather has
to consider the generalization performance. Only few works have addressed this: Either
directly by means of Rademacher complexity (Chen et al., 2020b), or indirectly in form of
a stability analysis (Kobler et al., 2022), as algorithmic stability is linked to generalization
(Bousquet and Elisseeff, 2000, 2002; Shalev-Shwartz et al., 2010). Our theoretical analysis
corresponds to the approach of unrolling, that is, a fixed number of iterations. However, in
the experiments we stay more closely to the iterative approach of learning an update step
that can be applied for an arbitrary number of iterations.

1.1.3 Design-Choices in Learning-to-Optimize

A major problem of many learned optimization algorithms, especially the ones based on
recurrent neural networks (RNN), is their restriction to a certain number of iterations:
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They cannot be trained for an arbitrary number of iterations due to instabilities or memory
bottlenecks. Further, often they do not generalize well to more iterations than they were
trained for (Andrychowicz et al., 2016; Chen et al., 2017; Lv et al., 2017; Chen et al.,
2022). A typical way to mitigate this problem is to split the whole trajectory into smaller
parts (Andrychowicz et al., 2016; Chen et al., 2017; Metz et al., 2019). However, often
this does not lead to fully satisfactory results either, such that other approaches have
been proposed: To improve generalization, Lv et al. (2017) introduce random scaling of the
coordinates and the addition of a convex function to the objective. Wichrowska et al. (2017)
introduce a hierarchical RNN architecture, and additionally draw the number of unrollings
and the unrolling length from a heavy-tailed exponential distribution. While achieving the
needed generalization, this approach does not achieve the same wall-clock time as simple
optimization algorithms. Metz et al. (2019) replace the recurrent neural network with a
multilayer perceptron (MLP), and they use two unbiased gradient estimators instead of one.
Doing so they manage to train algorithms that are faster in wall-clock time than standard
ones like Adam. Chen et al. (2020a) consider training techniques in general, and introduce
a progressive scheme that gradually increases the unrolling length, as well as an imitation
learning approach to learn to mimic analytic optimizers.
Besides the optimizer, a crucial design choice in learning-to-optimize is that of the loss
function. Typically, either the final loss or a weighted sum of the losses along the iterations
is used (Chen et al., 2022). We introduce a new loss function for training optimization
algorithms, motivated by an intuitive theoretical argument. Further, we use a single learned
update based on MLPs instead of an RNN, and we split the trajectory into subtrajectories
and randomize its total length, however, in a new way.

1.1.4 PAC-Bayesian Bounds through Change-of-Measure

PAC is an acronym for Probably Approximately Correct, and PAC-Bayes refers to the fact
that one considers distributions instead of points (Alquier, 2024). This framework allows
for giving high probability bounds on the risk, either as an oracle or as an empirical bound.
The key ingredient is a change-of-measure inequality, the choice of which strongly influ-
ences the corresponding bound. The one used most often is based on a variational rep-
resentation of the Kullback–Leibler divergence due to Donsker and Varadhan, employed,
for example, by Catoni (2004, 2007). Yet, not all bounds are based on a variational rep-
resentation, that is, holding uniformly over all posterior distributions (Rivasplata et al.,
2020). While many bounds involve the Kullback–Leibler divergence as measure of proxim-
ity (McAllester, 2003a,b; Seeger, 2002; Langford and Shawe-Taylor, 2002; Germain et al.,
2009), other divergences have been used: Honorio and Jaakkola (2014) prove an inequality
for the χ2-divergence, which is also used by London (2017). Bégin et al. (2016) and Alquier
and Guedj (2018) use the Renyi-divergence (α-divergence). Ohnishi and Honorio (2021)
propose PAC-bounds based on f-divergences, which include the Kullback–Leibler-, α- and
χ2-divergences. More recently, Amit et al. (2022) propose to replace the Kullback-Leibler
divergence by so-called “integral probability metrics”, which encompass, for example, the
Wasserstein distance that obeys many favorable properties and also captures the geome-
try of the underlying space (see Villani, 2009). Motivated by this, Haddouche and Guedj
(2023) also investigate PAC-Bayesian generalization bounds for the Wasserstein distance
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and their interplay with the output of optimization algorithms. A major advantage of using
the Wasserstein distances instead of the Kullback-Leibler divergence is the fact that it does
not constrain the support of the distribution a-priori through the choice of the prior. On
the other hand, it demands assumptions on the loss function, which are not necessarily
satisfied in learning-to-optimize. We give a general PAC-Bayesian theorem based on expo-
nential families. Here, prior, posterior, divergence and data dependence are given naturally.
Further, it allows for implementing an abstract learning framework that can be applied to a
wide variety of algorithms.

1.1.5 Boundedness of the Loss Function

A major drawback of many of the existing PAC-Bayes bounds is the assumption of a
bounded loss-function. This assumption is mainly used to apply some exponential-moment
inequality like the Hoeffding- or Bernstein-inequality (Rivasplata et al., 2020; Alquier, 2024)
and several ways have been developed to circumvent this problem: Germain et al. (2009)
explicitly include the exponential-moment in the bound, Alquier et al. (2016) use so-called
Hoeffding- and Bernstein-assumptions, Catoni (2004) restricts to the sub-Gaussian or sub-
Gamma case. Another possibility to ensure the generalization or exponential-moment
bounds is to use properties of the algorithm: London (2017) uses algorithmic stability
to provide PAC-Bayes bounds for SGD. We consider suitable properties of optimization
algorithms aside from algorithmic stability to ensure the exponential-moment bounds.

1.1.6 Minimization of the PAC-Bound

PAC-bounds relate the true risk to other terms such as the empirical risk. Yet, they do not
directly say anything about the absolute numbers. Thus, learning procedures based on the
PAC-Bayesian theory typically aim to minimize this bound: Langford and Caruana (2001)
compute non-vacuous generalization bounds through a combination of PAC-bounds with a
sensitivity analysis. Dziugaite and Roy (2017) extend this by minimizing the PAC-bound
directly. Pérez-Ortiz et al. (2021) also consider learning as minimization of the PAC-Bayes
bound and provide tight generalization bounds. Thiemann et al. (2017) are able to solve the
minimization problem resulting from their PAC-bound by alternating minimization. We
follow this approach and consider learning as minimization of the PAC-Bayesian bound.

1.1.7 Choice of the Prior

A common difficulty in learning with PAC-Bayesian bounds is the choice of the prior distri-
bution, as it heavily influences the performance of the learned models and the generalization
bound (Catoni, 2004; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021). In part, and espe-
cially for the Kullback-Leibler divergence, this is due to the fact that the divergence term
can dominate the bound, keeping the posterior close to the prior. This leads to the idea of
choosing a data- or distribution-dependent prior (Seeger, 2002; Parrado-Hernández et al.,
2012; Lever et al., 2013; Dziugaite and Roy, 2018; Pérez-Ortiz et al., 2021), which, by using
an independent subset of the data set, gets optimized to yield a good performance. The
prior distribution strongly influences the performance of our learned algorithms. Thus, we
use a data-dependent prior. Further, we show how the prior can be used for preserving
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essential properties during learning: It is key to control the trade-off between convergence
guarantee and convergence speed.

1.1.8 More Generalization Bounds

There are more areas of machine learning research that study generalization bounds. Im-
portantly, the field of “stochastic optimization” (SO) provides generalization bounds for
specific algorithms. The main differences to our setting are the learning approach and the
assumptions made:

• Instead of a distribution over hyperparameters, the algorithms in SO generate a point
estimate, and one studies the properties of this point in terms of the stationarity measure
of the true risk functional (Bottou et al., 2018; Davis and Drusvyatskiy, 2022; Bianchi
et al., 2022).

• Instead of an abstract algorithm, the setting in SO is more explicit. Thus, more assump-
tions have to be made. Typical assumptions are (weak) convexity (Shalev-Shwartz et al.,
2009; Davis and Drusvyatskiy, 2019), bounded gradients (Défossez et al., 2022), bounded
noise (Davis and Drusvyatskiy, 2022), or smoothness (Kavis et al., 2022).

We provide a principled way to learn a distribution over general hyperparameters of an
abstract algorithm under weak assumptions and go explicitly beyond analytically tractable
quantities. Therefore, the methodology is independent of the chosen implementation.

The rest of the paper is structured as follows: In Section 2 we introduce the notation
and provide a formal description of the setting. In Section 3, we derive the general PAC-
Bayesian theorem and relate it to other existing bounds. In Section 4, we identify properties
of optimization algorithms that allow to apply the PAC-Bayesian theorem. As this strongly
relies on assumptions on the prior distribution, we provide a probabilistic constraining
procedure that allows to enforce such constraints in Section 5. Then, in Section 6 we
describe the learning procedure and our design choices for learning-to-optimize, and in
Section 7 we conduct the experiments.

2 Problem Setup & Assumptions

In this section we establish the notation, formalize the setting, and state the main assump-
tions that are used throughout the remainder of the text.

2.1 Notation

We will endow every topological space Uwith the corresponding Borel-σ-algebraB(U), and,
given a product space U×V of two measurable spaces (U,U) and (V,V), we endow it with
the product-σ-algebra U⊗V. We will denote the product space of a generic number of spaces
U1, ..., Un by

∏n
i=1 Ui, and the product-σ-algebra by

⊗n
i=1B(Ui). If all spaces are equal,

this is abbreviated as Un. For a function f : U×V→ W, f(u, ·) : V→ Wdenotes the map
v 7→ f(u, v) with fixed element u ∈ U. Similarly, for a set C ⊂ U× V, the section of C for
fixed u ∈ U is denoted by Cu := {v ∈ V : (u, v) ∈ C}. In general, generic sets are denoted
in typewriter font, for example A, and 1A denotes the function that is equal to one for u ∈ A
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and zero else, while ιA denotes the function that is equal to zero for u ∈ A and +∞ else.1

Given a measurable space (U,U), a measure µ and a measurable function f ≥ 0, µ[f ] denotes
the integral of f w.r.t. µ, while f ·µ denotes the measure given by (f ·µ)[A] =

∫
A f(u) µ(du),

that is, (f · µ)[U] = µ[f ] and (f · µ)[A] = µ[f · 1A]. Hence, f · µ is absolutely continuous
w.r.t. µ, written as f · µ≪ µ, with f being the corresponding density. Here, the set of all
measures on U will be denoted by M(U) := {µ : U → [0,∞] : µ is a measure}, and the
set of all probability measures that are absolutely continuous w.r.t. µ ∈M(U) are denoted
by M1(µ) := {ν ∈ M(U) : ν[U] = 1 and ν ≪ µ}. In this context, the Kullback-Leibler
divergence between two measures ν and µ is defined as

DKL(µ ∥ ν) =

{
µ[log(f)] =

∫
U
log(f(u)) µ(du), µ≪ ν with density f ,

+∞, otherwise .

For the rest of the manuscript, we will fix a probability space
(
Ω,F,P

)
, and if µ = P

is the probability measure, the corresponding expectation is denoted by E[f ] := P[f ] =∫
Ω f(ω) P(dω). Here, we will write random variables in upper-case and corresponding
realizations in lower-case with the same symbol, for example U = u. Given two random
variables U :

(
Ω,F,P

)
→ U and V :

(
Ω,F,P

)
→ V, integration of a measurable function f

on U×Vw.r.t. the induced probability measure P(U,V ) is specified by the subscript (U, V ),
that is:

E [f(U, V )] =

∫
Ω
f (U, V ) (ω) P(dω) =

∫
U×V

f(u, v) P(U,V )(du, dv) = E(U,V ) [f ] .

If we have a regular version of the conditional distribution of V , given U , denoted by PV |U ,
the joint distribution P(U,V ) can be disintegrated into the product PU⊗PV |U of the marginal
PU and the probability kernel (x,B) 7→ PV |U=u[B], which allows us to use the notation:

E[f(U, V )] =

∫
U

∫
V

f(u, v) PV |U=u(dv) PU (du) = EU

[
EV |U=u [f(u, ·)]

]
.

Note that changing the order of integration is not allowed in this case. However, if U and V
are independent, their joint distribution is given by the product PU ⊗PV for which Fubini’s
theorem is applicable, and the iterated integration is clarified by the subscripts U, V :

E [f(U, V )] =

∫
U

∫
V

f(u, v) PV (dv) PU (du) = EU [EV [f(u, ·)] |u=U ] .

Finally, our theoretical results rely on the notions of probability kernels and exponential
families, whose definitions are recalled in Appendix A.

2.2 Main Assumptions and Definitions for Learning Optimization Algorithms

We assume that we are given a distribution over loss-functions with a specific structure,
which is modelled by a random variable:

1. We omit the name here, as both 1A and ιA are called “indicator function”. The former in probability
theory, the latter in optimization.
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Assumption 2 We are given a Polish space P (separable and complete metrizable topolog-
ical space) and a non-negative and measurable loss-function ℓ : Rn×P→ [0,+∞]. Further,
for some N ∈ N, we are given i.i.d. random variables P , P 1, ..., PN :

(
Ω,F,P

)
→ P.

Then, ideally, we would like to find a solution to each realization of the random objective:

Find x∗ : P→ Rn, s.t. x∗(p) ∈ argmin
x∈Rn

ℓ(x, p) PP − a.s. (1)

However, we will only solve a relaxed version of (1) and provide generalization bounds for
the average performance after training on a data set.

Definition 3 The measurable function S :
(
Ω,F,P

)
−→ PN , ω 7→ (P 1, ..., PN ) (ω) is

called a data set, and if the random variables P 1, ..., PN are i.i.d., that is, PS =
⊗N

i=1 PP i =⊗N
i=1 PP , it is called an i.i.d. data set. Further, PN is called the data-space.

