
Satellite Detection and
Characterization Using
Alternate Transformer
Architectures for
Spectro-Spatial RF Signal
Analysis

Sidney BESNARD
Greyc, Normandie Univ., UNICAEN, ENSICAEN, CNRS, France
Safran Data Systems, Colombelles, France

Jalal FADILI
Greyc, Normandie Univ., UNICAEN, ENSICAEN, CNRS, France

Frederic JURIE
Greyc, Normandie Univ., UNICAEN, ENSICAEN, CNRS, France

Steredenn DAUMONT
Safran Data Systems, Colombelles, France

Abstract— With the continuous increase in satellite launches
and the growing complexity of RF signals, traditional methods
struggle to fully exploit the rich data derived from passive frequency
scanning. In this paper, we propose an innovative approach based
on Transformer architectures to detect and characterize satellites.
Our method leverages the intrinsic capabilities of Transformers
to model both local and global dependencies in high-dimensional
spectro-spatial images. By alternating Transformer layers along
the frequency and spatial axes, our model extracts robust, invari-
ant representations even in highly complex signal environments.
The design incorporates attention mechanisms that facilitate the
simultaneous separation and reconstruction of spectral and spatial
footprints, proving especially effective in scenarios with densely
overlapping signals and interference. Experimental results on both
synthetic and real-world datasets demonstrate that our approach
significantly enhances detection and characterization performance
compared to traditional architectures, paving the way for more
precise and resilient space situational awareness systems.
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Fig. 1: Illustration of the Ku-band acquisition system,
using an antenna located in France, with an OPS step of
0.2 degrees and covering a 140-degree range in longitude.

I. Introduction

Space Situational Awareness (SSA) [1] is crucial to
ensure the uninterrupted functioning of vital space-based
services, providing accurate information about the space
environment. SSA encompasses space weather monitor-
ing, near-Earth object observation, and space surveillance
and tracking [2], [3], [4]. A network of diverse sensors
(optical, RF, radar, etc.) is utilized to track satellites and
estimate their activities and orbits, supporting collision
avoidance, fragmentation analysis, reentry analysis, and
recovery from service disruptions. However, the sheer
volume of data and the complexity of the signals present
significant obstacles to traditional manual processing.
This paper explores these challenges, specifically the
overwhelming data volume and intricate signal interpre-
tation, and proposes a machine learning-based solution to
achieve a deep, physics-consistent representation of the
data to extract high-level features like satellite detection
and orbit parameter estimation.

This paper addresses Space Situational Awareness
(SSA) challenges by focusing on passive Radio Frequency
(RF) solutions, specifically for tracking active objects.
Passive RF offers significant advantages, enabling con-
tinuous tracking of active satellites regardless of weather,
daylight conditions, cross-tagging complexities, or orbital
limitations. The effectiveness of this approach has been
demonstrated across various orbits, from Low Earth Orbit
(LEO) to cis-lunar space [5].

Building upon these benefits, we have developed a
novel passive RF system named ”Watchtower” [6] which
is composed of a network of antennas distributed globally
around the earth. Designed for the detection of any
satellite telemetry and payload signals, thereby enabling

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020 1

mailto:sidney.besnard@safrangroup.com
mailto:jalal.fadili@ensicaen.fr
mailto:frederic.jurie@unicaen.fr
mailto:steredenn.daumont@safrangroup.com


the determination of satellite positions. The ”Watchtower”
system employs RF sensors (receiver-only) to continu-
ously monitor radio frequency activity from objects in
orbit. Each sensor scans the orbits of interest, recording
the entire signal spectrum to generate a Power Spectral
Density (PSD) at each orbital position, which we refer to
as the Object Phase Shift (OPS), as illustrated in Figure 2.

For this study, we focus on geostationary orbits, where
the Object Phase Shift (OPS) holds significant physical
meaning, directly corresponding to Earth’s longitude. We
then concatenate the Power Spectral Densities (PSDs) to
generate a longitude frequency map. The ”Watchtower”
system employs small antennas with wide main lobes,
allowing for rapid scanning of specific orbits without loss
of signal or object exclusion, as illustrated in Figure 1.
This approach enables the detection of satellite signals
close to the monitored orbit. However, a wide main lobe
prevents discrimination of closely spaced objects.

Although characterizing and detecting a satellite is
straightforward when it is spatially distant from others, the
task becomes complex when satellites are in proximity,
causing signal mixtures. When satellite signals spatially
and spectrally overlap, the challenge can be viewed as a
blind source separation problem.

In addition, various artifacts and perturbations can
significantly degrade data quality during acquisition, in-
cluding:

• Terrestrial interference, such as GSM telecommuni-
cations. For example, the C band (3.4− 4.2 GHz) is
contaminated with 5G signal [7].

• Pointing error: An uncalibrated antenna (in terms of
leveling or bracket adjustment) will cause distortion
and highly affect the signal-to-noise ratio (SNR) of
the received signal. (In this article, we assume that
the antennas are well-calibrated).

• Unfocused source: Similarly to the previous point, an
unfocused source will cause distortion and asymme-
tries in the radiation pattern of the antenna. (In this
article, we assume that the source is well-focused).

• Noise: Multiple noise sources are present in the
RF chain and disturb the signal. However, it highly
depends on the devices that are used and how
acquisitions are made. In our case, we assume that
the noise floor is non-constant along the frequency
and is empirically estimated.

• Antenna position: These parameters cause two ef-
fects: spatial distortion along the edge of the acquisi-
tion and the area of reception not necessarily aligned
with the satellite’s transponders [8], [9].

In this study, we explore the benefits of applying
machine learning techniques to capture both spatial and
spectral information from geostationary satellites within
the framework of our ”Watchtower” system. The integra-
tion of machine learning into Space Situational Aware-
ness (SSA), including satellite tracking applications, has
recently garnered considerable attention, with numerous
studies proposing machine learning-based solutions in this

domain [10], [11], [12], [13]. Many current systems now
utilize these ML-powered techniques in scenarios closely
related to raw data and sensor inputs [14], [15].

In this case, data acquisition has a strong physical
basis, intrinsically linked to orbital dynamics and telecom-
munication protocols. This allows us to approximate
a physical model, transforming data extraction into a
non-linear inverse problem. Framing the problem as an
inverse problem opens many research avenues, enabling
the development of neural networks informed by physical
principles, thus improving the robustness and resilience of
the system.

With a robust physical model representing our raw
acquisitions, we can use this information across vari-
ous stages of our training framework. First, this model
enables the creation of simulated acquisitions, offering
fully labeled data, a significant advantage over real data,
which are difficult or impossible to label due to limited
information on satellite RF protocols. Secondly, through
simulated data generation, a neural network can be trained
on infrequent events [16], [17], [18], [19], [20], ad-
dressing data scarcity challenges. This lack of data is
exacerbated by rare events such as RPO (Rendezvous and
Proximity Operations) [21], satellite posting, and other
unusual scenarios. Having this comprehensive dataset
enables us to train a neural network to detect and char-
acterize satellites present in received signals.

