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Abstract

We introduce an inertial two quasi-Newton Forward-Backward Splitting Algorithms to
solve a class of monotone inclusion problems. While the inertial step is computationally
cheap, in general, the The bottleneck is the evaluation of the resolvent operator. Changing
the metric makes its computation even harder, and this is even true for a simple operator whose
resolvent is known for the standard metric. To fully exploit the advantage of adapting the
metric, we develop a new efficient resolvent calculus for a low-rank perturbed standard metric,
which accounts exactly for quasi-Newton metrics. Moreover, we prove the convergence of our
algorithms, including linear convergence rates in case one of the two considered operators is
strongly monotone. As a by-product of our general monotone inclusion framework, we ins-
tianteintroduce two variants of quasi-Newton Primal-Dual Hybrid Gradient Method (PDHG)
for solving saddle point problems. The favourable performance of these two quasi-Newton
PDHG methods is demonstrated on several numerical experiments in image processing.

1 Introduction

Nowadays, convex optimization is prevalent in many modern disciplines, especially when dealing
with large-scale datasets. There is a strong need for efficient optimization schemes to solve such
large-scale problems. Unfortunately, the high dimensionality of the problems at hand makes the
use of second-order methods intractable. A promising alternative is quasi-Newton type methods,
which aim to exploit cheap and accurate first-order approximations of the second-order information.
In particular, the so-called limited memory quasi-Newton method is highly effective for solving
unconstrained large-scale problems. However, many practical problems in machine learning, image
processing or statistics naturally have constraints or are non-smooth by constructiondesign.

A problem structure that can cover a broad class of non-smooth problems in these applications
is the following inclusion problem in a real Hilbert space H:

find x ∈ H such that (A+B)x ∋ 0 , (1)

where A : H →→ H is a maximally monotone operator, B : H → H is a single-valued β-co-coercive
operator with β > 0. As a special case, (1) comprisesincludes the setting of minimization problems
of the form

min
x∈H

f(x) + g(x) (2)

with a proper lower semi-continuous convex function f and convex function g with Lipschitz
continuous gradient by setting A = ∂f and B = ∇g.

A fundamental algorithmic scheme to tackle the problem class (1) is Forward-Backward Split-
ting (FBS). However, this algorithm may exhibit slow convergence for ill-conditioned problems,
where exploiting the second-order information to adapt to the local geometry of the problem is de-
sirable. As a computationally affordable approximation, in this paper, we propose a quasi-Newton
variant that takes advantage fromuses a variable metric that is computed solely from first-order
information. We manage to remedyaddress the main computational bottlenecks for this type of
approaches by developing an efficient low-rank variable metric resolvent calculus.
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Our approach is inspired by the proximal quasi-Newton method in [8]. We extend the framework
proposed in [8] to the resolvent setting with a “M + rank-r” or “M − rank-r” symmetric positive-
definite variable metric. We develop a resolvent calculus that allows for an efficient evaluation of
resolvent operators with respect to this type of these metrics by splitting the evaluation into two
computationally simple steps: calculatingevaluating a resolvent operator with respect to a simple
metric M , and solving a low dimensional root-finding problem. This allows for the incorporation
of popular quasi-Newton strategies, such as the limited memory SR1 or BFGS method, in our
framework. Then, we study the convergence of two variants of FBS algorithm with respect to
this type of metrics. One variant uses an inertial step which opens the door to acceleration.
Although accelerated rates are not proved yet, numerical results show that the inertial variant yields
significantly improved convergence rates. The second variant uses a relaxation techniquewhich,
enabling convergence under a weaker assumption on the variable metrics.

In order to exploitTo showcase the power and to illustrate the variety of problems that can be
solved via the framework in (1), the developed algorithms are instantiated for the following saddle
point problem:

min
x∈H1

max
y∈H2

⟨Kx, y⟩+ g(x) +G(x)− f(y)− F (y) , (3)

where g and f are lower semi-continuous convex functions, G and F are convex, differentiable with
Lipschitz-continuous gradients, ⟨·, ·⟩ denotes the innerproduct in H2 and K is a bounded linear
operator between Hilbert spaces H1 and H2. We develop a quasi-Newton primal-dual methods
that has many potential applications in image processing, machine learning or statistics [12, 19].
The numerical performance of our algorithms is tested on several experimentsand, demonstrating
a clear improvement when using our quasi-Newton methods.

1.1 Related Works

Smooth quasi-Newton. Quasi-Newton methods are widely studied and used for optimization
with sufficiently smooth objective functions [42]. Their motivationgoal is to build a cheapto design
a computationally inexpensive approximation to Newton’s method. If the approximation of the
second-order information (Hessian) is given by a positive-definite matrix, quasi-Newton methods
can be interpreted as iteratively and locally adapting the metric of the space to the objective
function. The success of these methods requiresdepends on accurately approximating the second-
order information of the objective by using the first-order information, which is stillremains an
active research area. Recently, [34] proposed a greedy strategy to select basis vectors, rather than
using the difference of successive iterates for updating the Hessian approximations. Inspired by
[34], [28] developed an approximation of the indefinite Hessian of a twice continuously differentiable
function. However, all methods mentioned above require sufficient smoothness of the objective
functions.
Non-smooth quasi-Newton. A broad class of optimization problems can be interpreted as a
composition of a smooth function f and a non-smooth function h. To deal with the non-smoothness
of h efficiently, many authors consider a combination of FBS with the quasi-Newton methods. By
using the forward-backward envelope, [31, 39] reinterpret the FBS algorithm as a variable metric
gradient method for a smooth optimization problem in order to applyto enable the application
of the classical Newton or quasi-Newton method. For a non-smooth function g as simple as an
indicator function of a non-empty convex set, [36, 37] proposed an elegant method namedcalled
projected quasi-Newton algorithm (PQN) which, however, requires either solving a subproblem or
using a diagonal metric. [26] extended PQN to a more general setting as long as the proximal
operator of h is simple to compute. For a class of low-rank perturbed metrics, [7, 8] developed
a proximal quasi-Newton method with a root-finding problem as the subproblem which can be
solved easily and efficiently. This method can be extended to the nonconvex setting [22]. Based
on [7, 8], [23] incorporated a limited-memory quasi-Newton update. The authors of [24] developed
a different algorithm to evaluate the proximal operator of the separable l1 norm with respect to
a low-rank metric V = M − UU⊤. Recently, in [25], the authors proposed a generalized damped
Newton type based on second-order generalized Hessians.

In this paper, we extend the quasi-Newton approach of [7, 8] from the nonsmooth convex
minimization setting to monotone inclusion problems of type (1). Our framework opens the door
to new problems (e.g. saddle-point problems) and algorithms (e.g., primal-dual algorithms) that
are beyond the reach of the approach initiated in [7, 8]. It is genericcommon to use a variable
metric for solving a monotone inclusion problem (see [15, 16]). Its convergence relies on quasi-Fejér
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monotonicity [15]. However, the efficient calculation of the resolvent remains an open problem.
Our approach uses a variable metric to obtain a quasi-Newton method with an efficient resolvent
calculus. Regularized Newton-type methods in continuous time, both for convex optimization
and monotone inclusions have been studied in a series of papers by Attouch and his co-authors:
[1, 3, 4, 2]. Time discretization of these dynamics gives algorithms providing insight into regularized
Newton’s method for solving monotone inclusions (see [1, 4, 2]). In [2], a relative error tolerance for
the solution of the proximal subproblem is also allowed. However, in all these papers, the Hessian
ends up being discretized.
PDHG. Primal-Dual Hybrid Gradient (PDHG) is widely used for solving saddle point problems
of the form (3). PDHG can be interpreted as a proximal point algorithm [20] with a fixed metric
applied to a monotone inclusion problem. Based on this idea, [30] proposed an inertial FBS method
applied to the sum of set-valued operators, from which a generalization of PDHG method is derived.
Also based on similar ideasSimilarly, [32] considered diagonal preconditioning to accelerate PDHG.
Their method can be regarded as using a fixed blocked matrix as a metric. Later, [29] considered
non-diagonal preconditioning and pointed out that if a special preconditioner is chosen, that kind
ofthis preconditioned PDHG method will be a special form of the linearized ADMM. Their method
requires an inner loop due to the non-diagonal preconditioning. [19] introduced an adaptive PDHG
scheme which can also be understood as using a variable metric with step size tuned automatically.
However, [19] focuses on changes to the diagonal of the metric. Our resolvent calculus in Section 3
provides another possibilityway to changemodify metrics at elements off the diagonal to dealhandle
with resolvent operators. Additionally, in [27], the author investigated inexact inertial variable
proximal point algorithm with a different condition on the inertial step and distinct assumptions
on error terms compared to ours.