PAC-Bayesian generalization bounds involve a so-called posterior distribution, which usually
is a “data-dependent distribution”. As also pointed out by Rivasplata et al. (2020), this is
an instance of a probability kernel (also called a “stochastic-” or “Markov kernel”):

Definition 4 Let S be a data set with data-space PN , and let U be a measurable space. A
probability kernel from PN to U is called a data-dependent distribution on U.

For solving problem (1), for every realization p of P , we apply an optimization algorithm
A to ℓ(·, p). For this, we consider a similar setting as London (2017), that is, randomized
algorithms are considered as deterministic algorithms with randomized hyperparameters:

Definition 5 Let H be a Polish space and n ∈ N. A measurable function

A : H× Rn ×P−→ Rn, (h, x(0), p) 7→ A(h, x(0), p) ,

is called a parametric algorithm. Rn is the space of the optimization variable, P the space of
the parameters of the loss function, and H the space of the hyperparameters of the algorithm.

Please note that A corresponds to the whole algorithm, that is, for an iterative algorithm
its output is the final iterate. In the PAC-Bayesian approach, learning A refers to finding
a distribution Q on H based on its performance on a data set S. For this, one needs a
reference distribution, called the prior, which can (and should) encode prior knowledge
about suitable choices of hyperparameters:

Assumption 6 We are given a parametric algorithm A with Polish hyperparameter space
H, and a (prior) distribution PH on H that is induced by a random variable H :

(
Ω,F,P

)
−→

H, which is independent of S and P . Further, the initialization x(0) ∈ Rn is given and fixed.

Notation 7 To simplify the notation, we use the short-hand ℓ(h, p) := ℓ(A(h, p), p). Fur-
thermore, if not needed explicitly, x(0) and

(
Ω,F,P

)
will not be mentioned in the following.
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Definition 8 Suppose P and ℓ satisfy Assumption 2, and A satisfies Assumption 6. The
risk of A is defined as the measurable function:

R : H−→ [0,+∞], h 7→ E [ℓ (A(h, P ), P )] = E[ℓ(h, P )] = EP [ℓ(h, ·)] .

Similarly, for an i.i.d. data set S = (P 1, ..., PN ) the empirical risk is defined as:

R̂ : H×PN −→ [0,+∞], (h, S) 7→ R̂(h, S) =
1

N

N∑
i=1

ℓ (h, P i) .

The following theory is based on exponential families, which is a very flexible class of
distributions. We highlight the data-dependency in the following adjusted definition:

Definition 9 Let ∅ ̸= Γ be an index set, S a data set with data-space PN , and let U

be a measurable space. A family of probability kernels (Qγ)γ∈Γ from PN to U is called a
data-dependent exponential family (in η and τ), if there is a probability measure µ on U,
functions η : Γ→ Rk, a : Γ×PN → (0,+∞), and measurable functions τ : U×PN → Rk,
b : U→ (0,+∞), such that Qγ(s) = ba(γ, s) exp (⟨η(γ), τ(·, s)⟩) ·µ for every γ ∈ Γ, s ∈ PN ,
that is, Qγ(s,B) =

∫
B b(u)a(γ, s) exp(⟨η(γ), τ(u, s)⟩) µ(du), B ∈ B(U).

We introduce data-dependency through τ , since it strongly affects the shape of the distri-
bution and, contrary to η, is defined on the underlying space U. Since we want to learn a
distribution over hyperparameters h ∈ H, we make the following assumption:

Assumption 10 On the hyperparameter space H, we are given a data-dependent exponen-
tial family (Qγ)γ∈Γ in η and τ with dominating probability measure µ = PH , such that the
map h 7→ b(h) exp(⟨η(γ), τ(h, s)⟩) is non-trivial and integrable w.r.t. PH for every γ ∈ Γ,
s ∈ PN , that is, EH [b exp(⟨η(γ), τ(·, s)⟩)] ∈ (0,∞).

Then, as shown in Lemma 38 in Appendix B, every member of the data-dependent ex-
ponential family is indeed a data-dependent distribution on H. In the following, the last
integral in Assumption 10 will be of great interest. Here, we will use a similar notation as
in Barndorff–Nielsen (2014) and denote

c(γ, s) :=

∫
H

b(h) exp(⟨η(γ), τ(h, s)⟩) PH(dh) = EH [b exp(⟨η(γ), τ(·, s)⟩)] ,

κ(γ, s) := log (c(γ, s)) = log (EH [b exp (⟨η(γ), τ(·, s)⟩)]) .
(2)

With this notation, it holds that a(γ, s) = c(γ, s)−1.

Remark 11 (i) If η describes a lower-dimensional manifold in Rk, (Qγ)γ∈Γ is called a
curved exponential family (Efron, 1975), whose properties might differ from the ones
for linear exponential families, for example, convexity of the map γ 7→ a(γ, s).

(ii) In PAC-Bayes, the dominating measure PH is usually referred to as prior and every
distribution Q ∈M1(PH) is referred to as a posterior. This deviates from the standard
definitions of prior and posterior in Bayesian statistics.

10
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(iii) In general, the integrability assumption is restrictive, as it affects the choice of b, η
and τ . However, in Section 4 we will construct η and τ such that this holds anyway.

(iv) In the special case b ≡ 1 and η(γ) ≡ γ, the map γ 7→ c(γ, s) is the moment-generating
function of the random variable τ(H, s). Similarly, in this case γ 7→ κ(γ, s) is the
corresponding cumulant-generating function.

Finally, we will restrict Γ to a compact set. This is needed to get a uniform bound in γ (see
Langford and Caruana, 2001; Catoni, 2007; Alquier, 2024).

Assumption 12 Γ is a compact set with finite covering O := {O1, ...,OK}, that is, Γ ⊂⋃K
i=1Oi, such that there is a constant CO, which, for every s ∈ PN , allows for the bound

maxi=1,...,K supγ,γ′∈Oi
κ(γ, s)− κ(γ′, s) ≤ CO.

Remark 13 The non-trivial part of this assumption is the existence of the constant CO for
the given finite covering. It does hold, for example, if Γ is a finite set (K = |Γ|, CO = 0),
or, if (Γ, ρ) is a compact metric space and κ is Lipschitz-continuous in γ (uniformly in s)
with Lipschitz constant L, such that CO = L ·maxi=1,...,K diam Oi, where the diameter of a
set A is given by diam A = supx,y∈A ρ(x, y).

3 General PAC-Bayesian Theorem

In this section we prove the general PAC-Bayesian bound for data-dependent exponential
families, which then can be specialized into a generalization bound of the learned parametric
optimization algorithm A. It is based on the following two lemmas, whose proofs can be
found in Appendix C and D, respectively. The first lemma is a form of the Donsker–
Varadhan variational formulation and yields uniformity in the distributions Q, while the
second lemma yields uniformity in γ ∈ Γ by controlling γ 7→ κ(γ, s) for every s ∈ PN .

Lemma 14 Suppose that Assumption 10 holds and define κ as in (2). Then for every γ ∈ Γ
and s ∈ PN it holds that κ(γ, s) = supQ∈M1(PH)Q [⟨η(γ), τ(·, s)⟩+ log(b)] −DKL(Q ∥ PH).
Furthermore, for every γ ∈ Γ, the supremum is attained at Qγ(s).

Lemma 15 Suppose that Assumption 12 holds and assume that P{κ(γ, S) > t} ≤ exp(−t)
for all t ∈ R and γ ∈ Γ. Then P{supγ∈Γ κ(γ, S) ≤ log(K/ϵ) + CO} ≥ 1− ϵ.

Theorem 16 Suppose that Assumptions 10 and 12 hold, and assume that ES [c(γ, ·)] ≤ 1
for all γ ∈ Γ. Then, it holds that:

P
{
∀γ ∈ Γ, ∀Q ∈M1(PH) :

Q [⟨η(γ), τ(·, s)⟩+ log(b)] |s=S ≤ DKL(Q ∥ PH) + log

(
K

ε

)
+ CO

}
≥ 1− ε .

Proof Applying Markov’s inequality to the non-negative random variable c(γ, S) yields
for t ∈ R, γ ∈ Γ:

P {c(γ, S) > exp(t)} ≤ E[c(γ, S)]
exp(t)

≤ exp(−t) .

11
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This implies that P {κ(γ, S) > t} ≤ exp(−t). Hence, Lemma 15 is applicable and gives:

P

{
sup
γ∈Γ

κ(γ, S) ≤ log

(
K

ε

)
+ CO

}
≥ 1− ε .

Using Lemma 14 gives:

P

{
sup
γ∈Γ

sup
Q∈M1(PH)

Q[⟨η(γ), τ(·, s)⟩+ log(b)]|s=S −DKL(Q ∥ PH) ≤ log

(
K

ε

)
+ CO

}
≥ 1− ε .

Simply rearranging and reformulating yields the result.

Remark 17 (i) Note that the statement is still true for a data-dependent prior PH : Given
another independent data set S′, one needs to assume that E [c(γ, (S, S′))] ≤ 1.

(ii) In Section 4 we provide sufficient conditions s.t. E[c(γ, S)] ≤ 1 holds for all γ > 0.

(iii) Typically, K is (related to) the covering-number of Γ, and log(K) bears the intrinsic
dimension of Γ. Thus, in full generality, it might be large. For us, however, it only
has a minor influence, since Γ ⊂ R, and the empirical risk is typically much larger.

(iv) Thanks to the reviewers we became aware of the monograph by Hellström et al. (2025),
which proposes a similar general PAC-Bayesian theorem. On first sight, it seems like
theirs is more general than ours. However, Example 19 clarifies this. Furthermore,
we want to remark that the first version of our Theorem 16 appeared in 2022.

For the rest of the paper, we set b ≡ 1, such that log(b) ≡ 0. The following corollary shows
an example of how to transform Theorem 16 into a high-probability bound on the risk. The
proof is given in Appendix E.

Corollary 18 (PAC-Bayesian Generalization Bound) Denote τ by τ = (τ (1), τ (r))
with τ (r) := (τ (2), ..., τ (k)) and η by η = (η(1), η(r)) with η(r) := (η(2), ..., η(k)). If τ (1) = R−R̂
and η(1) > 0, the following are equivalent for any γ ∈ Γ, s ∈ PN , Q ∈M1(PH):

(i) Q [⟨η(γ), τ(·, s)⟩] ≤ DKL(Q ∥ PH) + log
(
K
ε

)
+ CO,

(ii) Q[R] ≤ Q[R̂(·, s)] + 1
η(1)(γ)

(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO −Q

[
⟨η(r)(γ), τ (r)(·, s)⟩

])
.

In particular, if Theorem 16 applies, we can replace (i) with (ii).

Using similar rearrangements, the following example relates Theorem 16 to other known
PAC-Bayesian bounds:

Example 19 (i) Assume that the loss-function is bounded, that is, 0 ≤ ℓ ≤ C, and define

Γ = {γ}, b ≡ 1, CO = 0, τ(h, s) :=
(
R(h)− R̂(h, s), C2

)
, and η(γ) :=

(
γ,−γ2

8

)
.

Then we recover Catoni’s bound (Catoni, 2003; Alquier, 2024):

P
{
∀Q ∈M1(PH) :

Q[R] ≤ Q[R̂(·, s)]|s=S +
1

λ

(
DKL(Q ∥ PH) + log

(
1

ε

)
+

λ2C2

8N

)}
≥ 1− ε .

12
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(ii) Assume that ℓ takes values in [0, 1] and let D : [0, 1]2 → R be convex. Further, define

Γ = {1}, b ≡ 1, CO = 0, τ(h, s) :=
(
nD(R(h), R̂(h, s)), log(E(S,H)[exp(nD(R, R̂))])

)
,

and η(γ) := (1,−1). Then we get:

P
{
∀Q ∈M1(PH) : Q[D(R, R̂(·, s))]|s=S

≤ 1

n

(
DKL(Q ∥ PH) + log

(
1

ε

)
+ log(E(S,H)[exp(nD(R, R̂))])

)}
≥ 1− ε .

Applying Jensen’s inequality to the left term, we get the bound of Germain et al.
(2009). Similarly, one can obtain the bound of Bégin et al. (2014).

(iii) Consider two measurable functions f, g : H× PN → R, and define Γ = {γ}, b ≡ 1,
CO = 0, τ(h, s) := (f(h, s), g(h, s)), and η(γ) := (γ,−γ). Then our assumption
ES [c(γ, ·)] ≤ 1 reads E(S,H) [exp(γ(f − g))] ≤ 1, which is the same assumption as in
Hellström et al. (2025, Thm. 5.1). Similarly, defining η(γ) := (1,−1) and T (h, s) :=
(f(h, s), log(E(S,H)[exp(f)])), we also get a similar bound as Hellström et al. (2025,
Proposition 5.2):

P
{
∀Q ∈M1(PH) : Q[f(·, s)]|s=S

≤ DKL(Q ∥ PH) + log

(
1

ε

)
+ log(E(S,H)[exp(f)])

}
≥ 1− ε .

4 Learning-to-Optimize with Guarantees

Here, for our setting in Subsection 2.2, we consider properties of optimization algorithms
that assert the necessary condition of Theorem 16, namely E[c(γ, S)] ≤ 1 for all γ ∈ Γ, with
c defined as in Equation 2, to employ the PAC-Bayesian bound from Section 3.

4.1 Worst-Case Bounds

In the next theorem, the additional assumption on A is sufficient to ensure the conditions of
Theorem 16. Essentially, it requires the loss of the algorithm’s output to be bounded. It can
be used, for example, if one wants to combine the learning procedure with existing worst-
case guarantees. Yet, as shown in Section 4.2, it is too restrictive to achieve a significant
acceleration compared to the standard choices from a worst-case analysis. For this, please
recall our short-hand notation ℓ(h, p) = ℓ(A(h, p), p) = ℓ(A(h, x(0), p), p), that is, ℓ(x(0), p)
evaluates the loss function at x(0), while ℓ(h, p) evaluates the loss function at the output of
the algorithm with hyperparameters h and starting from x(0).

