Journal of Machine Learning Research XX (XXXX) 1 Submitted X/XX; Revised X/XX; Published X/XX

Learning-to-Optimize with PAC-Bayesian Guarantees:
Theoretical Considerations and Practical Implementation

Michael Sucker MICHAEL.SUCKER@QMATH.UNI-TUEBINGEN.DE
Department of Mathematics

University of Ttbingen

Tibingen, Germany

Jalal Fadili JALAL.FADILIQENSICAEN.FR
ENSICAEN

Normandie Université

CNRS, GREYC, France

Peter Ochs OCHS@CS.UNI-SAARLAND.DE
Department of Mathematics and Computer Science

Saarland University

Saarbriicken, Germany

Editor: ...

Abstract

We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best
of our knowledge, we present the first framework to learn optimization algorithms with
provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between
convergence guarantees and convergence speed, which contrasts with the typical worst-case
analysis. Our learned optimization algorithms provably outperform related ones derived
from a worst-case analysis. The results rely on PAC-Bayesian bounds for general, possibly
unbounded loss-functions based on exponential families. Further, we provide a concrete
algorithmic realization of the framework and new methodologies for learning-to-optimize.
Finally, we conduct four practically relevant experiments to support our theory. With this,
we showcase that the provided learning framework yields optimization algorithms that
provably outperform the state-of-the-art by orders of magnitude.

Keywords: learning-to-optimize, pac-bayes, exponential families, conditioning on con-
vergence, probabilistically constrained sampling

1 Introduction

Typically, optimization algorithms are derived by performing a worst-case analysis on a
specific class of problems. Doing so one obtains theoretical convergence guarantees for any
instance inside the class. However, the abstract class of problems contains an enormous
number beyond the concrete problem of interest, often including also pathological functions
that do not occur in practical applications. Furthermore, since the derivation is done “on
pen and paper”, all modeling steps have to be analytically tractable. This limits the design
of algorithms. Both of these restrictions can impair the performance of the resulting method
on a concrete problem instance. Nevertheless, both restrictions can be alleviated through
learning: Given a concrete application and performance-measure, the algorithm is trained

(©XXXX Michael Sucker, Jalal Fadili and Peter Ochs.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/vXX/XX-XXXX.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/vXX/XX-XXXX.html

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

on examples (data) to improve its performance. This enables the automatic adaptation of
sophisticated algorithms to this particular setting. However, there is no free lunch: If the
algorithm is explicitly based on quantities that are not analytically tractable, one cannot
expect to obtain the same theoretical guarantees as for the worst-case analysis discussed
above. Since the practical usefulness of an optimization algorithm without convergence
guarantees is at least questionable, this is a major problem and poses the first central
question:

What kind of theoretical guarantees can be given for a learned optimization algorithm? Are
we able to ensure its usefulness?

One possible alternative to the common guarantees is of statistical nature: Even if we do
not know exactly what the algorithm does, we can still observe its performance during
training. However, this begs the question whether its performance on the training data
is actually representative for the performance on unseen data. Therefore, in the first part
of this paper we provide a theoretical framework for learning an optimization algorithm
based on its performance on a training set, that is, based on the empirical risk together
with a generalization bound for the (true) risk. A popular framework that provides such
generalization bounds is the PAC-Bayesian approach to learning, which we apply to the
setting of learning-to-optimize. This yields the following informal version of our main the-
oretical result (compare Example . It states that, with high probability we will observe
a (training) data set S for which the given bound on the risk of the algorithm’s output will
hold uniformly in a so-called index v € I" and distribution Q:

Theorem 1 (Informal) Under mild boundedness assumptions on the optimization algo-
rithm, the Q-average population loss R, of the algorithm’s output can be bounded by the
Q-average empirical loss Ry of the algorithm’s output plus some remainder term ry that
vanishes with the size N of the data set, that is, for all € > 0:

Pg {V7 €T, YQ € My : Q[Ry] < Q[R,] +rN(7)} >1-¢.

Especially, the uniformity in Q allows for learning such a distribution. This provides one
possible answer to the question about theoretical guarantees for learning-to-optimize. How-
ever, while being a generalization bound, such a guarantee is a statement about relative and
not absolute values, that is, how the true risk compares to the empirical risk. Thus, one
still has to train the optimization algorithm in such a way that the empirical risk is indeed
small enough to be worth the effort. This is particularly important in the area of learning-
to-optimize, as there are already algorithms that can provably solve the given problems in
a rather short amount of time. Hence, the second central question that arises is of a more
practical nature and pertains to the actual training of such an algorithm:

How do we learn an optimization algorithm, such that its performance is clearly superior
to the one achieved by a worst-case analysis?

Therefore, in the second part of this work, we develop a concrete algorithmic realization,
which allows for learning an optimization algorithm and evaluating the corresponding the-
oretical guarantee. This involves several key design choices that have not been used be-
fore and which are of interest in their own right. Furthermore, as empirical evaluation

SUCKER, FADILI AND OCHS

Smooth and Strongly Convex Smooth and Convex
_____ 10* 4
—————————————————] = = Baseline
2] { TEmm N~ §
10] ..._:==.~~ Eealned
YN -
~ 1073 - ~ TRng
o < TN
%4 e ,”’N\
Ca— s
=10 = 10% 4
10~18 { == Baseline S S Fs vsene s B
Learned
T T T T T T T T k T T T T T T
0 100 200 300 400 500 600 700 0 10 20 30 40 50
Nit it
Non-smooth and Convex Non-smooth and Non-convex
107 4 — 21 5 .
E ,/\ 107 4§ = = Baseline
] e] \% Learned
10° E 10® 3 N\ == ground-truth
~] = = Baseline ~] \ ‘-_\k
< 5 Learned <. 10% 4 Vo2 .
8 10° 3 8 E
S -—r S \{"K
] 10" 4 o=
E L T
10* -] \\"mm
E L0 S R S LSS D —— ———— T

T T T T T T T T T T T T T
0 100 200 300 400 500 600 700 0 50 100 150 200

Figure 1: Some numerical results: Loss over iterations (mean as dashed and median as
dotted line) of the learned algorithm compared to a standard choice.

of our claims, we conduct four practically relevant experiments, all dealing with very dif-
ferent classes of functions, thereby demonstrating the wide applicability and strong prac-
tical performance of our approach. Figure [I| provides a preview of some experimental
results, and the details will be provided in Section [7] Each subplot compares the per-
formance of the learned algorithm (yellow) to that of a standard algorithm on differ-
ent problems ranging from smooth and strongly convex to non-smooth and non-convex.
Since the learned algorithm is clearly superior in each case, this provides a possible an-
swer to the question about how to train optimization algorithms. In summary, we pro-
vide a complete framework to train optimization algorithms with theoretical guarantees
that are (in a certain sense) provably faster than their worst-case optimal counterparts.
In particular, this work is a far reaching extension of our conference paper (Sucker and
by extending and clarifying the theoretical results in Sections and, in
particular, by the algorithmic realization together with its evaluation in Sections [6] and
[7, which additionally includes a probabilistic constraining procedure for sampling algo-
rithms in Subsection [5.1l The entire code associated with this paper can be found at
https://github.com/MichiSucker/Learning-to-Optimize-with-PAC-Bayes.

1.1 Related Work

The literature on both learning-to-optimize and the PAC-Bayes learning approach is vast.
Hence, for learning-to-optimize we will mainly focus on approaches that provide some theo-
retical guarantees. Especially, this excludes many model-free approaches, which replace the

https://github.com/MichiSucker/Learning-to-Optimize-with-PAC-Bayes

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

whole update step with a learnable mapping such as a neural network. |Chen et al.| (2022
provide a good overview about the variety of approaches in learning-to-optimize, and good
introductory references for the PAC-Bayesian approach are given by (Guedj| (2019), Hell-
strom et al.| (2025)), and |Alquier| (2024]).

1.1.1 BROADER CONTEXT OF LEARNING-TO-OPTIMIZE

Optimization is an integral part of machine learning. Thus, learning-to-optimize has sig-
nificant overlap with the areas of meta-learning (or “learning-to-learn”) and AutoML. The
first one is a subset of learning-to-optimize, because it is mostly concerned with determining
parameters of machine learning models (Vilalta and Drissi, |2002; Hospedales et al., [2022).
AutoML, however, more broadly refers to automating all steps necessary to create a ma-
chine learning application, which also includes the choice of an optimization algorithm and
its hyperparameters (Yao et al., 2018; Hutter et al., 2019; |[He et al., 2021)).

1.1.2 LEARNING-TO-OPTIMIZE WITH GUARANTEES

Learned optimization methods may lack theoretical guarantees for the sake of convergence
speed (Chen et al., 2022). Yet, there are applications where a convergence guarantee is
of highest priority: Moller et al.| (2019) provide an example where a purely learning-based
approach fails to reconstruct the crucial details in a medical image. Also, they prove con-
vergence of their method by restricting the output to descent directions, for which mathe-
matical guarantees exist. The basic idea is to trace the learned object back to, or constrain
it to, a mathematical object with convergence guarantees. Similarly, |Sreehari et al.| (2016)
provide sufficient conditions under which the learned mapping is a proximal mapping. Re-
lated schemes, under different assumptions and guarantees, are given by |(Chan et al.| (2017)),
Teodoro et al.| (2017), Tirer and Giryes (2019)), Buzzard et al. (2018), Ryu et al. (2019),
Sun et al.| (2019), Terris et al.| (2021)) and |Cohen et al. (2021)). A major advantage of these
methods is the fact that the number of iterations is not restricted a priori. However, a ma-
jor drawback is their restriction to specific algorithms and problems. This contrasts with
the approach of unrolling, pioneered by |Gregor and LeCun (2010), which limits the num-
ber of iterations, yet in principle can be applied to every iterative optimization algorithm.
Here, Xin et al.| (2016]) study the convergence properties of the IHT algorithm, while |Chen
et al.| (2018)) consider the unrolled ISTA. However, a difficulty in the theoretical analysis
of unrolled algorithms is actually the notion of convergence itself, such that one rather has
to consider the generalization performance. Only few works have addressed this: Either
directly by means of Rademacher complexity (Chen et al. 2020b), or indirectly in form of
a stability analysis (Kobler et al., 2022), as algorithmic stability is linked to generalization
(Bousquet and Elisseeff, 2000, 2002; Shalev-Shwartz et al., 2010). Our theoretical analysis
corresponds to the approach of unrolling, that is, a fired number of iterations. However, in
the experiments we stay more closely to the iterative approach of learning an update step
that can be applied for an arbitrary number of iterations.

1.1.3 DESIGN-CHOICES IN LEARNING-TO-OPTIMIZE

A major problem of many learned optimization algorithms, especially the ones based on
recurrent neural networks (RNN), is their restriction to a certain number of iterations:

SUCKER, FADILI AND OCHS

They cannot be trained for an arbitrary number of iterations due to instabilities or memory
bottlenecks. Further, often they do not generalize well to more iterations than they were
trained for (Andrychowicz et al., 2016; |Chen et al., 2017 |[Lv et al., 2017; |Chen et al.,
2022)). A typical way to mitigate this problem is to split the whole trajectory into smaller
parts (Andrychowicz et al., 2016; |Chen et al., 2017; [Metz et al., 2019). However, often
this does not lead to fully satisfactory results either, such that other approaches have
been proposed: To improve generalization, Lv et al. (2017) introduce random scaling of the
coordinates and the addition of a convex function to the objective. |Wichrowska et al. (2017))
introduce a hierarchical RNN architecture, and additionally draw the number of unrollings
and the unrolling length from a heavy-tailed exponential distribution. While achieving the
needed generalization, this approach does not achieve the same wall-clock time as simple
optimization algorithms. [Metz et al. (2019) replace the recurrent neural network with a
multilayer perceptron (MLP), and they use two unbiased gradient estimators instead of one.
Doing so they manage to train algorithms that are faster in wall-clock time than standard
ones like Adam. |Chen et al.| (2020a) consider training techniques in general, and introduce
a progressive scheme that gradually increases the unrolling length, as well as an imitation
learning approach to learn to mimic analytic optimizers.

Besides the optimizer, a crucial design choice in learning-to-optimize is that of the loss
function. Typically, either the final loss or a weighted sum of the losses along the iterations
is used (Chen et al., [2022). We introduce a new loss function for training optimization
algorithms, motivated by an intuitive theoretical argument. Further, we use a single learned
update based on MLPs instead of an RNN, and we split the trajectory into subtrajectories
and randomize its total length, however, in a new way.

1.1.4 PAC-BAYESIAN BOUNDS THROUGH CHANGE-OF-MEASURE

PAC is an acronym for Probably Approximately Correct, and PAC-Bayes refers to the fact
that one considers distributions instead of points (Alquier, |2024)). This framework allows
for giving high probability bounds on the risk, either as an oracle or as an empirical bound.
The key ingredient is a change-of-measure inequality, the choice of which strongly influ-
ences the corresponding bound. The one used most often is based on a variational rep-
resentation of the Kullback—Leibler divergence due to |Donsker and Varadhan, employed,
for example, by |Catoni| (2004, 2007)). Yet, not all bounds are based on a variational rep-
resentation, that is, holding uniformly over all posterior distributions (Rivasplata et al.,
2020)). While many bounds involve the Kullback—Leibler divergence as measure of proxim-
ity (McAllester, 2003a,b; |Seeger], 2002} |Langford and Shawe-Taylor, 2002; (Germain et al.,
2009)), other divergences have been used: [Honorio and Jaakkola, (2014) prove an inequality
for the y2-divergence, which is also used by [London| (2017). Bégin et al.|(2016) and |Alquier
and Guedj (2018)) use the Renyi-divergence (a-divergence). |Ohnishi and Honorio| (2021)
propose PAC-bounds based on f-divergences, which include the Kullback—Leibler-, a- and
x2-divergences. More recently, Amit et al.| (2022) propose to replace the Kullback-Leibler
divergence by so-called “integral probability metrics”, which encompass, for example, the
Wasserstein distance that obeys many favorable properties and also captures the geome-
try of the underlying space (see |Villani, [2009). Motivated by this, [Haddouche and Guedj
(2023)) also investigate PAC-Bayesian generalization bounds for the Wasserstein distance

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

and their interplay with the output of optimization algorithms. A major advantage of using
the Wasserstein distances instead of the Kullback-Leibler divergence is the fact that it does
not constrain the support of the distribution a-priori through the choice of the prior. On
the other hand, it demands assumptions on the loss function, which are not necessarily
satisfied in learning-to-optimize. We give a general PAC-Bayesian theorem based on expo-
nential families. Here, prior, posterior, divergence and data dependence are given naturally.
Further, it allows for implementing an abstract learning framework that can be applied to a
wide variety of algorithms.

1.1.5 BOUNDEDNESS OF THE L0SS FUNCTION

A major drawback of many of the existing PAC-Bayes bounds is the assumption of a
bounded loss-function. This assumption is mainly used to apply some exponential-moment
inequality like the Hoeffding- or Bernstein-inequality (Rivasplata et al., [2020; |Alquier} [2024))
and several ways have been developed to circumvent this problem: (Germain et al. (2009))
explicitly include the exponential-moment in the bound, Alquier et al.| (2016) use so-called
Hoeffding- and Bernstein-assumptions, |Catoni (2004) restricts to the sub-Gaussian or sub-
Gamma case. Another possibility to ensure the generalization or exponential-moment
bounds is to use properties of the algorithm: |[London (2017) uses algorithmic stability
to provide PAC-Bayes bounds for SGD. We consider suitable properties of optimization
algorithms aside from algorithmic stability to ensure the exponential-moment bounds.

1.1.6 MINIMIZATION OF THE PAC-BOUND

PAC-bounds relate the true risk to other terms such as the empirical risk. Yet, they do not
directly say anything about the absolute numbers. Thus, learning procedures based on the
PAC-Bayesian theory typically aim to minimize this bound: |Langford and Caruana (2001)
compute non-vacuous generalization bounds through a combination of PAC-bounds with a
sensitivity analysis. |Dziugaite and Roy| (2017)) extend this by minimizing the PAC-bound
directly. |[Pérez-Ortiz et al. (2021) also consider learning as minimization of the PAC-Bayes
bound and provide tight generalization bounds. Thiemann et al|(2017) are able to solve the
minimization problem resulting from their PAC-bound by alternating minimization. We
follow this approach and consider learning as minimization of the PAC-Bayesian bound.