2 Preliminaries

Let us recall some essential notations and definitions. Let H be a Hilbert space equipped with
an inner product ⟨·, ·⟩ and the induced norm ∥ · ∥ =

√
⟨·, ·⟩. The symbols ⇀ and → respectively

denote weak and strong convergence. ℓ1+(N) is the set of all summable sequences in [0,+∞). An
operator K ∈ B(D,H) is a linear bounded mapping from a Hilbert space D to H. The adjoint of
K is denoted by K∗. We abbreviate B(H,H) to B(H). We define S(H) := {M ∈ B(H)|M = M∗}
and the identity operator by I ∈ S(H). Without ambiguity, we also use the notation ∥M∥ for the
operator norm of M ∈ S(H) with respect to ∥ · ∥. The partial ordering on S(H) is given by

(∀U ∈ S(H))(∀V ∈ S(H)) : U ⪰ V ⇐⇒ (∀x ∈ H) : ⟨Ux, x⟩ ≥ ⟨V x, x⟩ . (4)

For σ ∈ [0,+∞), we introduce Sσ(H) := {U ∈ S(H)|U ⪰ σI)}. Similarly, we introduce S++(H) :=
{U ∈ S(H)|U ≻ 0}. In particular, S++(Rn) denotes the set of n × n real symmetric positive
definite matrices. The norm ∥ · ∥M is defined by

√
⟨M ·, ·⟩ for M ∈ S++(H). We say Q ∈ S0(H)

has finite rank r if r = dim(im(Q)). Then, there are linearly independent vectors ui such that
Q : H → H, x 7→

∑r
i=1 ⟨x, ui⟩ui. As a consequence, Q = UU∗ where U : Rr → im(Q), α 7→ Uα :=∑r

i=1 αiui is an isomorphism defined by (ui)i=1,...,r.
A set valued operator A : H →→ H is defined by its graph

GraphA := {(x, y) ∈ H|x ∈ Dom(A), y ∈ Ax} ,

and has a domain given by
Dom(A) := {x ∈ H|Ax ̸= ∅}.

Given two set-valued operators A,B : H →→ H, we define A+B : H →→ H as follows:

Dom(A+B) = Dom(A) ∩Dom(B) ,

(A+B)x = Ax+Bx := {y ∈ H|∃y1 ∈ Ax,∃y2 ∈ Bx such that y = y1 + y2} .

The inverse of A is denoted by A−1 given by A−1(y) := {x ∈ H|y ∈ Ax} and the zero set of A
is denoted by zer(A + B) := {x ∈ H|(A + B)x ∋ 0}. We say that A is γA-strongly monotone
with modulus γA ≥ 0 with respect to norm ∥ · ∥, if ⟨x− y, u− v⟩ ≥ γA∥x − y∥2 for any pair
(x, u) , (y, v) ∈ GraphA. A is maximally monotone, if for every (x, u) ∈ H ×H,

(x, u) ∈ GraphA ⇐⇒ (∀(y, v) ∈ GraphA) ⟨x− y, u− v⟩ ≥ 0 .
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For a proper, lower semi-continuous, convex function f , ∂f is maximally monotone. Here, we
adopt the common definition of the subdifferential ∂f [6, Definition 16.1] We say that a single
valued operator B is β-co-coercive with respect to norm ∥ · ∥, if ⟨x− y, u− v⟩ ≥ β∥u− v∥2 for any
pair (x, u) , (y, v) ∈ GraphB. The resolvent of A : H →→ H with respect to metric M ∈ S++(H) is
defined as

JM
A := (I +M−1A)−1 and we set JA := JI

A for the identity mapping I , (5)

which, as shown for example in [6], enjoys the following properties.

Proposition 2.1. Let A : H →→ H be maximally monotone, M ∈ S++(H) and y ∈ H. Then, the
following holds

y = JM
γA(x) ⇐⇒ x ∈ y + γM−1Ay ⇐⇒ x− y ∈ γM−1Ay ⇐⇒ (y, γ−1M(x− y)) ∈ GraphA .

(6)

Proposition 2.2. Let A : H →→ H be maximally monotone. Then, for every sequence (xk, uk)k∈N
in GraphA and every (x, u) ∈ H ×H, if xk ⇀ x and uk → u, we have (x, u) ∈ GraphA.

Lemma 2.3. Let A : H →→ H be a maximally monotone operator and let M ∈ S++(H). Then, for
any z ∈ H, we have JM

A (z) = M−1/2 ◦ JM−1/2AM−1/2 ◦M1/2(z) .

Proof. See [6, Proposition 23.34].

Lemma 2.4. If A is strongly monotone with modulus γA ≥ 0 and M ∈ S++, then JM
A is Lipschitz

continuous with respect to ∥ · ∥M with constant 1/(1 + γA

C ) ∈ (0, 1] for any C satisfying ∥M∥ ≤
C <∞.

Proof. See Appendix A.1.

Proposition 2.5 (Variable Metric quasi-Fejér monotone sequence [15]). Let σ ∈ (0,+∞), let
φ : [0,+∞)→ [0,+∞) be strictly increasing and such that limt→+∞ φ(t) = +∞, let (Mk)k∈N be in
Sσ(H), let C be a nonempty subset of H, and let (xk)k∈N be a sequence in H such that

(∃(ηk)k∈N ∈ ℓ1+(N))(∀z ∈ C)(∃(ϵk)k∈N ∈ ℓ1+(N))(∀k ∈ N) :
φ(∥xk+1 − z∥Mk+1

) ≤ (1 + ηk)φ(∥xk − z∥Mk
) + ϵk .

(7)

(a) Then (xk)k∈N is bounded and, for every z ∈ C, (∥zk − z∥Mk
)k∈N converges.

(b) If additionally, there exists M ∈ Sσ(H) such that Mk →M pointwisely, as is the case when

sup
k∈N
∥Mk∥ < +∞ and (∃(ηk)k∈N ∈ ℓ1+(N))(∀k ∈ N) : (1 + ηk)Mk ⪰Mk+1 , (8)

then (xk)k∈N converges weakly to a point in C if and only if every weak sequential cluster
point of (xk)k∈N lies in C.

A key result for our resolvent calculus in Section 3 is the following Attouch-Théra abstract
duality principle.