Theorem 20 Suppose that P and ℓ satisfy Assumption 2, and suppose that A satisfies
Assumption 6. Further, assume that there is a measurable function ρ : H−→ [0,∞), such
that for every h ∈ H it holds that ℓ(h, ·) ≤ ρ(h)ℓ(x(0), ·) PP -a.s. Furthermore, let S be a
corresponding i.i.d. data set of size N ∈ N. Finally, assume that E

[
ℓ(x(0), P )2

]
< ∞, and

define η : (0,∞) −→ R2 and τ : H×PN −→ R2 through:

η(γ) :=

(
γ, −γ2

2

)
, τ(h, s) :=

(
R(h)− R̂(h, s),

ρ2(h)

N
E
[
ℓ(x(0), P )2

])
.
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Then it holds that E[c(γ, S)] ≤ 1 for all γ > 0.

Proof Since H and S are independent, their joint distribution is given by the product
measure PS ⊗ PH . Thus, by Fubini’s theorem we get:

E
[
exp

(
γ(R(H)− R̂(H,S))

)]
= E

[
E
[
exp

(
γ(R(h)− R̂(h, S))

)] ∣∣∣
h=H

]
.

Hence, first consider the inner integral for a fixed h ∈ H. Then, by definition and the i.i.d.
assumption one gets:

E
[
exp

(
γ(R(h)− R̂(h, S))

)]
= E

[
exp

(
− γ

N

N∑
i=1

(ℓ(h, P i)− E[ℓ(h, P )])

)]

=

N∏
i=1

EP

[
exp

(
− γ

N
(ℓ(h, ·)− EP [ℓ(h, ·)])

)]
.

The loss-function is non-negative and, by assumption on A, can be bounded PP -a.s. Thus,
for every h ∈ H, ℓ(h, P ) is a non-negative random variable with finite second-moment, as
EP [ℓ(h, ·)2] ≤ ρ(h)2EP

[
ℓ(x(0), ·)2

]
<∞. Hence, by Lemma 39, we get:

EP

[
exp

(
− γ

N
(ℓ(h, ·)− EP [ℓ(h, ·)])

)]
≤ exp

( γ2

2N2
EP [ℓ(h, ·)2]

)
≤ exp

( γ2

2N2
ρ(h)2EP [ℓ(x

(0), ·)2]
)
.

Therefore we have the following bound:

E
[
exp

(
γ(R(h)− R̂(h, S))

)]
≤ exp

( γ2

2N
ρ(h)2EP

[
ℓ(x(0), ·)2

])
.

This can be rearranged into E
[
exp

(
γ(R(h)− R̂(h, S))− γ2

2N ρ(h)2EP [ℓ(x
(0), ·)2]

)]
≤ 1, as

the right-hand side does not depend on S. Since H and S are independent, and h ∈ H

was arbitrary, this inequality does hold PH -a.s. Therefore, one directly gets the bound

E
[
exp

(
γ(R(H)− R̂(H,S))− γ2

2N ρ(H)2EP [ℓ(x
(0), ·)2]

)]
≤ 1. Now, again by Fubini’s theo-

rem, one can also switch the order of integration to get:

E
[
E
[
exp

(
γ(R(H)− R̂(H, s))− γ2

2N
ρ(H)2EP [ℓ(x

(0), ·)2]
)] ∣∣∣

s=S

]
≤ 1 .

Inserting the definition of η and τ gives E [E [exp (⟨η(γ), τ(H, s)⟩)] |s=S ] ≤ 1. Here, the in-
ner term is the same as E [exp (⟨η(γ), τ(H, s)⟩)] =

∫
H
exp (⟨η(γ), τ(h, s))⟩) PH(dh) = c(γ, s).

Hence, this is the same as E[c(γ, S)] ≤ 1.

Remark 21 The argument still works for a data-dependent prior, if the corresponding
data sets S′ and S are independent: While interchanging the integration w.r.t. S′ and
H is not allowed, an interchange w.r.t. H and S is still valid (under the integral), that
is, for a function f it would hold E [f(H,S, S′)] = ES′

[
EH|S′=s′ [ES [f(h, ·, s′)] |h=H ]

]
=

ES′
[
ES

[
EH|S′=s′ [f(·, s, s′)] |s=S

]]
, and the inner term is ≤ 1 in any case.
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4.2 Conditional Boundedness

Typically, the previous approach is too restrictive, because the boundedness assumption on
A already requires theoretical worst-case estimates almost surely. For example, if (ℓ(·, p))p∈P
is a family of quadratic functions, and one tries to learn the step-size of gradient descent,
the boundedness prevents step-size parameters that lie outside the worst-case convergence
regime, as they would lead to a diverging behaviour, which increases the incurred empir-
ical risk dramatically. Thus, to motivate the upcoming discussion, consider the following
thought-experiment:

Example 22 Consider ℓ(x, p) := p
2x

2 and assume that the chosen algorithm is gradient

descent, that is x(k+1) = x(k) − hℓ′(x(k), p). For a given p, the optimal step-size is h = 1
p ,

which gives convergence in one step. Then, if p is given by samples from the distribution
PP = 0.99δ1 + 0.01δ100, a worst-case analysis would suggest to take hw = 1

100 . In this case,
we would have an algorithm that converges in a single step for 1% of the problem instances,
while having a linear convergence rate of ( 99

100)
k for the other 99%. Another choice is to

take hd = 1, which leads to an algorithm that does converge in a single step for 99% of the
problem instances, but diverges in 1% of the cases. By restricting to the 99% of the cases
where convergence does occur, the overall difference in speed is drastic.

Hence, in this section, a different approach is taken: We actually allow for divergence, if it
only occurs in rare cases with a controllable probability, that is, “almost surely” is relaxed
to “with a sufficiently large probability”. Essentially, we only consider the loss for all those
hyperparameters, where the loss is bounded by a certain constant, as well as the probability
for that to occur. Then, in Section 5, we develop a technique that allows the user to actually
control this probability. Clearly, a stronger guarantee trades for convergence speed.

Definition 23 Given a measurable function σ : P → R, the (parametric) sublevel set
Lσ ⊂ H×P is defined as Lσ := {(h, p) ∈ H×P : ℓ(h, p) ≤ σ(p)}. The sections of Lσ for
fixed h ∈ H will be denoted by Lσ,h.

In Lemma 40 we show that Lσ is indeed a measurable set. This is not obvious, as the loss
function and the algorithm are composed in a non-standard way. This result further implies
that the sections Lσ,h are measurable, too. Since H and P are Polish spaces, the product
H×P is again Polish. Hence, there exists a regular version of the conditional probability of
P , given H, that is, a kernel H→ P, (h,B) 7→ PP |H=h[B]. By Witting (1985, Thm. 1.122,
p.124), this determines a regular version of the conditional probability of (H,P ), given H,
through H → H× P, (h,B) 7→ P(H,P )|H=h[B] := PP |H=h[Bh], and we have PH -a.s. the
equality P{(H,P ) ∈ B | H = h} = PP |H=h[Bh]. In particular, this applies to the sublevel
set Lσ, and the map h 7→ PP |H=h[Lσ,h] is measurable.

Definition 24 Let Lσ be a parametric sublevel set. Define the sublevel probability as the
measurable function h 7→ ρ(h) := PP |H=h[Lσ,h].

This construction allows us to give a more fine-grained analysis of the algorithm, as it allows
to trade the boundedness assumption for the sublevel probability. This basically extends
a worst-case analysis, which would correspond to an uniform upper bound. Motivated by
Lemma 41, we define the sublevel risk as the expect loss conditioned on the sublevel set:
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Definition 25 Let Lσ be a parametric sublevel set. Then the sublevel risk Rσ : H →
[0,+∞] is defined as the conditional expectation of the loss given Lσ,h:

h 7→ Rσ(h) := EP [ℓ(h, ·) | Lσ,h] =

{
1

ρ(h)EP [ℓ(h, ·)1Lσ,h
], if ρ(h) > 0 ;

0, otherwise .

Given a data set S = (P 1, ..., PN ), the empirical sublevel risk R̂σ : H×PN → [0,+∞] is
defined as (h, S) 7→ R̂σ(h, S) :=

1
ρ(h)

1
N

∑N
i=1 1Lσ,h

(P i)ℓ(h, P i).

The following theorem is a direct generalization of Theorem 20. Especially, note that the
additional assumption on A is not needed anymore.

Theorem 26 Suppose that P and ℓ satisfy Assumption 2, and suppose that A satisfies
Assumption 6. Further, let S be a corresponding i.i.d. data set of size N ∈ N, and let Lσ
be a parametric sublevel set with sublevel probability ρ. Assume that PH{ρ > 0} = 1 and
EP [σ

2] <∞. Define η : (0,∞) −→ R2 and τ : H×PN −→ R2 as

η(γ) :=

(
γ, −γ2

2

)
, τ(h, s) :=

(
Rσ(h)− R̂σ(h, s),

1

ρ(h)2N
EP

[
σ21Lσ,h

])
.

Then, for all γ > 0, it holds that E[c(γ, S)] ≤ 1.

Proof The proof is very similar to the proof of Theorem 20 and basically uses the same
reasoning. Let ℓσ(h, p) := 1Lσ,h

(p)ℓ(h, p). Since H and S are independent, one gets from
Fubini’s theorem:

E
[
exp(γ(Rσ(H)− R̂σ(H,S)))

]
= E

[
E
[
exp(γ(Rσ(h)− R̂σ(h, S)))

] ∣∣∣
h=H

]
.

Thus, first consider a fixed h ∈ H with p(h) > 0. Then, by definition and the i.i.d.
assumption, it holds that:

E
[
exp(γ(Rσ(h)− R̂σ(h, S)))

]
= E

[
exp

(
− γ

Nρ(h)

N∑
i=1

(ℓσ(h, P i)− EP [ℓσ(h, ·)])

)]

=
N∏
i=1

EP

[
exp

(
− γ

Nρ(h)
(ℓσ(h, ·)− EP [ℓσ(h, ·)])

)]
.

ℓσ(h, ·) is non-negative, and by definition of the parametric sublevel set has a finite second-
moment, that is EP [ℓσ(h, ·)2] ≤ EP [σ

21Lσ,h
] < ∞. Hence, by Lemma 39 we have the

inequality EP

[
exp

(
− γ

Nρ(h) (ℓσ(h, ·)− EP [ℓσ(h, ·)])
)]
≤ exp

(
γ2

2N2ρ(h)2
E
[
ℓσ(h, ·)2

])
. Thus:

E
[
exp(γ(Rσ(h, ·)− R̂σ(h, S)))

]
≤ exp

(
γ2

2Nρ(h)2
EP

[
σ21Lσ,h

])
.

This can be rearranged into E
[
exp

(
γ(Rσ(h)− R̂σ(h, S))− γ2

2Nρ(h)2
EP

[
σ21Lσ,h

])]
≤ 1,

since the right-hand side is independent of S. As this holds for any h with ρ(h) > 0,
which in turn does hold PH -a.s., we get

E
[
exp

(
γ(Rσ(H)− R̂σ(H,S))− γ2

2Nρ(H)2
EP

[
σ21Lσ,h

]
|h=H

)]
≤ 1 .
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Changing the order of integration with Fubini’s theorem, we get:

E
[
E
[
exp

(
γ(Rσ(H)− R̂σ(H, s))− γ2

2Nρ(H)2
EP

[
σ21Lσ,h

]
|h=H

)] ∣∣∣
s=S

]
≤ 1 .

Using the definition of η and τ , this is the same as E [E [exp(⟨η(γ), τ(H, s)⟩)] |s=S ] ≤
1 . Thus, in total we get E [c(γ, S)] ≤ 1, because the inner term can be rewritten as
E [exp(⟨η(γ), τ(H, s)⟩)] =

∫
H
exp(⟨η(γ), τ(h, s)⟩) PH(dh) = c(γ, s).

Remark 27 The assumption PH{ρ > 0} = 1 states that, under the prior, the algorithm
should be able to “reach” the sublevel set. This is a constraint on the support of PH , which
is not satisfied without further ado. Section 5 provides a construction for achieving this.

Example 28 Combining Theorem 26 and Theorem 16, we get that:

P
{
∀γ ∈ Γ, ∀Q ∈M1(PH) : Q[Rσ] ≤ Q[R̂σ(s)]|s=S+

+
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO

γ
+

γ

2N
Q

[
EP [σ

21Lσ,h
]|h=·

ρ(·)2

]}
≥ 1− ε .

For every fixed Q ∈M1(PH), optimizing over γ (assuming that γ∗ is attained in Γ), gives:

P
{
∀Q ∈M1(PH) : Q[Rσ] ≤ Q[R̂σ(s)]|s=S+

+

√√√√√2
(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO

)
Q
[
EP [σ21Lσ,h

]|h=·
ρ(·)2

]
N

}
≥ 1− ε .

Now, a typical performance-measure in optimization is complexity, that is, how many itera-
tions are needed to reach a loss smaller or equal to ϑ. Thus, specifying σ ≡ ϑ and assuming
that ρ(H) ≥ ρl a.s., this gives rise to:

P
{
∀Q ∈M1(PH) : Q[Rσ] ≤ Q[R̂σ(s)]|s=S+

+
ϑ

ρl

√
2
(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO

)
N

}
≥ 1− ε .

5 Implementing the Non-divergence – Speed Trade-Off

In Subsection 4.2, care has to be taken in the choice of the prior PH : Just minimizing the
upper bound as much as possible can lead to a neglect of a high sublevel probability, that
is, the algorithm is especially fast on a small subset of the parameters, while it diverges for
the rest. This is due to the fact that the term 1

ρ(h) might not compensate for the smaller

sublevel risk. Thus, if a certain sublevel probability εconv ∈ [0, 1] has to be ensured, one has
to enforce it. In the case of PAC-Bayesian learning with absolutely continuous distributions,
it suffices to have this property for the prior:
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C

V

U
u1

Cu1

u2

Cu2

PV [Cu]

U

ρl

ρu

1

0
supp(P̃U )

Figure 2: Construction of P̃U : On the left, the set C ⊂ U× V and two of its sections
Cu1 ,Cu2 ⊂ V are visualized. On the right, the function ρ(u) = PV [Cu], the
interval [ρl, ρu], and the resulting support supp(P̃U ) of P̃U are visualized. Note
that, contrary to the visualization here, ρ can actually be highly discontinuous.