1.1.7 CHOICE OF THE PRIOR

A common difficulty in learning with PAC-Bayesian bounds is the choice of the prior distri-
bution, as it heavily influences the performance of the learned models and the generalization
bound (Catoni, 2004; Dziugaite et al., [2021; |Pérez-Ortiz et al., 2021). In part, and espe-
cially for the Kullback-Leibler divergence, this is due to the fact that the divergence term
can dominate the bound, keeping the posterior close to the prior. This leads to the idea of
choosing a data- or distribution-dependent prior (Seeger, 2002; |[Parrado-Hernandez et al.|
2012; Lever et al., 2013; Dziugaite and Roy, 2018; [Pérez-Ortiz et al. |2021)), which, by using
an independent subset of the data set, gets optimized to yield a good performance. The
prior distribution strongly influences the performance of our learned algorithms. Thus, we
use a data-dependent prior. Further, we show how the prior can be used for preserving

SUCKER, FADILI AND OCHS

essential properties during learning: It is key to control the trade-off between convergence
guarantee and convergence speed.

1.1.8 MORE GENERALIZATION BOUNDS

There are more areas of machine learning research that study generalization bounds. Im-
portantly, the field of “stochastic optimization” (SO) provides generalization bounds for
specific algorithms. The main differences to our setting are the learning approach and the
assumptions made:

e Instead of a distribution over hyperparameters, the algorithms in SO generate a point
estimate, and one studies the properties of this point in terms of the stationarity measure
of the true risk functional (Bottou et al., |2018; Davis and Drusvyatskiy, 2022; Bianchi
et al., 2022).

e Instead of an abstract algorithm, the setting in SO is more explicit. Thus, more assump-
tions have to be made. Typical assumptions are (weak) convexity (Shalev-Shwartz et al.)
2009; Davis and Drusvyatskiy, 2019), bounded gradients (Défossez et al., 2022)), bounded
noise (Davis and Drusvyatskiy, |2022)), or smoothness (Kavis et al., 2022).

We provide a principled way to learn a distribution over general hyperparameters of an
abstract algorithm under weak assumptions and go explicitly beyond analytically tractable
quantities. Therefore, the methodology is independent of the chosen implementation.

The rest of the paper is structured as follows: In Section [2] we introduce the notation
and provide a formal description of the setting. In Section [3] we derive the general PAC-
Bayesian theorem and relate it to other existing bounds. In Section[d] we identify properties
of optimization algorithms that allow to apply the PAC-Bayesian theorem. As this strongly
relies on assumptions on the prior distribution, we provide a probabilistic constraining
procedure that allows to enforce such constraints in Section Then, in Section [6] we
describe the learning procedure and our design choices for learning-to-optimize, and in
Section [7] we conduct the experiments.

2 Problem Setup & Assumptions

In this section we establish the notation, formalize the setting, and state the main assump-
tions that are used throughout the remainder of the text.

2.1 Notation

We will endow every topological space U with the corresponding Borel-o-algebra B(U), and,
given a product space U XV of two measurable spaces (U, U) and (7, V), we endow it with
the product-o-algebra 4®2. We will denote the product space of a generic number of spaces
Uty ..., Uy by T U;, and the product-o-algebra by @i, B(U;). If all spaces are equal,
this is abbreviated as U™. For a function f : U XV — W, f(u,-) : V — W denotes the map
v+ f(u,v) with fixed element u € U. Similarly, for a set C C U x ¥, the section of C for
fixed u € U is denoted by C,, :={v € ¥ : (u,v) € C}. In general, generic sets are denoted
in typewriter font, for example A, and 1 denotes the function that is equal to one for u € A

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

and zero else, while s denotes the function that is equal to zero for u € A and +oo elsell]
Given a measurable space (U, 1), a measure p and a measurable function f > 0, [f] denotes
the integral of f w.r.t. y, while f-; denotes the measure given by (f-u)[A] = [, f(u) p(du),
that is, (f - p)[U] = wp[f] and (f - p)[A] = u[f - 1a]. Hence, f - p is absolutely continuous
w.r.t. p, written as f - p < p, with f being the corresponding density. Here, the set of all
measures on U will be denoted by M(U) := {u : Y — [0,00] : pis a measure}, and the
set of all probability measures that are absolutely continuous w.r.t. g € M(U) are denoted
by My(p) :={v € M(U) : v[U] =1and v < p}. In this context, the Kullback-Leibler
divergence between two measures v and p is defined as

ullog(f)] = [y, log(f(w)) p(du), 1< v with density f,
400, otherwise .

Dxu(u || v) = {
For the rest of the manuscript, we will fix a probability space (Q,%, P), and if y = P
is the probability measure, the corresponding expectation is denoted by E[f] := P[f] =
Jo f(w) P(dw). Here, we will write random variables in upper-case and corresponding
realizations in lower-case with the same symbol, for example U = u. Given two random
variables U : (Q,%, IP’) — U and V : (Q, 5,]P) — U, integration of a measurable function f
on U XV w.r.t. the induced probability measure IP(; v/ is specified by the subscript (U,v),
that is:

ELf(U,V)] = /Qf(U,V) (W) P(dw) = /% f(u,v) P vy (du, dv) = Ew vy [f] -

XU

If we have a regular version of the conditional distribution of V, given U, denoted by Py,
the joint distribution P 1 can be disintegrated into the product Py @ Py i of the marginal
Py and the probability kernel (z,B) + Py ;/—,[B], which allows us to use the notation:

ELf(U, V)] = [u [y £(,0) Pyy_o(dv) Py(du) = By [Byjg_y [F(u,)]

Note that changing the order of integration is not allowed in this case. However, if U and V'
are independent, their joint distribution is given by the product Py ® Py for which Fubini’s
theorem is applicable, and the iterated integration is clarified by the subscripts U, V:

E[f(U, V)] = A [y £ (u,0) Py (dv) Py(d) = Egr [Ey [f (s)] o]

Finally, our theoretical results rely on the notions of probability kernels and exponential
families, whose definitions are recalled in Appendix [A]

2.2 Main Assumptions and Definitions for Learning Optimization Algorithms

We assume that we are given a distribution over loss-functions with a specific structure,
which is modelled by a random variable:

1. We omit the name here, as both 1 and ta are called “indicator function”. The former in probability
theory, the latter in optimization.

SUCKER, FADILI AND OCHS

Assumption 2 We are given a Polish space P (separable and complete metrizable topolog-
ical space) and a non-negative and measurable loss-function ¢ : R™ x P — [0, +o0]. Further,
for some N € N, we are given i.i.d. random variables P, Py, ..., Pn : (Q,S, IP’) — P.

Then, ideally, we would like to find a solution to each realization of the random objective:

Find z* : 2 — R", s.t. 2"(p) € argmin{(z,p) Pp —a.s. (1)
z€R™

However, we will only solve a relaxed version of and provide generalization bounds for
the average performance after training on a data set.

Definition 3 The measurable function S : (Q,S, P) — PN w s (P, Py) (W) s
called a data set, and if the random variables P+, ..., Py are i.i.d., that is, Pg = ®ZJ\L1 Pp, =
®£\L1 Pp, it is called an i.i.d. data set. Further, PN is called the data-space.

PAC-Bayesian generalization bounds involve a so-called posterior distribution, which usually
is a “data-dependent distribution”. As also pointed out by Rivasplata et al. (2020)), this is
an instance of a probability kernel (also called a “stochastic-” or “Markov kernel”):

Definition 4 Let S be a data set with data-space PN, and let U be a measurable space. A
probability kernel from PN to U is called a data-dependent distribution on U.

For solving problem , for every realization p of P, we apply an optimization algorithm
A to £(-,p). For this, we consider a similar setting as London| (2017, that is, randomized
algorithms are considered as deterministic algorithms with randomized hyperparameters:

Definition 5 Let # be a Polish space and n € N. A measurable function
A:HXR"xP — R, (h,z9 p)— Ak, 20, p),

18 called a parametric algorithm. R"™ is the space of the optimization variable, P the space of
the parameters of the loss function, and # the space of the hyperparameters of the algorithm.

Please note that A corresponds to the whole algorithm, that is, for an iterative algorithm
its output is the final iterate. In the PAC-Bayesian approach, learning A refers to finding
a distribution Q on # based on its performance on a data set S. For this, one needs a
reference distribution, called the prior, which can (and should) encode prior knowledge
about suitable choices of hyperparameters:

Assumption 6 We are given a parametric algorithm A with Polish hyperparameter space
7, and a (prior) distribution Py on # that is induced by a random variable H : (Q, 3, IP’) —
F , which is independent of S and P. Further, the initialization ©(©) € R™ is given and fized.

Notation 7 To simplify the notation, we use the short-hand £(h,p) := ((A(h,p),p). Fur-
thermore, if not needed explicitly, 2O and (Q,& IP’) will not be mentioned in the following.

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Definition 8 Suppose P and ¢ satisfy Assumption[3, and A satisfies Assumption [0 The
risk of A is defined as the measurable function:

R:H —> [0,+00], h s E[(A(h, P), P)] = E[(h, P)] = Ep[¢(h,)] .

Similarly, for an i.i.d. data set S = (Pq,..., Py) the empirical risk is defined as:

N
S N ; _1 .
R:% x PN —[0,+], (h,S)— R(h,S)= N;E(h,Pz).

The following theory is based on exponential families, which is a very flexible class of
distributions. We highlight the data-dependency in the following adjusted definition:

Definition 9 Let () # T' be an index set, S a data set with data-space PV, and let U
be a measurable space. A family of probability kernels (Q)yer from PN to U is called a
data-dependent exponential family (in n and 7), if there is a probability measure p on U,
functions n: T — R, a: T x PV — (0,400), and measurable functions 7 : U x PN — RF,
b: U — (0,+00), such that Q,(s) = ba(v, s) exp ((n(v), (-, 5))) - u for everyy € T, s € PN,
that is, Q,(s,B) = [gb(u)a(y, s) exp((n(y),7(u,s))) p(du), B € B(U).

We introduce data-dependency through 7, since it strongly affects the shape of the distri-
bution and, contrary to 7, is defined on the underlying space U. Since we want to learn a
distribution over hyperparameters h € #, we make the following assumption:

Assumption 10 On the hyperparameter space ¥, we are given a data-dependent exponen-
tial family (Q,)yer in 1 and T with dominating probability measure p = Pg, such that the
map h — b(h)exp({(n(v),7(h,s))) is non-trivial and integrable w.r.t. Py for every v € T,
s € PN, that is, By [bexp((n(v),7(-, 8)))] € (0,00).

Then, as shown in Lemma in Appendix every member of the data-dependent ex-
ponential family is indeed a data-dependent distribution on #. In the following, the last
integral in Assumption [10| will be of great interest. Here, we will use a similar notation as
in Barndorff-Nielsen| (2014)) and denote

c(v,8) = /%b(h) exp((n(7), 7(h, 5))) Pr(dh) = Eg [bexp({n(v),7(;s))] ,
K(7,8) :=log (¢(7,5)) = log (Em [bexp ((n(7), 7(-,5)))]) -

With this notation, it holds that a(v, s) = ¢(v, s) 1.

(2)

Remark 11 (i) If 1) describes a lower-dimensional manifold in R*, (Q,)er is called a
curved exponential family (Efron, |1975), whose properties might differ from the ones
for linear exponential families, for example, convezity of the map v — a(7, s).

(i) In PAC-Bayes, the dominating measure Pp is usually referred to as prior and every
distribution Q € My (Pg) is referred to as a posterior. This deviates from the standard
definitions of prior and posterior in Bayesian statistics.

10

SUCKER, FADILI AND OCHS

(i1i) In general, the integrability assumption is restrictive, as it affects the choice of b,n
and 7. However, in Section [f] we will construct n and 7 such that this holds anyway.

(iv) In the special case b =1 and n(vy) =+, the map v — c(7, s) is the moment-generating
function of the random variable T(H,s). Similarly, in this case v — k(7,s) is the
corresponding cumulant-generating function.

Finally, we will restrict I' to a compact set. This is needed to get a uniform bound in v (see
Langford and Caruanal 2001; |Catoni, 2007} |Alquier, [2024)).

Assumption 12 T' is a compact set with finite covering O := {Oq,...,0}, that is, T C
U;K:1 0;, such that there is a constant Cq, which, for every s € PN, allows for the bound
maX;—1,. x SUP«m’eOi R(’ya S) - K’(r}/v S) < e(‘)-

Remark 13 The non-trivial part of this assumption is the existence of the constant Cy for
the given finite covering. It does hold, for example, if T is a finite set (KX = |T'|, Co = 0),
or, if (I',p) is a compact metric space and k is Lipschitz-continuous in vy (uniformly in s)
with Lipschitz constant L, such that Co = L - max;—; . diam O;, where the diameter of a
set A is given by diam A = sup, ,ca p(, Y).

3 General PAC-Bayesian Theorem

In this section we prove the general PAC-Bayesian bound for data-dependent exponential
families, which then can be specialized into a generalization bound of the learned parametric
optimization algorithm A. It is based on the following two lemmas, whose proofs can be
found in Appendix [C] and respectively. The first lemma is a form of the Donsker—
Varadhan variational formulation and yields uniformity in the distributions @Q, while the
second lemma yields uniformity in v € T' by controlling v ~ x(7, s) for every s € PV,

Lemma 14 Suppose that Assumption holds and define k as in . Then for everyy € T’

and s € PN it holds that k(v,s) = supgent, (py) @ [(1(7), 7(-5 8)) +log(b)] — DxL(Q || Prr).
Furthermore, for every v € I', the supremum is attained at Q(s).

Lemma 15 Suppose that Assumption[13 holds and assume that P{x(v,S) >t} < exp(—t)
for allt € R and v € . Then P{sup. ¢ £(7,5) <log(K/e) +Co} > 1 —e.

Theorem 16 Suppose that Assumptions[1(] and [19 hold, and assume that Eglc(y,)] < 1
for all v € T'. Then, it holds that:

IP’{V7 €T, VQ € My(Py) :

Q[(n(7),7(-,5)) +1og(b)] |s=s < DxL(Q || Px) + log (g;) + Go} >1—c.

Proof Applying Markov’s inequality to the non-negative random variable ¢(v,.S) yields
forteR, yel:
Elc(v, 9)]

P{c(y,5) > exp(t)} < exp(D)

< exp(—t).

11

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

This implies that P {x(y,S) > t} < exp(—t). Hence, Lemma [L5|is applicable and gives:

X
P ¢ sup k(7, S) < log <> +Cop>1—c¢.
~ver €
Using Lemma [14] gives:

P{sup sup @), 70 9) + log(O)lms ~ Diau(@ | Pa) < o (T) + eo} SE
vEL QeMy (Px) €

Simply rearranging and reformulating yields the result. |

Remark 17 (i) Note that the statement is still true for a data-dependent prior Pg: Given
another independent data set S, one needs to assume that E [c(v, (S,5)] <1

(ii) In Section [J] we provide sufficient conditions s.t. Elc(y,S)] <1 holds for all v > 0.

(iii) Typically, K is (related to) the covering-number of I, and log(X) bears the intrinsic
dimension of I'. Thus, in full generality, it might be large. For us, however, it only
has a minor influence, since I' C R, and the empirical risk is typically much larger.

(iv) Thanks to the reviewers we became aware of the monograph by Hellstrom et al.| (2025),
which proposes a similar general PAC-Bayesian theorem. On first sight, it seems like
theirs s more general than ours. However, Example clarifies this. Furthermore,
we want to remark that the first version of our Theorem appeared in 2022.

For the rest of the paper, we set b = 1, such that log(b) = 0. The following corollary shows
an example of how to transform Theorem [16|into a high-probability bound on the risk. The
proof is given in Appendix

Corollary 18 (PAC-Bayesian Generalization Bound) Denote T by T = (), T "))
with 7 .= (7@, 7®)) and n by n = (0, n")) withn™) = (@, .. .np®). If7) = R—R
and nM > 0, the following are equivalent for any v € T, s € PV, Q e M1 (Py):

(i) Q[(n(v),7(-,s))] < Dxr(Q || Prr) +log (F) + Co,
(i1) QIR] < QIR(,)] + iy (PxL(@Q || Par) +log (£) +Co — Q [(n) (7), 77, 5))]) -
In particular, if Theorem applies, we can replace (i) with (ii).