II. Related works

1. Machine learning for SSA and RF applications
In recent years, the integration of machine learning

(ML) techniques in Space/Spectrum Situational Aware-
ness (SSA) Radio Frequency (RF) applications has gained
significant traction [22], [23], [24], [10], [11], [12], [13],
[25]. ML approaches, particularly deep learning models,
have demonstrated their efficacy in handling the complex
and high-dimensional data characteristic of SSA and RF
environments [22]. For example, neural networks (CNN
and MLP) have been employed to identify and classify
signals in spectrum sensing, achieving remarkable accu-
racy in cluttered RF spectra and waterfall [22], [26], [27],
[28], [29], [30]. More modern neural network architecture
has been used like in [31], [32], [33] which uses YOLO.
In addition, reinforcement learning methods have been
utilized to detect jamming [34], improving the robustness
of the system. However, these methods focus exclusively
on detection problems within relatively narrow frequency
bands and small temporal scales, which poses a significant
limitation in our case. This is because our goal is to share
information across much broader frequency ranges and
distant spatial scales.
Positioning Against Detection-Only Pipelines. Much of
the existing RF-ML literature frames wideband spectrum
sensing as an object detection task on time-frequency
images (e.g., using YOLO-style detectors on waterfall
plots). Although effective in localizing emissions, these
methods typically output bounding boxes and class labels.
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Fig. 2: Illustration of the system in the general case and in the geostationary case.

In contrast, our work addresses the more complex task
of joint detection and characterization. Our objective
is to produce distinct spectral and spatial (longitude)
footprints for each satellite and perform blind source
separation even under conditions of significant spectral
and longitudinal overlap. This involves disentangling and
reconstructing per-satellite spectro-spatial signatures from
noisy and interference-laden data.

Other efforts focus on domain adaptation techniques
to bridge the gap between simulated and real-world
RF data, as real-world labeled datasets are often scarce
and difficult to annotate. Transfer learning has shown
promise in this context, enabling models pre-trained
on synthetic datasets [25] to perform effectively in
operational environments as in [29], [30] which proposes
a generated dataset and achieves good generalization on
real data performances. These advances underscore the
critical role of ML in addressing the challenges of SSA
and RF applications.

2. Neural networks for large RF data
Large-scale RF data presents unique challenges, in-

cluding the need for efficient processing, storage, and
analysis. Traditional signal processing techniques, while
foundational, struggle to scale with the exponential
growth of RF data. To address this, recent research has
turned to machine learning (ML) models.

Many neural network architectures aggregate infor-
mation locally, as numerous problems in the literature
are spatially structured and linked. For example, convo-
lutional neural networks (CNNs) are not ideal for very
large RF datasets (in 1D temporal or 2D spectral forms),
because these require global context to capture essential
structure.
Broadly, four families of solutions have emerged.
First, [35] enlarge the convolutional kernel to expand the
receptive field; however, computational complexity grows
quadratically with kernel size and is often controlled
via sparsity. Moreover, for large images this approach
remains problematic because the convolution window is
still smaller than the full image. This limitation naturally
motivates the second family of approaches: deeper CNNs

that progressively reduce spatial resolution to enlarge con-
text (e.g., ConvNeXt [36]). Yet they inherently struggle
to model the long-range dependencies often required in
RF analysis [37]; and as the input size grows, achieving
sufficient context demands ever-deeper models, imposing
significant compute and memory costs.
Third, attention-based models [38], [39] capture global
relationships but are computationally expensive. For ex-
ample, standard ViT approaches compute self-attention
over all image tokens, causing compute and memory to
explode for high resolutions due to the quadratic time
and space complexity of the attention mechanism. To
mitigate this, factorized/axial attention decomposes the
2D attention into two 1D attentions along the orthogonal
axes, reducing complexity while preserving exact global
interactions along each axis [40], [41], [42], thus lowering
computation and memory costs. Other approaches, such
as hierarchical/windowed ViTs (e.g., Swin [43]), scale
to high resolutions via shifted local windows; however,
cross-window context remains limited unless comple-
mented by window shifting across stages, token merging,
or explicit cross-window interaction modules.
Fourth, state-space models (SSMs) [44] and attention-free
backbones like Vision Mamba [45] provide efficient long-
range modeling in sequence-like data and are promising
for RF signals that exhibit long temporal/spectral depen-
dencies.
Finally, hybrid models combining CNNs with attention
mechanisms have been proposed like in [46], [47], [48] to
balance the strengths of both local aggregation and global
contextualization. These approaches represent a promising
direction, but still require further refinement to address
scalability and efficiency challenges effectively.

Relation to Our Alternating-Transformer. Our ar-
chitecture is a domain-specific implementation of axial
attention, tailored for RF spectro-spatial grids as it was
first proposed in [40], [41], [42]. We alternate axis-wise
attention along the frequency and longitude dimensions,
operating on tokens generated by a CNN backbone de-
signed to preserve small carriers. This factorized approach
reduces the computational complexity from O((tf tl)

2) for
standard 2D attention to O(tlt

2
f + tf t

2
l ). Crucially, unlike

windowed architectures like Swin Transformers or CNNs,
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our method maintains exact global information exchange
along each axis. This design aligns with the physical
separability of the data and enhances the model’s ability
to associate spectrally distant carriers that originate from
the same satellite.

3. Summary of Contributions
Our work distinguishes itself from prior art in the

following ways:

1) Physics-Aligned Separability: We employ alternat-
ing axis-wise attention along the frequency and
longitude axes. This architecture mirrors the phys-
ical structure of the acquisitions and preserves the
exact global context along both dimensions.

2) Structured Outputs for Characterization: Instead
of producing simple bounding boxes, our model
predicts and reconstructs complete spectral and
spatial footprints for each satellite, using a
permutation-invariant matching loss for training.

3) Scalability and Sim-to-Real Robustness: Our
framework integrates several key components to
ensure robust generalization: a CNN tokenizer
that preserves small carriers, a duplication-noise
augmentation for scaling across frequency win-
dows, a curriculum learning strategy for handling
closely collocated satellites, and a physics-based
data generator with domain randomization.

III. System presentation

This section details the operational principles of the
”Watchtower” system and the construction of its data
products. The system comprises an Earth-based antenna
that sweeps across the geostationary arc within its field
of view, determined by its latitude. In our configuration,
the acquisition field of view is fixed, spanning 120° along
the geostationary arc, from +60° to −60° relative to the
antenna’s longitude. The sweeps are performed in discrete
steps, with a fixed step size of ∆θ = 0.2° for X band. This
discrete scanning methodology on the geostationary arc
minimizes distortions at the edges of the acquisition, thus
maintaining an undistorted acquisition along the longitude
axis relative to a constant step in antenna azimuth.

At each longitude step, the antenna acquires signals
within a fixed frequency band. While this study focuses
on the X band, our methodology is generalizable to the
C, Ku, and Ka bands. The system constructs a power
spectral density (PSD) by averaging the signal over 1024
FFTs. This process, which requires a few seconds to
minutes (specifically, we fixed ∆t = 30 seconds for
the X band), depends on the frequency band. With this
∆t = 30s between each longitude step, a full acquisition
takes T = ∆t× 2L

∆θ = 5 hours do be done.
At each longitude step, the received power corre-

sponds to the signals emitted by satellites within the
scanned frequency band that fall within the antenna’s
visibility cone, defined by its radiation pattern. For our
antenna, this visibility cone is approximately 2 degrees at

-3 dB at 7.7 GHz, as shown in Figure 4. Consequently,
signal variation along the longitude axis is influenced
by both the antenna’s radiation pattern and the angular
deviation between the satellite’s position and the antenna’s
pointing direction, as illustrated in Figure 5. This pro-
jection of the radiation pattern is further affected by the
modulation of the emitted signals. Signal variations from
a satellite over time, even when averaged over 1024 PSDs,
can introduce discontinuities in the received signal. For
instance, modulations like TDMA and FM-TDMA [49]
can cause signal splitting across multiple longitude steps.