Lemma 29 Let εconv ∈ [0, 1] and assume that ρ(H) ≥ εconv a.s. Then, for every Q ∈
M1(PH) we have Q{ρ < εconv} = 0.

Proof By assumption we have PH{ρ < εconv} = 0. Thus, the result follows directly by
definition of absolute continuity.

Though the proof is trivial, this lemma has a very important consequence, which we want
to stress: If one can guarantee that a required property is satisfied for the prior, it will be
preserved during the PAC-Bayesian learning process, that is, if the prior only puts mass on
hyperparameters that ensure a certain sublevel probability, the posterior will do the same.
How to enforce such constraints during construction of the prior is discussed next.

5.1 Sampling under Probabilistic Constraints

In this section, we describe a methodology that allows for sampling from a distribution that
is probabilistically constrained in the following sense: We are given two independent random
variables U :

(
Ω,F,P

)
→ U, V :

(
Ω,F,P

)
→ V taking values in the Polish spaces U and V,

with joint and marginal distributions P(U,V ), PU and PV , respectively. Further, we consider
a measurable set C ⊂ U× V, and we want to generate samples U = u ∈ U, such that the
probability of (U, V ) lying in C, given U = u, takes values in a certain interval:

P(U,V )|U=u[C] = PV |U=u[Cu] ∈ [ρl, ρu] ⊂ [0, 1] .

This allows us to define the (measurable) function ρ : U → [0, 1], u 7→ PV |U=u[Cu]. By
independence of U and V , this is PV -almost surely the same as ρ(u) = PV [Cu] ∈ [ρl, ρu],
and we will use the later formulation from now on.2 Thus, for ρl, ρu ∈ [0, 1] with ρl < ρu,

2. Note that ρ is still measurable.
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Algorithm 1 Iterative estimation of the probability ρ

Require: ql, qu, ε ∈ [0, 1].
a, b← 1, 1 ▷ Initialize with uninformative prior.
while Qa,b(qu)−Qa,b(ql) ≥ ε do ▷ Qa,b is the quantile function for Beta(a, b).

Draw I ∼ Ber(ρ)
a← a+ I and b← b+ (1− I)

end while

we can define a measurable set A :=
{
u ∈ U : PV [Cu] ∈ [ρl, ρu]

}
, which yields a new

measure P̃U on U by restricting to A, that is, for a measurable set B ⊂ U it holds:

P̃U [B] :=
(
(1[ρl,ρu] ◦ ρ) · PU

)
[B] = (1A · PU ) [B] = PU [A ∩ B] .

Therefore, as stated before, we have the following goal:

Goal: Sample from P̃U , that is, get U1, ..., UK ∼ PU , such that PV [Cu]|u=U i ∈ [ρl, ρu].

This construction is depicted in Figure 2: The left figure visualizes the sections {Cu}u∈U of
the set C, while the right figure shows the corresponding construction of the support of P̃U .
In the following, we implicitly assume that the imposed constraint is realizable, that is, P̃U

has a non-empty support.

Example 30 Consider the random variables P and H from Section 4. By Lemma 29 we
want to have ρ(H) ∈ [εconv, 1], where the sublevel probability is given as ρ(h) = PP [Lσ,h]
(Lemma 41), and the sublevel set Lσ ⊂ H× P is measurable by Lemma 40. Thus, this
corresponds to the identification U= H, V= P, and ρl = εconv, ρu = 1.

5.1.1 Incorporation into a Sampling Procedure

The only distinction between samples from P̃U and samples from PU is the restriction to
A. Since many sampling algorithms access the unnormalised density anyway, it suffices to
be able to sample from PU , if the restriction to A can be satisfied differently. Thus, we
have to integrate this constraint into a sampling procedure for PU . Because we do not
have any geometrical or topological information about the set C, we resort to statistical
information: Given i.i.d. samples V 1, ..., V n ∼ PV , for a given u ∈ U, we are able to
evaluate the Bernoulli random variables In := 1{V n ∈ Cu}, n ∈ N. These have the
parameter P{In = 1} = P{V n ∈ Cu} = PV [Cu] = ρ(u). Thus, by estimating ρ(u) with an
estimator ρ̂(u), we approximate the constraint A with Â:

A = {u ∈ U : ρ(u) ∈ [ρl, ρu]} ≈ {u ∈ U : ρ̂(u) ∈ [ρl, ρu]} =: Â .

To decide whether a given sample U i ∼ PU does lie in A, that is, whether U i can actually
be regarded as a sample from P̃U , we resort to a simple accept-reject mechanism as in
Metropolis-Hastings-type algorithms (Robert and Casella, 2004). Note that this allows to
keep an algorithm inside Â. However, it does not provide a way into Â, let alone A.
We estimate ρ(u) in a Bayesian way, as it allows us to balance accuracy against computa-
tional complexity through uncertainty-quantification, which we use as a stopping criterion:
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Figure 3: Iterative estimation of ρ(u): The black line shows the density fa(n),b(n) of

Beta(a(n), b(n)) after having observed I1, ..., In. The red dotted line indicates
the true probability ρ(u), which we are trying to estimate, and the blue dashed
lines indicate the lower and upper quantiles corresponding to ql, qu. The proce-
dure stops as soon as Qa(n),b(n)(qu)−Qa(n),b(n)(ql) < ε, which is indicated by the
double-headed arrow. Here, we use ql = 0.05, qu = 0.95, ε = 0.15 and ρ(u) = 0.8.

We place a Beta-prior Beta(a(0), b(0)) over the interval [0, 1]. As we do not have prior
knowledge, and the map u 7→ ρ(u) can be discontinuous3, we use a noninformative prior
(Berger, 1985, Ch. 3.3), that is, a0 = b0 = 1. Since the Beta distribution is the conjugate
prior for the Bernoulli distribution (Berger, 1985, p.130), that is, the posterior is again a
Beta-distribution, after observing a sample Ik+1, the parameters a(k), b(k) get updated as:

a(k+1) = a(k) + Ik+1, b(k+1) = b(k) + (1− Ik+1) .

This allows us to do the estimation iteratively: We only draw a new sample In+1 as long
as Q(n)(qu)−Q(n)(ql) ≥ ε, where Q(n) denotes the quantile-function of Beta(a(n), b(n)), and
qu, ql, ε ∈ [0, 1] are parameters that specify the accuracy of the estimation. Finally, one

can use the posterior mean a(n)

a(n)+b(n) or posterior mode a(n)−1
a(n)+b(n)−2

(provided a(n), b(n) > 1)
as point estimate ρ̂u. By adjusting ql, qu or ε, one can balance between accuracy and
computational complexity. However, the number of iterations needed also depends on the
true probability: For ρ(u) ≈ 0 or ρ(u) ≈ 1, the uncertainty decreases significantly faster
than for ρ(u) ≈ 0.5. This procedure is summarized in Algorithm 1 and depicted in Figure 3.

5.1.2 Broader Context

Different, yet conceptually similar ideas for how to cut the computational cost of Bayesian
Markov-Chain-Monte-Carlo algorithms through subsampling have been proposed: Korat-
tikara et al. (2014) use sequential hypothesis tests to reach the binary accept-reject decision
in the Metropolis-Hastings algorithm. Bardenet et al. (2014) estimate the accept-reject step
in such a way that it coincides with the true accept-reject step with a user-specified prob-
ability. Maclaurin and Adams (2014) introduce an auxiliary binary variable zn ∈ {0, 1},
which allows for querying only a subset of the data for the computation of the exact like-
lihood. And Quiroz et al. (2019) combine subsampling with a bias-correction strategy to

3. Consider learning the step-size parameter h > 0 for gradient descent on quadratic functions with largest
eigenvalue L: The algorithm converges for h < 2

L
(ρ(h) = 1) and diverges for h > 2

L
(ρ(h) = 0) .
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Algorithm 2 Probabilistically constrained sampling

Require: ρl, ρu ∈ [0, 1], nmax ∈ N, u0 ∈ Â.
n← 0 and u← u0
while n ≤ nmax do

1) Draw a proposal u′ with SGLD starting from u.
2) Estimate ρ(u′) = PV [Cu′ ] by ρ̂(u′) with Algorithm 1.
if ρ̂(u′) ∈ [ρl, ρu] then

u← u′

else
Reject u′.

end if
end while

speed-up the sampling procedure. A summary of different approaches is given by Bardenet
et al. (2017). We leave the analysis for our proposed approximation to future work.

5.1.3 Choice of the Sampling Procedure

Often, the hyperparameters h ∈ H are high-dimensional. Thus, we use stochastic gradient
Langevin dynamics (Welling and Teh, 2011) (SGLD) as the underlying sampling algorithm,
and constrain it to the set Â by use of the previously described procedure. This is summa-
rized in Algorithm 2. However, if it fits the application, other sampling algorithms can be
used, too. The computational overhead of the additional estimation depends on the cost of
evaluating 1{V n ∈ Cu}. In our case it is expensive: Every sample In requires to run the
algorithm A, which corresponds to approximating the solution of a minimization problem.

Remark 31 Algorithm 2 requires to start in the set Â. If such a point is not known, one
can still run the algorithm and just “start” the accept-reject mechanism as soon as one has
found a point u ∈ Â. However, it is not guaranteed that such a point will actually be found.

The results of applying this procedure for a two-dimensional toy example are shown in
Figure 4: The upper row shows the function u 7→ ρ(u), and the potential from which we
want to sample with the constraint ρ(u) ∈ [0.6, 1]. The lower row shows the accepted
(black) and rejected (gray) samples, and the final estimate of the constrained potential.
While most samples get accepted/rejected correctly, some are actually false-positives (dark
red) or false-negatives (red). Yet, this is to be expected. Note that, for simplicity, we did
use full gradients here. We are now in a position to describe the whole learning procedure.

6 Learning Procedure

This section deals with the implementation of the learning procedure, and translates the
abstract framework discussed in Sections 3 and 4 into concrete design choices. Thus, this
marks the beginning of the second part of the paper, which is less theoretical. The resulting
learning procedure is visualized in Figure 5 and consists of four steps:

(i) Step one: Train the algorithm to “mimic” another algorithm A′. This is needed only,
if one cannot choose stable initial hyperparameters directly, for example, when the
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Figure 4: Example for probabilistically constrained sampling: The upper left plot shows the
underlying function ρ(u). It is discontinuous and defines a non-convex set A. The
upper right plot shows the probabilistically constrained potential (ρ(u) ∈ [0.6, 1]),
from which we want to sample. The lower left plot shows the accepted (black) and
the rejected (gray) samples (in a ratio of about 10:1). Further, we can see that
some of them are false-positives (dark red) or false-negatives (red). Especially,
this happens for ρ(u) ≈ 0.6, where the remaining uncertainty can easily lead to
a wrong decision. Here, we have chosen the ql = 0.01, qu = 0.99, and ε = 0.05 in
Algorithm 1. Finally, the lower right plot shows the estimated potential.

update includes a neural network. Otherwise, the algorithm might predict points that
are so far off that one encounters numerical instabilities.

(ii) Step two: Find a point h(0) ∈ H that a) satisfies the constraint in Subsection 4.2 and
b) yields a good performance. For this, we perform a constrained version of stochastic
empirical risk minimization with a new, specifically designed loss function.

(iii) Step three: Starting from h(0), construct the prior distribution by running a con-
strained version of a sampling algorithm.

(iv) Step four: Find the optimal γ∗ ∈ Γ, which allows for computing the optimal posterior
distribution Qγ∗ in closed-form.

The outline of this section is as follows: In Subsection 6.1 we identify the optimal posterior
Q∗ in the abstract setting. In Subsection 6.2, we describe the pre-computation phase in (i).
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Figure 5: Learning procedure: 1) Imitation learning. 2) Probabilistically constrained
stochastic empirical risk minimization. 3) Construct prior through sampling.
4) Compute posterior by performing the PAC-Bayesian learning step.

Subsections 6.3 and 6.4 deal with the concrete design choices in (ii) and (iii) to construct
the prior, and Subsection 6.5 yields the posterior distribution in (iv). Since the prior has
to be independent of the data set that is used in the PAC-Bayesian step, we split the data
set S into independent parts Sprior, Sval, Strain and Stest, where Sprior and Sval are used
for the construction of the prior distribution, Strain is used for the PAC-Bayesian learning
step, and Stest is the test set which is only needed for the experiments. Nevertheless, for
notational simplicity, we will use the generic S, implicitly assuming the above partitioning.

Remark 32 Through the choice of the sampling algorithm, the concrete learning procedure
described here mainly applies to the case H= Rd, d ∈ N. Nevertheless, the general method-
ology is still applicable to other Polish spaces, if this choice can be adjusted accordingly.

6.1 Minimization of the PAC-Bound

Learning is phrased as minimizing the PAC-Bayesian upper-bound. Hence, in this subsec-
tion we consider η, τ and item (ii) from Corollary 18, and we seek for γ ∈ Γ and Q ∈M1(PH)
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that minimize the upper-bound, that is, we want to solve:

inf
γ∈Γ

inf
Q∈M1(PH)

Q[R̂(·, s)] +
(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO −Q

[
⟨η(r)(γ), τ (r)(·, s)⟩

])
η(1)(γ)

.