Using similar rearrangements, the following example relates Theorem [I6] to other known
PAC-Bayesian bounds:

Example 19 (i) Assume that the loss-function is bounded, that is, 0 < ¢ < C, and define
~ 2
F= {3} b=1 € =0, 7(hs) = (R(A) = R(h,5), C?), and n(y) := (7,-%).
Then we recover Catoni’s bound (Catond, |2005; | Alquier|, |2024):

IP’{VQ e My (Py) :

QR < QIR)lims + + <DKL(@ | Bir) + log C) + AQCZ)} Sl

8N

12

SUCKER, FADILI AND OCHS

(ii) Assume that { takes values in [0,1] and let D : [0,1]> — R be convex. Further, define
T ={1},b=1, € =0, 7(h,5) i= (RD(R(h), R(h,), log(E(s mlexp(nD(R,R)),
and n(y) := (1,—1). Then we get:

P{vQ € Mi(Pr) : QDR R(:,)]s

< 2 (Daal@ P + 108 (1) + oxEsp fxp(nD@. R) } 2 1.

Applying Jensen’s inequality to the left term, we get the bound of |Germain et al.
(2009). Similarly, one can obtain the bound of \Bégin et al. (2014).

(iii) Consider two measurable functions f,g : # x PV — R, and define I' = {~}, b =1,
Co = 0, 7(h,s) := (f(h,s),g(h,s)), and n(y) = (v,—7). Then our assumption
Esle(v,-)] <1 reads Eg py lexp(v(f — g))] < 1, which is the same assumption as in
Hellstrom et al.| (2025, Thm. 5.1). Similarly, defining n(vy) := (1, —1) and T'(h,s) :=
(f(h,s), log(Es mlexp(f)])), we also get a similar bound as Hellstrom et al.| (2025,
Proposition 5.2):

P{vQ € M (Pr) : QU ()]s

< Dia(@ | Ba) +1og (1) + on(Eqsnfexp(A) } 2 1 2.

4 Learning-to-Optimize with Guarantees

Here, for our setting in Subsection we consider properties of optimization algorithms
that assert the necessary condition of Theorem [16, namely E[c(v,S)] < 1 for all v € T, with
c defined as in Equation [2| to employ the PAC-Bayesian bound from Section

4.1 Worst-Case Bounds

In the next theorem, the additional assumption on A is sufficient to ensure the conditions of
Theorem[I6] Essentially, it requires the loss of the algorithm’s output to be bounded. It can
be used, for example, if one wants to combine the learning procedure with existing worst-
case guarantees. Yet, as shown in Section 4.2} it is too restrictive to achieve a significant
acceleration compared to the standard choices from a worst-case analysis. For this, please
recall our short-hand notation £(h, p) = £(A(h, p),p) = L(A(h, =, p), p), that is, £(z(?), p)
evaluates the loss function at z(9), while £(h, p) evaluates the loss function at the output of
the algorithm with hyperparameters h and starting from z(?).

Theorem 20 Suppose that P and { satisfy Assumption [, and suppose that A satisfies
Assumption @ Further, assume that there is a measurable function p : # — [0,00), such
that for every h € ¥ it holds that £(h,-) < p(h)0(z(?),.) Pp-a.s. Furthermore, let S be a
corresponding i.i.d. data set of size N € N. Finally, assume that E[ﬁ(x(o),P)Q] < 00, and
define n : (0,00) — R? and 7 : H x PN — R? through:

2
) . 7(hys) = (R(h) ~R(hs), PP [e(g;@),p)?]) .

2

n(v) = (% —%

13

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Then it holds that E[c(vy,S)] <1 for all v > 0.

Proof Since H and S are independent, their joint distribution is given by the product
measure Pg @ Py. Thus, by Fubini’s theorem we get:

E [exp (W(R(H) — R(H, S)))} —E [E [exp (fy(ﬂ%(h) ~ R(h, S)))} ‘

Hence, first consider the inner integral for a fixed h € #. Then, by definition and the i.i.d.
assumption one gets:

o]

E [exp (1(R(R) = R(h, 5))| = E

2\4

N
exp(Z (h, P;) — E[¢(h, P)]))

IJ__V[[eXp((f(h,-)—IEp[e(h,-)]))}.

The loss-function is non-negative and, by assumption on A, can be bounded Pp-a.s. Thus,
for every h € #, {(h, P) is a non-negative random variable with finite second-moment, as
Ep[l(h,-)?] < p(h)*Ep [E(x(o), -)?] < cc. Hence, by Lemma we get:
2

g i

_ D) — . < I
Ep [exp (= (¢(hy) = Eplt(h,))| < exp(5hs
2
g 2 0) 2
< exp(Shz (W) Eplt(a®), 7).

Therefore we have the following bound:

Eplt(h,-)?))

E [exp (1(R(h) = R(h, 5)))] < exp(;;pmﬁap (@, -2]).

This can be rearranged into E [exp <’y(iR(h) —R(h,S)) — %p(h)QEp[Z(x(O),)Q]H <1, as
the right-hand side does not depend on S. Since H and S are independent, and h € #
was arbitrary, this inequality does hold Pg-a.s. Therefore, one directly gets the bound
E [exp (fy(fR(H) —R(H, S)) - %p(H)QEP[ﬁ(x(O),)2]>] < 1. Now, again by Fubini’s theo-
rem, one can also switch the order of integration to get:

E [E [exp (7(32(H) _R(H, s)) — ;ip(H)zEp[ﬁ(g;(O)’ .)2]>] s:s] <1

Inserting the definition of n and 7 gives E [E [exp ((n(7),7(H, s)))] |s=s] < 1. Here, the in-
ner term is the same as E [exp ({(n(~), 7(H, s)))] = f% exp ((n(y),7(h,s)))) Pg(dh) = c(v,).
Hence, this is the same as E[c(y, S)] < 1. [|

Remark 21 The argument still works for a data-dependent prior, if the corresponding
data sets S’ and S are independent: While interchanging the integration w.r.t. S’ and
H is not allowed, an interchange w.r.t. H and S is still valid (under the integral), that
is, for a function f it would hold E[f(H,S,S")] = Eg [EH|S/:S/ [Es [f(h,-,s")] |h:H]] =
Es [Es [Epjsi—s [f(,5,8)] [s=s]], and the inner term is <1 in any case.

14

SUCKER, FADILI AND OCHS

4.2 Conditional Boundedness

Typically, the previous approach is too restrictive, because the boundedness assumption on
A already requires theoretical worst-case estimates almost surely. For example, if (£(-,p))pea
is a family of quadratic functions, and one tries to learn the step-size of gradient descent,
the boundedness prevents step-size parameters that lie outside the worst-case convergence
regime, as they would lead to a diverging behaviour, which increases the incurred empir-
ical risk dramatically. Thus, to motivate the upcoming discussion, consider the following
thought-experiment:

Example 22 Consider {(z,p) = %CL‘Q and assume that the chosen algorithm is gradient

descent, that is x-+t1) = z(k) hﬂ’(m(k),p). For a given p, the optimal step-size is h = }D,
which gives convergence in one step. Then, if p is given by samples from the distribution
Pp = 0.9991 + 0.018199, a worst-case analysis would suggest to take hy, = WIO' In this case,
we would have an algorithm that converges in a single step for 1% of the problem instances,
while having a linear convergence rate of (%)k for the other 99%. Another choice is to
take hqg = 1, which leads to an algorithm that does converge in a single step for 99% of the
problem instances, but diverges in 1% of the cases. By restricting to the 99% of the cases

where convergence does occur, the overall difference in speed is drastic.

Hence, in this section, a different approach is taken: We actually allow for divergence, if it
only occurs in rare cases with a controllable probability, that is, “almost surely” is relaxed
to “with a sufficiently large probability”. Essentially, we only consider the loss for all those
hyperparameters, where the loss is bounded by a certain constant, as well as the probability
for that to occur. Then, in Section 5], we develop a technique that allows the user to actually
control this probability. Clearly, a stronger guarantee trades for convergence speed.

Definition 23 Given a measurable function o : P — R, the (parametric) sublevel set
Loy CH x P is defined as Ly := {(h,p) € H x P : L(h,p) < o(p)}. The sections of L, for
fized h € # will be denoted by Ly 5.

In Lemma [40| we show that L, is indeed a measurable set. This is not obvious, as the loss
function and the algorithm are composed in a non-standard way. This result further implies
that the sections L, j are measurable, too. Since # and & are Polish spaces, the product
F x P is again Polish. Hence, there exists a regular version of the conditional probability of
P, given H, that is, a kernel # — &, (h,B) = Ppz_p[B]. By Witting (1985, Thm. 1.122,
p.124), this determines a regular version of the conditional probability of (H, P), given H,
through # — # x P, (h,B) = Py p)p=nlB] := Ppjg—pn[Br], and we have Py-a.s. the
equality P{(H,P) € B | H = h} = Ppjg_p[Bp]. In particular, this applies to the sublevel
set Ly, and the map h +— Ppjg_y[Ls 4] is measurable.

Definition 24 Let L, be a parametric sublevel set. Define the sublevel probability as the
measurable function h v p(h) := Pp|g—_p[Lo n]-

This construction allows us to give a more fine-grained analysis of the algorithm, as it allows
to trade the boundedness assumption for the sublevel probability. This basically extends
a worst-case analysis, which would correspond to an uniform upper bound. Motivated by
Lemma we define the sublevel risk as the expect loss conditioned on the sublevel set:

15

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Definition 25 Let L, be a parametric sublevel set. Then the sublevel risk R, : # —
[0, 4+00] is defined as the conditional expectation of the loss given L, p:
L Eplt(h,)1 , if p(h) >0
B Ro’(h) .— Ep [E(h,) ‘ Lo,h} _ {p(h) P[() Lo—,h] pr()

0, otherwise.

Given a data set S = (Pu, ..., Py), the empirical sublevel risk Ry H x PN — [0, +00] is
defined as (h, S) = Ro(h, S) = 4 S L, (Po)l(h, Py).

The following theorem is a direct generalization of Theorem Especially, note that the
additional assumption on A is not needed anymore.

Theorem 26 Suppose that P and ¢ satisfy Assumption [4, and suppose that A satisfies
Assumption [0 Further, let S be a corresponding i.i.d. data set of size N € N, and let L,
be a parametric sublevel set with sublevel probability p. Assume that Py{p > 0} = 1 and
Ep[o?] < 0co. Definen: (0,00) — R? and 7 : % x PN — R? as

2

_ v B . 1)
o= (=)o)= (Rolt) = Relhos), e [0®1,])
Then, for all v > 0, it holds that E[c(vy, S)] < 1.

Proof The proof is very similar to the proof of Theorem [20| and basically uses the same
reasoning. Let {;(h,p) := 1, (p)¢(h,p). Since H and S are independent, one gets from
Fubini’s theorem:

E [exp(y(Ro (H) = Ro(H, 5)))| = E [E |[exp(v(Ro (k) = R,)] |]

Thus, first consider a fixed h € # with p(h) > 0. Then, by definition and the i.i.d.
assumption, it holds that:

N
E [exp(1(Ra (h) — Ro (b, 5))| = [exp (— Wiy 2 (boh P) ~ Eplt (h ->]>)]

. f:[Ep oxb (57 (ot~ Brltatn))|

{5 (h,-) is non-negative, and by definition of the parametric sublevel set has a finite second-
moment, that is Ep[ls(h,-)?] < Ep[o®1, ,] < co. Hence, by Lemma (39 we have the

inequality Ep [exp (—ﬁ(h) (Ly(h,-) —Ep[ly(h,)]))] < exp (WE (5 (R,)2]) Thus:

2
7 v 2
E [exp(’y(ﬁRg(h,) = Ra(h, S)))} < exp (QNp(h)QEP [0]ng,h}> .
This can be rearranged into E [exp (7(9% (h) — Ry (h, S)) — 2Np(B sEp [0]l|_)}
since the right-hand side is independent of S. As this holds for any h w1th p(h)
which in turn does hold Py-a.s., we get

2

E [exp <7(:RU(H) — R, (H,S)) — WE]D (%1,] h:Hﬂ <1.

16

SUCKER, FADILI AND OCHS

Changing the order of integration with Fubini’s theorem, we get:

E [E [exp <7(fRa(H) — Ry, 5)) - WZ(QWEP *10,,] m)]

]gl.
s=S

Using the definition of n and 7, this is the same as E[E [exp((n(7),7(H,s)))]|s=s] <
1. Thus, in total we get E[c(v,S)] < 1, because the inner term can be rewritten as

E [exp({(n(v), 7(H,)] = [o exp({n(7), 7(h, 8))) Pr(dh) = c(v, s).]

Remark 27 The assumption Py{p > 0} = 1 states that, under the prior, the algorithm
should be able to “reach” the sublevel set. This is a constraint on the support of Py, which
is not satisfied without further ado. Section[J provides a construction for achieving this.

Example 28 Combining Theorem [26) and Theorem[16, we get that:

P{w €T, YQ € My (Py) : Q[Ry] < Q[Ro(8)]|s—s+

X Eplo?1 _.
L D@ | Pa) +log (%) +C 5 o [Erlo L”"’”h]}zl—g,

v 2N p(-)?

For every fixzed Q € My (Pg), optimizing over v (assuming that v* is attained in T'), gives:

IP’{VQ e My (Pyr) : Q[Ro] < Q[Ro(5)]|s=s+

Eplo?1,,lln_.

2 (DkL(Q || Pa) +log (£) +€o) Q [ok

+ ']}21—5.

N

Now, a typical performance-measure in optimization is complexity, that is, how many itera-
tions are needed to reach a loss smaller or equal to ¥. Thus, specifying o =19 and assuming
that p(H) > p; a.s., this gives rise to:

P{VQ € My (Ps) : QRo] < QRo(5)][o=s+

X
+0\/2(DKL<@ IP) +log (5) +Coy oy
Pl N

5 Implementing the Non-divergence — Speed Trade-Off

In Subsection [4.2] care has to be taken in the choice of the prior Pg: Just minimizing the
upper bound as much as possible can lead to a neglect of a high sublevel probability, that
is, the algorithm is especially fast on a small subset of the parameters, while it diverges for
the rest. This is due to the fact that the term ﬁ might not compensate for the smaller
sublevel risk. Thus, if a certain sublevel probability econy € [0, 1] has to be ensured, one has
to enforce it. In the case of PAC-Bayesian learning with absolutely continuous distributions,
it suffices to have this property for the prior:

17

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

v PV[CU]
Cuy Cuy 11
C o
P - <
— L
l l U 0 — | —
(3] u9

supp(Py)

Figure 2: Construction of Py: On the left, the set C € U x ¥ and two of its sections
Cuy,Cyy C U are visualized. On the right, the function p(u) = Py[C,], the
interval [p;, pu], and the resulting support supp(Py) of Py are visualized. Note
that, contrary to the visualization here, p can actually be highly discontinuous.

Lemma 29 Let eqony € [0,1] and assume that p(H) > econy a.s. Then, for every Q €
Mi(Pg) we have Q{p < €conv} = 0.

Proof By assumption we have Py{p < €conv} = 0. Thus, the result follows directly by
definition of absolute continuity. |

Though the proof is trivial, this lemma has a very important consequence, which we want
to stress: If one can guarantee that a required property is satisfied for the prior, it will be
preserved during the PAC-Bayesian learning process, that is, if the prior only puts mass on
hyperparameters that ensure a certain sublevel probability, the posterior will do the same.
How to enforce such constraints during construction of the prior is discussed next.

5.1 Sampling under Probabilistic Constraints

In this section, we describe a methodology that allows for sampling from a distribution that
is probabilistically constrained in the following sense: We are given two independent random
variables U : (Q, 7, IP’) U,V (Q, 3, IP’) — U taking values in the Polish spaces U and 7/,
with joint and marginal distributions P (¢ 1y, Py and Py, respectively. Further, we consider
a measurable set C C U X ¥, and we want to generate samples U = u € U, such that the
probability of (U, V) lying in C, given U = u, takes values in a certain interval:

P vy o=ulCl = Pyjr=u[Cu] € [p1, pu] C [0,1].

This allows us to define the (measurable) function p : U — [0,1], u = Pyy—,[Cu). By
independence of U and V, this is Py-almost surely the same as p(u) = Py [Cy,] € [p1, pul,s
and we will use the later formulation from now onE| Thus, for p;, p, € [0, 1] with p; < py,

2. Note that p is still measurable.

18

SUCKER, FADILI AND OCHS

Algorithm 1 Iterative estimation of the probability p

Require: ¢, g, ¢ € [0,1].
a,b+1,1 > Initialize with uninformative prior.
while Qg 4(qu) — Qap(q) > € do > Qqp is the quantile function for Beta(a, b).
Draw I ~ Ber(p)
a<a+Tandb< b+ (1—1)
end while

we can define a measurable set A := {u € U : Py[Cy] € [p;, pu]}, Which yields a new
measure Py on U by restricting to A, that is, for a measurable set B C U it holds:

Py[B] := ((Ljppu1 © p) - Pr) [B] = (1a - Py) [B] = Py[ANB].
Therefore, as stated before, we have the following goal:
Goal: Sample from Py, that is, get U1, ..., Uk ~ Py, such that Py [Cullu=u; € [p1, pul-

This construction is depicted in Figure |2} The left figure visualizes the sections {Cy, }yeq of
the set C, while the right figure shows the corresponding construction of the support of Py .
In the following, we implicitly assume that the imposed constraint is realizable, that is, Py
has a non-empty support.