Throughout the remainder of this article, we assume
that the antenna’s radiation pattern is uncalibrated (i.e.,
unknown or only coarsely characterized) and varies with
the antenna’s geometry, aperture, and operating frequency.
It may also drift due to operational factors such as
pointing bias, thermal deformation, or mount leveling
errors. To handle this uncertainty, we treat the radiation
pattern as a noised variable and train our models on a large
library of synthetically generated patterns to improve
robustness and generalization. Under this assumption, the
satellite–antenna angular deviation cannot be estimated
precisely from the measurements alone.

A. Physical model

The physical model of our system is composed of sev-
eral sub-systems, each representing a specific component.
We have structured these systems into the following key
components:

1. Satellite position
The initial component of our physical model involves

simulating satellite movement and trajectory. We employ
a Keplerian propagator [50], [51], assuming elliptical
orbits. The precision of the propagator is not critical, as
the system’s overall accuracy is limited by the antenna’s
longitude step size. With a step size of ∆θ = 0.2◦ and
an Earth-based antenna, the error along the geostationary
arc is approximately 147 km. This level of error and
a propagation period of a few hours (see T ) make a
Keplerian propagator sufficient, introducing negligible
errors. These orbits are modeled using five Keplerian
elements: eccentricity (e), semi-major axis (a), inclination
(i), longitude of the ascending node (Ω), and argument
of periapsis (ω). See Section 1 for details on how these
elements are determined for each satellite in the scene.

2. Antenna mount
The antenna is mounted on an altazimuth mount,

which operates based on azimuth and elevation. This al-
lows the antenna to move both horizontally and vertically,
enabling precise positioning and alignment along the
geostationary arc. This dual-axis control is essential for
tracking such orbits and avoids issues like discontinuities
found in equatorial mounts. Modeling this type of mount
in our system enables us to use 3D radiation patterns from
a simulated parabolic antenna.
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Fig. 3: Representation of the projection of a satellite for a fixed timestamp along the radiation pattern of the antenna
for each azimuth and elevation angle.

Fig. 4: Example of a measured radiation pattern in X-
band, with a normalised gain of 23.34dB.

3. Antenna radiation pattern
To model the antenna’s radiation pattern, we can

use either empirical or analytical approaches. The first
approach is to measure the antenna’s radiation pattern in
an anechoic chamber, and then use this pattern to generate
our data. Although this method is simple and avoids com-
plex modeling, we cannot consistently maintain a stable
radiation pattern over time due to potential variations from
RF source shifts or slight misalignment of the antenna.
An alternative approach is to model the radiation pattern
analytically [52], [53]. The electric field pattern Ef (θ) is
given by

Ef (θ) =
2λ

πD

J1 ((πD/λ) sin(θ))

sin(θ)
, (1)

where θ is the angle in radians from the antenna’s
symmetry axis, D = 1.9m is the antenna aperture, λ is
the wavelength at the current frequency, and J1 is the
first-order Bessel function.

4. Reception model
The reception model integrates all previous compo-

nents. Let S be the set of satellites; in our experiment,
card(S) = 15. Define Γs(t, f) as the spectral activity of
a satellite s ∈ S at time t and frequency f . Let Ψs(t)
denote the spherical coordinates of the vector Dir(t)B −
(Poss(t)B − Posantenna(t)B) in the same reference frame
as the antenna B. Here, Posantenna(t)B is the antenna’s
position at time t (constant in ECEF), Dir(t)B is the
antenna’s direction at time t, and Poss(t)B is satellite s’s
position in ECEF coordinates at time t. Additionally, let
ϵ represent additive noise, determined empirically based
on real signal data. Is defined as :

R(f, l) =
1

1024

1024∑
i=1

∑
s∈S

∫ f+∆f
2

f−∆f
2

Ef◦Ψs(Ti)×Γs(Ti, γ)dγ+ϵ,

(2)
with Ti = t+ i ∆t

1024 .

B. Data generation and implementation details

1. Data generation
The use of a physical model allows for the generation

of a synthetic dataset, enabling the testing and evaluation
of our method with labeled data. However, training a
neural network on synthetic data presents challenges, as
highlighted in [54], [55], [20], and may not generalize to
real-world data [55], [56]. These challenges stem from
two primary issues.

The first reason is that training a neural network
on synthetic data does not guarantee convergence over
real data, as shown in [56], [57], [58]. The generated
distribution and the real distribution are independent and
may not overlap, as illustrated in Figure 6. Many sim-to-
real data strategies, such as those in [57], [59], introduce
reinforcement learning as a post-training step on real data.
However, our network is optimized using the extracted
physical model of the antenna and orbits, meaning the dif-
ference between generated and real data can be attributed
to our model itself, or the lack of knowledge regarding
unmodeled effects.
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Fig. 5: Simulation results illustrating satellite signal
reception. Top left: Azimuth and elevation deviation of
a geostationary satellite (i = 0◦) using an altazimuth
antenna mount. Top right: Angular deviation between the
antenna’s pointing direction and the satellite’s position.
It should be noted that satellite inclination causes this
angle to vary, even when the antenna is pointed towards
the satellite’s current longitude. Bottom: Received signal
resulting from the interaction between the antenna’s ra-
diation pattern and the angular deviation to the satellite.

The second reason is that synthetic data may not
capture the full range of variations in real-world data,
resulting in a neural network that performs well on
synthetic data but poorly on real data. To mitigate this, our
synthetic data are designed to encompass as many realistic
variations as possible, and the network performance is
validated against real data where available.

However, such an approach also has advantages, as
our data generator can also create scenarios that are rare or
underrepresented in real datasets. For example, RPO [60],
[61] and deployment events are relatively rare in real-
world data [60]. Thus, our generator enables us to produce
more samples of these cases, balancing these events, and
avoiding biases in training.

Sampling from these distributions yields a dataset that
spans a broad range of scenarios and closely mirrors real
acquisitions in terms of satellite orbit, carrier occupancy,
and the induced structure of the projected radiation pat-
tern. This, in turn, helps the neural network generalize
to real data. To explicitly stress robustness, we sample
orbital elements that produce noticeable distortions in the
projected radiation pattern (see Fig. 5); relying solely
on strictly geostationary satellites would not expose the
model to such effects.

We further constrain the orbital elements so that most
objects remain near the geostationary arc, consistent with
the limited integration time and the practical inability to
observe LEO/MEO traffic within a sweep. Concretely, we

Property Variable Probability law

Num satellite per
acquisitions

n ∼ U(J0, 15K)

O
rb

it

Inclination ik ∼ U([−5°, 5°])
Eccentricity ek ∼ U([0, 1[)

Semi-major axis ak ∼ U([0, 2π])
Longitude of the
ascending node

Ωk ∼ U([0, 2π])

Argument of periapsis ωk ∼ U([0, 2π])

Sp
ec

tr
um

Num carrier ck ∼ U(J0, 15K)
Carrier types tk ∼ U({ Classic,

TDMA, TM , ...})ck

Carrier power pk,l ∼ U([0, 1])
Carrier bandwidth bwk,l ∼ U(]0, 30e6])

TABLE I: Probability laws for each parameter that define
an acquisition with the goal of building a sufficiently
large dataset distribution that encompasses the real data
distribution.