By factoring out − 1
η(1)(γ)

again, this is actually the same as:

inf
γ∈Γ
− 1

η(1)(γ)

(
sup

Q∈M1(PH)
Q[⟨η(γ), τ̃(·, s)⟩]−DKL(Q ∥ PH)− log

(
K

ε

)
− CO

)
,

where τ̃(h, s) :=
(
−R̂(h, s), τ (r)(h, s)

)
. Since log(K/ε)+CO is a constant, Lemma 14 shows

that the term inside the brackets is given by κ̃(γ, s)− log(K/ε)−CO, where κ̃ corresponds
to the exponential family (Q̃γ)γ∈Γ built upon τ̃ and η (with b ≡ 1). Furthermore, the
optimal posterior distribution Q ∈ M1(PH) is given by the corresponding member of the
data-dependent exponential family Q̃γ(s) ∝ exp(⟨η(γ), τ̃(·, s)⟩)·PH , usually called the Gibbs
posterior (Alquier, 2024). By denoting F (γ, s) := − 1

η(1)(γ)
(κ̃(γ, s)− log(K/ε)− CO), one is

left with solving the following problem:

inf
γ∈Γ

F (γ, s), (3)

which for Γ ⊂ R is one-dimensional. Based on Theorem 26, we restrict to Γ ⊂ (0,+∞),
such that the solution to (3) can be seen as an approximation to the global minimum
infγ>0 F (γ, s). For the latter one, one can show that the solution set lies in a compact
interval [Γmin,Γmax], since F (γ, s)→∞ as γ → 0 or γ →∞. Under our assumptions, F (·, s)
is continuously differentiable. Hence, since Γ is compact, F (·, s) is Lipschitz-continuous on
Γ and the minimum in (3) is attained. For a finite set Γ = {γ1, ..., γK} ⊂ [Γmin,Γmax],
the optimization reduces to grid search. For Γ = [Γmin,Γmax], we employ grid search as
initialization for gradient-based optimization. Here, the computational bottleneck is given
by evaluating γ 7→ κ̃(γ, s). In Sections 6.4 and 6.5 we will ensure that this is cheap.

6.2 Finding a Trainable Initialization

To increase numerical stability, we start with “imitation learning” (Chen et al., 2020a), that
is, the algorithm A should “follow” another algorithm A′, for example, gradient descent.
For this, we minimize the mean squared error between the iterates of the two algorithms:
Given a starting point x(0) ∈ Rn, an iteration number t ∈ N, and a parameter p ∈ P,
denote the first t iterates of A(h, p, x(0)) by x(1), ..., x(t) ∈ Rn and the ones of A′(x(0), p) by
y(1), ..., y(t) ∈ Rn. Then, define the loss as the mean squared error over these iterations:

ℓinit(h, p, x
(0), t) :=

1

t

t∑
k=1

∥x(k) − y(k)∥22 .

In each iteration, that is, each prediction of tuples (x(1), y(1)), ..., (x(t), y(t)), the parameters
p, x(0) and t are randomized as described in Section 6.3. It is not necessary to reach a high
accuracy here, as the purpose is to prevent divergence, and not actual imitation of A′. The
procedure is summarized in Algorithm 3.
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Algorithm 3 Procedure to find an initialization

Require: Data set sprior, x
(0) ∈ Rn, t, ninit ∈ N and ε > 0.

m← +∞ and sample p ∼ Usprior .
while 1

ninit
m > ε do

m← 0
for i = 1, ..., ninit do

1) Compute (x(1), y(1)), ..., (x(t), y(t)) with A(h, p, x(0)) and A′(p, x(0)), resp.
2) Compute ℓinit(h, p, x

(0), t) = 1
t

∑t
k=1 ∥x(k) − y(k)∥22.

3) Update m← m+ ℓinit(h, p, x
(0), t)

4) Update h by backpropagation and Adam. ▷ Other algorithms possible.
5) Update p, x(0) and t based on Section 6.3.

end for
end while

6.3 Locating the Prior

Empirically, the performance of the learned algorithm is significantly improved by the fol-
lowing two design choices. The motivation is to prevent overfitting and to learn a scale-
independent contraction of the loss:

6.3.1 Ratio of Losses

The canonical loss function to be minimized is the empirical risk R̂(h, s) = 1
N

∑N
i=1 ℓ(h, pi),

and, if H is high-dimensional or if N is large, one resorts to stochastic empirical risk min-
imization. While this kind of loss was used extensively before, for learning-to-optimize
it has a strong disadvantage: Only the overall outcome after nmax iterations gets penal-
ized. Thus, it does not take the performance along the trajectory into account. Fur-
ther, often it is hard to minimize (due to training instabilities) and does not lead to
the desired performance. To circumvent this, Andrychowicz et al. (2016) proposed to use
ℓ̃train(h, p, x

(0)) :=
∑n

i=1 ℓ(x
(i), p). Again, this formulation has a decisive flaw: Under most

objectives, if the algorithm performs reasonably well, the loss at the beginning is several
orders of magnitude larger than the loss at the end. Hence, ℓ̃train mainly penalizes the
loss at the beginning, leading to an algorithm that minimizes the loss very fast in early
iterations, yet slows down a lot in later iterations. This is due to ℓ̃train being scale-sensitive.
Additionally, the incurred loss might vary strongly with the initialization x(0) alone, thereby
introducing ambiguity into the incurred losses. We propose to use the ratio of consecutive
losses:

ℓtrain(h, p, x
(0), t) :=

t∑
i=1

1{ℓ(x(i−1),p)>0}
ℓ(x(i), p)

ℓ(x(i−1), p)
, t ∈ N, t ≤ n .

This has several advantages: First, the loss is not scale-sensitive anymore, such that it
favors hyperparameters that yield a good performance in each iteration. Second, there
is no ambiguity in the observed loss through the initialization, as the only criterion is a
strong contraction of the loss (instead of a small loss). Third, the incurred losses do not
vary too much, which empirically makes it easier to choose hyperparameters of the learning
procedure. However, it also has a disadvantage: If the function values do indeed converge
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Algorithm 4 Procedure to locate the prior

Require: Data sets sprior, sval, numbers nmax, ntrain, t ∈ N with t ≤ ntrain, initialization
x(0) and thresholds ρl, ρu ∈ [0, 1] with ρl < ρu.
...........................................................................................................................................
Set x← x(0), b← false, and sample p ∼ Usprior ▷ b = Point inside constraint?
...........................................................................................................................................
for i = 1, ..., nmax do ▷ Other stopping criteria possible.

......................................................................................................................................
1.a) Compute x(1), ..., x(t) with A(h, p, x(0)).

1.b) Compute ℓtrain(h, p, x
(0), t) =

∑t
i=1 1{ℓ(x(i−1),p)>0}

ℓ(x(i),p)

ℓ(x(i−1),p)
.

1.c) Construct a proposal h̃ by using backpropagation and Adam.
......................................................................................................................................
2) Estimate ρ(h̃) by ρ̂(h̃) with Algorithm 1 on sval.
if ρ̂(h̃) ∈ [ρl, ρu] then ▷ If point inside constraint, just update.

h← h̃ and b← true
else ▷ If not...

if b = true then ▷ ...reject moving outside constraint.
Reject h̃, set x(0) ← x, sample p ∼ Usprior , and continue with 1).

else ▷ ...accept, if constraint has not been found yet.
h← h̃

end if
end if
......................................................................................................................................
3) Draw R ∼ Ber( t

ntrain
).

if R = 0 then
x(0) ← x(t)

else R = 1
x(0) ← x and sample p ∼ Usprior

end if
......................................................................................................................................

end for

in a setting where the optimal loss is strictly greater than zero, this gets fully penalized, as

then ℓ(x(i),p)

ℓ(x(i−1),p)
≡ 1. For now, we do not know how to avoid this problem (apart from just

stopping the iterations in case of convergence) while keeping the advantages.

6.3.2 Randomized Trajectory Length

Training A with fixed initialization x(0) and fixed trajectory length leads to overfitting:
Applying it at another starting point x̃(0) or applying it for more iterations typically does
not work, or even leads to divergence. To avoid this, we propose the following randomization:
Fix t ≤ ntrain and set y := x(0).

0) Sample a parameter p uniformly at random from s.
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Figure 6: Effect of our design choices: Dashed lines represent the mean losses, dotted lines
represent the median losses, and the shaded region represents 95% of the data.
The yellow algorithm was trained with our design choice and the orange one with-
out. Besides that, everything else was kept the same. In the left plot we can see
that using the ratio of consecutive losses strongly improves the performance, and
in the right plot we can see that the randomization procedure yields generaliza-
tion beyond ntrain and an overall better performance.

1) Compute x(1), ..., x(t) with A(h, p, y) and the loss ℓtrain(h, p, y, t), and update h.

2) Sample R(k) ∼ Ber( t
ntrain

). If R(k) = 0, set y := x(t) and go to step 1). If R(k) = 1, set

y := x(0) and go to step 0).

The random variable R(k) decides whether the algorithm gets restarted from x(0) with a
new parameter p̃, or if one continuous the current trajectory. The choice t

ntrain
ensures that

the expected trajectory-length equals ntrain: Define Z := inf{k ∈ N : R(k) = 1}. Then,
Z ∼ Geo( t

ntrain
) is a geometrically distributed with expectation E[Z] = ntrain

t . Therefore,
for the actual length L = t · Z of the trajectory we get E[L] = tE[Z] = ntrain.

Remark 33 Similarly to Andrychowicz et al. (2016), we omit the computation of second-
order derivatives during training. Additionally, and surprisingly, it usually suffices to con-
sider single iterates, that is t = 1. That amounts to learning an update step that is agnostic
to the recurrent nature of the optimization algorithm and just learns to adapt to the local
geometry of the loss function along the iterations.

Figure 6 shows the effect of these two design choices: The left plot shows the effect of
using the ration of consecutive losses and the right plot shows the effect of randomizing
the trajectory. In both cases, we train two times the same algorithm: One time with our
proposed choice (yellow), and one time without (orange). Everything else is kept the same,
that is, both were trained with Algorithm 4. In the left plot one can see that the ratio of
losses strongly improves the performance compared to using normal function-values, and in
the right plot one can see that the randomization procedure improves the generalization to
more iterations and its performance. However, please note that there might be some bias:
The architecture of the algorithm is one that we have found using our proposed training

27



PAC-Bayesian Learning-to-Optimize

Algorithm 5 Procedure to construct the prior

Require: Data sets sprior (sampling) and sval (constraint), nsam ∈ N and h ∈ supp(P̃h).
1) Starting from h, run Algorithm 2 (with ℓtrain) to get the points h1, ..., hnsam ∈ H.
2) Evaluate φprior on {h1, ..., hnsam} by evaluating R̂g corresponding to sprior.
3) Compute PH{hj}, that is, PH{hj} = σ (φprior(h1), ..., φprior(hnsam))j .

procedure. Further details can be found in the GitHub-repository. The overall procedure
is summarized in Algorithm 4.

6.4 Constructing the Prior

Besides the performance and the sublevel guarantees, the only assumption on the prior PH

is its independence of Strain. Further, by Lemma 14 the functional form of the posterior is
fully specified, namely it is of the form:

Qγ(s) ∝ exp(φγ(·, s)) · PH , γ ∈ Γ , (4)

where the potential is given by φγ(h, s) = ⟨η(γ), τ̃(h, s)⟩. Hence, for mathematical conve-
nience, we will construct PH by approximating the distribution P′ given by

P′ ∝ exp
(
−R̂σ,prior − ι[ρl,ρu] ◦ ρ

)
· µ ,

where µ is a measure on H, which allows to sample from P′ (possibly unnormalized). In our
experiments it holds H= Rd and we choose µ = λd, where λd is the d-dimensional Lebesgue
measure. For sampling, we use the stochastic gradient Langevin dynamics algorithm, where
we use the output of the backpropagation algorithm as proxy for the (sub)gradient. Finally,
since anyway we have to resort to a sampling algorithm to get points h1, ..., hnsam ∈ H,
nsam ∈ N, we define the prior distribution directly as a discrete distribution, that is
PH{h} := 1

Z

∑nsam
i=1 wiδhi

{h}. Thus, PH is the suitably normalized discrete measure on H

corresponding to h1, ..., hnsam , where the normalization constant is given by Z =
∑nsam

i=1 wi

with wi = exp
(
−R̂σ,prior(hi)− ι[ρl,ρu] (ρ̂(hi))

)
. When h1, ..., hnsam ∈ H are given, the cor-

responding probabilities can equivalently be expressed with the so-called softmax function

σ(x1, ..., xn)j =
exp(xj)∑n
i=1 exp(xi)

and the potential φprior(h) = −R̂σ,prior(h)− ι[ρl,ρu] (ρ̂(h)):

PH{hj} =
exp (φprior(hj))∑nsam

i=1 exp (φprior(hi))
= σ (φprior(h1), ..., φprior(hnsam))j .

Here, the potentials φprior have to be computed only once for every hi, i = 1, ..., nsam. This
is summarized in Algorithm 5.

Remark 34 As one would approximate the intractable integrals with Monte-Carlo esti-
mates anyway, choosing a discrete measure is less restrictive than it seems, and it has the
additional advantage of allowing for exact instead of approximate inference.
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Algorithm 6 Procedure to construct the posterior

Require: Points {h1, ..., hnsam}, values {φprior(h1), ..., φprior(hnsam)}, data set s = strain.
1) Evaluate T̃ (hi, s), i = 1, ..., nsam.
2) Setup {φγ(h1, s), ..., φγ(hnsam , s)} as functions in γ.
3) Solve γ∗ ∈ argminγ∈Γ F (γ, s). ▷ F (γ∗, s) is the predicted PAC-bound.
4) Compute Qγ∗(s, {hj}) = σ (φγ∗(h1, s), ..., φγ∗(hnsam , s))j , j = 1, ..., nsam.
5) Optional: Choose h∗ = argmaxi=1,...,nsam

Qγ∗(s, {hi}) as final point-estimate.