Example 30 Consider the random variables P and H from Section [By Lemma [29 we
want to have p(H) € [econv, 1], where the sublevel probability is given as p(h) = Pp[Ly p]
(Lemma , and the sublevel set L, C # X P is measurable by Lemma . Thus, this
corresponds to the identification U =FH, V = P, and p; = Econv, Pu = 1.

5.1.1 INCORPORATION INTO A SAMPLING PROCEDURE

The only distinction between samples from Py and samples from Py is the restriction to
A. Since many sampling algorithms access the unnormalised density anyway, it suffices to
be able to sample from P, if the restriction to A can be satisfied differently. Thus, we
have to integrate this constraint into a sampling procedure for Py. Because we do not
have any geometrical or topological information about the set C, we resort to statistical
information: Given i.i.d. samples V1,....,V, ~ Py, for a given u € U, we are able to
evaluate the Bernoulli random variables I,, := 1{V,, € C,}, n € N. These have the
parameter P{I,, = 1} = P{V,, € C,} = Py[C,] = p(u). Thus, by estimating p(u) with an
estimator p(u), we approximate the constraint A with A:

A={uecU : p(u) € lp,pul} ={ucU : p(u) € [p,pul} = A.

To decide whether a given sample U; ~ Py does lie in A, that is, whether U; can actually
be regarded as a sample from Py, we resort to a simple accept-reject mechanism as in
Metropolis-Hastings-type algorithms (Robert and Casella), [2004)). Note that this allows to
keep an algorithm inside A. However, it does not provide a way into A let alone A.

We estimate p(u) in a Bayesian way, as it allows us to balance accuracy against computa-
tional complexity through uncertainty-quantification, which we use as a stopping criterion:

19

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

n=20 n = 30 n = 60

fa,b(P)

= fa,b(p) — fab(p) — fa.b(p) /

p p T P
Qa.b(q.) Qa.v(q.) k Qa.b(q.)

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

p P p

Figure 3: Iterative estimation of p(u): The black line shows the density fam) pomy Of

Beta(a(”),b(”)) after having observed Ii,...,I,. The red dotted line indicates
the true probability p(u), which we are trying to estimate, and the blue dashed
lines indicate the lower and upper quantiles corresponding to ¢;, q,. The proce-
dure stops as soon as Q) pm) (qu) — Qm) pm) (@) < €, which is indicated by the
double-headed arrow. Here, we use ¢; = 0.05, ¢, = 0.95,¢ = 0.15 and p(u) = 0.8.

We place a Beta-prior Beta(a(®),b®) over the interval [0,1]. As we do not have prior
knowledge, and the map u — p(u) can be discontinuousﬂ we use a noninformative prior
(Berger, 1985, Ch. 3.3), that is, ag = by = 1. Since the Beta distribution is the conjugate
prior for the Bernoulli distribution (Berger} (1985, p.130), that is, the posterior is again a
Beta-distribution, after observing a sample Ij11, the parameters a®) bk get updated as:

a(k+1) = a(k) + Iy, b(k+1) = b(k) + (1 — Ik—i—l) .

This allows us to do the estimation iteratively: We only draw a new sample I, as long
as Q(")(qu) — Q" (@) > &, where Q™ denotes the quantile-function of Beta(a(”), b(”)), and
Qu,qi,€ € [0,1] are parameters that specify the accuracy of the estimation. Finally, one

can use the posterior mean #:;(n) or posterior mode % (provided a(™,b(™ > 1)
as point estimate p,. By adjusting ¢;,q, or €, one can balance between accuracy and
computational complexity. However, the number of iterations needed also depends on the
true probability: For p(u) ~ 0 or p(u) &~ 1, the uncertainty decreases significantly faster

than for p(u) = 0.5. This procedure is summarized in Algorithm[I] and depicted in Figure

5.1.2 BROADER CONTEXT

Different, yet conceptually similar ideas for how to cut the computational cost of Bayesian
Markov-Chain-Monte-Carlo algorithms through subsampling have been proposed: [Korat-
tikara et al.[(2014]) use sequential hypothesis tests to reach the binary accept-reject decision
in the Metropolis-Hastings algorithm. Bardenet et al.| (2014) estimate the accept-reject step
in such a way that it coincides with the true accept-reject step with a user-specified prob-
ability. Maclaurin and Adams| (2014) introduce an auxiliary binary variable z, € {0,1},
which allows for querying only a subset of the data for the computation of the exact like-
lihood. And |Quiroz et al. (2019) combine subsampling with a bias-correction strategy to

3. Consider learning the step-size parameter h > 0 for gradient descent on quadratic functions with largest
eigenvalue L: The algorithm converges for h < 2 (p(h) = 1) and diverges for h > 2 (p(h) =0) .

20

SUCKER, FADILI AND OCHS

Algorithm 2 Probabilistically constrained sampling

Require: p, py € [0,1], npax € N, ug € A.
n < 0 and u < ug
while n < ny.x do
1) Draw a proposal v with SGLD starting from u.
2) Estimate p(u') = Py[Cy/] by p(u’) with Algorithm
if p(v') € [pi, pu) then
u <+
else
Reject /.
end if
end while

speed-up the sampling procedure. A summary of different approaches is given by [Bardenet
et al.| (2017). We leave the analysis for our proposed approximation to future work.

5.1.3 CHOICE OF THE SAMPLING PROCEDURE

Often, the hyperparameters h € # are high-dimensional. Thus, we use stochastic gradient
Langevin dynamics (Welling and Teh) [2011) (SGLD) as the underlying sampling algorithm,
and constrain it to the set A by use of the previously described procedure. This is summa-
rized in Algorithm [2] However, if it fits the application, other sampling algorithms can be
used, too. The computational overhead of the additional estimation depends on the cost of
evaluating 1{V,, € C,}. In our case it is expensive: Every sample I,, requires to run the
algorithm A, which corresponds to approximating the solution of a minimization problem.

Remark 31 Algorithm requires to start in the set A. If such a point is not known, one
can still run the algorithm and just “start” the accept-reject mechanism as soon as one has
found a point u € A. However, it is not guaranteed that such a point will actually be found.

The results of applying this procedure for a two-dimensional toy example are shown in
Figure [4¢ The upper row shows the function u — p(u), and the potential from which we
want to sample with the constraint p(u) € [0.6,1]. The lower row shows the accepted
(black) and rejected (gray) samples, and the final estimate of the constrained potential.
While most samples get accepted/rejected correctly, some are actually false-positives (dark
red) or false-negatives (red). Yet, this is to be expected. Note that, for simplicity, we did
use full gradients here. We are now in a position to describe the whole learning procedure.

6 Learning Procedure

This section deals with the implementation of the learning procedure, and translates the
abstract framework discussed in Sections [3| and [4] into concrete design choices. Thus, this
marks the beginning of the second part of the paper, which is less theoretical. The resulting
learning procedure is visualized in Figure 5| and consists of four steps:

(i) Step one: Train the algorithm to “mimic” another algorithm .A’. This is needed only,
if one cannot choose stable initial hyperparameters directly, for example, when the

21

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Underlying Probability p Constrained Potential (p > 0.6)
2 2
14 14
0 ‘ 0 4 An
1 |4 ‘] -~ A‘.
A 40N - “armEEE
_2 T T T _2 T T T T
-20 —-15 —-1.0 -0.5 0‘0 0. 5 1. 0 1‘5 2.0 -20 -15 —-1.0 —-0.5 O. 0 0.5 1‘0 1.5 2.0
Accepted/Rejected = 10.6 Estimated Potential
2 2
accepted
1A rejected 1A
false positive
false negative
0 ‘ 0 =
E L
1 4 P . ‘ 1 4 e sl i
1 R
-2 T T T T T T T -2 T T T T T T T
—-20 —-15 —-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0 -20 —-15 —-1.0 —-0.5 0.0 0.5 1.0 1.5 2.0

Figure 4: Example for probabilistically constrained sampling: The upper left plot shows the

underlying function p(u). It is discontinuous and defines a non-convex set A. The
upper right plot shows the probabilistically constrained potential (p(u) € [0.6, 1]),
from which we want to sample. The lower left plot shows the accepted (black) and
the rejected (gray) samples (in a ratio of about 10:1). Further, we can see that
some of them are false-positives (dark red) or false-negatives (red). Especially,
this happens for p(u) ~ 0.6, where the remaining uncertainty can easily lead to
a wrong decision. Here, we have chosen the ¢; = 0.01, g, = 0.99, and € = 0.05 in
Algorithm [1] Finally, the lower right plot shows the estimated potential.

update includes a neural network. Otherwise, the algorithm might predict points that
are so far off that one encounters numerical instabilities.

Step two: Find a point h(®) € # that a) satisfies the constraint in Subsection and
b) yields a good performance. For this, we perform a constrained version of stochastic
empirical risk minimization with a new, specifically designed loss function.

Step three: Starting from h(®), construct the prior distribution by running a con-

strained version of a sampling algorithm.

Step four: Find the optimal v* € I, which allows for computing the optimal posterior
distribution Q.+ in closed-form.

The outline of this section is as follows: In Subsection we identify the optimal posterior
Q* in the abstract setting. In Subsection we describe the pre-computation phase in (i).

22

SUCKER, FADILI AND OCHS

AFR) AT

> h > h

1) Find initialization by imitation. 2) Locate the prior.

Q) NG

1
]
1
1
1
1
1
}

lsus(iie

3) Construct the prior. 4) Compute the posterior.

Figure 5: Learning procedure: 1) Imitation learning. 2) Probabilistically constrained
stochastic empirical risk minimization. 3) Construct prior through sampling.
4) Compute posterior by performing the PAC-Bayesian learning step.

Subsections and deal with the concrete design choices in (ii) and (iii) to construct
the prior, and Subsection yields the posterior distribution in (iv). Since the prior has
to be independent of the data set that is used in the PAC-Bayesian step, we split the data
set S into independent parts Sprior, Sval, Strain and Stest, Where Sprior and Sya are used
for the construction of the prior distribution, Stirain is used for the PAC-Bayesian learning
step, and Siest is the test set which is only needed for the experiments. Nevertheless, for
notational simplicity, we will use the generic S, implicitly assuming the above partitioning.

Remark 32 Through the choice of the sampling algorithm, the concrete learning procedure
described here mainly applies to the case # = R?, d € N. Nevertheless, the general method-
ology s still applicable to other Polish spaces, if this choice can be adjusted accordingly.

6.1 Minimization of the PAC-Bound

Learning is phrased as minimizing the PAC-Bayesian upper-bound. Hence, in this subsec-
tion we consider 7, 7 and item (i) from Corollary[18] and we seek for v € ' and Q € M; (Py)

23

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

that minimize the upper-bound, that is, we want to solve:

, . . (DkL(Q || Pgr) +1og (£) + €0 — Q [(n (), 7™ (-, 5))])
1l geanhp,y ARG nM(y) '

By factoring out —m again, this is actually the same as:

. - X
}/Ieli; ~0m) (QE;[%H)Q[<n<v>,T<-,s>>] — DxL(Q || Py) — log <€> - Go) ,

where 7(h, s) 1= (—jQ(h, s), 7 (h, s)). Since log(X/e) + Cy is a constant, Lemmashows
that the term inside the brackets is given by &(7, s) — log(K/e) — Cy, where K corresponds
to the exponential family (er)»yer‘ built upon 7 and 7 (with b = 1). Furthermore, the
optimal posterior distribution Q € M;(Py) is given by the corresponding member of the
data-dependent exponential family Q- (s) oc exp((n(7), 7(-, 5)))-Ps, usually called the Gibbs
posterior (Alquier, 2024). By denoting F(v,s) := ——m— (k(7, s) — log(K /) — Cy), one is

1™ (y)
left with solving the following problem:

;Iellf“ F(y,s), (3)
which for I' C R is one-dimensional. Based on Theorem we restrict to I' C (0, +00),
such that the solution to can be seen as an approximation to the global minimum
inf,~o F(7,s). For the latter one, one can show that the solution set lies in a compact
interval [I"yin, 'max], since F'(vy,s) — oo asy — 0 or v — oo. Under our assumptions, F(+, s)
is continuously differentiable. Hence, since I' is compact, F'(+, s) is Lipschitz-continuous on
I" and the minimum in is attained. For a finite set I' = {v1,...,7x} C [['min, ['max)s
the optimization reduces to grid search. For I' = [[yin, ['max], we employ grid search as
initialization for gradient-based optimization. Here, the computational bottleneck is given
by evaluating v — &(7, s). In Sections and we will ensure that this is cheap.

6.2 Finding a Trainable Initialization

To increase numerical stability, we start with “imitation learning” (Chen et al., 2020a)), that
is, the algorithm A should “follow” another algorithm A’, for example, gradient descent.
For this, we minimize the mean squared error between the iterates of the two algorithms:
Given a starting point 2(®) € R™, an iteration number ¢t € N, and a parameter p € P,
denote the first ¢ iterates of A(h,p, z) by (1), ..., 2() € R” and the ones of A'(z(®, p) by
yM, ..,y e R". Then, define the loss as the mean squared error over these iterations:

t
1
einit(hapax(0)7t) = ; E Hx(k) - y(k)H% .
k=1

In each iteration, that is, each prediction of tuples (z(M), M), .. (z® y®)), the parameters
p, (9 and t are randomized as described in Section It is not necessary to reach a high
accuracy here, as the purpose is to prevent divergence, and not actual imitation of A’. The
procedure is summarized in Algorithm

24

SUCKER, FADILI AND OCHS

Algorithm 3 Procedure to find an initialization

Require: Data set sprior, 20 € R", t,ninit € N and € > 0.
m < +oo and sample p ~ Us ..
while ﬁm > ¢ do

m <+ 0
for i = 1, «ovy Ninit do
1) Compute (a;(l),y(l)),. (a:(t) ()) with A(h, p, (0)) and A’(p,a:(o)), resp.

)
2) ComPUte Kinit(h b,z (0)7) = %Zk 1 H:E (k) — y ||%
3) Update m < m + liit(h, p, 2O ¢)
4) Update h by backpropagation and Adam. > Other algorithms possible.
5) Update p, 2 and ¢ based on Section
end for
end while

6.3 Locating the Prior

Empirically, the performance of the learned algorithm is significantly improved by the fol-
lowing two design choices. The motivation is to prevent overfitting and to learn a scale-
independent contraction of the loss:

6.3.1 RATIO OF LOSSES

The canonical loss function to be minimized is the empirical risk ﬁ%(h, s) = % ZZ]\L LR, i),
and, if #Z is high-dimensional or if N is large, one resorts to stochastic empirical risk min-
imization. While this kind of loss was used extensively before, for learning-to-optimize
it has a strong disadvantage: Only the overall outcome after ny.x iterations gets penal-
ized. Thus, it does not take the performance along the trajectory into account. Fur-
ther, often it is hard to minimize (due to training instabilities) and does not lead to
the desired performance. To circumvent this, Andrychowicz et al.| (2016)) proposed to use
Cizain(hy p, (0 = Yoy ¢(z),p). Again, this formulation has a decisive flaw: Under most
objectives, if the algorithm performs reasonably well, the loss at the beginning is several
orders of magnitude larger than the loss at the end. Hence, gtrain mainly penalizes the
loss at the beginning, leading to an algorithm that minimizes the loss very fast in early
iterations, yet slows down a lot in later iterations. This is due to gtrain being scale-sensitive.
Additionally, the incurred loss might vary strongly with the initialization 2(°) alone, thereby
introducing ambiguity into the incurred losses. We propose to use the ratio of consecutive
losses:

Uz, p)

etraln(h b,z 7 ;]l{z (z(=1) p)>0} E((i—1) p))
This has several advantages: First, the loss is not scale-sensitive anymore, such that it
favors hyperparameters that yield a good performance in each iteration. Second, there
is no ambiguity in the observed loss through the initialization, as the only criterion is a
strong contraction of the loss (instead of a small loss). Third, the incurred losses do not
vary too much, which empirically makes it easier to choose hyperparameters of the learning
procedure. However, it also has a disadvantage: If the function values do indeed converge

teN, t<n.