Classic RPO Deployment Colocalised Random
Drift

Probability 0.7 0.05 0.05 0.1 0.1

TABLE II: Probability for each events corresponding to
a satellite class, empirically fixed.

narrow the ranges of inclination, semi-major axis, and
eccentricity for computational efficiency and to ensure
that, at some acquisition step, each satellite enters the
antenna’s visibility cone. These constraints also motivate
bounds on the argument of periapsis ωk, k ∈ J1, nK.

For each satellite, we optionally apply an event (spatial
or spectral) with probabilities given in Table II. We
model four events: RPO, satellite deployment, collocated
satellites (multiple satellites within 1° of longitude), and
random drift. These processes tend to produce small
longitudinal separations between satellites. Given the dis-
cretization step ∆θ = 0.2°, we must account for the
system’s source-separation limit, which we model using
the Rayleigh criterion (Fig. 7).

Finally, we inject measurement noise ϵ to promote ro-
bustness. In our setting, noise is heterogeneous and arises
from terrestrial emitters, thermal noise, and RF front-end
impairments. We therefore adopt a frequency-dependent
(non-constant) noise floor estimated empirically, rather
than assuming a stationary white process.

2. Implementation details
The generator is purpose-built for machine learning:

it must produce large training corpora for neural network
training (see Sec. C). We therefore designed it to be GPU-
efficient and highly parallel. The implementation uses
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the simulated data distribution; the optimal scenario occurs when both distributions are identical.
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Fig. 7: Example of overlapping carriers from two different
satellites that sum and mix into a single signal under the
angular resolution defined by the Rayleigh limit.

CUDA kernels and PyTorch. As reported in Table III,
these optimizations allow us to generate a full dataset
(500k examples) in a few hours on NVIDIA V100 GPUs.

Satellite trajectories are propagated with a Keplerian
model, which is computationally inexpensive and yields
limited drift over the acquisition horizon T compared with
higher-fidelity propagators.

The main performance bottleneck is the synthesis of
telemetry carriers over a wide bandwidth, which demands
fine frequency resolution. In practice, we render these
carriers on a frequency grid that is 20× finer than the
acquisition’s discretization step, and this stage dominates
the computational cost.

IV. Proposed architecture and training

The purpose of using machine learning here is to
achieve tasks that standard expert algorithms cannot.
Specifically, we aim to infer satellite information from
each acquisition. This requires extensive knowledge of
acquisition and satellite signal structure. Essentially, ex-
tracting a satellite from an acquisition involves detecting,
extracting, and associating all signals representing carriers

VRAM
(Mo)

vram/sample
(Mo)

Time
(ms)

s/sample
(ms)

300x200
(b = 20)

140 7 660 33

3000x200
(b = 20)

1000 50 6800 340

TABLE III: Performance to generate data samples for a
batch of 20 images.

present for each satellite, which can be viewed as a blind
source separation problem. These high-level features can
be broken down into lower-level detection and character-
ization tasks.

The straightforward approach would be to extract a
separate acquisition for each detected satellite, similar
to standard detection methods (e.g., Unet [62], Swin
Unter [43]). However, this approach demands excessive
memory and computational power due to large image
sizes, especially in the frequency domain. Instead, our
approach extracts information that requires similar knowl-
edge and features. Thus, we extract the peak coordinates
in both longitude and frequency for each satellite. Let
Rs(f, l) be the signal for a unique satellite based on (2):

Rs(f, l) =
1

1024

1024∑
i=1

∫ f+∆f
2

f−∆f
2

Ef ◦Ψs(Ti)× Γs(Ti, γ)dγ.

(3)
We want to infer:

fs = max
f

Rs(f, l) and ls = max
l

Rs(f, l), s ∈ S (4)

A. Constraints on the architecture

Overall, we want to define a parametric model that
takes a (longitude, frequency) image I (see Fig.1) and
outputs a list of (spatial, spectral) signatures, one pair of
vectors per satellite, as defined Equation 4.
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Fig. 8: Overview of the proposed model architecture. The input is a large, single-channel acquisition. Patch embeddings
are computed using a ResNet-18 architecture [63]. These embeddings are processed sequentially by alternating
transformer layers applied along the frequency and longitude axes. Finally, the patches from each axis are projected
into the initial domain for each detected satellite. The projector uses linear layers.

This model architecture must respect some key prop-
erties, due to the nature and size of the data to be
processed. First, input images are very large, covering
a wide frequency band from 8 to 12 GHz in the X
band. For instance, a discretization step of ∆f = 30kHz
results in acquisitions with thousands of frequency bins
(approximately 16,000 for our X-band acquisitions, rang-
ing from 7.250 to 7.750 GHz; and up to 60,000 in C
and Ku band). As discussed in Section III, processing
such large images is difficult [64] due to spatial and
temporal limitations on GPUs. Furthermore, Transformer
encoders scale poorly with long sequences because self-
attention forms the dense score matrix QK⊤, with Q
the queries and K the keys. Therefore, a vanilla Vision
Transformer (VIT) [39] is unsuitable due to its memory
consumption and poor scaling. However, our system does
not require real-time inference, allowing for a broader
range of solutions.

Another constraint is that our architecture should
be flexible in terms of frequency windows. Our goal
is to develop an architecture that can generalize over
multiple bands and frequency windows, which can range
from 1 to 1000 times the size of the training data. To
achieve this generalization, we utilize two properties of
our acquisition.

Frequency invariance: This property allows us to
make multiple approximations. As shown in the physical
model A, only the radiation pattern depends on the fre-
quency (see (3)). The radiation pattern is broader at lower
frequencies and more directive at higher frequencies.
Carriers can also be assumed to be uniformly distributed

across the frequency band. With this property, we can
train on smaller acquisitions and still generalize across
the full acquisition range.

Separability: This property implies that our fre-
quency/longitude acquisition has orthogonal and indepen-
dent axis correlations. A carrier’s bandwidth and fre-
quency do not depend on the longitude. This also allows
us to treat the longitude and frequency axes independently,
similar to structured spectrograms [42]).

These properties enable an architecture that is more
memory-efficient than standard Vision Transformers
(VIT) for large images and that can generalize indepen-
dently of the frequency window size. This generalization
depends on two intrinsic properties. First, the architecture
needs to extract local information from acquisitions, such
as information about single carriers (e.g., type, frequency,
bandwidth). Second, the transformers layers must extract
information over a wide window and share information
between distant tokens (e.g., using attention mechanisms);
for example, the neural network need to associate carriers
that are emitted from the same satellites.

B. Definition of the architecture

The proposed architecture naturally arises from the
properties presented earlier. The overall architecture is
shown in Figure 8. It includes 3 different blocks imple-
menting 3 different elements of the model. First, a CNN
is applied to the input image. This block uses a ResNet-
18 [63] with max pooling as residual connections to
preserve small objects and carriers. Thus, the CNN serves
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as a tokenizer for the next transformer layer. Second,
we employ alternating transformer blocks, each composed
of two successive transformer encoder blocks along the
chosen axis. This addresses the separability properties
mentioned earlier. Third, a decoder head infers the spatial
and spectral footprints.