Lemma 2.6 (A duality result for operators [5]). Let T : H →→ H be an operator such that T−1 is
single-valued and let R : H → H be a single-valued operator. Then, the following holds for x, u ∈ H:{

0 ∈ Tx+Rx

0 ∈ R−1u− T−1(−u)
⇐⇒

{
x ∈ R−1u

−u ∈ Tx
⇐⇒

{
Rx = u

x = T−1(−u)
. (9)

Moreover, if there exists x ∈ H such that 0 ∈ Tx + Rx or there exists u ∈ H such that 0 ∈
R−1u − T−1(−u), then there exists a unique primal-dual pair (x, u) that satisfies the equivalent
conditions above.

We also need the following lemma which was stated as [33, Lemma 2.2.2].

Lemma 2.7. Let Ck ≥ 0 and let

Ck+1 ≤ (1 + νk)Ck + ζk, νk ≥ 0, ζk ≥ 0,∑
k∈N

νk <∞,
∑
k∈N

ζk <∞. (10)

Then, Ck converges to a non-negative limit.
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3 Resolvent Calculus for Low-Rank Perturbed Metric

In this section, we extend the proximal calculus of [8] to the setting of resolvent operators JV
A with

a symmetric positive definite metric V = M + sQ, where s ∈ {−1,+1}, M is symmetric positive
definite, and Q is symmetric positive semi-definite. This extension is called resolvent calculus.
Then, we show the application of our resolvent calculus to a forward-backward update step.

3.1 Resolvent Calculus

This is a key result, as it enables an efficient application of quasi-Newton methods for solving
monotone inclusion problems. Computing the resolvent operator JV

A (z) involves evaluating JM
A at

a shifted point z−M−1v∗ ∈ H, where v∗ ∈ H is derived from a root-finding problem, solvable by a
semi-smooth Newton method (Algorithm 1) or a bisection method (Algorithm 2). In conclusion, if
JM
A can be computed efficiently, the same is true for JV

A . The result crucially relies on the abstract
duality principle of Attouch-Théra [5] (see Lemma 2.6). We first state the abstract result in a
Hilbert space H in Theorem 3.1 and illustrate it in Corollary 3.3 with H = Rn, n ∈ N.

Theorem 3.1. Let A : H →→ H be a maximally monotone operator, V := M + sQ∈ S++(H) where
s ∈ {−1, 1}, M ∈ S++(H) and Q ∈ S0(H) having finite rank r. Then, the resolvent JV

A (z) can be
computed as follows:

x∗ = JV
A (z) ⇐⇒


x∗ = JM

A (z − sM−1Uα∗) and

α∗ ∈ Rr solves ℓ(α) = 0

where ℓ(α) := U∗Q−1Uα+ U∗(z − JM
A (z − sM−1Uα)) ,

(11)

where U : Rr → im(Q), α 7→ Uα :=
∑r

i=1 αiui is an isomorphism defined by any r linearly in-
dependent u1, ..., ur ∈ im(Q). The function ℓ : Rr → Rr is Lipschitz continuous with constant
∥U∗Q−1U∥ + ∥M−1/2U∥2 and strictly monotone.

Proof. See Appendix A.4.

Remark 3.2. If Q = UU∗, then U∗Q−1U = I. We will
delete it.

In finite dimensions, Theorem 3.1 simplifies to the following corollary.

Corollary 3.3. Let A : Rn →→ Rn be a maximally monotone operator and consider V := M +
sQ∈ S++(Rn) where s ∈ {−1,+1}, M ∈ S++(Rn) and Q ∈ S0(Rn). Let Q = UU⊤ where U : Rr →
Rn is a matrix of full rank r with r ≤ n. Then, the resolvent operator JV

A can be computed as
follows:

x∗ = JV
A (z) ⇐⇒


x∗ = JM

A (z−sM−1Uα∗) and

α∗ ∈ Rr solves ℓ(α) = 0

where ℓ(α) := α+ U⊤(z − JM
A (z − sM−1Uα)) .

(12)

The solution α∗ is the unique root of ℓ : Rr → Rr which is Lipschitz continuous with constant
1 + ∥M−1/2U∥2 and strictly monotone.

Proof. See Appendix A.5.

If r ≪ n, then we have a so-called low rank perturbed metric M + sUU⊤, which leads to a
root-finding problem of low dimension r. Together with the simple metric M , with respect to
which the resolvent operator is easy to evaluate, this setup leads to an efficient evaluation of a
resolvent operator with respect to a low rank perturbed metric.
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3.2 Forward-backward update step

Proximal quasi-Newton methods also incorporate a forward step, which is adapted to the metric.
In our case, the forward-backward step (the resolvent quasi-Newton step) is JV

A (z−V −1Bz) where
A : H →→ H is a maximally monotone operator, B : H → H is a single-valued operator, V =
M + sQ and Q = UU∗ for a bounded linear isomorphism U : Rr → im(Q). The resolvent calculus
(Theorem 3.1) can be directly usedapplied to the forward-backward step at the shifted point
z − V −1Bz. However, evaluating this point involves inverting V . Since V has a special structure,
we will show that the update amounts to inverting solely M without applying the Sherman-
Morrison-Woodburry formula.

Proposition 3.4. Consider the setting of Theorem 3.1. Let B be a single-valued operator. Let
Q ∈ S0(H) with Q = UU∗ for a bounded linear isomorphism U : Rr → im(Q). Then the forward-
backward step JV

A (z − V −1Bz) can be equivalently expressed by

JV
A (z − V −1Bz) = JM

A (z −M−1Bz − sM−1Uξ∗). (13)

Here, ξ∗ ∈ Rr is the unique zero of J : Rr → Rr,

J (ξ∗) := U∗(z − JM
A (z −M−1Bz − sM−1Uξ∗)) + ξ∗ = 0 . (14)

The function J is Lipschitz continuous with constant 1 + ∥M−1/2U∥2 and strictly monotone.

Proof. See Appendix A.8.

3.3 Solving the Root-Finding Problem

The efficiency of the reduction in Theorem 3.1 relies also on the solution ofsolving a root-finding
problem which we discuss thoroughly in this subsection. We consider the space Rr and the root-
finding problem with ℓ : Rr → Rr. In several instances, the root-finding problem can be solved
exactly, for example, with A = ∂g for special functions g as enumerated in [8, Table 3.1]. In such
cases, the root-finding problem simplifies to one involving the proximal operator rather than the
resolvent. Similarly, when JM

A can be represented as a composition of proximal mappings with
respect to these special functions, the associated root-finding problem can be exactly solved. In
situations where this subproblem cannot be exactly solved, we employ a semi-smooth Newton
approach which enjoys local super-linear convergence. To narrow down the neighborhood of the
sought root for r = 1, we complement the semi-smooth Newton strategy with a bisection method
in Section 3.3.2. For cases where r ≥ 1, a globalization strategy is available as shown in [38].

3.3.1 Semi-smooth Newton Methods

In order to solve ℓ(α) = 0 in (11) efficiently, we employ a semi-smooth Newton method. A locally
Lipschitz function is called semi-smooth if its Clarke Jacobian defines a Newton approximation
scheme [18, Definition 7.4.2]. If ℓ(α) is semi-smooth and any element of the Clarke Jacobian
∂Cℓ(α∗) is non-singular, then the inexact semi-smooth Newton method outlined in Algorithm 1
(analogous to [8]) can be applied. Semi-smoothness may seem restrictive. However, as shown in [9],
the broad class of tame locally Lipschitz functions is semi-smooth. We refer to [9] for the definition
of tameness. Therefore, it is sufficient to ensure ℓ(α) is tame, which is asserted if the monotone
operator A in ℓ(α) is a tame map [21]. In this case, the convergence result for Algorithm 1 can be
adapted from [8].