25

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Algorithm 4 Procedure to locate the prior
Require: Data sets sprior, Sval, DUMbErs Nmax, Ntrain,t € N with £ < nygrain, initialization
2(0) and thresholds py, p, € [0, 1] with p; < pu.

Set x + (9, b« false, and sample p ~ U

Sprior

1.a) Compute M 2® with A(h,p,x(o)).

2z,
1.b) Compute lirain(h, p, x(f)),t) =3, 1{@(x(i71)’p)>o}ﬁ.
1.c) Construct a proposal h by using backpropagation and Adam.

2) Estimate p(h) by p(h) with Algorithm [1j on sy

if p(h) € [p1, pu] then > If point inside constraint, just update.
h < h and b < true
else > If not...
if b = true then > ...reject moving outside constraint.
Reject h, set 2(9) < z, sample p ~ Us, o> and continue with 1).
else > ...accept, if constraint has not been found yet.
h < h
end if
end if
3) Draw R ~ Ber(——).
if? R =0 then (nmm)
20 ()
else R=1
20 < 2 and sample p ~ Us prior
end if
end for

in a setting where the optimal loss is strictly greater than zero, this gets fully penalized, as

(@) . . .
then % = 1. For now, we do not know how to avoid this problem (apart from just
stopping the iterations in case of convergence) while keeping the advantages.

6.3.2 RANDOMIZED TRAJECTORY LENGTH

Training A with fixed initialization z(®) and fixed trajectory length leads to overfitting:
Applying it at another starting point Z(©) or applying it for more iterations typically does
not work, or even leads to divergence. To avoid this, we propose the following randomization:
Fix t < nypain and set y 1= 20,

0) Sample a parameter p uniformly at random from s.

26

SUCKER, FADILI AND OCHS

Ratio Randomization
N i A I
—————————————————— \
2 4] ~ |
10 -{ 10 '*l--vl-ﬁ,—‘__‘_.hﬂ__ ________
] | R i tririrtrivbrivty
Z 10 I Z i
T s ! B '
< 1077 1 with ! < 100 with :
_ = = without = = without
1013 H | 10-2 4 |
== MNgtrain | == MNgtrain |
T T ! T T T T T I T T T
0 100 200 300 400 0 20 40 60 80 100
Nit Nit
Figure 6: Effect of our design choices: Dashed lines represent the mean losses, dotted lines

represent the median losses, and the shaded region represents 95% of the data.
The yellow algorithm was trained with our design choice and the orange one with-
out. Besides that, everything else was kept the same. In the left plot we can see
that using the ratio of consecutive losses strongly improves the performance, and
in the right plot we can see that the randomization procedure yields generaliza-
tion beyond nirain and an overall better performance.

1) Compute 2z, ..., 2®) with A(h, p,y) and the loss lizain(h, p,y,t), and update h.

2) Sample R*¥) ~ Ber(——). If R*) = 0, set y := 2 and go to step 1). If R®) =1, set

Ntrain

y =z and go to step 0).

The random variable R*) decides whether the algorithm gets restarted from z(®) with a
new parameter p, or if one continuous the current trajectory. The choice —‘— ensures that

Ntrain
the expected trajectory-length equals nain: Define Z := inf{k € N R¥) = 1}. Then,
7 ~ Geo(ﬁ) is a geometrically distributed with expectation E[Z] = ™:2i» Therefore,

for the actual length L =t - Z of the trajectory we get E[L] = tE[Z] = ntrain-

Remark 33 Similarly to|Andrychowicz et al. (2016), we omit the computation of second-
order derivatives during training. Additionally, and surprisingly, it usually suffices to con-
stder single iterates, that ist = 1. That amounts to learning an update step that is agnostic
to the recurrent nature of the optimization algorithm and just learns to adapt to the local
geometry of the loss function along the iterations.

Figure [6] shows the effect of these two design choices: The left plot shows the effect of
using the ration of consecutive losses and the right plot shows the effect of randomizing
the trajectory. In both cases, we train two times the same algorithm: One time with our
proposed choice (yellow), and one time without (orange). Everything else is kept the same,
that is, both were trained with Algorithm [l In the left plot one can see that the ratio of
losses strongly improves the performance compared to using normal function-values, and in
the right plot one can see that the randomization procedure improves the generalization to
more iterations and its performance. However, please note that there might be some bias:
The architecture of the algorithm is one that we have found using our proposed training

27

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Algorithm 5 Procedure to construct the prior

Require: Data sets Sprior (sampling) and sy, (constraint), ngam € N and h € supp(ﬁ”h).
1) Starting from h, run Algorithm [2| (with li;ain) to get the points hq,...,h c.

) '"Nsam

2) Evaluate pprior o0 {h1, ..., A, } by evaluating R, corresponding to sprior-

3) Compute Py {h;}, that is, Py{h;} = o (@prior(P1), ---s <pprior(hnsam))j .

procedure. Further details can be found in the GitHub-repository. The overall procedure
is summarized in Algorithm

6.4 Constructing the Prior

Besides the performance and the sublevel guarantees, the only assumption on the prior Py
is its independence of Siain. Further, by Lemma [14] the functional form of the posterior is
fully specified, namely it is of the form:

Qy(s) oc exp(py(+,8)) - P, v €T, (4)

where the potential is given by ¢~ (h,s) = (n(v),7(h,s)). Hence, for mathematical conve-
nience, we will construct Py by approximating the distribution P’ given by

B o exp (~Roprior —] ©0) -

where p is a measure on #, which allows to sample from P’ (possibly unnormalized). In our
experiments it holds # = R? and we choose p = A%, where A% is the d-dimensional Lebesgue
measure. For sampling, we use the stochastic gradient Langevin dynamics algorithm, where
we use the output of the backpropagation algorithm as proxy for the (sub)gradient. Finally,
since anyway we have to resort to a sampling algorithm to get points hy,..., hn,... € %,

nsam € N, we define the prior distribution directly as a discrete distribution, that is
Pr{h} := % Y= w6y, {h}. Thus, Py is the suitably normalized discrete measure on %

corresponding to Ay, ..., Ay, , where the normalization constant is given by Z = Y ™ w;
with w; = exp (—ﬁg7prior(hi) = Lpy.pu] (ﬁ(hz))) When hy, ..., by, € # are given, the cor-

responding probabilities can equivalently be expressed with the so-called softmax function
exp(z;)

(1,0, X)) = ST exp(@) and the potential Yprior(h) = —ﬁg,prior(h) — Upp,pul (p(h)):

exp (Pprior (hj)

Py{h;} =
it]} E?ialm exp (@prior (P

) = 0 (@prior(h1), ~--7‘Pprior(hnsam))j :

Here, the potentials ¢prior have to be computed only once for every h;, i = 1, ..., Ngam. This
is summarized in Algorithm

Remark 34 As one would approrimate the intractable integrals with Monte-Carlo esti-

mates anyway, choosing a discrete measure is less restrictive than it seems, and it has the
additional advantage of allowing for exact instead of approximate inference.

28

SUCKER, FADILI AND OCHS

Algorithm 6 Procedure to construct the posterior

Require: Points {hq, ..., hp_,.. }, values {@prior(R1), ..., prior(Pne) }» data set s = Strain.
1) Evaluate T'(hi, s), i = 1, ..., Nsam.
2) Setup {@~(h1,5), ., Py (Pngm: 8)} as functions in +.
3) Solve v* € argmin,cp F(7,). > F'(v*,s) is the predicted PAC-bound.
4) ComPUte @’y*(s’ {hj}) =0 (90’7* (hl7 8)’ ey Pry* (hnsam’ S))j’ J=1, .., nsam.
5) Optional: Choose h* = argmax;_; . Q. «(s,{h;}) as final point-estimate.

6.5 Computing the Posterior

Given a discrete prior Py, every posterior Q € M;(Pgy) is also discrete with the same
support {h1, ..., hy,.. }. Then, by the closed-form solution (), for every v € I' the optimal
posterior Q,(s) is given by:

i =), Tl)+ prnls) 0
@A) = S et (1), 7 o) + pring) © 15 8 s)

with the potential ¢, (h,s) = (n(v),7(h, s)) + @prior(h). Thus, to get the distribution Q,(s)
as a function of 7, one has to compute 7(h;, s) only once for every i = 1, ..., Ngam, such that
it can be evaluated with the softmax function. Hence, the only missing ingredient is the
optimal v* € I', which is found as described in Section After evaluating the potentials
©~(+,s), which has to be done anyway, evaluating &(-,s) in « is cheap. The process is
summarized in Algorithm [6]

7 Experiments

We consider the smooth and strongly convex problem of minimizing quadratic functions with
varying strong convexity and smoothness constants, a high-dimensional image processing
problem, the non-smooth Lasso problem, and the mon-smooth and non-convex problem
of training a neural network. More details on the implementation, especially a detailed
description of the architectures of the algorithms and how we construct the parameters for
each problem, is given in Appendix [Fl Alternatively, the code can be found in the GitHub-
repository. In the evaluation, we will always show the loss over the iterations in the upper
left plot, the performance in terms of computation time in the upper right plot, the loss
histogram with predicted PAC-bound in the lower left plot, and the final estimate for the
sublevel probability, that is, whether the probabilistically constrained optimization/sampling
procedure did work correctly, in the lower right plot. Finally, note that we always show the
performance of a single sample h* (mode of the posterior), and not the mean performance.

7.1 Quadratics

As first problem we consider strongly convex quadratic functions with varying strong con-
vexity, varying smoothness and varying right-hand side, that is, each optimization problem
is of the form:

1
min ~||Az —b||>, AE€R™" beR".
zeR” 2

29

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Loss over Iterations

Cumulative Time

__________ —————— —#— 1.00E-02 e
102 . 1 == 1.00E-04 K5l
200 e
- 96+ 1.00E-06 X e
o 1077 A :
)
< 1078
— = HBF
10-13 4 Learned
" MNtrain :
1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 50 100 150 200 250
Nit Mproblem
Loss Histogram Sublevel Prob.
200 - .
== PAC-Bound 1 " DLy Pu
[Learned 1 == 5 =100.0 %
150 1 =3 HBF : F(pu) — F(p;) = 1.00
1
100 - I H
1 H
1 | H
50] : Jl
1 H
oL+ —ocerflliilbtn. ¢ W sSSS——————
107 107 1077 107* 107! 10? 10° 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
£(z(nmax)) P
Figure 7: Upper left: Dashed lines represent the mean losses, dotted lines represent the

median losses, and the shaded regions represent the 10th to 90th percentile. The
learned algorithm A is shown in yellow, while heavy-ball with friction (HBF)
is shown in blue. Upper right: The different lines indicate the cumulative
computation time the algorithms need to solve all the test problems up to a
certain accuracy (in function values) measured by £(z(), p) < e. However, note
that both algorithms are run for maximally n,.x = le4 iterations. Lower left:
Loss histogram after nt,;, = 350 iterations with predicted PAC-bound. Lower
right: The teal dashed line shows the point estimate for the sublevel probability,
while the teal solid line shows the Beta-posterior. The black dotted lines indicate
the constraints p;, p, and show the feasible region as dark teal line.

Thus, the parameters are given by p = (A,b) € RPN = 9P, while the optimization variable
is x € R™, where we use n = 200. By construction, each of these functions is L-smooth
and m-strongly convex, with L € [L_, L;] and m € [m_, my|. Hence, assuming that it is
not feasible to compute the smoothness and strong-convexity constants for each problem
separately, the given class of functions is Li-smooth and m_-strongly convex. Therefore,
we use heavy-ball with friction (HBF) due to Polyak m as baseline. Its update is given
by *+1) = 20 — oV f(z*) 4 B a:(k xk= 1 , where the optlmal worst-case convergence

rate is attained for o = (m> and 8 = (\ﬁiﬂ/\/u::) 2018). Further

details can be found in Appendix Figure [7] shows the results of this experiment: The

Nesterov),

30

SUCKER, FADILI AND OCHS

upper left plot shows that the learned algorithm outperforms HBF by orders of magnitude
and, despite being trained for ni.;,, = 350 iterations, one can use it until convergence.
Here, the mean indicates that there are single instances for which instabilities occur, and,
by comparing it to the median, one observes that the mean is far from being representative
of the “typical” performance. Further, the algorithm performs well on very different orders
of magnitude, ranging from about 1eb to le—15. The upper right plot confirms that also in
terms of computation time the learned algorithm is way faster than HBF, and the lower left
plot shows that while the predicted PAC-bound is not tight, it still provides the guarantee
to outperform HBF. Lastly, the lower right plot shows that the algorithm did satisfy the
specified constraints p; and p,, in all test cases.

7.2 Image Processing

We consider (gray-scale) image denoising/deblurring with a regularizer given as smooth
approximation to the Li-norm of the image derivative, that is, problems of the form:

1 2 . 2 2 2 nxn n
min o] Az b+ ‘Zl \/(Dhﬂf)m +(Dya)2, +e2 AER, A, Dy, D, eR™", b R".
1,)=

The matrix A describes the “blurring” of the image, while Dy, and D,, are the discrete image
derivatives in h- and w-direction, respectively, which are used to penalize local changes in the
image. We use images of height N;, = 250 and width N,, = int(0.75- Nj,) = 187. Thus, the
dimension n of the optimization space is given by n = 46750. Further, as parameters p we
use the observed image and the regularization parameter, that is, p = (b, \) € R"*! =: P,
Since the problem is smooth and convex, yet not strongly convex, the baseline algorithm
is given by the accelerated gradient descent (NAG) algorithm due to |[Nesterov| (1983). Its
update is given by first computing y*+D = 2(*) 4 %(x(k) — x(kfl)) followed by setting

gkt = gk — qV f(y*+D). We use the optimal choices ty11 = & (1 +4/14+ 4’5%) and

o= % Here, the smoothness constant L is given by the largest eigenvalue of AT A+ %DTD,

where D € R?™ " ig given by “stacking” Dj, and D,,, that is, D = (Dh Dw)T. Further
details can be found in Appendix The results of this experiment are summarized in
Figure B The upper left plot shows that the learned algorithm is much faster than NAG
in terms of the loss over the iterations, reaching a loss close to the ground-truth after only
5 iterations. The upper right plot confirms this finding also in terms of computation time.
Yet, one can observe a strong increase in computation time for the dotted line (loss per
pixel of about m), indicating that the learned algorithm often is not able to reach this
accuracy. In the lower left plot, one can observe that the predicted PAC-bound is not
perfectly tight, yet provides the guarantee to outperform NAG. Finally, the lower right plot
shows that, while the algorithm did not reach the sublevel set in all of the test cases, the
probabilistically constraint optimization/sampling procedure did work correctly.

31

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Loss over Iterations Cumulative Time
104 4 T
1 : 500 " == 1.00E+01
] CREERRasd == 5.00E
] oE Ry 200 4 00E+00
— = NAG Saao - 96+ 1.00E+00
—~ R
o~ Learned - NN — 300
O : N =
1000 -
g/ . ne e(zl(\IAG)) . NNN - 200 A X
10° 3 eoe i T g 30 300
: E] W
T e .
] : 0
1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 0 50 100 150 200 250
Nit Mproblem
Loss Histogram Sublevel Prob.
i -
== PAC-Bound Pl Pu
30 4 1 [Learned 1 -5 =992 %
”— [NAG : F(pu) — F(p) = 1.00
20 4 =l nl M
ﬂﬂ|||||i HE dnl]HdWmﬂuﬂ H
0 L T y T LI B R B BN BN LA N L B |
103 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
£(x(nmax)) P

Figure 8: Upper left: Dashed lines represent mean losses, dotted lines show median losses,
and the shaded regions represent the 10th to 90th percentile. The learned algo-
rithm A is shown in yellow, while Nesterovs accelerated gradient descent (NAG) is
shown in orange. Upper right: The different lines show the cumulative compu-
tation time the algorithms need to solve the test problems up to a certain accuracy
(in function values) measured by ¢(z(?), p) — E(:Uggoo), p) < €. However, note that
both algorithms are run for maximally ny,.x = 1000 iterations. Lower left: Loss
histogram after ngain = 50 iterations with predicted PAC-bound. Lower right:
The teal dashed line shows the point estimate for the sublevel probability, while
the teal solid line shows the Beta-posterior. The black dotted lines indicate the

constraints pg, p, and show the feasible region as dark teal line.