These three blocks are described in the following
subsections.

1. Image encoder
Having a convolution based image encoder has several

advantages. The received signal is well-structured, and a
CNN as a tokenizer and local feature extractor makes
sense because CNNs can easily converge to filters that
extract the underlying radiation pattern shape and higher-
level features. However, the CNN’s depth must be appro-
priately set. The convolution windows depend on the filter
size and CNN depth, edge effects can appear, potentially
making the alternate transformer block unnecessary if the
encoded tokens see every other token (i.e., when the CNN
window is larger than the image). This hinders generaliza-
tion across various frequency windows. A key advantage
is that a CNN with well-fixed depth can spatially encode
tokens, allowing us to forgo positional encoding (i.e., no
positional encoding (NOPE) [65]), as relative positions
can be encoded between tokens given the low constraints
on the frequency axis and image structure. However, PE
was added to ensure the encoding of each token’s position.

2. Alternating Transformer Architecture
Based on the previous considerations, we introduce

the alternate layer for transformer (Alt), an architecture
composed of two successive transformer encoder blocks
that aggregate information along two orthogonal spatial
axes of the image. In particular, this architecture is
equivalent to a series of transformer layers with axis-
specific masking.

Let X ∈ Rnf×nl denote the input acquisition, where
nf is the number of frequency bins and nl the number
of spatial bins (e.g., longitude). After tokenization via
a convolutional encoder, the data is transformed into a
tensor T ∈ Rc×tf×tl , where c denotes the number of
channels, and tf and tl are the reduced spatial dimensions
along the frequency and longitude axes, respectively.

To encode positional information, we apply additive
positional encoding along both axes. The resulting tensor
T pe ∈ Rc×tf×tl is given by:

T pe
:,i,: = T:,i,: + PE(c, tl), T pe

:,:,j = T:,:,j + PE(c, tf ),

for all 1 ≤ i ≤ tl, 1 ≤ j ≤ tf , using the standard
sinusoidal encoding from [39].

We propose an alternating transformer structure in
which self-attention is successively applied along orthog-
onal axes. Let Trtlon/Tr

t
freq a transformer layer for the

longitude/frequency axis at stage 1 ≤ t ≤ dlon/dfreq.
First, we process the longitude axis. Given Kt ∈ Rc×tf×tl

the current stage of the network, we reshape it into a batch

of tf sequences of length tl:

K
(t)
lon =

[
K

(t)
:,1,:, K

(t)
:,2,:, . . . , K

(t)
:,tf ,:

]
.

Each sequence is independently processed by a stack of
d transformer encoder blocks:

K
(t)
lon = Trtlon(K

(t−1)
lon ), K

(0)
lon = T pe, 1 ≤ t ≤ dlon.

We then process the frequency axis using a symmetric
operation. From the same tensor Kt ∈ Rc×tf×tl , we
construct:

K
(t)
freq =

[
K

(t)
:,:,1, K

(t)
:,:,2, . . . , K

(t)
:,:,tl

]
,

which represents a batch of tl sequences of length tf ,
passed through a second stack of d′ transformer layers:

K
(k)
freq = Trkfreq(K

(k−1)
freq ), K

(0)
freq = K

(dlon)
lon , 1 ≤ k ≤ dfreq.

The alternating application of attention along both
axes allows the model to efficiently capture 2D depen-
dencies. Since the data structure is separable, the order of
axis processing is not critical: the first transformer stack
can approximate the identity if needed, enabling implicit
axis reordering.

For the complete architecture, we stack multiple layers
of alternating transformers, which aggregate and propa-
gate information across all tokens in both the longitude
and frequency dimensions.

Theoretical complexity gains
This approach leads to a significant performance gain.

A standard Transformer layer has a theoretical minimum
complexity of O(t2l t

2
fc), as shown in [66]. By processing

reduced sequence lengths and treating one axis as a batch,
we eliminate the quadratic term for that axis. By alternat-
ing transformer layers (horizontal and vertical axes), we
reduce the overall complexity to O(tlt

2
fc+ t2l tfc), which

is cubic rather than quartic as in a vanilla attention layer.

3. Decoder head
The decoder head is a projection from the latent space

of the spatial and frequency information, providing a
reconstruction of the longitude footprint and associated
spectrum for each satellite present in the image (see
Figure 8). It is important to note that the outputs are
unordered and do not follow any predefined sequence.
To train the network, we match these predictions with the
targets using the Hungarian algorithm. This strategy is
not optimal and can lead to issues of responsibility [67]
and discontinuities in the network [68]. Although various
methods have been proposed to address these issues by
using permutation-invariant outputs, as in [69], they are
not used in this work, as such issues were not observed
during training.

C. Dataset and loss function

Synthetic Dataset. The model is trained on a large-
scale synthetic dataset generated by the physics-informed
simulator detailed in Section A. The data set consists of
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500k training samples, 10k validation samples, and 10k
test samples. Each sample is a 2D acquisition of size
3072×200 pixels (frequency × longitude). The compo-
sition of each scene, including the number of satellites,
carrier properties, and orbital elements, is governed by the
probability distributions in Tables I and II. For supervised
training, we store the ground-truth spatial and spectral
footprints for each satellite. Real-World Dataset. For
evaluation, we use real-world X- and Ku-band acquisi-
tions from the Watchtower system. Raw measurements are
processed into non-overlapping 3072×200 crops. Ground-
truth labels for this dataset are generated through manual
annotation and are therefore considered weak labels.

1. Data augmentation
Firstly introduced in [70]. To achieve better gener-

alization over the size of the frequency window, we
tested and implemented a data augmentation strategy
that artificially duplicates tokens along the frequency
sequences (see Figure 8). This strategy takes advantage of
the fact that tokens along the frequency axis (i.e. Kfreq)
are processed independently by each transformer operator,
except for the attention mechanism.

Thus, the modified attention mechanism for the fre-
quency transformer is as follows.

Attentionα(Q,K, V ) = Softmaxj

(
QKT

√
dn

+ log(α)

)
V,

(5)
where Q, K, and V are the query, key, and value matrices,
respectively, and α ∈ N \ {0}n represents the duplication
factor for each token. In this formulation, the duplication
factor α is treated as a weight that adjusts each token
in the sum of the matrix product between the attention
matrix and the values matrix. By integrating this factor
into the attention matrix weights, we consider the vector α
as a noise element that disrupts the softmax operation by
altering the contribution of each token in the sum of token
weights. For our experiment, we imposed a constraint on
the α tensor such that maxα∈N\{0}n

∑
k αk ≤ 200. This

implies that log(α) is in a range of [0, log 200) ≈ 5.3]
and can be seen as adding noise in the model, that we
deactivate during the inference time.

2. Curriculum learning
To properly address the issue of matching noise and

errors at the beginning of training caused by the Hungary
algorithm and leading to learning instabilities, we employ
a curriculum learning strategy [71]. The primary matching
difficulties arise with co-located satellites, i.e., those that
are spatially close in terms of longitude. The main chal-
lenge lies in separating satellites that differ by only one
longitudinal bin, where their predicted spatial footprints
are very similar, leading to incorrect associations.

To mitigate this, we control the difficulty of the
problem by adjusting the minimal longitudinal distance
between satellites (see Figure 9). We begin with simpler
training scenarios, where satellites are widely spaced, and
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gradually introduce more challenging cases by reducing
the distance between them. This approach stabilizes the
matching process in the early stages of training and
ultimately leads to more robust network learning.