6.5 Computing the Posterior

Given a discrete prior PH , every posterior Q ∈ M1(PH) is also discrete with the same
support {h1, ..., hnsam}. Then, by the closed-form solution (4), for every γ ∈ Γ the optimal
posterior Qγ(s) is given by:

Qγ(s, {hj}) =
exp (⟨η(γ), τ̃(hj , s)⟩+ φprior(hj))∑nsam

i=1 exp (⟨η(γ), τ̃(hi, s)⟩+ φprior(hj))
= σ (φγ(h1, s), ..., φγ(hnsam , s))j ,

with the potential φγ(h, s) = ⟨η(γ), τ̃(h, s)⟩+φprior(h). Thus, to get the distribution Qγ(s)
as a function of γ, one has to compute τ̃(hi, s) only once for every i = 1, ..., nsam, such that
it can be evaluated with the softmax function. Hence, the only missing ingredient is the
optimal γ∗ ∈ Γ, which is found as described in Section 6.1. After evaluating the potentials
φγ(·, s), which has to be done anyway, evaluating κ̃(·, s) in γ is cheap. The process is
summarized in Algorithm 6.

7 Experiments

We consider the smooth and strongly convex problem of minimizing quadratic functions with
varying strong convexity and smoothness constants, a high-dimensional image processing
problem, the non-smooth Lasso problem, and the non-smooth and non-convex problem
of training a neural network. More details on the implementation, especially a detailed
description of the architectures of the algorithms and how we construct the parameters for
each problem, is given in Appendix F. Alternatively, the code can be found in the GitHub-
repository. In the evaluation, we will always show the loss over the iterations in the upper
left plot, the performance in terms of computation time in the upper right plot, the loss
histogram with predicted PAC-bound in the lower left plot, and the final estimate for the
sublevel probability, that is, whether the probabilistically constrained optimization/sampling
procedure did work correctly, in the lower right plot. Finally, note that we always show the
performance of a single sample h∗ (mode of the posterior), and not the mean performance.

7.1 Quadratics

As first problem we consider strongly convex quadratic functions with varying strong con-
vexity, varying smoothness and varying right-hand side, that is, each optimization problem
is of the form:

min
x∈Rn

1

2
∥Ax− b∥2 , A ∈ Rn×n, b ∈ Rn .
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Figure 7: Upper left: Dashed lines represent the mean losses, dotted lines represent the
median losses, and the shaded regions represent the 10th to 90th percentile. The
learned algorithm A is shown in yellow, while heavy-ball with friction (HBF)
is shown in blue. Upper right: The different lines indicate the cumulative
computation time the algorithms need to solve all the test problems up to a
certain accuracy (in function values) measured by ℓ(x(i), p) < ε. However, note
that both algorithms are run for maximally nmax = 1e4 iterations. Lower left:
Loss histogram after ntrain = 350 iterations with predicted PAC-bound. Lower
right: The teal dashed line shows the point estimate for the sublevel probability,
while the teal solid line shows the Beta-posterior. The black dotted lines indicate
the constraints ρl, ρu and show the feasible region as dark teal line.

Thus, the parameters are given by p = (A, b) ∈ Rn2+n =: P, while the optimization variable
is x ∈ Rn, where we use n = 200. By construction, each of these functions is L-smooth
and m-strongly convex, with L ∈ [L−, L+] and m ∈ [m−,m+]. Hence, assuming that it is
not feasible to compute the smoothness and strong-convexity constants for each problem
separately, the given class of functions is L+-smooth and m−-strongly convex. Therefore,
we use heavy-ball with friction (HBF) due to Polyak (1964) as baseline. Its update is given
by x(k+1) = x(k)−α∇f(x(k))+β

(
x(k) − x(k−1)

)
, where the optimal worst-case convergence

rate is attained for α =
(

2√
L++

√
µ−

)2
and β =

(√
L+−√

µ−√
L++

√
µ−

)2
(Nesterov, 2018). Further

details can be found in Appendix F.1. Figure 7 shows the results of this experiment: The
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upper left plot shows that the learned algorithm outperforms HBF by orders of magnitude
and, despite being trained for ntrain = 350 iterations, one can use it until convergence.
Here, the mean indicates that there are single instances for which instabilities occur, and,
by comparing it to the median, one observes that the mean is far from being representative
of the “typical” performance. Further, the algorithm performs well on very different orders
of magnitude, ranging from about 1e5 to 1e−15. The upper right plot confirms that also in
terms of computation time the learned algorithm is way faster than HBF, and the lower left
plot shows that while the predicted PAC-bound is not tight, it still provides the guarantee
to outperform HBF. Lastly, the lower right plot shows that the algorithm did satisfy the
specified constraints pl and pu in all test cases.

7.2 Image Processing

We consider (gray-scale) image denoising/deblurring with a regularizer given as smooth
approximation to the L1-norm of the image derivative, that is, problems of the form:

min
x∈Rn

1

2
∥Ax−b∥2+λ

n∑
i,j=1

√
(Dhx)

2
i,j + (Dwx)2i,j + ε2 λ ∈ R, A,Dh, Dw ∈ Rn×n, b ∈ Rn .

The matrix A describes the “blurring” of the image, while Dh and Dw are the discrete image
derivatives in h- and w-direction, respectively, which are used to penalize local changes in the
image. We use images of height Nh = 250 and width Nw = int(0.75 ·Nh) = 187. Thus, the
dimension n of the optimization space is given by n = 46750. Further, as parameters p we
use the observed image and the regularization parameter, that is, p = (b, λ) ∈ Rn+1 =: P.
Since the problem is smooth and convex, yet not strongly convex, the baseline algorithm
is given by the accelerated gradient descent (NAG) algorithm due to Nesterov (1983). Its
update is given by first computing y(k+1) = x(k) + tk−1

tk+1
(x(k) − x(k−1)) followed by setting

x(k+1) = y(k) − α∇f(y(k+1)). We use the optimal choices tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
and

α = 1
L . Here, the smoothness constant L is given by the largest eigenvalue of ATA+ λ

εD
TD,

where D ∈ R2n×n is given by “stacking” Dh and Dw, that is, D =
(
Dh Dw

)T
. Further

details can be found in Appendix F.2. The results of this experiment are summarized in
Figure 8: The upper left plot shows that the learned algorithm is much faster than NAG
in terms of the loss over the iterations, reaching a loss close to the ground-truth after only
5 iterations. The upper right plot confirms this finding also in terms of computation time.
Yet, one can observe a strong increase in computation time for the dotted line (loss per
pixel of about 1

46750), indicating that the learned algorithm often is not able to reach this
accuracy. In the lower left plot, one can observe that the predicted PAC-bound is not
perfectly tight, yet provides the guarantee to outperform NAG. Finally, the lower right plot
shows that, while the algorithm did not reach the sublevel set in all of the test cases, the
probabilistically constraint optimization/sampling procedure did work correctly.
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Figure 8: Upper left: Dashed lines represent mean losses, dotted lines show median losses,
and the shaded regions represent the 10th to 90th percentile. The learned algo-
rithm A is shown in yellow, while Nesterovs accelerated gradient descent (NAG) is
shown in orange. Upper right: The different lines show the cumulative compu-
tation time the algorithms need to solve the test problems up to a certain accuracy

(in function values) measured by ℓ(x(i), p)− ℓ(x
(1000)
std , p) < ε. However, note that

both algorithms are run for maximally nmax = 1000 iterations. Lower left: Loss
histogram after ntrain = 50 iterations with predicted PAC-bound. Lower right:
The teal dashed line shows the point estimate for the sublevel probability, while
the teal solid line shows the Beta-posterior. The black dotted lines indicate the
constraints ρl, ρu and show the feasible region as dark teal line.

7.3 Lasso-Problem

Here we consider the Lasso problem (Tibshirani, 1996), that is, a non-smooth problem of
the form:

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 A ∈ Rm×n, b ∈ Rm ,

with m ≤ n. Thus, we are solving an underdetermined system of linear equations with
an additional ℓ1-regularization term, which promotes sparsity in the solution (see Hastie
et al., 2009). Hence, the optimization variable is given by x ∈ Rn. As baseline we use the
fast iterative shrinkage-thresholding algorithm (FISTA) by Beck and Teboulle (2009), which
performs an extrapolation step followed by a proximal gradient step, that is, abbreviating
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h(x) := 1
2∥Ax − b∥2 and g(x) := λ∥x∥1, the update is given by first computing y(k) =

x(k)+β(k)
(
x(k) − x(k−1)

)
followed by setting x(k+1) = proxαg

(
y(k) − α∇h(y(k))

)
. Here, the

proximal mapping is defined as x̂ = proxαg(x̄) = argminx∈Rn λ∥x∥1 + 1
2α∥x− x̄∥22, and can

be computed efficiently in closed-form yielding the so-called soft-thresholding operator :

x̂i =

{
x̄i − αλ x̄i

|x̄i| , |x̄i| > αλ ;

0 , otherwise ,
, i = 1, ..., n .

We choose α = 1/L, where L is the largest eigenvalue of ATA, that is, the smoothness

parameter of h, while β(k) is set to β(k) := (tk − 1)/tk+1 with tk+1 = (1 +
√

1 + 4t2k)/2.

Further details about the experiment can be found in Appendix F.3. The results of this ex-
periment are summarized in Figure 9: The upper left plot shows that the learned algorithm
outperforms FISTA by several orders of magnitude, achieving a loss that is similar to the

one of x
(5000)
FISTA after only 100 iterations, and one can observe that the learned algorithm can

be used for more iterations than it was trained for. The upper right plot shows that, up to
a certain accuracy, it is also way faster in terms of computation time. Yet, it seems that
A does not reach arbitrary levels of accuracy. The lower left plot shows that the predicted
PAC-bound is not perfectly tight, yet guarantees that A will outperform FISTA for the
given number of iterations. And the lower right plot indicates that the algorithm did reach
the sublevel set in all of the test cases.

7.4 Training Neural Networks

This experiment considers the problem of training a neural network on a regression problem,
that is, A is trained to predict the parameters β ∈ Rm of a neural network Nβ, which then
is used to predict a function g : R → R. Hence, the optimization variable is given by
β ∈ Rm. As baseline we use Adam (Kingma and Ba, 2015) (as it is implemented in
PyTorch), which is a widely used optimization algorithm for training neural networks. For
tuning, we perform a grid search over 100 step-size parameters, such that its performance is
best for the given ntrain iterations. Note that originally Adam was introduced for stochastic
optimization, while we use it in the “full-batch setting” here. Further details can be found
in Appendix F.4. Figure 10 shows the results of this experiment: The upper left plot shows
that the learned algorithm clearly outperforms Adam, reaching the ground-truth loss after
about 25 iterations, while Adam is not able to reach it within 200 iterations. Further,
while the algorithm was trained for 100 iterations, it can be applied for more. The upper
right plot confirms that, also in terms of computation time, A is way faster in training the
neural network than Adam. The lower left plot shows that the predicted PAC-bound is not
perfectly tight, yet yields a reasonable bound on the average performance, and guarantees
to perform roughly as good as Adam (on average). The lower right plot indicates that the
algorithm did reach the sublevel set in all test cases.

8 Discussion and Limitations

The motivation for this paper was to use more structure in a given problem than is analyt-
ically tractable. For this, we considered a distribution over parametric loss functions and
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Figure 9: Upper left: Dashed lines represent the mean losses, dotted lines represent the
median losses, and the shaded region represents the 10th to 90th percentile. Here,
the fast iterative shrinkage-thresholding algorithm (FISTA) is shown in pink and
the learned algorithm in yellow. The gray horizontal lines represent the loss
achieved by FISTA after 5000 iterations, which serves as approximation for the
solution. Upper right: The different lines show the cumulative computation
time the algorithms need to solve all the test problems up to a certain accuracy

(in function-values) measured by ℓ(x(i), p)− ℓ(x
(5000)
std , p) < ε. However, note that

both algorithms are run for maximally nmax = 5000 iterations. Lower left: Loss
histogram (after ntrain = 350 iterations) with the predicted PAC-bound. Lower
right: The teal dashed line shows the point estimate for the sublevel probability,
while the teal solid line shows the Beta-posterior. The black dotted lines indicate
the constraints ρl, ρu and show the feasible region as dark teal line.

formulated the (ultimate) goal in (1), that is, to find a solution to each realization from this
distribution. Under reasonable assumptions, this problem is too general to be solved. This
led to the formulation of the performance of an algorithm in terms of its risk. However,
since this is intractable, we derived PAC-Bayesian generalization bounds relating the risk to
the empirically observable performance on a data set. This resulted in the formulation of a
training objective, which relies heavily on the existence of a prior distribution satisfying our
assumptions and yielding a good performance. As such a distribution is typically not known,
we derived a procedure to construct it. This involved several key design choices, such as
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Figure 10: Upper left: Dashed lines represent the mean losses, dotted lines represent the
median losses, and the shaded regions indicate the 10th to 90th percentile. The
vertical dotted line shows ntrain, and the horizontal gray dashed line represents
the average loss of the ground-truth function g (equal to one, as we added
standard Gaussian noise). Here, Adam is shown in purple and the learned
algorithm in yellow. Upper right: The different lines show the cumulative
computation time of the algorithms to solve all the test problems up to a certain
accuracy (in function values) measured by ℓ(β(i), p) − c(Xi, Yi) < ε. However,
note that both algorithms are run for maximally nmax = 5000 iterations. Lower
left: Loss histogram (after ntrain iterations) and PAC-bound. Lower right:
The teal dashed line shows the point estimate for the sublevel probability, while
the teal solid line shows the Beta-posterior. Here, the black dotted lines indicate
the constraints ρl, ρu and show the feasible region as dark teal line.

the loss-function, specific randomization steps, and, especially, the probabilistic constraints.
Finally, we validated the resulting learning procedure on four practically relevant problems
and showed that it yields a superior performance. While these experimental results are
promising, we nevertheless see five main limitations of our work. First, the only guarantee
that is provided by the PAC-Bayesian bound is an upper bound on the function value after a
specified number of iterations. In particular, it does not guarantee that the function values,
the iterates, or the gradient norm actually do converge. Second, our learning procedure
is not guaranteed to work and still involves many design choices. Third, one still has to
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find a good architecture for each given problem, which can be time-consuming. Fourth, the
presented algorithmic procedure has a high computational cost (offline), which however, at
least in part, is due to the nature of learning-to-optimize. Finally, the procedure most nat-
urally models deterministic algorithms and algorithms for which the randomization itself is
learned. However, algorithms with given randomization and learned hyperparameters (like
learning the step-size of stochastic gradient descent) are harder to represent. All these are
promising directions of research that we leave to a future work.
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Appendix A. Supplementary Definitions

Definition 35 (Probability Kernel) Let (U,U), (V,V) be measurable spaces. A func-
tion µ : U× V → [0,∞], (u,A) 7→ µ(u,A) is called a kernel from U to V, written as
µ : U→ V, if for every set A ∈ V, the map u 7→ µ(u,A) is measurable, and for every point
u ∈ U, the map A 7→ µ(u,A) is a measure. Furthermore, µ is called a probability kernel
from U to V, if µ(u, V) = 1 for every u ∈ U.