7.3 Lasso-Problem

Here we consider the Lasso problem (Tibshirani, [1996]), that is, a non-smooth problem of
the form:

min S| Az — bJ2+ Alzi A€ R™™, peR™,
zERM 2

with m < mn. Thus, we are solving an underdetermined system of linear equations with
an additional ¢;-regularization term, which promotes sparsity in the solution (see
. Hence, the optimization variable is given by x € R™. As baseline we use the
fast iterative shrinkage-thresholding algorithm (FISTA) by Beck and Teboulle (2009)), which
performs an extrapolation step followed by a proximal gradient step, that is, abbreviating

32

SUCKER, FADILI AND OCHS

h(z) = 3||Az — b||? and g(z) := Al|z[}1, the update is given by first computing yk) =

) 4 pk) (x(k) — x(k_l)) followed by setting z(*+1) = ProX,, (y(k) — th(y(k))). Here, the

proximal mapping is defined as & = prox,,(Z) = argmingcgn Allz[[1 + > ||z — z[|3, and can
be computed efficiently in closed-form yielding the so-called soft-thresholding operator:

7o Zi i .

j}i: {xz Oé)\lfl|7 |xl‘ >Oé)\, 2217“‘777/'

. 9
0, otherwise,

We choose a = 1/L, where L is the largest eigenvalue of AT A, that is, the smoothness
parameter of h, while 3%) is set to %) := (t — 1)/tpey with tpey = (14 /1 + 4t2) /2.
Further details about the experiment can be found in Appendix [F.3] The results of this ex-
periment are summarized in Figure[9} The upper left plot shows that the learned algorithm
outperforms FISTA by several orders of magnitude, achieving a loss that is similar to the
one of x(Fi%QIE)A after only 100 iterations, and one can observe that the learned algorithm can
be used for more iterations than it was trained for. The upper right plot shows that, up to
a certain accuracy, it is also way faster in terms of computation time. Yet, it seems that
A does not reach arbitrary levels of accuracy. The lower left plot shows that the predicted
PAC-bound is not perfectly tight, yet guarantees that A will outperform FISTA for the
given number of iterations. And the lower right plot indicates that the algorithm did reach
the sublevel set in all of the test cases.

7.4 Training Neural Networks

This experiment considers the problem of training a neural network on a regression problem,
that is, A is trained to predict the parameters 8 € R™ of a neural network Ng, which then
is used to predict a function ¢ : R — R. Hence, the optimization variable is given by
B € R™. As baseline we use Adam (Kingma and Baj, 2015) (as it is implemented in
PyTorch), which is a widely used optimization algorithm for training neural networks. For
tuning, we perform a grid search over 100 step-size parameters, such that its performance is
best for the given ng,.in iterations. Note that originally Adam was introduced for stochastic
optimization, while we use it in the “full-batch setting” here. Further details can be found
in Appendix [F.4] Figure[I0]shows the results of this experiment: The upper left plot shows
that the learned algorithm clearly outperforms Adam, reaching the ground-truth loss after
about 25 iterations, while Adam is not able to reach it within 200 iterations. Further,
while the algorithm was trained for 100 iterations, it can be applied for more. The upper
right plot confirms that, also in terms of computation time, A is way faster in training the
neural network than Adam. The lower left plot shows that the predicted PAC-bound is not
perfectly tight, yet yields a reasonable bound on the average performance, and guarantees
to perform roughly as good as Adam (on average). The lower right plot indicates that the
algorithm did reach the sublevel set in all test cases.

8 Discussion and Limitations

The motivation for this paper was to use more structure in a given problem than is analyt-
ically tractable. For this, we considered a distribution over parametric loss functions and

33

£(z()

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Loss over Iterations

107 4

Cumulative Time

P 1000 - == 1.00E+401
] s =x=5.00E4+00
10° = 800 1 ., 4e -
E == FISTA 1.00E4-00
: Learned - 600
5] x _ (5000) —
107 3 : == (zpsTa = 400 4
1 : ° Ngrain M,nw
10 4 " 200 - MM
————————————— o ot o o et e o ot o] 0 MM
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 0 50 100 150 200 250
it Mproblem
Loss Histogram Sublevel Prob.
250] <
| " P Pu
200 1 —-= p=100.0%
: F(pu) — F(pi) = 1.00
150 I
|
100 . .
= = PAC-Bound .
50 - -” [Learned .
rnm'L [FISTA
0 oo i LR | oot LIS L ELE ELENN L R BN B RN B |
104 10° 108 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
£(x(nmax)) P

Figure 9: Upper left: Dashed lines represent the mean losses, dotted lines represent the

median losses, and the shaded region represents the 10th to 90th percentile. Here,
the fast iterative shrinkage-thresholding algorithm (FISTA) is shown in pink and
the learned algorithm in yellow. The gray horizontal lines represent the loss
achieved by FISTA after 5000 iterations, which serves as approximation for the
solution. Upper right: The different lines show the cumulative computation
time the algorithms need to solve all the test problems up to a certain accuracy
(in function-values) measured by ¢(z(), p) — K(mgigoo), p) < €. However, note that
both algorithms are run for maximally npy.x = 5000 iterations. Lower left: Loss
histogram (after nipain = 350 iterations) with the predicted PAC-bound. Lower
right: The teal dashed line shows the point estimate for the sublevel probability,
while the teal solid line shows the Beta-posterior. The black dotted lines indicate
the constraints p;, p, and show the feasible region as dark teal line.

formulated the (ultimate) goal in , that is, to find a solution to each realization from this
distribution. Under reasonable assumptions, this problem is too general to be solved. This
led to the formulation of the performance of an algorithm in terms of its risk. However,
since this is intractable, we derived PAC-Bayesian generalization bounds relating the risk to
the empirically observable performance on a data set. This resulted in the formulation of a
training objective, which relies heavily on the existence of a prior distribution satisfying our
assumptions and yielding a good performance. As such a distribution is typically not known,
we derived a procedure to construct it. This involved several key design choices, such as

34

£(z()

SUCKER, FADILI AND OCHS

Loss over Iterations

Cumulative Time

10* 4 : —— Adam —#— 1.00E+00 el
] \ } Learned 60 1" == 1.00E-01 x,x-:,w"
10° 458 i == ¢(g(x), Yobs) so+ 1.00B-02 X
10 -E \\'.y.\;\
3 tN
101 _; V\\ '.\'h‘"'i\
100 g S F—— ——
& T T T : T T T T
25 50 75 100 125 150 175 200 0 50 100 150 200 250
it Mproblem
Loss Histogram Sublevel Prob.
7
= = PAC-Bound Pl Pu
407 L © | [Learned - 5 =100.0 %
30 4 - | I:.I Adam F(py) — F(pi1) = 1.00
1
20 4 J-I 1 ol i :
1

10 A

| rITIﬂI'L |
ol

0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1.0
£(x(nmax)) P

Figure 10: Upper left: Dashed lines represent the mean losses, dotted lines represent the

median losses, and the shaded regions indicate the 10th to 90th percentile. The
vertical dotted line shows n;ain, and the horizontal gray dashed line represents
the average loss of the ground-truth function g (equal to one, as we added
standard Gaussian noise). Here, Adam is shown in purple and the learned
algorithm in yellow. Upper right: The different lines show the cumulative
computation time of the algorithms to solve all the test problems up to a certain
accuracy (in function values) measured by £(8(%),p) — ¢(X;,Y;) < . However,
note that both algorithms are run for maximally n,.x = 5000 iterations. Lower
left: Loss histogram (after nipai, iterations) and PAC-bound. Lower right:
The teal dashed line shows the point estimate for the sublevel probability, while
the teal solid line shows the Beta-posterior. Here, the black dotted lines indicate
the constraints p;, p, and show the feasible region as dark teal line.

the loss-function, specific randomization steps, and, especially, the probabilistic constraints.
Finally, we validated the resulting learning procedure on four practically relevant problems
and showed that it yields a superior performance. While these experimental results are
promising, we nevertheless see five main limitations of our work. First, the only guarantee
that is provided by the PAC-Bayesian bound is an upper bound on the function value after a
specified number of iterations. In particular, it does not guarantee that the function values,
the iterates, or the gradient norm actually do converge. Second, our learning procedure
is mot guaranteed to work and still involves many design choices. Third, one still has to

35

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

find a good architecture for each given problem, which can be time-consuming. Fourth, the
presented algorithmic procedure has a high computational cost (offline), which however, at
least in part, is due to the nature of learning-to-optimize. Finally, the procedure most nat-
urally models deterministic algorithms and algorithms for which the randomization itself is
learned. However, algorithms with given randomization and learned hyperparameters (like
learning the step-size of stochastic gradient descent) are harder to represent. All these are
promising directions of research that we leave to a future work.

Acknowledgments and Disclosure of Funding

M. Sucker and P. Ochs acknowledge funding by the German Research Foundation under
Germany’s Excellence Strategy — EXC number 2064/1 — 390727645. Furthermore, J. Fadili
and P. Ochs are supported by the ANR-DFG joint project TRINOM-DS under the numbers
ANR-20-CE92-0037-01 and OC150/5-1.

36

SUCKER, FADILI AND OCHS

Appendix A. Supplementary Definitions

Definition 35 (Probability Kernel) Let (U,), (V,V) be measurable spaces. A func-
tion p: U XY — [0,00], (u,A) — p(u,A) is called a kernel from U to V, written as
w:U— Y, if for every set A € B, the map u — u(u,A) is measurable, and for every point
u € U, the map A — p(u,A) is a measure. Furthermore, u is called a probability kernel
from U to TV, if p(u, V) =1 for every u € U.

Definition 36 (Exponential Family) LetT' be a non-empty index set. A family of prob-
ability measures (Qy)yer on a measurable space U is called an exponential family (in
n and 7), if there is a dominating probability measure p, that is, (Qy)yer C Mi(p),
functions n : T — R¥ a : T — (0,+00), and measurable functions 7 : U — RE,
b: U — (0,+00), such that for every v € I' we have Q, = ba(vy)exp ((n(7y), 7)) - p, that is,

Q,[B] = [gb(uw)a(vy) exp({n(y),7(u))) p(du), B € B(U).

Definition 37 (Support of a Measure) Let U be a topological space, and let p be a
measure on U. The support of u is defined as:

supp (1) :={u €U : p[B] >0 for every neighborhood B of u} .

Appendix B. Supplementary Lemmas
Lemma 38 Under Assumption Q, is a data-dependent distribution for every v € I'.

Proof Denote the density of Q, w.r.t. Py by f,(h,s) := CIZ(th) exp ((n(7),7(h,s))). The

map c(v,-) : PV — [0,00) is B(PY) measurable, as 7 is measurable w.r.t. the product-
o-algebra and Py is a finite measure (Kallenberg, 2021, Lemma 1.28, p.25). Hence, f, is
measurable w.r.t. B(%#) ® B(PY), since c(v, s) € (0,00). Thus, it holds that Q, = f, - Py
is a kernel from from P to # (Kallenberg, 2021, Lem. 3.2, p.56). Finally, Q,: PN K
is actually a probability kernel, since ¢(v, s) is the corresponding normalization constant. H

The following result states that non-negative random variables with finite second moment
satisfy a one-sided sub-Gaussian inequality (Boucheron et al., 2013| p.47).

Lemma 39 Let U be a non-negative random variable with finite second moment. Then,
for every v > 0 it holds E [exp (—y(U — E[U]))] < exp (?E[UQ])

Lemma 40 The sublevel set L, is measurable.

Proof As o is assumed to be measurable, it suffices to show that the specific composi-
tion of ¢ and A is measurable, that is, fo A : # x P — [0, 40|, (h,p) — L(A(h,p),p)
is measurable w.r.t. B(#H) @ B(P) and B([0,+oc]). Since £ > 0 is measurable, there
exists a sequence of simpleﬂ functions ¢, with ¢ = lim, . #,. Thus, since limits of
measurable functions are measurable, it suffices to consider the case of a simple func-
tion £ : R™ x & — R. Then, however, it suffices to consider characteristic functions of

4. A function is called simple, if it is of the form ¢,, = Zfil aZILA% with disjoint sets A%.

37

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

the form 14 for a measurable set A € B(R") @ B(P). Since the product-o-algebra is
generated by cylinder sets, it actually suffices to consider the case { = lgyp, that is,
(Lo A)(h,p) = 1gxp(A(h,p),p) = 1g(A(h,p))Lp(p). The second term is obviously measur-
able, and the first term is measurable as a composition of two measurable functions. |

Lemma 41 Suppose Assumption@ holds, and let Pp[L, 1] > 0 for every h € #. Then we
have Pg-a.s.:

(i) p(h) = Pp[Llonl,
(ii) E [K(H’ P) A, (H7P) ‘ H = h] = EP[E(hv ')]lLU,h] = p(h)) EPV(}%) ’ La,h]'

Proof By the independence of P and H, we have E{¢((H,P)1, (H,P)| H=h} =
Jo £(h,p)1L_, (p) Pp(dp) = Eplé(h,)1, ,] Py-a.s., which shows the first equality of (ii).
Since Pp|L, 4] > 0, the elementary conditional expectation is defined as Ep[l(h,-) | Lop] =
Eplt(h,)1,]
PplLo,n]
p(h), which shows (i) and the second equality of (ii). [|

. Again by independence we have Py-a.s. the equality Pp[L, 1] = Ppjg—p[Lon] =

Appendix C. Proof of Lemma

Proof Take any v € T and s € V. First, let Q € M;(Pg) be arbitrary. By the Radon-
Nikodym theorem, there exists a measurable function f > 0, s.t. Q = f - Pg. Since the
convention 0 - co = 0 applies throughout measure theory, one has:

Dkr(Q || Pr) = Qlog(f)] = Pu [flog(f)] = Pu [Li=01f log(Lipsor f)] -

Hence, w.l.o.g. we can assume that f > 0 Pg-a.s. Then, by Jensen’s inequality, one gets:

Q). 7o)+ og)] — Qoe(1)] = @ [t §exp (n(r),7(,50))|
<tog (@[Fexo (. r.o))]) =108 (72 | F e (a7,)

— log (Py [bexp ((n(7), 7, $)))]) = K(7,5)

Hence, we have k(v,s) > Q[(n(v),7(-,s)) + log(b)] — Dx(Q || Py) for any probability
measure Q < Py. Now consider the member of the exponential family:

Dit(Qy(5) || Prr) = /% log (b(h)a(, 3) exp({n(1), 7(h)))) Q(s, dh)
- /% log(b(h)) + (1(7), 7(h, 5)) Qs (s, d) — log (c(. 5))
- /% log(b(h)) + (1(+), (1, 5)) Qy (s, dh) — (7, 5).