Proposition 3.5. Let ℓ(α) be defined as in Theorem 3.1, where A is a set-valued tame mapping.
Then ℓ(α) is semi-smooth and all elements of ∂Cℓ(α∗) are non-singular where α∗ is the unique root
of ℓ(α) from (11). In turn there exists η̄ such that if ηk ≤ η̄ for every k, there exists a neighborhood
of α∗ such that for all α0 in that neighborhood, the sequence generated by Algorithm 1 is well defined
and converges to α∗ linearly. If ηk → 0, the convergence is superlinear.

Proof. See Appendix A.6.

Example 3.6. If f is a tame function and locally Lipschitz, then by [21, Proposition 3.1], ∂f is
a tame map.
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Algorithm 1 Semi-smooth Newton method to solve ℓ(α) = 0

Initialization: A point α0 ∈ Rr. N is the maximal number of iterations.
Update for k = 0, . . . , N :
if ℓ(αk) = 0 then

stop
else

Select Gk ∈ ∂Cℓ(αk), compute αk+1 such that

ℓ(αk) +Gk(αk+1 − αk) = ek ,

where ek ∈ Rr is an error term satisfying ∥ek∥ ≤ ηk∥Gk∥ and ηk ≥ 0.
end if
End

Example 3.7. The assumption that A is a tame mapping is not restrictive. For example, in

PDHG setting we have a set-valued operator A =

(
∂g K∗

−K ∂f

)
as defined by (33). If g and f are

both tame functions, then ∂g and ∂f are tame as well [21]. As a result, A is a tame mapping.

3.3.2 Bisection

In the case where H = Rn and r = 1, we set U = u ∈ Rn×1 and solve the root-finding problem
ℓ(α) = 0 via the bisection method in Algorithm 2. A similar bound on the range of α∗ as in [8]
holds.

Proposition 3.8. Consider the setting of Corollary 3.3. For r = 1, the root α∗ of ℓ(α) = 0 in
Corollary 3.3 lies in the set [−ζ, ζ], where

ζ = ∥u∥V −1(2∥z∥V + ∥JV
A (0)∥V ) . (15)

Moreover, if V ∈ Sc(Rn) and ∥V ∥ ≤ C, then

ζ =
C

c
∥u∥(2∥z∥ + ∥JV

A (0)∥) . (16)

Proof. See Appendix A.7.

Algorithm 2 Bisection method to solve ℓ(α) = 0 when r = 1

Initialization: Tolerance ϵ ≥ 0, number of iterates N
Compute the bound ζ from (15), and set k = 0.
Set α− = −ζ and α+ = ζ.
Update for k = 0, . . . , N :
Set αk = 1

2 (α− + α+).
if ℓ(αk) > 0 then

α+ ← αk

else
α− ← αk

end if
if k > 1 and |αk − αk−1| < ϵ then

return αk

end if
End

Furthermore, we can combine the semi-smooth Newton method with the bisection method.
Since the semi-smooth Newton method is locally convergent, it requires a starting point in a
sufficiently nearclose neighborhood of the solution. Using the bisection method, we can gener-
ate a sequence of points approaching the solution. When these points reach the neighborhood
required for convergence of the semi-smooth Newton method, we transition to using the semi-
smooth Newton method to achieve faster convergence. In Proposition 3.5, α0 is required to belong
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to a neighborhood of α∗, which can be achieved by Algorithm 2, i.e., we can assert that a point α
can be found such that |α− α∗| < δ in log2((2ζ/δ)) steps, where ζ is as in (15).

4 Quasi-Newton FBS for Monotone Inclusions

We consider the monotone inclusion problem in a real Hilbert space H:

find z ∈ H such that (A+B)z ∋ 0 , (17)

where

1. A : H →→ H is a maximally monotone operator,

2. A is strongly monotone with modulus γA ≥ 0,

3. B : H → H is a single-valued β-co-coercive operator with β > 0,

4. B is strongly monotone with modulus γB ≥ 0,

5. and zer(A+B) ̸= ∅.

Note that by setting γA = 0 or γB = 0, we include the general case of monotone operators
that are not necessarily strongly monotone. The most common method to solve (17) are FBS-
type methods with respect to some metric M , which generate a sequence of points (zk)k∈N. For
instance, the major update step of the classic FBS method is given by

zk+1 = JMk

A (zk −M−1
k Bzk) . (18)

Instead of a fixed Mk ≡ M , in this paper, we derive FBS-type methods with variable metric Mk.
Before introducing our algorithms in detail, we first provide a quasi-Newton framework by which
we generate the variable metrics based on the sequence (zk)k∈N.

4.1 A General 0SR1 Quasi-Newton Metric

In this subsection, we detail a quasi-Newton framework by which we compute the variable met-
ric Mk such that the requirement of applying resolvent calculus is satisfied. We start with the
motivation. We note that if we set in the inclusion problem (17) A ≡ 0, and B = ∇f of some
convex smooth function f , the update step (18) reduces to Gradient Descent when Mk ≡ I and to
the classic Newton method when Mk = ∇2f(zk). Motivated by classic Newton and quasi-Newton
methods, we construct Mk as an approximation of Bzk at zk, i.e. we generalize the quasi-Newton
method 0SR1 from ∇f (SR1 method with 0-memory) to a co-coercive operator B. The approxi-
mation Mk shall satisfy the modified secant condition:

Mksk = yk, where yk = Bzk −Bzk−1, sk = zk − zk−1 . (19)

Choose M ∈ S++(H) to be positive-definite. When k = 0, set M0 = M . For k ≥ 1, update Mk as
follows. If ⟨yk −Msk, sk⟩ = 0, skip the update of the metric. If ⟨yk −Msk, sk⟩ ≠ 0, the update is:

Mk = M + sUkU
∗
k with s = sign(⟨yk −Msk, sk⟩) , (20)

and Uk : R→ H, α 7→ Ukα := α
√
γkûk is a bounded linear mapping with

ûk = (yk −Msk)/
√
| ⟨yk −Msk, sk⟩ | . (21)

The parameter γk ∈ [0,+∞) needs to be selected such that Mk is positive-definite.

8



4.2 Algorithms

We propose two variants of an efficiently implementable quasi-Newton Forward-Backward Splitting
(FBS) algorithm. The main update step is a variable metric FBS step of the following form:

zk+1 = JMk

A (z̄k −M−1
k Bz̄k) + ϵk ,

i.e., a forward step with respect to the co-coercive operator B, followed by a proximal point step
(computation of the resolvent) of the maximally monotone operator A, both evaluated with the
iteration dependent metric Mk from Section 4.1. Both variants account for potential errors in the
evaluation of the forward-backward step. In contrast to related works, as discussed in Section 1.1,
we emphasize the importance of efficiently implementable resolvent operators (see Section 3).

The two variants allow for more or less flexibility for the choice of the metric. Algorithm 3
combines a FBS step with an additional inertial step which has the potential of accelerating the
convergence, as we illustrate in our numerical experiments in Section 6. It is a generalization
of the algorithms in [11, 30] to a quasi-Newton variant. In [30], Lorenz and Pock proposed an
inertial Forward-Backward Splitting algorithm with a fixed metric, namely, Mk ≡ M̃ for some
M̃ ∈ S++(H), which is different from our Algorithm 3 where Mk is a variable metric Mk =
M + sUkU

∗
k with s ∈ {−1, 1}. By setting M = M̃ and Uk ≡ 0, we can retrieve the algorithm

in [30]. Algorithm 4 combines FBS with a relaxation step in (iii) which yields convergence under
weak assumptions on the metric. It generalizes the correction step introduced in [20] which can be
retrieved by setting Mk ≡M and B ≡ 0.