3. Loss function
The choice of loss function is critical for achieving

good model performance and generalization. A key char-
acteristic of our model is that it outputs unordered lon-
gitude footprints and associated spectra for each satellite
in the image, similar to object detection algorithms. To
effectively train the model, a method is needed to match
these outputs with the ground truth. We accomplish this
by using the Hungarian algorithm, which finds the optimal
permutation and matches between the predicted longi-
tude/spectral footprints and their corresponding labels.

Let Π the space of all n-length permutations, with
n the number of predicted signals. Let l̂θi and f̂θ

i the
spatial and spectral footprints predicted by the model for
the i-th satellite with the neural network parameters θ,
and lj and fj the ground truth signature. By applying the
Hungarian algorithm, the goal is to find the permutation
which solves:

π̂ = argmin
π∈Π

n∑
i=1

(1−λmatch)L(l̂θi , lπ(i))+−λmatchL(f̂θ
i , fπ(i)).

(6)
Then the loss function, with respect to the neural network
parameter θ, is defined as :

E(θ) =

n∑
i=1

(1− λtrain)L(l̂θi , lπ̂(i)) + λtrainL(f̂θ
i , fπ̂(i)),

(7)
where L is the Mean Square Error (MSE) between
the signatures. During training, the gradient of E(θ) is
computed using automatic differentiation (autodiff).

The hyperparameter λmatch/train ∈ [0, 1] governs the
trade-off between spatial and spectral information in the
comparison. Notably, the value of λmatch in (6) (match-
ing criterion) and λtrainin (7) (training loss function)
can differ. Through experimentation, we found that the
Hungarian matching error should prioritize the spatial
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Fig. 10: Performance of the proposed architecture in multiple critical scenarios: we tested the model with varying
distances between two satellites in terms of longitude steps. For each distance, various carrier configurations were
evaluated, including small carriers (such as beacon carriers) and overlapping carriers. Overlap percentages were also
considered. We assessed the model’s detection accuracy, as well as spectral and spatial footprint reconstruction errors

position (longitude) of the deformed radiation pattern over
the frequency footprint, leading to an optimal value of
λmatch = 1

6 . However, empirical results indicate that a
position-based loss function is suboptimal for training,
where a balanced trade-off with λtrain = 1

2 yields better
performance.

V. Experimental Setup

A. Tasks and Metrics

We evaluate five aspects:

• Satellite detection: accuracy/precision/recall after
Hungarian assignment. A prediction is considered
a successful match to a ground-truth target if two
conditions are met: (i) the spectral-peak error is
within a tolerance τ , and (ii) the predicted spectral
footprint has contains at least a proportion γf within
the ground-truth spectral support, which is dilated by
a margin of ±τ . First we define the set of elements
that are in the margin of the GT such as

Sτ
i = {f̂θ

i,j ∈ [fθ
i,j − τ ; fθ

i,j + τ ]|1 ≤ j ≤ nf}
Finally, a satellite is characterized as a positive
detection if :

card(Sτ
i )

nf
≥ γf

where f̂θ
i is the predicted spectrum of a satellite i.

• Longitude error: MAE and std (in bins and degrees)
of the spatial footprint argmax.

• Spectral reconstruction: MSE and std between
predicted and target spectra per matched satellite.

• Separation rate under proximity/overlap:
success rate when two targets are within
∆l ∈ {1, 2, 3, 5} bins and spectral overlap
∈ {0%, 25%, 50%, 75%, 100%}.

• Robustness to SNR: detection accuracy stratified by
carrier power above the local noise floor (bins: {0–3,
3–6, 6–9, >9} dB).

B. Baselines and Ablations

We compare Alt-Tr to: (i) a strong CNN tokenizer-
only model with global pooling, (ii) Alt-Tr (no-CNN)
tokens from raw patches. We ablate the proposed compo-
nents: axis alternation (replace by a single 2D attention),
positional encoding (remove PE), curriculum learning
(disable), duplication noise α (disable).

C. Implementation Details

Our models were trained using the AdamW opti-
mizer with a cosine learning rate schedule and a one-
epoch warm-up, implemented in bfloat16 for efficiency.
The CNN tokenizer is a ResNet-18 with max-pooling
residual connections. Our Alternating-Transformer ap-
plies self-attention successively along longitude and fre-
quency (Sec. 2) with 2D sinusoidal positional encodings.
We use a simple curriculum on the minimum longitu-
dinal gap and a duplication augmentation for scaling;
predictions are matched with a Hungarian assignment.
Exact hyperparameters (optimizer β’s, weight decay, LR
bounds/warm-up, batch size/epochs, dataset sizes, archi-
tectural widths/depths, loss weights, and tolerances) are
summarized in Table IV.

VI. Results

In this section, we present the results of our proposed
method and training framework. We aim to assess the
model’s performance across several tasks, including satel-
lite detection, longitude pattern reconstruction, spectral
pattern reconstruction, and separation performance in
collocated satellite scenarios.
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Component Hyperparameter Value / Description Ref.

Optimization Optimizer AdamW (β1=0.9, β2=0.999), weight de-
cay 0.05

Sec. C

LR schedule Cosine decay: 1×10−4 → 1×10−6,
warm-up 1 epoch

Sec. C

Batch size / Epochs 24 / 50 Sec. C
Precision bfloat16

Data Train/Val/Test 500k / 10k / 10k (size 3072×200) Sec. C
Curriculum (min gap) 15→1 bins over first 10 epochs (linear) Sec. 9
Duplication α

∑
k αk ≤ 200; disabled at inference Sec. C

Noise, shifts Empirical noise floor; random freq/lon
flip

Sec. 1

Model CNN tokenizer ResNet-18 with max-pooling residual
connections

Sec. 8

Embedding dim D=384 ; Heads H=6 ; MLP ratio 4.0 ;
Dropout 0.0

Alt-Tr depth Longitude stack d=3 ; Frequency stack
d′=3 ; #Alt blocks 2

Sec. 8

Positional enc. Sin-longitude + Sin-frequency

Loss/Matching Matching λ λmatch = 1/6 (balanced) Eq. (6)
Training λ λtrain = 1/2 (balanced) Eq. (7)

Hardware A100 80GB × 4; PyTorch 2.5.0, CUDA 12.2

TABLE IV: Training and model hyperparameters.

A. Results on Generated Data

1. Reconstruction error
First, we analyze the reconstruction errors for the

spatial and spectral footprints in the test set (Table VII).
While absolute values are not immediately intuitive, they
enable fair comparisons across methods. Compared to a
naive CNN, our Alt-Tr (ours) achieves substantially lower
errors (≈5.3× lower spatial MSE and ≈8.3× lower spec-
tral MSE). A vanilla Vision Transformer is impractical at
our resolution due to quadratic memory scaling (out-of-
memory).
Ablation study. We performed an ablation study to
isolate the contribution of each key component of our
framework. The results underscore the importance of our
training strategy: removing curriculum learning caused
the most significant performance degradation, confirming
its critical role in stabilizing the permutation-invariant
matching process. The data augmentation and positional
encoding (PE) were also shown to be beneficial, as their
removal consistently increased reconstruction errors on
both axes. Finally, replacing the CNN tokenizer with
raw patches also harmed performance, highlighting the
tokenizer’s effectiveness in extracting robust local features
and preserving the structure of small carriers before they
are processed by the attention layers.