Definition 36 (Exponential Family) Let Γ be a non-empty index set. A family of prob-
ability measures (Qγ)γ∈Γ on a measurable space U is called an exponential family (in
η and τ), if there is a dominating probability measure µ, that is, (Qγ)γ∈Γ ⊂ M1(µ),
functions η : Γ → Rk, a : Γ → (0,+∞), and measurable functions τ : U → Rk,
b : U→ (0,+∞), such that for every γ ∈ Γ we have Qγ = ba(γ) exp (⟨η(γ), τ⟩) · µ, that is,
Qγ [B] =

∫
B b(u)a(γ) exp(⟨η(γ), τ(u)⟩) µ(du), B ∈ B(U).

Definition 37 (Support of a Measure) Let U be a topological space, and let µ be a
measure on U. The support of µ is defined as:

supp (µ) := {u ∈ U : µ[B] > 0 for every neighborhood B of u} .

Appendix B. Supplementary Lemmas

Lemma 38 Under Assumption 10, Qγ is a data-dependent distribution for every γ ∈ Γ.

Proof Denote the density of Qγ w.r.t. PH by fγ(h, s) :=
b(h)
c(γ,s) exp (⟨η(γ), τ(h, s)⟩). The

map c(γ, ·) : PN → [0,∞) is B(PN ) measurable, as τ is measurable w.r.t. the product-
σ-algebra and PH is a finite measure (Kallenberg, 2021, Lemma 1.28, p.25). Hence, fγ is
measurable w.r.t. B(H)⊗B(PN ), since c(γ, s) ∈ (0,∞). Thus, it holds that Qγ = fγ · PH

is a kernel from from PN to H (Kallenberg, 2021, Lem. 3.2, p.56). Finally, Qγ : PN → H

is actually a probability kernel, since c(γ, s) is the corresponding normalization constant.

The following result states that non-negative random variables with finite second moment
satisfy a one-sided sub-Gaussian inequality (Boucheron et al., 2013, p.47).

Lemma 39 Let U be a non-negative random variable with finite second moment. Then,

for every γ > 0 it holds E [exp (−γ(U − E[U ]))] ≤ exp
(
γ2

2 E[U
2]
)
.

Lemma 40 The sublevel set Lσ is measurable.

Proof As σ is assumed to be measurable, it suffices to show that the specific composi-
tion of ℓ and A is measurable, that is, ℓ ◦ A : H× P → [0,+∞], (h, p) 7→ ℓ(A(h, p), p)
is measurable w.r.t. B(H) ⊗ B(P) and B([0,+∞]). Since ℓ ≥ 0 is measurable, there
exists a sequence of simple4 functions ℓn with ℓ = limn→∞ ℓn. Thus, since limits of
measurable functions are measurable, it suffices to consider the case of a simple func-
tion ℓ : Rn × P → R. Then, however, it suffices to consider characteristic functions of

4. A function is called simple, if it is of the form ℓn =
∑K

i=1 a
i
n1Ai

n
with disjoint sets Ai

n.
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the form 1A for a measurable set A ∈ B(Rn) ⊗ B(P). Since the product-σ-algebra is
generated by cylinder sets, it actually suffices to consider the case ℓ = 1B×D, that is,
(ℓ ◦A)(h, p) = 1B×D(A(h, p), p) = 1B(A(h, p))1D(p). The second term is obviously measur-
able, and the first term is measurable as a composition of two measurable functions.

Lemma 41 Suppose Assumption 6 holds, and let PP [Lσ,h] > 0 for every h ∈ H. Then we
have PH-a.s.:

(i) ρ(h) = PP [Lσ,h],

(ii) E [ℓ(H,P ) · 1Lσ(H,P ) | H = h] = EP [ℓ(h, ·)1Lσ,h
] = ρ(h) · EP [ℓ(h, ·) | Lσ,h].

Proof By the independence of P and H, we have E {ℓ(H,P )1Lσ(H,P ) | H = h} =∫
P
ℓ(h, p)1Lσ,h

(p) PP (dp) = EP [ℓ(h, ·)1Lσ,h
] PH -a.s., which shows the first equality of (ii).

Since PP [Lσ,h] > 0, the elementary conditional expectation is defined as EP [ℓ(h, ·) | Lσ,h] =
EP [ℓ(h,·)1Lσ,h

]

PP [Lσ,h]
. Again by independence we have PH -a.s. the equality PP [Lσ,h] = PP |H=h[Lσ,h] =

ρ(h), which shows (i) and the second equality of (ii).

Appendix C. Proof of Lemma 14

Proof Take any γ ∈ Γ and s ∈ PN . First, let Q ∈ M1(PH) be arbitrary. By the Radon-
Nikodym theorem, there exists a measurable function f ≥ 0, s.t. Q = f · PH . Since the
convention 0 · ∞ = 0 applies throughout measure theory, one has:

DKL(Q ∥ PH) = Q [log(f)] = PH [f log(f)] = PH

[
1{f>0}f log(1{f>0}f)

]
.

Hence, w.l.o.g. we can assume that f > 0 PH -a.s. Then, by Jensen’s inequality, one gets:

Q[⟨η(γ), τ(·, s)⟩+ log(b)]−Q[log(f)] = Q
[
log

(
b

f
exp (⟨η(γ), τ(·, s)⟩)

)]
≤ log

(
Q
[
b

f
exp (⟨η(γ), τ(·, s)⟩)

])
= log

(
(f · PH)

[
b

f
exp (⟨η(γ), τ(·, s)⟩)

])
= log (PH [b exp (⟨η(γ), τ(·, s)⟩)]) = κ(γ, s) .

Hence, we have κ(γ, s) ≥ Q[⟨η(γ), τ(·, s)⟩ + log(b)] − DKL(Q ∥ PH) for any probability
measure Q≪ PH . Now consider the member of the exponential family:

DKL(Qγ(s) ∥ PH) =

∫
H

log (b(h)a(γ, s) exp(⟨η(γ), τ(h, s)⟩)) Qγ(s, dh)

=

∫
H

log(b(h)) + ⟨η(γ), τ(h, s)⟩ Qγ(s, dh)− log (c(γ, s))

=

∫
H

log(b(h)) + ⟨η(γ), τ(h, s)⟩ Qγ(s, dh)− κ(γ, s).

Rearranging yields κ(γ, s) =
∫
H
log(b(h)) + ⟨η(γ), τ(h, s)⟩ Qγ(s, dh)−DKL(Qγ(s) ∥ PH).
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Appendix D. Proof of Lemma 15

Proof W.l.o.g. assume that Oi ̸= ∅ and choose γi ∈ Oi, i = 1, ...,K. Then, for every
s ∈ PN , it holds that:

sup
γ∈Γ

κ(γ, s) ≤ max
i=1,...,K

sup
γ∈Oi

κ(γ, s) = max
i=1,...,K

{
κ(γi, s) + sup

γ∈Oi

(κ(γ, s)− κ(γi, s))

}
≤ max

i=1,...,K
κ(γi, s) + CO .

Thus, in total one gets for t ∈ R:

P

{
sup
γ∈Γ

κ(γ, S) > t

}
≤ P

{
max

i=1,...,K
κ(γi, S) + CO > t

}
≤

K∑
i=1

P {κ(γi, S) + CO > t}

≤
K∑
i=1

exp(CO − t) = K exp(CO − t) .

Taking t = log
(
K
ϵ

)
+ CO gives P

{
supγ∈Γ κ(γ, S) > log

(
K
ϵ

)
+ CO

}
≤ ϵ.

Appendix E. Proof of Corollary 18

Proof The two formulas are simply rewritings of each other: By assumption, bilinear-
ity and definition of the euclidean scalar product, and linearity of the integral, the term
Q[⟨η(γ), τ(·, s)⟩] can be split up as:

Q[⟨η(γ), τ(·, s)⟩] = Q[η(1)(γ)(R− R̂(·, s))] +Q[⟨η(r)(γ), τ (r)(·, s)⟩]
= η(1)(γ)Q[R]− η(1)(γ)Q[R̂(·, s)] +Q[⟨η(r)(γ), τ (r)(·, s)⟩] .

Simply rearranging the terms then yields the result, as η(1) > 0.

Appendix F. Implementation Details

We use the following training procedure in all experiments: N = Nprior + Ntrain + Nval +
Ntest denotes the total number of data points, and we use Nprior = ... = Ntest = 250.
(Sub)Gradients are defined by the output of backpropagation as it is implemented in Py-
Torch (Paszke et al., 2019), and we use g(p) := αℓ(x(0), p)β, α, β > 0, to define the sublevel
set Lσ. In Algorithm 1, we use ρl = 0.95, ρu = 1.0, ql = 0.01, qu = 0.99, and ε = 0.075.
Thus, the algorithm should reach Lσ in at least 95% of the cases, and for the estimation of
the sublevel probability it should concentrate 98% of the mass within a distance of 0.075.
In Algorithm 2, we use stochastic gradient Langevin dynamics to draw 102 samples, where
we decay the step-size starting from 10−6. In Algorithm 3, we use Adam with an initial
step-size of 10−3, which gets reduced by a factor of 0.5 every 200 iterations, until an ac-
curacy of ε = 10−2 is reached, or for at most ninit = 103 iterations. In Algorithm 4, we
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use Adam with an initial step-size of 10−4, which gets reduced by a factor of 0.5 every
2 · 104 iterations, for a total of nmax = 2 · 105 iterations. We use a trajectory length of
t = 1, that is, only single points, and update the constraint only every 2 · 104 iterations
(with a reset to previous iterates, if we have left the set Â). In Algorithm 6, we use a finite
Γ with |Γ| = 75 · 103, and an accuracy (of the PAC-bound) of ε = 0.05. As we contrast
the learned algorithm to first-order methods, in each iteration A has access to iterates,
(sub)gradients, and function values, and the update is solely based on these. Here, we
perform preprocessing: The (sub)gradient is split into its norm ∥∇ℓ(x(k), p)∥ and the corre-

sponding unit vector d
(k)
1 . Further, the norm is transformed to n

(k)
1 := log(1+∥∇ℓ(x(k), p)∥)

to be less scale-sensitive. The iterates x(k), x(k−1) are combined into the momentum term

m(k) := x(k)−x(k−1), which also is split into the unit vector d
(k)
2 and the transformed norm

n
(k)
2 . Similarly, we also transform the function values into ℓ

(k)
1 = log(1 + ℓ(x(k), p)) and

ℓ
(k)
2 = log(1 + ℓ(x(k−1), p)).

Remark 42 (i) We always use the output of the backpropagation algorithm instead of
exact (sub-)gradients, that is, the learned algorithms do not rely on smoothness.

(ii) We use 100 samples only, as they are very costly: To evaluate the potentials φprior

and φγ(·, s) on a single sample h ∈ H, one has to compute all losses ℓ(h, pi), i =
1, ..., Nprior +Ntrain, that is, “solving” Nprior +Ntrain optimization problems.

F.1 Details for the Experiment on Quadratic Functions

This subsection describes the missing details for the experiment on quadratic functions.

F.1.1 Construction of the Parameters

To control the strong-convexity and smoothness of ℓ, we specify intervals [m−,m+], [L−, L+] ⊂
(0,+∞), and sample m1, ...,mN

iid∼ U[m−,m+], L1, ..., LN
iid∼ U[L−,L+]. Then, the matrices

Aj , j = 1, ..., N , are created as diagonal matrices with entries ajii =
√
mj + i ·

√
Lj−

√
mj

n ,

i = 1, ..., n, that is, we linearly interpolate from
√
mj to

√
Lj . Hence, the matrix AT

j Aj

has smallest and largest eigenvalue mj and Lj , respectively. To change the relative position
between the ellipsoid of the quadratic and the initialization, we randomize the right-hand

side by sampling b1, ..., bN
iid∼ N(µ,Σ), where we create µ and Σ = CTC by sampling

µi, Ci,k
iid∼ U[−5,5], i, k = 1, ..., n.

F.1.2 Algorithm

The algorithmic update of the learned algorithm A is visualized in Figure 11 and consists of

two blocks: The update-block combines the gradient direction d
(k)
1 , the momentum direction

d
(k)
2 , and their “interaction” d

(k)
1 ⊙ d

(k)
2 into the new update-direction d(k), while the other

block computes a step-size based on the corresponding logarithmically transformed norms

n
(k)
1 and n

(k)
2 , and the logarithmically transformed function values ℓ

(k)
1 and ℓ

(k)
2 .
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Figure 11: Update step of A for quadratic problems: The directions d
(k)
1 , d

(k)
2 and d

(k)
1 ⊙d

(k)
2

are inserted as different channels into the Conv2d-block, which performs 1 × 1
“convolutions”, that is, the algorithm acts coordinate-wise on the input, and
yields an new update-direction d(k). The scales n(1), n(2), and the function

values ℓ
(k)
1 , ℓ

(k)
2 get transformed separately by the fully-connected block to yield

the step-size α(k).