Algorithm 3 Inertial Quasi-Newton Forward-Backward Splitting to solve (1)

Initialization: z0 ∈ H, N ≥ 0, M ∈ S++(H), (ϵk)k∈N ⊂ H with (∥ϵk∥)k∈N ∈ ℓ1+(N)
Update for k = 0, . . . , N :

(i) Compute Mk = M + sUkU
∗
k according to the quasi-Newton framework in Section 4.1.

(ii) Compute the inertial step (extrapolation step):

z̄k=zk + αk(zk − zk−1) , (22)

(iii) and the forward-backward step:

zk+1 = JM
A (z̄k −M−1Bz̄k − sM−1Ukξk) + ϵk , (23)

where ξk solves J (ξk) = 0 and

J (ξk) := U∗
k (z̄k − JM

A (z̄k −M−1Bz̄k − sM−1Ukξk)) + ξk . (24)

End
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Algorithm 4 Relaxed Quasi-Newton Forward-Backward Splitting to solve (1)

Initialization: z0 ∈ H, N ≥ 0, M ∈ S++(H), (ϵk)k∈N ⊂ H with (∥ϵk∥)k∈N ∈ ℓ1+(N)
Update for k = 0, . . . , N

(i) Compute Mk = M + sUkU
∗
k according to the quasi-Newton framework in Section 4.1.

(ii) Compute the forward-backward step:

z̃k = JM
A (zk −M−1Bzk − sM−1Ukξk) + ϵk , (25)

where ξk solves J (ξk) = 0 and

J (ξk) := U∗
k (zk − JM

A (zk −M−1Bzk − sM−1Ukξk)) + ξk , (26)

(iii) and relaxation step:

tk =
⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩

2∥(Mk −B)(zk − z̃k)∥2
, (27)

zk+1=zk − tk[(Mk −B)(zk − z̃k)] . (28)

End

4.3 Convergence Guarantees

In this subsection, we prove the convergence of Algorithm 3 and Algorithm 4. The implementation
details for the specific quasi-Newton features were discussed in Section 3.

4.3.1 Algorithm 3: Inertial Quasi-Newton Forward-Backward Splitting

The following convergence result is a generalization of [13, Theorem 3.1] to an inertial version of
variable metric Forward-Backward Splitting.

Assumption 1. Let σ ∈ (0,+∞). (Mk)k∈N is a sequence in Sσ(H) such that{
C := supk∈N∥Mk∥ <∞ ,

(∃(ηk)k∈N ∈ ℓ1+(N))(∀k ∈ N) : (1 + ηk)Mk ⪰Mk+1 ,
(29)

and Mk − 1
2β I ∈ Sκ(H) for all k ∈ N and some κ > 0.

Theorem 4.1. Consider Problem (17) and let the sequence (zk)k∈N be generated by Algorithm 3
where Assumption 1 holds. The sequence (αk)k∈N is selected such that αk ∈ (0,Λ] with Λ <∞ and∑

k∈N
αk max{∥zk − zk−1∥Mk

, ∥zk − zk−1∥2Mk
} < +∞ .

Then (zk)k∈N is bounded and weakly converges to a point z∗ ∈ zer(A+B), i.e. zk ⇀ z∗ as k →∞.
Furthermore, if additionally we assume ϵk ≡ 0 for any k ∈ N, γA > 0 or γB > 0 and Mk− 1

β I ∈
Sκ(H) for some κ > 0, then there exist some ξ ∈ (0, 1), some Θ > 0 and some K0 ∈ N such that
for any k > K0,

∥zk− z∗∥2Mk
≤ (1− ξ)k−K0∥zK0

− z∗∥2MK0
+

k−1∑
i=K0

Θ(1− ξ)k−iαi max{∥zi− zi−1∥Mi
, ∥zi− zi−1∥2Mi

} .

(30)

Proof. See Appendix A.2.

Remark 4.2. • Using Lemma 3.1 (iv) from [14], we deduce that the second term on the right
hand of inequality (30) converges to 0.

• The linear convergence factor 1− ξ is chosen such that there exists K0 ∈ N with

(1 + ηk)

(
1− γB

C

1 + γA

C

)
≤ 1− ξ for all k ≥ K0 .
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• The convergence rate for the strongly monotone setting can be influenced by the decay rate of
αk.

(i) If αk = O(qk) for q = 1− ξ, we have convergence rate of O(kqk) for k > K0 where K0

is sufficiently large.

(ii) If αk = O( 1
k2 ), we have convergence rate of O( 1k ) for k > K0 where K0 is sufficiently

large.

Remark 4.3. In practice, Assumption 1 is hard to verify and restrictive, however, it is a common
assumption for variable metric methods [16]. It can be avoided by relaxation methods, which we
propose in the next section for this reason.

In the rest of this subsection, we provide conditions under which Mk defined in (21) meets
Assumption 1. We introduce a bounded linear mapping uk : R → H, α 7→ αûk where ûk ∈ H is
defined by (21). For convenience, we will also equate UkU

∗
k with γkuku

∗
k.

Lemma 4.4. Let M be symmetric positive-definite and B is β-co-coercive. Suppose that M − 1
β ∈

Sc(H) for c > 0. Let (ηk)k∈N ∈ ℓ1+(N).

(i) Case Mk = M+γkuku
∗
k: take γk = ηk

∥uk∥2 (1/β+c), and assume that (ηk)k∈N is non-increasing.

Then for all k ∈ N, Mk − 1
β ∈ Sc(H) and Mk verifies Assumption 1.

(ii) Case Mk = M − γkuku
∗
k: take γk = κηk

∥uk∥2 (1/β + c), where κ ∈]1/(1 + βc), 1[, and assume

that supk∈N ηk ≤ 1/κ− 1. Then Mk is positive-definite and satisfies Assumption 1.

Proof. See Appendix A.10.

Remark 4.5. The proof of Lemma 4.4 does not rely on co-coercivity of B unlike that of Lemma 4.10.
If one uses that property, and more precisely the bounds in (103), then the choice of γk can be
made independent of uk in the form γk = Cηk, where C is a positive constant that depends only
on (β, c, ∥M∥).

4.3.2 Algorithm 4: Relaxed Quasi-Newton Forward-Backward Splitting

At the expense of a relaxation instead of an inertial step, we achieve a substantial enhancement
in the flexibility of selecting the metric. This method is inspired by [20]. It is worth noting that,
without loss of generality, we assume z̃k ̸= zk for all k ∈ N, since otherwise z̃k would already solve
the inclusion problem. after a finite number of iterations.

Assumption 2. Let σ ∈ (0,+∞). (Mk)k∈N is a sequence in Sσ(H) such that:

(i) For all k ∈ N, we have (Mk − 1
β I) ∈ Sc(H), for some c > 0,

(ii) C := supk∈N∥Mk∥ <∞.

Theorem 4.6. Consider Problem (17), and let the sequence (zk)k∈N be generated by Algorithm 4
where Assumption 2 holds. Then (∥zk − z∗∥)k∈N is bounded for any z∗ ∈ zer(A+B) and (zk)k∈N
weakly converges to some z∗ ∈ zer(A+B), i.e. zk ⇀ z∗ as k →∞.
Moreover, if ϵk ≡ 0, then ∥zk − z∗∥ decreases for any z∗ ∈ zer(A+B) as k →∞. Furthermore, if
γA > 0 or γB > 0, then zk converges linearly: there exist some ξ ∈ (0, 1) such that

∥zk − z∗∥2 ≤ (1− ξ)k∥z0 − z∗∥2 . (31)

Proof. See Appendix A.3.

Remark 4.7. The linear convergence factor is given by

ξ = δ
2 min{2(γA + γB), c} , where δ = c

2(C+1/β)2 .