2. Detection accuracy
Figure 12 presents the model’s accuracy, precision,

and recall as a function of signal coverage within a
given tolerance interval, τ . The results demonstrate the
model’s robustness across different operating points. Un-
der stringent requirements (τ = 0.25 dB), the performance
degrades gracefully as coverage increases, which is the
expected behavior for a tight error margin. For more
typical tolerance levels (τ = 1.25 dB), the model achieves
a strong balance of precision and recall, maintaining high
performance even at high coverage rates. For more lenient
applications (τ ≥ 2.5 dB), the detector remains highly
accurate across nearly all coverage levels, confirming its
reliability in diverse operational scenarios.

By using synthetic data, we can explore a multitude
of scenarios regarding satellite positions, events, and
spectral footprints. Therefore, we applied our metrics
to several datasets, each representing various scenarios
of interest. We selected three significant case studies:
satellites with small-bandwidth carriers, satellites with
large non-overlapping carriers, and collocated satellites
with overlapping carriers. These cases assess the model’s
ability to reconstruct small spectral details and separate
carriers in scenarios with collocated satellites that have
spectral overlap.

As shown in Table V, small carrier bandwidth has a
minimal impact on satellite detection accuracy. However,
the slight reduction in performance (approximately 1%)
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results from the network needing to generalize over small
signals that can easily be masked by acquisition and
model noise. Acquisition noise is especially detrimental
because low-intensity carriers lead to a reduced signal-to-
noise ratio (SNR), making detection more challenging. As
shown in Figure 11, detection performance is significantly
affected for non-overlapping low-power carriers as the
carrier power nears the noise level. In such cases, accuracy
drops drastically until the signal becomes undetectable.
However, for carrier powers above 5 dB, performance
remains very good, with detection accuracy consistently
exceeding 95%.

Dealing with larger carriers is easier due to their larger
footprint and distinct structures in the acquisition. Thus,
the best performance is achieved when non-overlapping
large signals are present, as seen in Table V.

Figure 10 shows the model’s response with varying
satellite proximity and different levels of carrier over-
lap. When satellites are collocated with high overlap,
distinguishing them becomes difficult. The merging of
individual signals into a single composite signal indicates
the satellites’ proximity falls below the Rayleigh resolu-
tion limit (see Figure 7). This behavior is evident in the
results for high overlap ratios (100% to 75%) in Figure 10.
Such scenarios significantly impact spatial reconstruction
error, increasing the overall error rates. Another effect
is the presence of equivalence classes, unsolvable when
the same carrier is shared for distinct satellites. In such
cases, it is impossible to determine if the signals are from
distinct satellites or a single inclined satellite, causing the
appearance of two main lobes (see Figure 5).

Other noteworthy results concern telemetry carriers,
which often have a narrow frequency bandwidth and
appear as small signals. Telemetry carriers can occupy a
single frequency step in the data, especially beacon carri-
ers (pure sinusoidal signals). These carriers are important
because they can easily be lost within the model’s noise if
not addressed by the training loss. However, as shown in
Figure 10, our method can detect such carriers effectively,
with an accuracy of about 97% for satellites collocated at
a single longitudinal step (∆l = 0.2◦).

3. Computational costs
Table VI compares inference and training times for

each architecture. Our proposed Alt-Tr model achieves
a strong balance between speed and performance, with
high inference efficiency (186 samples/sec) and moderate
training cost. In contrast, the vanilla Vision Transformer
is significantly slower due to its memory-heavy attention
mechanism. Removing the CNN from Alt-Tr increases
training time, highlighting the CNN’s importance for effi-
cient tokenization. While the CNN-only model is slightly
faster in inference, it lacks the accuracy and robustness
of Alt-Tr. These results confirm that Alt-Tr is well-suited
for large-scale RF analysis, offering both scalability and
efficiency.

Fig. 11: Response of the model to low-power carriers. We
evaluated the detection performance when large carriers
have low power (between 0 dB and 9 dB above the
noise level). The results suggest that our model is not
significantly affected by low-power carriers when they are
visible.

Accuracy Error in longitude
(∆l)

Only small
carriers (bw <

200kHz)

98.9% 0.82± 0.66

Large carriers
(overlap 0%)

99.9% 0.80± 0.61

Large carriers
(overlap 25%)

99.5% 0.83± 0.65

Large carriers
(overlap 50%)

98.5% 0.84± 0.71

Large carriers
(overlap 75%)

97.4% 0.86± 0.72

Large carriers
(overlap 100%)

88.5% 0.93± 0.81

TABLE V: Results of the proposed model across vari-
ous synthetic satellite detection scenarios. The accuracy
pertains to the correctly detected satellites, while the
longitude error represents the difference between the pre-
dicted and ground truth positions of the spatial footprint’s
maximum (i.e |argmax(l̂i)−argmax(lπ(i))|. For a test set
of 2000 samples.

B. Results on real data

Obtaining real-world results is difficult due to a lack
of large labeled datasets. Therefore, we trained our model
on synthetic data. Figures 13, 14, and 15 show qualitative
results on real data, focusing on spatial reconstruction,
satellite separation, and detection. The model shows good
qualitative performance in satellite detection and spa-
tial reconstruction, even with collocated satellites. The
method handles collocated satellites well, especially in
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Fig. 12: Accuracy, precision and recall curves in case of multiple error rate i.e γf . The error rate define the minimal
proportion of signal that need to fall in the tolerance window to be classified as a positive detection. The τ denotes
the maximum tolerated shift between the reconstructed footprint and the ground truth.

Inference (eval) Inference (train)
+

backpropagation

Alt-Tr (ours) 186±5.1 68±3.2
Alt-Tr without CNN 320±6.8 123±5.8

CNN 216±7.1 81±3.5
Vanilla

transformer [39]
2.8±0.1 1±0.1

TABLE VI: Number of inference per second for all
evaluated architectures with image size 3072 × 200. All
experiments were conducted on a NVIDIA A100 GPU
with bfloat16 precision.

the Ku band (Figures 13 and 14), where satellites are
closer compared to the X band.

Figure 16 shows spectral reconstruction and satellite
separation. The model achieves promising results for car-
rier separation and reconstruction, even with overlapping
signals. However, reconstruction is limited with overlap-
ping carriers when one signal is much stronger, drowning
out the weaker signal. Some artifacts also appear when
satellites are close together; signals may be reconstructed
with low amplitudes for neighboring satellites.