F.2 Details for the Image-Processing Experiment

This subsection describes the missing details for the image-processing experiment.

F.2.1 Construction of the Parameters

Throughout, we use ε = 0.01. For computational efficiency, the matrices A,Dh, Dw are
implemented through the convolution of the image x with a corresponding kernel (with
reflective boundary conditions). For A, we use a standard (5 × 5)-Gaussian kernel, while
Dh and Dw are given through the kernels:

kh =

0 0 0
0 −1 0
0 1 0

 ∈ R3×3 and kw =

0 0 0
0 −1 1
0 0 0

 ∈ R3×3 .

Additionally, after blurring an image with A, we add centered Gaussian noise εi,j with

standard deviation σ = 25
256 to each pixel, that is, bi,j = (Ax∗)i,j + εi,j with εi,j

iid∼ N (0, σ),
i = 1, ..., Nh, j = 1, ..., Nw. The regularization parameters λi ∈ R, i = 1, ..., N , are given by

sampling uniformly, that is, λi
iid∼ U[λ−,λ+], where we use λ− = 0.05 and λ+ = 0.5.

F.2.2 Algorithm

The algorithmic update of A is visualized in Figure 12 and consists of an update-block,

which combines d
(k)
1 , d

(k)
2 and their “interaction” d

(k)
1 ⊙ d

(k)
2 into the new update direction

d(k), and a block to compute a step-size from the norms of the gradient and momentum
term. Note that we use 3× 3-convolutions this time, that is, we incorporate the knowledge
about an image-processing problem into the design of the optimization algorithm.
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Figure 12: Update step of A for the image-processing problems: The directions d
(k)
1 , d

(k)
2

and d
(k)
1 ⊙d

(k)
2 are inserted as different channels (in the shape of the image) into

the Conv2d-block, which performs a 3× 3-convolution. The scales n(1), n(2) get
transformed separately by the fully-connected block.

F.3 Details for the LASSO Experiment

This subsection describes the missing details for the LASSO experiment.

F.3.1 Construction of the Parameters

The same matrix A ∈ Rp×n with dimensions n = 350 and m = 70 is used for all problem

instances. Here, we sample each entry uniformly, that is, ai,j
iid∼ U[−0.5,0.5], i = 1, ...,m,

j = 1, ..., n. Thus, the parameters p are given by the right-hand side and the regularization
parameter, that is, p = (b, λ) ∈ Rm+1 =: P. For this, the regularization parameter λ is also

sampled uniformly, that is, λi
iid∼ U[λ−,λ+], i = 1, ..., N , with λ− = 5 and λ+ = 10, while the

right-hand side is sampled from a multivariate normal distribution, that is, bi
iid∼ N(µ,Σ),

i = 1, ..., N , where we first construct µ and Σ = CTC by sampling each entry of µ and C
uniformly at random in [−5, 5].

F.3.2 Algorithm

The solutions of the Lasso problem are typically sparse. To achieve this, the algorithm has
to identify the coordinates which are non-zero. Therefore, in each iteration, we treat the zero
and non-zero entries of x(k) (and derived quantities) separately. Here, non-zero entries are
written with a ̸=-subscript, while zero entries are written with a 0-subscript, for example,

x
(k)
̸= and x

(k)
0 .Then, first, we compute weights w1, ..., w8 with a fully-connected block with

ReLU-activation functions, where we use the features n
(k)
1 = log(1 + ∥∇ℓ(x(k), p)∥), n(k)

2 =

log(1 + ∥x(k) − x(k−1)∥), n(k)
3 = log(1 + ∥p(k)∥), where p(k) = proxβg

(
x(k) − β∇ℓ(x(k), p)

)
,

∆ℓ(k) := ℓ(x(k), p)−ℓ(x(k−1), p), ∆g(k) := g(x(k))−g(x(k−1)), ∆h(k) := h(x(k), p)−h(x(k−1), p),

the scalar products s
(k)
̸= and s

(k)
0 between the (normalized) gradient and (normalized) mo-

mentum, and the regularization parameter λ. Then, we use these weights to perform a
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Figure 13: Algorithmic update for the LASSO problem: Based on the given features
(split into zero and non-zero parts), the first block computes eight weights,
which are used to perform a weighting of the different directions, which
then get used in the second block. This second block predicts two di-
rections dout,1, dout,2, where dout,1 only acts on the non-zero entries, and
dout,2 acts on the zero entries. These are used in the update x(k+1) :=

proxβg

(
x(k) +

(
d
(k)
out,1, ̸= −∇ℓ(x

(k), p) + ∥x(k) − x(k−1)∥ · d(k)out,2,0

)
/L
)
.

reweighting of the directions d
(k)
1 , ..., d

(k)
4 , which are the normalized gradient, the normalized

momentum, the normalized residual x(k) − p(k), and the coordinate-wise product between
(normalized) gradient and (normalized) momentum. Then, these reweighted directions get

fed into a 1x1-convolutional block, which predicts the two directions d
(k)
out,1 and d

(k)
out,2, which

we use to compute the final update with the proximal mapping, given by

x(k+1) := proxβg

(
x(k) +

(
d
(k)
out,1,̸= −∇ℓ(x

(k), p) + ∥x(k) − x(k−1)∥ · d(k)out,2,0

)
/L
)
.

F.4 Details for the Neural-Network-Training Experiment

This subsection describes the missing details for the neural-network-training experiment.

F.4.1 Construction of the Parameters

We assume that the neural network should learn a function g : R → R from noisy obser-
vations yj , that is yj = g(xj) + ε with ε ∼ N(0, 1). For this, we construct polynomials gi,
i = 1, ..., N , of degree d = 5 as follows: For every function gi, we sample points {xi,j}Kj=1

(here: K = 50) uniformly in [−2, 2], that is, xi,j
iid∼ U[−2, 2], i = 1, ..., N , j = 1, ...,K. Then,

we sample the coefficients (ci,0, ..., ci,5) of gi uniformly in [−5, 5], that is, ci,l
iid∼ U[−5, 5],

i = 1, ..., N , l = 0, ..., 5. Lastly, we get the values yi,j as:

yi,j = gi(xi,j) + εi,j with εi,j
iid∼ N(0, 1), i = 1, ..., N, j = 1, ..., 50 .

43



PAC-Bayesian Learning-to-Optimize

n
(k)
1

n
(k)
2

ℓ(k)

ℓ(k−1)

s(k)

L
i
n
e
a
r
(
5
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
4
,
b
i
a
s
=
F
)

w1

w2

w3

w4

g

m

w1 · g ⊙ d
(k)
1

w2 · d(k)
1

w3 · d(k)
2

w4 · m ⊙ d
(k)
2

x(k)

x(k−1)

C
o
n
v
2
d
(
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
,
1
,
b
i
a
s
=
F
)

d(k) x(k+1)

Figure 14: Algorithmic update for training the neural network: Based on the two norms

n
(k)
1 and n

(k)
2 , the scalar product s(k) := ⟨d(k)1 , d

(k)
2 ⟩, and the current and previ-

ous (logarithmically scaled) loss ℓ(k), ℓ(k−1), we compute four scalars w1, ..., w4,

which are used for weighting d
(k)
1 , d

(k)
2 , and their corresponding pre-conditioned

versions g⊙d(k)1 andm⊙d(k)2 . Together with the current and previous point, they
get fed (as separate channels) into the first layer of a 1x1-convolutional block,
which computes an update direction d(k). Then, we update x(k+1) := x(k)+d(k).

For every function gi : R → R the neural network is trained on the data set pi := {Xi, Yi}
with Xi = (xi,1, ..., xi,K) ∈ RK and Yi = (yi,1, ..., yi,K) ∈ RK . Hence, the data set will serve
as the parameter p of the loss function ℓ : Rp ×P→ R≥0, such that the parameter space
P can be identified as the space of these data sets, that is, P= RK×2.

F.4.2 Loss Function and Architecture

Since the mean square error is the standard choice for training models on regression tasks,
the loss is given by ℓ(β, pi) := c(N(β,Xi), Yi) :=

1
K

∑K
j=1(Nβ(xi,j)− yi,j)

2.
As model we use a fully-connected two layer neural network with ReLU-activation func-
tions. To have more features in the input layer, the input x is transformed into the vector
(x, x2, ..., x5). Hence, the parameters β ∈ Rm are given by the weights A1 ∈ R50×5, A2 ∈
R1×50 and biases b1 ∈ R50, b2 ∈ R of the two fully-connected layers. Therefore, the opti-
mization space is of dimension m = (5 · 50) + (1 · 50) + 50 + 1 = 351.

F.4.3 Algorithm

The algorithmic update in Figure 14 consists of two blocks: A weighting block, which com-

putes four weights w1, ..., w4 based on the norms n
(k)
1 , n

(k)
2 , the losses ℓ(x(k), p), ℓ(x(k−1), p),

and the scalar product ⟨d(k)1 , d
(k)
2 ⟩. Each of these gets multiplied with d

(k)
1 , d

(k)
2 , or the

“pre-conditioned” versions, which we compute by pointwise multiplication with the learned
vectors g and m. Then, additionally to the x(k) and x(k−1), these weighted directions get
fed into an update-block, which computes the final update direction d(k).
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Figure 15: Algorithmic update for the MNIST experiment: Based on the two norms n
(k)
1

and n
(k)
2 , and the current and previous (logarithmically scaled) loss ℓ(k), ℓ(k−1),

we compute seven scalars w1, ..., w7, which are used for weighting d
(k)
1 , d

(k)
2 , their

corresponding preconditioned versions gi⊙ d
(k)
1 , mi⊙ d

(k)
2 , and their coordinate-

wise product d
(k)
1 ⊙ d

(k)
2 . Then, they get fed (as separate channels) into the first

layer of a 1x1-convolutional block, which computes an update direction d(k).
Finally, we update x(k+1) := x(k) + d(k).

Appendix G. Additional Experiment on MNIST

This experiment considers the problem of training a neural network to do classification on
the MNIST data set, that is, A is trained to predict the parameters β ∈ Rm of a neural
network Nβ, which then is used to predict a class-label k ∈ {0, ..., 9} based on an input
image. Hence, the optimization variable is given by β ∈ Rm. Here, the model consists
of two convolutional layers with ReLU-activation functions and Max-Pooling, followed by
three linear layers with ReLU-activation functions. Through this, the optimization variable
β has dimension m = 13090.

Remark 43 Note that, as the theory does not naturally model stochastic algorithms, we
consider a deterministic algorithm here and compute full gradients. This limits the amount
of images (20x20) per data set to 250.

As loss-function, we use a penalized cross-entropy loss to enforce higher classification-
accuracy, as parameters p of the loss-function we use the data sets consisting of input
images and ground-truth labels, that is, p ∈ R250×(20×20)×1 = P, and as baseline we use
Adam. The architecture of the learnt algorithm is shown in Figure 15 and consists of two
blocks: The first block uses linear layers with ReLU-activation functions and computes seven
weights based on the gradient-norm, the norm of the momentum-term, and the incurred
losses. Then, these weights are used to weigh the input-directions of the second block.
It consists of 1 × 1-convolutional layers with ReLU-activation functions, and computes an
update-direction based on the gradient, the momentum, their coordinate-wise product, and
four additional directions, which are computed from the gradient and the momentum-term
by coordinate-wise preconditioning. For more details we refer to the GitHub repository.
Figure 16 shows the results of this experiment: The upper left plot shows that the learned
algorithm outperforms Adam, classifying all images correctly after about 50 iterations, while
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Figure 16: Upper left: Dashed lines represent the mean losses, dotted lines represent
the median losses, and the shaded regions indicate the 10th to 90th percentile.
Further, dashdotted-lines represent the classification-accuracy, which is shown
on the right y-axis. Here, Adam is shown in purple and the learned algorithm
in yellow. Upper right: The different lines show the cumulative computation
time of the algorithms to solve all the test problems up to a certain accuracy
(in function values) measured by ℓ(β(i), p) − c(Xi, Yi) < ε. However, note that
both algorithms are run for maximally nmax = 5000 iterations. Lower left:
Loss histogram (after ntrain iterations) and PAC-bound. Lower right: The
teal dashed line shows the point estimate for the sublevel probability, while the
teal solid line shows the Beta-posterior. Here, the black dotted lines indicate
the constraints ρl, ρu and show the feasible region as dark teal line.

Adam needs about 200 iterations to reach the same classification-accuracy. The upper right
plot confirms that, also in terms of computation time, A is faster in training the neural net-
work than Adam. However, based on the higher computational cost per iteration, the gap
is not as large as for the function values. The lower left plot shows that the predicted PAC-
bound is not tight here. This can be attributed to the fact that we had to use a smaller
amount of data, due to the high computational cost in each iteration. Finally, the lower
right plot indicates that the algorithm did reach the sublevel set in all test cases.
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Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando de Freitas. Learning to Learn without Gradient
Descent by Gradient Descent. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 748–
756. PMLR, 2017.

48



Sucker, Fadili and Ochs

Regev Cohen, Michael Elad, and Peyman Milanfar. Regularization by Denoising via Fixed-
Point Projection (RED-PRO). SIAM Journal on Imaging Sciences, 14(3):1374–1406,
2021. doi: 10.1137/20M1337168.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic Model-Based Minimization of Weakly
Convex Functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Damek Davis and Dmitriy Drusvyatskiy. Graphical Convergence of Subgradients in Non-
convex Optimization and Learning. Mathematics of Operations Research, 47(1):209–231,
2022.
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