Remark 4.8. In [20], the authors studied a relaxed proximal point algorithm for primal-dual
splitting with a fixed metric. Our setting and Algorithm 4 here are much broadergeneral.
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Remark 4.9. It is noteworthy that Algorithm 4 can be interpreted as a closed loop system that uses
the previous iterates (states) to update the relaxation parameter tk and the quasi-Newton metric
Mk, meaning that the update does not explicitly depend on k.

In the rest of this subsection, we provide conditions under which Mk defined in (21) meets
Assumption 2. We use the same notations as previous.

Lemma 4.10. Let M be symmetric positive-definite and B is β-co-coercive. Suppose that M− 1
β ∈

Sc(H) for c > 0.

(i) If Mk = M + γkuku
∗
k, where 0 < infk∈N γk ≤ supk∈N γk < +∞, then for all k ∈ N, Mk − 1

β ∈
Sc(H) and Mk verifies Assumption 2.

(ii) If Mk = M − γkuku
∗
k, where 0 < infk∈N γk ≤ supk∈N γk < c2

(1/β+∥M∥)2 , then Mk is positive-

definite and satisfies Assumption 2.

Proof. See Appendix A.9.

5 Quasi-Newton PDHG for Saddle-point Problems

In this section, we consider a min-max problem as follows:

min
x∈H1

max
y∈H2

g(x) +G(x) + ⟨Kx, y⟩ − f(y)− F (y) (32)

with a linear mapping K : H1 → H2 and proper lower semi-continuous convex functions g : H1 →
R := R ∪ {+∞} and f : H2 → R. Additionally, we consider continuously differentiable convex
functions G : H1 → R and F : H2 → R both with Lipschitz continuous gradients. This problem
can be solved using Primal-Dual Hybrid Gradient Method (PDHG). Alternatively, the problemit
can be expressed as a special monotone inclusion problem. By Fermat’s rule, the optimality
condition for (32) is the following inclusion problem:

0 ∈ Az +Bz with z =

(
x
y

)
, whereAz =

(
∂g(x) +K∗y
−Kx+ ∂f(y)

)
andBz =

(
∇G(x)
∇F (y)

)
. (33)

Then, PDHG can be viewed as a FBS method for solving Problem (33) with a specific fixed metric
M (see Proposition 5.1).

Proposition 5.1 (PDHG update step as a special FBS update step [20]). The update step of

PDHG at some z̄k =

(
x̄k

ȳk

)
∈ H1 × H2 can be regarded as a forward-backward update step with

special metric M :
zk+1 = JM

A (z̄k −M−1Bz̄k) , (34)

where zk+1 =

(
xk+1

yk+1

)
∈ H1 × H2, M =

(
T −1 −K∗

−K Σ−1

)
with two fixed operators T ∈ S++(H1)

and Σ ∈ S++(H2) such that M ≻ 0. The latter is verified when ∥Σ1/2KT 1/2∥ < 1.

Remark 5.2. It is straightforward to verify that

M ⪰ (1− ∥Σ1/2KT 1/2∥)
(
T −1 0
0 Σ−1

)
If T = τI and Σ = σI, we can retrieve a PDHG algorithm with constant stepsizes τ > 0 and
σ > 0. Moreover, M ⪰ (1− τ1/2σ1/2∥K∥)min(τ1/2, σ1/2), and a sufficient condition for M ≻ 0 is
that τσ∥K∥2 < 1.

Remark 5.3. In Proposition 5.1, if we set z̄k = zk, we obtain the classic PDHG update step [11].
Conversely, if we set z̄k = zk + α(zk − zk−1) for some α ∈ R+, then we obtain inertial PDHG
update step [30].
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The interpretation of PDHG in Proposition 5.1 allows us to develop novel quasi-Newton PDHG
methods by instantiating the major update steps of Algorithms 3 and 4 with (33) and Mk =
M + sUkU

∗
k where s ∈ {−1, 1} and Uk as in Section 4.1. Here, M is the fixed metric from

Proposition 5.1. For Uk ∈ B(Rr,H1 × H2), we set Uk =

(
Uk,x

Uk,y

)
with Uk,x ∈ B(Rr,H1) and

Uk,y ∈ B(Rr,H2). To show how to calculate the update step using Proposition 3.4 in quasi-
Newton PDHG (Algorithm 5 and Algorithm 6), we introduce Proposition 5.4. In practice, this
turns out to be more tractable than other ways to evaluate the variable metric proximal mapping,
e.g. using coordinate descent to solve a subproblem which has the same dimension as the original
problem [35].

Proposition 5.4. The update step from z̄k =

(
x̄k

ȳk

)
(zk =

(
xk

yk

)
) to zk+1 =

(
xk+1

yk+1

)
(z̃k =

(
x̃k

ỹk

)
)

in Algorithm 5 (Algorithm 6), which is the quasi-Newton PDHG update step, reduces to compute

zk+1 = JMk

A (z̄k −M−1
k Bz̄k) ⇐⇒

{
xk+1 = JT −1

∂g (x̄k − T ∇G(x̄k)− TK∗ȳk − sT Uk,xξk)

yk+1 = JΣ−1

∂f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1 − x̄k)− sΣUk,yξk) .

(35)
where, ξk ∈ Rr is the unique zero of J : Rr → Rr:

J (ξ) = (Uk,x)
∗[x̄k − JT −1

∂g (x̄k − T ∇G(x̄k)− TK∗ȳk − sT Uk,xξ)︸ ︷︷ ︸
xk+1(ξ)

]

+ (Uk,y)
∗[ȳk − JΣ−1

∂f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1(ξ)− x̄k)− sΣUk,yξ)] + ξ .

(36)

Proof. It is a direct consequence of Proposition 3.4 and Proposition 5.1.

Algorithm 5 Inertial quasi-Newton PDHG to solve (33)

Initialization: z0 =

(
x0

y0

)
∈ H, N ≥ 0, (ϵk)k∈N ⊂ H with (∥ϵk∥)k∈N ∈ ℓ1+(N), T ∈ S++(H1),

Σ ∈ S++(H2) and M =

(
T −1 −K∗

−K Σ−1

)
Update for k = 0, . . . , N :

(i) Compute 0-SR1 metric Mk = M + sUkU
∗
k according to the quasi-Newton framework in

Section 4.1.

(ii) Compute the inertial step with parameter αk:

x̄k = xk + αk(xk − xk−1) ,

ȳk = yk + αk(yk − yk−1) .
(37)

(iii) Compute the main quasi-Newton PDHG step:

xk+1 = JT −1

∂g (x̄k − T ∇G(x̄k)− TK∗ȳk − sT Uk,xξk) + ϵk,x ,

yk+1 = JΣ−1

∂f (ȳk − Σ∇F (ȳk) + ΣK(2xk+1 − x̄k)− sΣUk,yξk) + ϵk,y,
(38)

where ξk solves J (ξk) = 0 (see (36)) and ϵk =

(
ϵk,x
ϵk,y

)
is the error caused by computation

at the k-th iterate.

End

Remark 5.5. By switching z̄k with zk and zk+1 with z̃k, we obtain the update step for Algorithm 6.
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Algorithm 6 Relaxed Quasi-Newton PDHG to solve (33)

Initialization: z0 =

(
x0

y0

)
∈ H, N ≥ 0, (ϵk)k∈N ⊂ H with (∥ϵk∥)k∈N ∈ ℓ1+(N), T ∈ S++(H1),

Σ ∈ S++(H2) and M =

(
T −1 −K∗

−K Σ−1

)
Update for k = 0, . . . , N :

(i) Compute 0-SR1 metric Mk = M + sUkU
∗
k according to the quasi-Newton framework in

Section 4.1.