Rearranging yields (v, s) = [5, log(b(h)) + (n(v),7(h,s)) Q,(s,dh) — Dk(Q4(s) || Pr). M

38

SUCKER, FADILI AND OCHS

Appendix D. Proof of Lemma

Proof W.lo.g. assume that O; # () and choose v; € O;, i = 1,...,K. Then, for every
s € PN it holds that:

Supr(y,s) < max_ sup £(7,5) = max_ kv,) + sup (5(7,5) — K(7i,5))
~er i=1,...,.K ~v€0; i=1,...,.XK ~v€0;

< max k(74 8) + Co.

i=1,..,
Thus, in total one gets for ¢t € R:

%
P supk(y,S) >ty < IF’{ max k(i S) + Co > t} < ZP{R(’YZ',S) + Co >t}
~er i=1,...,X —

X
< Zexp((?o —t) =Kexp(Cop — t).
i=1

Taking ¢ = log (%) + Cp gives P {supwer k(y,S) > log (%) + Go} <e. [|

Appendix E. Proof of Corollary

Proof The two formulas are simply rewritings of each other: By assumption, bilinear-
ity and definition of the euclidean scalar product, and linearity of the integral, the term

Q[(n(7),7(-,5))] can be split up as:

QUn(Y), (-, 8))] = QUM (VR — R(:, 8))] + QU™ (7), 7T, 5))]
1D QIR] = n™MW(MQIR(-,)] + QU™ (7), 77, 8))] -

Simply rearranging the terms then yields the result, as n) > 0. |

Appendix F. Implementation Details

We use the following training procedure in all experiments: N = Nprior + Nirain + Nyal +
Niest denotes the total number of data points, and we use Nprior = ... = Niest = 250.
(Sub)Gradients are defined by the output of backpropagation as it is implemented in Py-
Torch (Paszke et al., [2019), and we use g(p) := al(z,p)? a, 8 > 0, to define the sublevel
set L,. In Algorithm [1, we use p; = 0.95, p, = 1.0, ¢ = 0.01, g, = 0.99, and ¢ = 0.075.
Thus, the algorithm should reach L, in at least 95% of the cases, and for the estimation of
the sublevel probability it should concentrate 98% of the mass within a distance of 0.075.
In Algorithm [2, we use stochastic gradient Langevin dynamics to draw 10? samples, where
we decay the step-size starting from 1076, In Algorithm [3| we use Adam with an initial
step-size of 1073, which gets reduced by a factor of 0.5 every 200 iterations, until an ac-
curacy of € = 1072 is reached, or for at most nin;; = 103 iterations. In Algorithm {4, we

39

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

use Adam with an initial step-size of 104, which gets reduced by a factor of 0.5 every
2 - 10* iterations, for a total of nmax = 2 - 10° iterations. We use a trajectory length of
t = 1, that is, only single points, and update the constraint only every 2 - 10 iterations
(with a reset to previous iterates, if we have left the set A) In Algorithm @ we use a finite
I' with || = 75 - 103, and an accuracy (of the PAC-bound) of ¢ = 0.05. As we contrast
the learned algorithm to first-order methods, in each iteration A has access to iterates,
(sub)gradients, and function values, and the update is solely based on these. Here, we
perform preprocessing: The (sub)gradient is split into its norm ||V£(z*), p)| and the corre-
sponding unit vector dgk). Further, the norm is transformed to ngk) = log(1+||VL(z®), p)|))
to be less scale-sensitive. The iterates z(*), (=1 are combined into the momentum term

k) — 2(-=1) which also is split into the unit vector dgk) and the transformed norm

m#) .= 4
ngk). Similarly, we also transform the function values into Egk) = log(1 + ¢(z® p)) and

() = log(1 + £(z+=1), p)).

Remark 42 (i) We always use the output of the backpropagation algorithm instead of
exact (sub-)gradients, that is, the learned algorithms do not rely on smoothness.

(11) We use 100 samples only, as they are very costly: To evaluate the potentials Yprior
and ¢(-,s) on a single sample h € #, one has to compute all losses {(h,p;), i =
1, ..., Nprior + Nirain, that is, “solving” Nprior + Nirain 0ptimization problems.

F.1 Details for the Experiment on Quadratic Functions

This subsection describes the missing details for the experiment on quadratic functions.

F'.1.1 CONSTRUCTION OF THE PARAMETERS

To control the strong-convexity and smoothness of ¢, we specify intervals [m_, my|,[L_, L] C

(0, +00), and sample my,...,my id Uiy L1y Ly id Uz L+] Then, the matrices

Aj, j=1,..,N, are created as diagonal matrices with entries a], = \/m; + i - Y= mj
i=1,..,n, that is, we linearly interpolate from ,/mj; to \/L;. Hence, the matrix A;‘FA
has smallest and largest eigenvalue m; and L;, respectively. To change the relative position

between the ellipsoid of the quadratic and the initialization, we randomize the right-hand
side by sampling by, ...,bx i N(u,¥), where we create g and ¥ = CTC by sampling

iid .
:uiaci,k’ ~ U[—5,5]7 i,k=1,..n.

F.1.2 ALGORITHM

The algorithmic update of the learned algorithm A is visualized in Figure [L1]and consists of
two blocks: The update-block combines the gradient direction dgk) the momentum direction
d(k) and their “interaction” d(lk) ® d() into the new update-direction d*), while the other
block computes a step-size based on the corresponding logarithmically transformed norms

ngk) and nék), and the logarithmically transformed function values Egk) and égk).

40

SUCKER, FADILI AND OCHS

4k & 2la 2l 2
1 0 [[[[i
w 1) 1] 23 2} 0
i o o < | o a
o el - B P &
a 2 & 21 4 a
= - |- - - =
el 2l Sl o =isl
g shans|sdapelenady s a® (%)
| e - || = & - | s
o © | © © | © g
) 3| & 3|8 &)
g || & g &
& g | g g | ° &
(k) (k) 2 SRS SRS 5
di” © dy 3 3|8 3|8 8
L L LI 2+ (0 o (R) | g(R)
(k)]]
n
1
(k) /
n.
2 =3 =3
(k) E E "
k
4
1
(k)
2% L L

Figure 11: Update step of A for quadratic problems: The directions d() d() and d()Qdék)
are inserted as different channels into the Conv2d-block, whrch performs 1x1
“convolutions”, that is, the algorithm acts coordinate-wise on the input, and
yields an new update-direction d®). The scales nV), n?)_ and the function

values Egk), Egk) get transformed separately by the fully-connected block to yield

the step-size a®).

F.2 Details for the Image-Processing Experiment

This subsection describes the missing details for the image-processing experiment.

F.2.1 CONSTRUCTION OF THE PARAMETERS

Throughout, we use ¢ = 0.01. For computational efficiency, the matrices A, Dy, D,, are
implemented through the convolution of the image x with a corresponding kernel (with
reflective boundary conditions). For A, we use a standard (5 x 5)-Gaussian kernel, while
Dy, and D,, are given through the kernels:

0 0 0 0 0 0
kn=10 —1 0] eR¥™® and ky,=[0 —1 1] eR3>3.
0 1 0 0 0 0

Additionally, after blurring an image with A, we add centered Gaussian noise ¢;; with

standard deviation o = 2= to each pixel, that is, b;; = (Az*);; + ;; with &; i N(0,0),

i=1,.... Ny, 7=1,...;, Ny. The regularlzatlon parameters \; € R, ¢ = 1,..., N, are given by
samphng umformly, that is, \; ~ U[)\ A+]» Where we use A_ = 0.05 and)\+ = 0.5.

F.2.2 ALGORITHM

The algorithmic update of A is visualized in Figure [12| and consists of an update-block,
which combines d(k) d(k) and their “interaction” d(k) ® d(k) into the new update direction
d® . and a block to compute a step-size from the norms of the gradient and momentum
term. Note that we use 3 x 3-convolutions this time, that is, we incorporate the knowledge
about an image-processing problem into the design of the optimization algorithm.

41

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

k ~ o ~

a® & i &

B 8 g

2 = 2

“ollell & {lsll =

alk) gl anel > a® 2(F)

o © 2

o - Z

g g g
>

i) o aff ANHEE
o

L] 2D = () 4 o (R) gk

ReLU
ReLU

n(®) B J
RO
O
)) 8)

Figure 12: Update step of A for the image-processing problems: The directions d}"”, d,

and dgk) ® dék) are inserted as different channels (in the shape of the image) into
the Conv2d-block, which performs a 3 x 3-convolution. The scales n(!), n(?) get
transformed separately by the fully-connected block.

F.3 Details for the LASSO Experiment
This subsection describes the missing details for the LASSO experiment.

F.3.1 CONSTRUCTION OF THE PARAMETERS

The same matrix A € RP*™ with dimensions n = 350 and m = 70 is used for all problem
instances. Here, we sample each entry uniformly, that is, a;; u U o505 ¢ = 1,...,m,
7 =1,...,n. Thus, the parameters p are given by the right-hand side and the regularization
parameter, that is, p = (b, \) € R™*! =: . For this, the regularization parameter X is also
sampled uniformly, that is, \; i Up_pagppi=1,.., N, with A_ =5 and Ay = 10, while the
right-hand side is sampled from a multivariate normal distribution, that is, b; d N(u, %),
i=1,...,N, where we first construct u and ¥ = CTC by sampling each entry of x and C
uniformly at random in [—5, 5].

F.3.2 ALGORITHM

The solutions of the Lasso problem are typically sparse. To achieve this, the algorithm has
to identify the coordinates which are non-zero. Therefore, in each iteration, we treat the zero
and non-zero entries of z(*) (and derived quantities) separately. Here, non-zero entries are
written with a #-subscript, while zero entries are written with a 0O-subscript, for example,

ng) and a:ék).Then, first, we compute weights wy, ..., wg with a fully-connected block with

ReLU-activation functions, where we use the features ngk) = log(1 + ||Ve(z™, p)||), ngk) =
log(1+ [[«® — x®=D])), n{" = log(1 + [[p®)]), where p®) = proxs, (¢) — FVe(a®,p)),
AL = 0z W), p)—(@*D, p), Agk) := g(zW)—g(a 1), AR®) = h(z®), p)—n(z*D, p),
the scalar products sgf) and s(()k) between the (normalized) gradient and (normalized) mo-
mentum, and the regularization parameter A\. Then, we use these weights to perform a

42

)

SUCKER, FADILI AND OCHS

Y5 ()
71,0
(k) (k)
Mo £ Wi ——> wy - dy — —r— — N
(k) (k) ~ o o ~
2,0 w2 > w2dig 0 i A 0
(k) (%) g E: E: K]
ng 2 w3 > w3 dy % 3 3 3 alt),
(k) (k) 8 4 - 8 '
n30 5 5 5 W4 ——> wq - d3, el slialslal s (t+1)
k 2 2 2 (k) Shefsfelsie]s i
Ae(k) w5 ——> wg - d3,¢ 5 S S 3 ®
AgR) we ——> wg - dg”"g E (;\,; :"3: E doyt,2
> >
ARK) wr ——> wr - df) £ 3 8 8
k k — — —
s0) L L ws ——> wg - d{¥)

k
o

Figure 13: Algorithmic update for the LASSO problem: Based on the given features
(split into zero and non-zero parts), the first block computes eight weights,
which are used to perform a weighting of the different directions, which
then get used in the second block. This second block predicts two di-
rections doyt,1,dout,2, Where doys,1 only acts on the non-zero entries, and
dout2 acts on the zero entries. These are used in the update k)=

k — k
proxgg (:E(k) + (dgu)t,l,;é = Vi(z®),p) + [Ja®) — 2B 'dgu)t,zo) /L>

reweighting of the directions dgk), - dflk), which are the normalized gradient, the normalized

momentum, the normalized residual z(*¥) — p®)and the coordinate-wise product between
(normalized) gradient and (normalized) momentum. Then, these reweighted directions get
®) and d®) . which

out,1 out,2?
we use to compute the final update with the proximal mapping, given by

fed into a 1x1-convolutional block, which predicts the two directions d

— 2D 'd(()];)t,Z,O) /L> .

(o

D) = proxg, <az(k) + (al(i)t?lﬁé — V(2™ p) + ||z

F.4 Details for the Neural-Network-Training Experiment

This subsection describes the missing details for the neural-network-training experiment.

F.4.1 CONSTRUCTION OF THE PARAMETERS

We assume that the neural network should learn a function g : R — R from noisy obser-
vations y;, that is y; = g(z;) + € with € ~ N(0,1). For this, we construct polynomials g;,
i=1,...,N, of degree d = 5 as follows: For every function g;, we sample points {:L"”}JK:1
(here: K = 50) uniformly in [—2, 2], that is, x; ; ud U[-2,2],i=1,..,N,j=1,.., K. Then,

we sample the coefficients (c; 0, ..., ¢;5) of g; uniformly in [—5,5], that is, ¢;; ud U[-5, 5],
t=1,..,N,1=0,..,5. Lastly, we get the values y; ; as:

Yij = gi(xi,j) + & with €ij ud N(O, 1), 1=1,..

43

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

*)

@\v al

> w1~g®d(1k)

=F)

— wy - d(lk)
> g(k) — L(k+1)

RelLU
ReLU
ReLU
ReLU
ReLU

— > wy - d(®)

Conv2d(16,1,1,bias=F) ‘

Conv2d(16,16,1,bias=F) ‘

Conv2d(16,16,1,bias=F) ‘

Conv2d(16,16,1,bias=F) ‘

Conv2d(16,16,1,bias=F) ‘

Conv2d(6,16,1,bias

> w4-m®d;k)

-
|
|
|

@j 2(k=1)

Figure 14: Algorithmic update for training the neural network: Based on the two norms
ngk) and n;k), the scalar product s(¥) := (dgk)7 dék)>, and the current and previ-
ous (logarithmically scaled) loss £%), ¢:=1) we compute four scalars wy, ..., wy,

which are used for weighting dgk), dgk), and their corresponding pre-conditioned

versions g@dgk) and m@dék). Together with the current and previous point, they
get fed (as separate channels) into the first layer of a 1x1-convolutional block,

which computes an update direction d'¥). Then, we update z++1) .= (k) 4 gk,

For every function g; : R — R the neural network is trained on the data set p; := {X;,Y;}
with X; = (zi1,...,zi k) € RE and Y; = (Yits - YiK) € RE. Hence, the data set will serve
as the parameter p of the loss function ¢ : R? x & — R>, such that the parameter space
@ can be identified as the space of these data sets, that is, P = RE*2,

F.4.2 Loss FUNCTION AND ARCHITECTURE

Since the mean square error is the standard choice for training models on regression tasks,
the loss is given by £(8,p;) := c(N(B3,X,),Y;) := # S0 (Na(wi) — vij)*

As model we use a fully-connected two layer neural network with ReLU-activation func-
tions. To have more features in the input layer, the input z is transformed into the vector
(x,2%,...,2°). Hence, the parameters 3 € R™ are given by the weights A4; € R%*% Ay €
R and biases by € R% by € R of the two fully-connected layers. Therefore, the opti-
mization space is of dimension m = (5-50) + (1-50) 4+ 50 + 1 = 351.

F.4.3 ALGORITHM

The algorithmic update in Figure [14] consists of two blocks: A weighting block, which com-
putes four weights w1, ..., w4 based on the norms ngk), ngk), the losses £(z®), p), £(z+=1 p),

and the scalar product <d§k),dg€)). Each of these gets multiplied with dgk),dgk), or the
“pre-conditioned” versions, which we compute by pointwise multiplication with the learned
vectors g and m. Then, additionally to the z*) and z(*~1), these weighted directions get
fed into an update-block, which computes the final update direction d*).

44

SUCKER, FADILI AND OCHS

ngk Wi = wy g1 O dgk)

o]
F)‘

W2 —> wo - go O dgk) 2 (k)

|

> g(k) —> (k+1)

k
ny w3*>w3~d§)

wa > wy - d® @ al

ReLU
ReLU
ReLU

¢(k)

w5 —————> ws - dék)

Conv2d(7,15,1,bias
Conv2d (15, 2‘0, 1,bias=F) ‘
Conv2d (20,15,1,bias=F) ‘

Conv2d(15,1,1,bias

we —> wg - mq @d;k)

¢(k—1) W7 = wr-mg O d;k)

Figure 15: Algorithmic update for the MNIST experiment: Based on the two norms ngk)

and ngk), and the current and previous (logarithmically scaled) loss (k) plk=1),

we compute seven scalars w1, ..., wr, which are used for weighting dgk), dgk), their

corresponding preconditioned versions g; ® dgk), m; ® dgk)

wise product dgk) ® dgk). Then, they get fed (as separate channels) into the first
layer of a 1xl-convolutional block, which computes an update direction dk) .

Finally, we update z(*t1) := z(*¥) 4 (k)

, and their coordinate-

Appendix G. Additional Experiment on MNIST

This experiment considers the problem of training a neural network to do classification on
the MNIST data set, that is, A is trained to predict the parameters 8 € R™ of a neural
network Ng, which then is used to predict a class-label k& € {0, ...,9} based on an input
image. Hence, the optimization variable is given by S € R™. Here, the model consists
of two convolutional layers with RelLU-activation functions and Max-Pooling, followed by
three linear layers with ReLLU-activation functions. Through this, the optimization variable
6 has dimension m = 13090.

Remark 43 Note that, as the theory does not naturally model stochastic algorithms, we
consider a deterministic algorithm here and compute full gradients. This limits the amount
of images (20x20) per data set to 250.