More detailed quantitative results are presented in
Table VIII, which evaluates model performance for the
Ku and X bands. The model performs best in the X
band, which is simpler because of the larger average
distance between satellites, as compared to the Ku band,
where satellites are often collocated. These quantitative
and qualitative results, consistent with those on synthetic
data, show that detection accuracy is strongly influenced
by the maximum received power of a satellite signal.
The model’s detection accuracy decreases for weaker
signals, indicating reduced sensitivity under such condi-
tions. These weaker signals can be attributed to cross-
polarization effects, which are particularly significant in
the Ku band, where vertical polarization (VP) is fre-

Spatial pattern error
(MSE)

Spectral pattern
error (MSE)

Alt-Tr (our) 6.9e−4 ± 1.3e-4 2.55e−3 ± 2.1e-3
Alt-Tr without data aug 7.6e−4 ± 1.2e-4 2.84e−3 ± 2.2e-3
Alt-Tr without curriculum
learning

11.5e−4 ± 8.6e-4 6.72e−3 ± 15.3e-3

Alt-Tr without PE 7.5e−4 ± 2.3e-4 3.46e−3 ± 2.3e-3
Alt-Tr without CNN 9.6e−4 ± 2.7e-4 3.71e−3 ± 2.6e-3
CNN 36.6e−4 ± 7.3e-4 21.26e−3 ± 15.6e-3
Vanilla transformer [39] OOM OOM

TABLE VII: Results on the test set distribution for the
reconstruction error of the spectral and spatial satellite
footprint. We compare our proposed method to a standard
CNN that uses max-pooling to aggregate tokens at the
end. Our approach, Alt-Tr, achieves superior performance.
The comparison with the vanilla Transformer is chal-
lenging due to its quadratic scaling factor in memory
consumption, which complicates training without the pos-
sibility of using masked attention to reduce requirements,
except for the proposed approach. OOM = Out of Mem-
ory.

quently used but not well-suited to mitigating cross-
polarization. Because we do not have access to each satel-
lite’s polarization plane, the antenna may end up pointing
toward satellites whose polarization planes differ from its
own, thereby exacerbating cross-polarization issues.

VII. Conclusion and Future Work

Conclusion. We have introduced the Alternating-
Transformer (Alt-Tr), a physics-aligned architecture for
joint satellite detection and characterization from pas-
sive RF spectro-spatial acquisitions. By factorizing self-
attention along the frequency and longitude axes, our
model scales efficiently to wideband data while retaining
exact global context along each dimension. A CNN to-
kenizer preserves narrow carriers, while a curriculum on
satellite proximity and a duplication-based scaling aug-

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020



Spatial
pattern
error

(MSE)

Spectral
pattern
error

(MSE)

Satellite
detection
accuracy

X band 0.0002 0.0011 98%
Ku band 0.0007 0.0052 95%

TABLE VIII: Results for the X-band and Ku-band in
terms of Spectral and Spatial pattern reconstruction er-
ror. And in terms of satellite detection accuracy for 5
acquisitions each (splitted in 15 test images of 3072x200
each).

mentation stabilize training and improve generalization.
The model’s ability to reconstruct per-satellite spectral
and spatial footprints provides operationally richer output
than conventional bounding-box detectors.
Limitations and Operational Envelope. Our single-site,
single-polarization approach faces fundamental identifia-
bility limits when satellites are spaced below the Rayleigh
criterion and have complete spectral overlap. In these
scenarios, signals merge into equivalence classes that
cannot be disambiguated without additional information
(e.g., multi-site observations). Model performance also
degrades for weak carriers with low signal-to-noise ratios.
Empirically, reliable operation is achieved for carriers
≳ 5 dB above the noise floor and for satellites sepa-
rated by at least one longitude bin (0.2◦). Other prac-
tical challenges include potential sim-to-real gaps from
uncalibrated antenna patterns, reliance on weak labels
for real data, and the absence of explicit uncertainty
quantification. Finally, our framework is currently de-
signed for the quasi-stationary geometry of geostationary
orbits; extending it to Non-Geostationary Satellite Orbits
(NGSO) presents significant challenges due to rapid satel-
lite motion, Doppler effects, and temporal warping of the
spatial signatures.
Future Work. Our primary future research directions
include:

1) Adaptation to NGSO (LEO/MEO) Orbits. Ad-
dressing NGSO tracking requires fundamentally
new approaches. The Doppler shift, negligible in
the GEO context, becomes a dominant feature.
Furthermore, the transient nature of LEO/MEO
passes results in distorted and incomplete spatial
footprints, demanding models that can characterize
satellites from partial observations.

2) Temporal Association and Tracking. We plan to
extend our model to incorporate multi-frame tem-
poral context. This could be achieved via temporal
self-attention to form tracklets from sequential
frames or by adding a higher-level expert layer that
performs data association to track satellites across
multiple revisits.

3) Multimodal Data Fusion. Fusing data from het-
erogeneous sources such as multi-band or multi-
polarization RF measurements, data from different
ground sites, or optical observations is a promis-
ing avenue for resolving ambiguities. Transformer
cross-attention is a natural mechanism for integrat-
ing such multimodal data to improve performance
in challenging, low-SNR, or highly congested sce-
narios.

In parallel, we will continue efforts on system calibra-
tion and principled uncertainty quantification to further
enhance result quality and interpretability. Collectively,
these developments aim to deliver automated, resilient,
and scalable SSA solutions that remain effective beyond
GEO and under realistic operational constraints.

Acknowledgments

This work was granted access to the HPC resources
of IDRIS under the allocation 2023-AD011014862 made
by GENCI.

Frederic Jurie was supported by the ANR under award
number ANR-19-CHIA-0017.

REFERENCES

[1] Council of the European Union European Parliament.
Regulation (eu) 2021/696 of the european parliament and of the
council.
Official Journal of the European Union, L 170:53–55, 2021.

[2] Niladri Das and Raktim Bhattacharya.
Privacy and utility aware data sharing for space situational
awareness from ensemble and unscented kalman filtering per-
spective.
IEEE Transactions on Aerospace and Electronic Systems,
57(2):1162–1176, 2021.

[3] Sevda Sahin and Tolga Girici.
Resource allocation in networked joint radar and communica-
tions.
IEEE Transactions on Aerospace and Electronic Systems, pages
1–11, 2024.

[4] Akram Al-Hourani.
In-orbit space situational awareness using doppler frequency
shift.
IEEE Transactions on Aerospace and Electronic Systems,
60(5):7542–7547, 2024.

[5] C.D. Johnson.
Handbook for New Actors in Space.
Secure World Foundation, 2017.

[6] Steredenn Daumont, Yann Picard, and Baptiste Guillot.
Device, method and program for recording the radiofrequency
activity of artificial satellites, Jan 2024.
Safran Data Systems SAS, Active. Anticipated expiration:
2042-02-02.

[7] 3GPP.
3gpp specification series: 38 series.
http://www.3gpp.org/DynaReport/38-series.htm, 2024.
Accessed: 2024-09-02.

[8] satbeams.
Satellite footprints - satbeams.
https://www.satbeams.com/footprints, 2024.
Accessed: 2024-09-02.

[9] Intelsat.
Intelsat fleet maps.

BESNARD ET AL.: SATELLITE CHARACTERIZATION USING TRANSFORMER ARCHITECTURES FOR RF SIGNAL ANALYSIS 15

http://www.3gpp.org/DynaReport/38-series.htm
https://www.satbeams.com/footprints


0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y 
st

ep
s

0 200 400 600 800 1000 1200 1400
Longitude steps 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d 
po

we
r 

max
f

(I(f, l))

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y 
st

ep
s

0 200 400 600 800 1000 1200 1400
Longitude steps 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d 
po

we
r 

max
f

(I(f, l))

Fig. 13: Spatial footprint reconstruction in the Ku band (Page 1)
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Fig. 14: Spatial footprint reconstruction in the Ku band (Page 2)
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Fig. 15: X band reconstruction of spatial footprint
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Fig. 16: Examples of reconstruction of the satellites spectral and spatial footprint in various scenario from the Ku-band
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