(ii) Compute the main quasi-Newton PDHG step:

x̃k = JT −1

∂g (xk − T ∇G(xk)− TK∗yk − sT Uk,xξk) + ϵk,x ,

ỹk = JΣ−1

∂f (yk − Σ∇F (yk) + ΣK(2x̃k − xk)− sΣUk,yξk) + ϵk,y ,
(39)

where ξk solves J (ξk) = 0 and ϵk =

(
ϵk,x
ϵk,y

)
is the error caused by computation at the k-th

iterate.

(iii) Relaxation step:

vk := Mk

(
xk − x̃k

yk − ỹk

)
+

(
∇G(x̃k)
∇F (ỹk)

)
−

(
∇G(xk)
∇F (yk)

)
(40)

to compute the relaxation parameter tk

tk =

〈(
xk − x̃k

yk − ỹk

)
, vk

〉
2∥vk∥2

(41)

and update xk and yk as follows(
xk+1

yk+1

)
←

(
xk

yk

)
− tkvk . (42)

End

Remark 5.6. In special cases, the root-finding problem can be solved exactly. For instance, when
T = τI, Σ = σI, K = I, g ≡ 0 and f(y) = ∥y∥1, according to [8], the root-finding problem with
r = 1 is piece-wisely linear and can be solved exactly.

We would like to emphasize that using Proposition 5.4, we can avoid the computation of M−1
k

in the primal and dual setting, which is a computationally significant advantage. The convergence
of Algorithms 5 and 6 is a direct consequence of Theorems 4.1 and 4.6.

Proposition 5.7 (Convergence of quasi-Newton PDHG method). Let M0 = M as defined in (34)
and Mk = M + sUkU

∗
k for k ≥ 1.

(i) If (Mk)k∈N satisfies Assumption 1 (see e.g. Lemma 4.4), then (xk, yk) generated by Algo-
rithm 5 converges weakly to some solution of (3). Furthermore, if g and f are both strongly
convex (or G and F are both strongly convex), then we obtain the same convergence rate as
in Theorem 4.1.

(ii) If (Mk)k∈N satisfies Assumption 2 (see e.g. Lemma 4.10), then (xk, yk) generated by Algo-
rithm 6 converges weakly to some solution of (3). Furthermore, if g and f are both strongly
convex (or G and F are both strongly convex) , then we obtain linear convergence.

6 Numerical experiments

The algorithms that we analyze in the experiments are summarized in Table 1.
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Algorithm Algorithm Name Metric
FBS Foward-Backward Primal-Dual Hybrid Gradient Method M fixed as in (34)
IFBS Inertial Primal-Dual Hybrid Gradient Method M fixed as in (34)

QN-FBS
quasi-Newton
Primal-Dual Hybrid Gradient Method Gradient

Variable metric as in (21) with M0 = MM from (34)

RQN-FBS Relaxed Quasi-Newton Primal-Dual Hybrid Gradient Method Variable metric as in (21) with M0 = MM from (34)

IQN-FBS
Inertial quasi-Newton
Primal-Dual Hybrid Gradient Method

Variable metric as in (21) with M0 = MM from (34)

Table 1: Summary of algorithms used in the numerical experiments. Details are provided within
each section.

Note that PDHG is used interchangeably as FBS in the later experiments since PDHG is a
specialization of FBS.

6.1 TV-l2 deconvolution

In this experiment, we solve a problem that is used for image deconvolution [10]. Given a blurry
and noisy image b ∈ RNxNy (interpreted as a vector by stacking the Nx columns of length Ny), we
seek to find a clean image x ∈ RNxNy by solving the following optimization problem:

min
0≤x≤255

1

2
∥Lx− b∥22 + µ∥Dx∥2,1 , (43)

where L ∈ RNxNy×NxNy is a linear operator that acts as a blurring operator and ∥Dx∥2,1 imple-
ments a discrete version of the isotropic total variation norm of x using simple forward differences
in the horizontal and vertical directions with ∥D∥ ≤ 2

√
2. The parameter µ > 0 stresses the

influence of the regularization term ∥Dx∥2,1 versus the data fidelity term 1
2∥Lx− b∥2. In order to

deal withTo address the non-smoothness, we rewrite the problem as a saddle point problem:

min
x

max
y
⟨Dx, y⟩+ δ∆(x) +

1

2
∥Lx− b∥22 − δ{∥·∥2,∞≤µ}(y) , (44)

where ∆ := {x ∈ RNxNy |0 ≤ xi ≤ 255,∀i ∈ {1, . . . , NxNy}}. We can cast this problem into the
general class of problems (32) by setting K = D, f = δ{∥·∥2,∞≤λ}, G(x) = 1

2∥Lx − b∥22, F (p) = 0
and g = δ∆. Here, G is 1/β-smooth with β = 2/3 as we took ∥L∥2 ≤ 3/2. Let zk = (xk, yk) be
the primal-dual iterate sequence. Choosing T = τI = 0.05I and Σ = σI = 0.05I, it follows from
Proposition 5.1 and Remark 5.2 that M − 1

β I ⪰ (16− 3/2)I > 0 as desired. We compute the low-

rank part Qk = γkuku
⊤
k by (21) with Bzk =

(
L⊤Lxk−L⊤b

0

)
which is of course β-co-coercive. This

leads to a metric that affects only the primal update. In each iteration, we use the semi-smooth
Newton method (Algorithm 1) to locate the root.

Figure 1 shows the primal gap against the number of iterations and against the time (seconds),
where the optimal primal value was computed by running the original PDHG method for 10000
iterations. For the variable metric at iteration k, we fixed γk = min(0.8, 15/∥uk∥22). Thus, As-
sumption 2 is satisfied and the convergence of RQN-FBS (Algorithm 4) is guaranteed. Although
Assumption 1 can be guaranteed by appropriately defining (ηk)k∈N in the view of Lemma 4.4, we
choose not to include the condition that (1+ηk)Mk ⪰Mk+1 with (ηk)k∈N ∈ ℓ1+(N) in the numerical
experiments. This decision comes from the challenge of setting (ηk)k∈N in practicewas made due
to the practical difficulties in setting (ηk)k∈N and the concern that imposing stringent conditions
on (ηk)k∈N in advance might negate the benefits of utilizing a variable metric. In this practical
problem, we still observe the convergence of IQN-FBS (Algorithm 3). We notice that our quasi-
Newton type algorithms IQN-FBS, RQN-FBS and QN-FBS are much faster than original FBS
algorithm and inertial FBS (IFBS) according to the left plot in Figure 1. This can be explained by
the fact that the Hessian of G(x) is not the identity. By applying our quasi-Newton SR1 methods,
we can adapt the metric to the local geometry of the objective. Even though we are concerned
about the cost of solving the root-finding problem, the right plot illustrates the additionalthat the
extra iterations can pay off , as shown by the convergence results over time. Quasi-Newton type
algorithms (QN-FBS, IQN-FBS) achieve higher accuracy compared to FBS and IFBS within the
same amount of time.
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Figure 1: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with µ = 0.0001, τ = 0.05, σ = 0.05 and inertial parameter α0 = 10,
αk = 10

k1.1(max{∥zk−zk−1∥,∥zk−zk−1∥2}) . The left plot depicts the convergence against the number of

iterationsillustrates convergence in terms of the number of iterations, while the right plot shows the
convergence with respect to time (seconds). We observe that our two quasi-Newton type algorithm
QN-, and IQN-FBS significantly outperform the original FBS and IFBS algorithm.