As loss-function, we use a penalized cross-entropy loss to enforce higher classification-
accuracy, as parameters p of the loss-function we use the data sets consisting of input
images and ground-truth labels, that is, p € R220x(20x20)x1 — g an(as baseline we use
Adam. The architecture of the learnt algorithm is shown in Figure [15] and consists of two
blocks: The first block uses linear layers with ReLLU-activation functions and computes seven
weights based on the gradient-norm, the norm of the momentum-term, and the incurred
losses. Then, these weights are used to weigh the input-directions of the second block.
It consists of 1 x 1-convolutional layers with ReLU-activation functions, and computes an
update-direction based on the gradient, the momentum, their coordinate-wise product, and
four additional directions, which are computed from the gradient and the momentum-term
by coordinate-wise preconditioning. For more details we refer to the GitHub repository.
Figure [16| shows the results of this experiment: The upper left plot shows that the learned
algorithm outperforms Adam, classifying all images correctly after about 50 iterations, while

45

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Loss over Iterations Cumulative Time
- 100 y
! == Adam 60 = === 1.00E4+00 7
102 Learned - 80 = =%=1.00E-01 *
Se s Nerain > «2% = 1.00E+02
10— 4 3 \ s SNeao - 60 <+ 40
H 8 S s
a =
107" \ Fa0 £
v&_ D | 8 20 S x
AL o ol = || L™ e ket
1077 I 20 @ e ettt
0 4 g
1 1 1 1 0 1 1 1 1 1 1
100 200 300 400 0 10 20 30 40 50
Nit Mproblem
Loss Histogram Sublevel Prob.
L T .
10 4 = = PAC-Bound RO Pu .
I i [Learned —-= 5 =100.0 % .
8 | ” = Adam F(pu) — F(p;) = 0.93 :
| L] -
6 - i 1 |
dlll ! :
4 n 1 1 0
i 1 4
5 ” ‘ I'" : h Ml /1
i |]
11 N O A
1 1 1 1 1 1 1 rrTrTrrTrr T T Tt T
107 107% 1077 107® 107® 107! 10! 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
£(z(nmax)) p

Figure 16: Upper left: Dashed lines represent the mean losses, dotted lines represent

the median losses, and the shaded regions indicate the 10th to 90th percentile.
Further, dashdotted-lines represent the classification-accuracy, which is shown
on the right y-axis. Here, Adam is shown in purple and the learned algorithm
in yellow. Upper right: The different lines show the cumulative computation
time of the algorithms to solve all the test problems up to a certain accuracy
(in function values) measured by £(3%, p) — ¢(X;,Y;) < e. However, note that
both algorithms are run for maximally npa.x = 5000 iterations. Lower left:
Loss histogram (after ng,i iterations) and PAC-bound. Lower right: The
teal dashed line shows the point estimate for the sublevel probability, while the
teal solid line shows the Beta-posterior. Here, the black dotted lines indicate
the constraints p;, p, and show the feasible region as dark teal line.

Adam needs about 200 iterations to reach the same classification-accuracy. The upper right
plot confirms that, also in terms of computation time, A is faster in training the neural net-
work than Adam. However, based on the higher computational cost per iteration, the gap
is not as large as for the function values. The lower left plot shows that the predicted PAC-
bound is not tight here. This can be attributed to the fact that we had to use a smaller
amount of data, due to the high computational cost in each iteration. Finally, the lower
right plot indicates that the algorithm did reach the sublevel set in all test cases.

46

SUCKER, FADILI AND OCHS

References

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. Foundations and Trends®)
in Machine Learning, 17(2):174-303, 2024.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. Ma-
chine Learning, 107(5):887-902, 2018.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational ap-
proximations of Gibbs posteriors. Journal of Machine Learning Research, 17(236):1-41,
2016.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral Probability Metrics PAC-
Bayes Bounds. In Advances in Neural Information Processing Systems, volume 35, pages
3123-3136, 2022.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent

by gradient descent. In Advances in neural information processing systems, volume 29,
2016.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards scaling up Markov chain
Monte Carlo: an adaptive subsampling approach. In Proceedings of the 31st Interna-
tional Conference on Machine Learning, volume 32 of Proceedings of Machine Learning
Research, pages 405413, 2014.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods
for tall data. Journal of Machine Learning Research, 18(47):1-43, 2017.

Ole Barndorff-Nielsen. Information and Exponential Families in Statistical Theory. John
Wiley & Sons, 2014.

Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

Luc Bégin, Pascal Germain, Francois Laviolette, and Jean-Francis Roy. PAC-Bayesian The-
ory for Transductive Learning. In Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning
Research, pages 105-113. PMLR, 2014.

Luc Bégin, Pascal Germain, Francois Laviolette, and Jean-Francis Roy. PAC-Bayesian
bounds based on the Rényi divergence. In Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 435-444. PMLR, 2016.

James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer New York,
NY, 1985.

Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Convergence of Constant Step
Stochastic Gradient Descent for Non-Smooth Non-Convex Functions. Set-Valued and
Variational Analysis, 30(3):1117-1147, 2022.

47

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale
Machine Learning. SIAM Review, 60(2):223-311, 2018.

Stéphane Boucheron, Gébor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

Olivier Bousquet and André Elisseeff. Algorithmic Stability and Generalization Perfor-
mance. In Advances in Neural Information Processing Systems, volume 13, 2000.

Olivier Bousquet and André Elisseeff. Stability and Generalization. Journal of Machine
Learning Research, 2:499-526, 2002.

Gregery T. Buzzard, Stanley H. Chan, Suhas Sreehari, and Charles A. Bouman. Plug-and-
play Unplugged: Optimization-Free Reconstruction Using Consensus Equilibrium. STAM
Journal on Imaging Sciences, 11(3):2001-2020, 2018.

Olivier Catoni. A PAC-Bayesian approach to adaptive classification. preprint, 2003.

Olivier Catoni. Statistical Learning Theory and Stochastic Optimization. Springer Berlin,
Heidelberg, 2004.

Olivier Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statisti-
cal Learning. Lecture Notes-Monograph Series, 56, 2007.

Stanley H. Chan, Xiran Wang, and Omar A. Elgendy. Plug-and-Play ADMM for Image
Restoration: Fixed-Point Convergence and Applications. IEEE Transactions on Compu-
tational Imaging, 3(1):84-98, 2017.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training Stronger Baselines for Learning to Optimize. In Advances in
Neural Information Processing Systems, volume 33, pages 7332-7343, 2020a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to Optimize: A Primer and A Benchmark. Journal of
Machine Learning Research, 23(189):1-59, 2022.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical Linear Conver-
gence of Unfolded ISTA and Its Practical Weights and Thresholds. In Advances in Neural
Information Processing Systems, volume 31, 2018.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding Deep Archi-
tecture with Reasoning Layer. In Advances in Neural Information Processing Systems,
volume 33, pages 1240-1252, 2020b.

Yutian Chen, Matthew W Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando de Freitas. Learning to Learn without Gradient
Descent by Gradient Descent. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 748—

756. PMLR, 2017.

48

SUCKER, FADILI AND OCHS

Regev Cohen, Michael Elad, and Peyman Milanfar. Regularization by Denoising via Fixed-
Point Projection (RED-PRO). SIAM Journal on Imaging Sciences, 14(3):1374-1406,
2021. doi: 10.1137/20M1337168.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic Model-Based Minimization of Weakly
Convex Functions. SIAM Journal on Optimization, 29(1):207-239, 2019.

Damek Davis and Dmitriy Drusvyatskiy. Graphical Convergence of Subgradients in Non-
convex Optimization and Learning. Mathematics of Operations Research, 47(1):209-231,
2022.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A Simple Convergence
Proof of Adam and Adagrad. Transactions on Machine Learning Research, 2022.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time, i. Communications on Pure and Applied Mathematics, 28(1):
1-47.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing Nonvacuous Generalization
Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Train-
ing Data. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial
Intelligence. AUAT Press, 2017.

Gintare Karolina Dziugaite and Daniel M. Roy. Data-dependent PAC-Bayes priors via
differential privacy. In Advances in Neural Information Processing Systems, volume 31,
2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy.
On the Role of Data in PAC-Bayes Bounds. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 604-612. PMLR, 2021.

Bradley Efron. Defining the Curvature of a Statistical Problem (with Applications to Second
Order Efficiency). The Annals of Statistics, 3(6):1189-1242, 1975.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, and Mario Marchand. PAC-
Bayesian Learning of Linear Classifiers. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 353-360, 2009.

Karol Gregor and Yann LeCun. Learning Fast Approximations of Sparse Coding. In Pro-
ceedings of the 27th International Conference on Machine Learning, pages 399-406, 2010.

Benjamin Guedj. A Primer on PAC-Bayesian Learning. In Proceedings of the Second
Congress of the French Mathematical Society, volume 33, 2019.

Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes Learning: Exploiting
Optimisation Guarantees to Explain Generalisation. arXiv preprint arXiv:2304.07048,
2023.

49

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer New York, NY, 2 edition, 2009.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 212:106622, 2021.

Fredrik Hellstrom, Giuseppe Durisi, Benjamin Guedj, and Maxim Raginsky. Generaliza-
tion Bounds: Perspectives from Information Theory and PAC-Bayes. Foundations and
Trends®) in Machine Learning, 18(1):1-223, 2025.

Jean Honorio and Tommi Jaakkola. Tight Bounds for the Expected Risk of Linear Classifiers
and PAC-Bayes Finite-Sample Guarantees. In Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of
Machine Learning Research, pages 384-392. PMLR, 2014.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-Learning
in Neural Networks: A Survey. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):5149-5169, 2022.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning.
Springer Cham, 2019.

O. Kallenberg. Foundations of Modern Probability. Springer Cham, 2021.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High Probability Bounds for a Class of
Nonconvex Algorithms with AdaGrad Stepsize. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dSwOQtRMJIkO.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, 2015.

FErich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total Deep Variation:
A Stable Regularization Method for Inverse Problems. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(12):9163-9180, 2022.

Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC Land: Cutting
the Metropolis-Hastings Budget. In Proceedings of the 31st International Conference

on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
181-189. PMLR, 2014.

John Langford and Rich Caruana. (Not) Bounding the True Error. In Advances in Neural
Information Processing Systems, volume 14, 2001.

John Langford and John Shawe-Taylor. PAC-Bayes & Margins. In Advances in Neural
Information Processing Systems, volume 15, 2002.

Guy Lever, Frangois Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4-28, 2013.

50

https://openreview.net/forum?id=dSw0QtRMJkO

SUCKER, FADILI AND OCHS

Ben London. A PAC-Bayesian Analysis of Randomized Learning with Application to
Stochastic Gradient Descent. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning Gradient Descent: Better Generalization
and Longer Horizons. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 2247-2255.
PMLR, 2017.

Dougal Maclaurin and Ryan P. Adams. Firefly Monte Carlo: Exact MCMC with subsets
of data. In 30th Conference on Uncertainty in Artificial Intelligence, UAI 2014, pages
543-552. AUAI Press, 2014.

David A. McAllester. Simplified PAC-Bayesian Margin Bounds. In Learning Theory and
Kernel Machines, pages 203-215. Springer Berlin, Heidelberg, 2003a.

David A. McAllester. PAC-Bayesian Stochastic Model Selection. Machine Learning, 51(1):
5-21, 2003b.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4556-4565. PMLR, 2019.

Michael Moller, Thomas Moéllenhoff, and Daniel Cremers. Controlling Neural Networks via
Energy Dissipation. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3255-3264, 2019. doi: 10.1109/ICCV.2019.00335.

Y. Nesterov. Lectures on Conver Optimization. Springer Cham, 2018.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k?). Proceedings of the USSR Academy of Sciences, 269:543-547, 1983.

Yuki Ohnishi and Jean Honorio. Novel Change of Measure Inequalities with Applications
to PAC-Bayesian Bounds and Monte Carlo Estimation. In Proceedings of The 24th Inter-
national Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings
of Machine Learning Research, pages 1711-1719. PMLR, 2021.

Emilio Parrado-Herndndez, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun.
PAC-Bayes Bounds with Data Dependent Priors. Journal of Machine Learning Research,
13(112):3507-3531, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.

51

PAC-BAYESIAN LEARNING-TO-OPTIMIZE

Maria Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvari. Tighter
Risk Certificates for Neural Networks. Journal of Machine Learning Research, 22(227):
1-40, 2021.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding Up MCMC
by Efficient Data Subsampling. Journal of the American Statistical Association, 114(526):
831-843, 2019.

Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvari, and John Shawe-Taylor. PAC-Bayes
Analysis Beyond the Usual Bounds. In Advances in Neural Information Processing Sys-
tems, volume 33, pages 16833-16845, 2020.

C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer New York, NY,
2004.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers. In Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 5546-5557. PMLR, 2019.

Matthias Seeger. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classi-
fication. Journal of Machine Learning Research, 3:233-269, 2002.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
Convex Optimization. In COLT, volume 2, page 5, 2009.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
Stability and Uniform Convergence. Journal of Machine Learning Research, 11(90):2635—
2670, 2010.

Suhas Sreehari, S. V. Venkatakrishnan, Brendt Wohlberg, Gregery T. Buzzard, Lawrence F.
Drummy, Jeffrey P. Simmons, and Charles A. Bouman. Plug-and-Play Priors for Bright

Field Electron Tomography and Sparse Interpolation. IEEE Transactions on Computa-
tional Imaging, 2(4):408-423, 2016.

Michael Sucker and Peter Ochs. PAC-Bayesian Learning of Optimization Algorithms. In
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 8145-8164. PMLR, 2023.

Yu Sun, Brendt Wohlberg, and Ulugbek S Kamilov. An Online Plug-and-Play Algorithm
for Regularized Image Reconstruction. IEEE Transactions on Computational Imaging, b
(3):395-408, 2019.

Afonso M. Teodoro, José M. Bioucas-Dias, and Mario A. T. Figueiredo. Scene-Adapted
plug-and-play algorithm with convergence guarantees. In 2017 IEEE 27th International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1-6. IEEE, 2017.

52

SUCKER, FADILI AND OCHS

Matthieu Terris, Audrey Repetti, Jean-Christophe Pesquet, and Yves Wiaux. Enhanced
Convergent PNP Algorithms For Image Restoration. In 2021 IEEE International Con-
ference on Image Processing (ICIP), pages 1684-1688. IEEE, 2021.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A Strongly
Quasiconvex PAC-Bayesian Bound. In Proceedings of the 28th International Conference
on Algorithmic Learning Theory, volume 76 of Proceedings of Machine Learning Research,
pages 466-492. PMLR, 2017.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267-288, 1996.

Tom Tirer and Raja Giryes. Image Restoration by Iterative Denoising and Backward Pro-
jections. IEEE Transactions on Image Processing, 28(3):1220-1234, 2019.

Ricardo Vilalta and Youssef Drissi. A Perspective View and Survey of Meta-Learning.
Artificial Intelligence Review, 18(2):77-95, 2002.

Cédric Villani. Optimal Transport. Springer Berlin, Heidelberg, 2009.

Max Welling and Yee W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dy-
namics. In Proceedings of the 28th International Conference on Machine Learning, pages
681-688, 2011.

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned Optimizers
that Scale and Generalize. In Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3751-3760.
PMLR, 2017.

Hermann Witting. Mathematische Statistik 1. Vieweg+Teubner Verlag Wiesbaden, 1985.

Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang. Maximal Sparsity with
Deep Networks? In Advances in Neural Information Processing Systems, volume 29,
2016.

Quanming Yao, Mengshuo Wang, Yuqgiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking Human out of Learning Applications: A Survey on
Automated Machine Learning. arXiv preprint arXiv:1810.13306, 2018.

53

	Introduction
	Related Work
	Broader Context of Learning-to-Optimize
	Learning-to-Optimize with Guarantees
	Design-Choices in Learning-to-Optimize
	PAC-Bayesian Bounds through Change-of-Measure
	Boundedness of the Loss Function
	Minimization of the PAC-Bound
	Choice of the Prior
	More Generalization Bounds

	Problem Setup & Assumptions
	Notation
	Main Assumptions and Definitions for Learning Optimization Algorithms

	General PAC-Bayesian Theorem
	Learning-to-Optimize with Guarantees
	Worst-Case Bounds
	Conditional Boundedness

	Implementing the Non-divergence – Speed Trade-Off
	Sampling under Probabilistic Constraints
	Incorporation into a Sampling Procedure
	Broader Context
	Choice of the Sampling Procedure

	Learning Procedure
	Minimization of the PAC-Bound
	Finding a Trainable Initialization
	Locating the Prior
	Ratio of Losses
	Randomized Trajectory Length

	Constructing the Prior
	Computing the Posterior

	Experiments
	Quadratics
	Image Processing
	Lasso-Problem
	Training Neural Networks

	Discussion and Limitations
	Supplementary Definitions
	Supplementary Lemmas
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Corollary 18
	Implementation Details
	Details for the Experiment on Quadratic Functions
	Construction of the Parameters
	Algorithm

	Details for the Image-Processing Experiment
	Construction of the Parameters
	Algorithm

	Details for the LASSO Experiment
	Construction of the Parameters
	Algorithm

	Details for the Neural-Network-Training Experiment
	Construction of the Parameters
	Loss Function and Architecture
	Algorithm

	Additional Experiment on MNIST