6.2 TV-l2 deconvolution with infimal convolution type regularization

A source of optimization problems that fits (32) is derived from the following:

min
x∈Rn

g(x) +G(x) + (f□h)(Dx), (45)

where f□h(·) := infv∈Rm f(v)+h(·−v) denotes the infimal convolution of f and h. As a prototypical
image processing problem, we define a regularization term as the infimal convolution between the
total variation norm and a weighted squared norm, i.e. g = 0, G(x) = 1

2∥Lx− b∥2, h(·) = 1
2∥W · ∥

2

and f(·) = µ∥ · ∥2,1. This yields the problem:

min
x

1

2
∥Lx− b∥2 + µR(Dx) (46)

where R(·) := infv∈Rm ∥v∥2,1 + 1
2µ∥W (· − v)∥2, W is a diagonal matrix of weights which is given

to favor discontinuities along image edges and L, b, D are defined as in the first experiment. In
practice, W can be computed by additional edge finding steps or by extra information. Here, we
select W such that 1

6 ≤ ∥W∥
2 ≤ 1. The optimization problem (46) given in primal type can be

converted into the saddle point problem:

min
x

max
y
⟨Dx, y⟩+ 1

2
∥Lx− b∥2 − δ{∥·∥2,+∞≤µ}(y)−

1

2
∥W−1y∥2 . (47)

We compute the low-rank part Qk = γkuku
⊤
k by (21) with Bzk =

(
L⊤Lxk−L⊤b

(W−1)∗W−1yk

)
. This approach

constructs a metric that affects both the primal and dual update. Here, B is β-co-coercive with
β ≥ 1/6. In each iteration, we combine the bisection method (Algorithm 2) with the semi-smooth
Newton method (Algorithm 1) to locate the root.

Figure 2 also shows the primal gap where the optimal primal value was computed by running
original PDHG for 10000 iterates. For the variable metric at iterate k, we fixed γk = 0.64,
T = τI = 0.01I and Σ = σI = 0.01I. Thus, by Lemma 4.10, Assumption 2 is satisfied. As for
Assumption 1, we follow the same strategy as in the previous experiment and drop the condition
that (1 + ηk)Mk ⪰ Mk+1with (ηk)k∈N ∈ ℓ1+(N) in this numerical experiment. We can observe
from Figure 2: IQN-FBS is still the fastest one. Moreover, the two quasi-Newton type methods
(IQN-FBS and QN-FBS) converge more quickly than IFBS and FBS. Inertial methods (IQN-FBS,
IFBS) are slightly faster than QN-FBS and FBS, respectively.
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Figure 2: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with µ = 0.5, τ = 0.01I, σ = 0.01 and the extrapolation parameter
α0 = 1, αk = min{ 10

k1.1(max{∥zk−zk−1∥,∥zk−zk−1∥2}) , 1}. Our quasi-Newton type algorithm IQN-FBS

can converge faster than the original FBS and IFBS algorithm.

6.2.1 Image denoising

We consider the same setting as in (47). By setting L = I in (47), we derive an image denoising
problem with a special norm defined by infimal convolution of total variation and weighted norm,
which has strong convexity for both primal part and dual part. Besides, due to the simple formula,
we obtain the dual problem explicitly, allowing us to calculate the primal and dual gap. The dual
problem reads

max
∥y∥2,∞≤1

−1

2
∥D∗y − b∥2 − 1

2
∥W−1y∥2 . (48)
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Figure 3: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with µ = 0.1, τ = 0.1, σ = 0.1 and extrapolation parameter α0 = 10,
αk = 10

max{k1.1,k1.1∥zk−zk−1∥2} . The plot shows that all algorithms converge linearly and faster than

O( 1
1.1k

).

Figure 3 shows the convergence of the primal-dual gap. For constructing Qk, we set γk =
1

∥uk∥2 , T = τI = 0.1I and Σ = σI = 0.1I. Assumption 2 is satisfied. However, Assumption 1

is not satisfied since we do not include the condition that (1 + ηk)Mk ⪰ Mk+1with (ηk)k∈N ∈
ℓ1+(N) in this numerical experiment. As observed in Figure 3, quasi-Newton type methods exhibit
linear convergence as expected from Theorem 4.1 and 4.6. However, Figure 3 shows that in this
experiment quasi-Newton type algorithms are in fact not more efficient compared to FBS or IFBS,
which is plausible due to the well-conditioned H = I.
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6.3 Conclusion

In this paper, we extend the framework of [8] for variable metrics to the setting of resolvent opera-
tors, solving efficiently the monotone inclusion problem ((1)) consisting of a set-valued operator A
and a co-coercive operator B. We propose two variants of quasi-Newton Forward-Backward Split-
ting. We develop a general efficient resolvent calculus that applies to this quasi-Newton setting.
The convergence of the variant with relaxation requires mild assumptions on the metric which are
easy to satisfy, whereas the other variant implements an inertial feature and is therefore often fast.
As a special case of this framework, we develop an inertial quasi-Newton primal-dual algorithm that
can be flexibly applied to a large class of saddle point problems. Throughout the paper, we employ
a rank-1 perturbed variable metric denoted as Mk = M+sUkU

∗
k with r = 1 and Uk : R→ H which

is generated using the 0-memory SR1 method. Alternatively, one can generate the variable metric
using an m-memory quasi-Newton method (refer to [23, 41]), wherein Uk : Rm → H. Consequently,
we are able to derive an m-memory quasi-Newton primal-dual method.

Another potential application of our resolvent calculus in Theorem 3.1 lies in non-diagonal pre-
conditioning of the primal-dual method (PDHG). Moreover, there are many directions to improve
our methods. Further investigation is needed to develop an optimal sequence of variable metrics
(Mk)k∈N. Given that our variable metrics are currently designed solely based on the geometry of
the single valued operator B, it is reasonable to explore a metric that adapts to both operators A
and B. Additionally, there remains an open question regarding how to eliminate the condition that
the growth of Mk is controlled by a summable sequence (ηk)k∈N while ensuring fast convergence.
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Appendices

A Appendix

A.1 Proof of Lemma 2.4

Proof. This proof is adapted from [6]. Let (u, v) = (JM
A (x), JM

A (y)) for some x, y ∈ H. By the
definition of resolvent operator JM

A , we obtain

u = JM
A (x) ⇐⇒ M(x− u) ∈ Au .

Similarly, we obtain M(y − v) ∈ Av. Then γA-strong monotonicity of A yields

⟨M(x− u)−M(y − v), u− v⟩ ≥ γA∥u− v∥2

⟨M(x− y), u− v⟩ − ⟨M(u− v), u− v⟩ ≥ γA∥u− v∥2

⟨M(x− y), u− v⟩ ≥ γA∥u− v∥2 + ∥u− v∥2M .

Since ∥M∥ is bounded by C, we obtain

⟨M(x− y), u− v⟩ ≥ γA∥u− v∥2 + ∥u− v∥2M ≥ (1 + γA

C )∥u− v∥2M . (49)

Consequently, JM
A is (1+ γA

C )-co-coercive in the metric M and Lipschitz continuous with constant
1/(1 + γA

C ) with respect to the norm ∥ · ∥M .

A.2 Proof of Theorem 4.1

Proof. For convenience, we set Bk := M−1
k B. Fix z ∈ zer(A + B) which is equivalent to z =

JMk

A (z −Bkz). We set ẑk+1 := JMk

A (z̄k −Bkz̄k), i.e., zk+1 = ẑk+1 + ϵk.
Boundedness:
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First, we are going to show that ∥zk− z∥Mk
is bounded. The following are several useful estimates

we will use later. Assumption 1 yields

∥zk+1 − z∥2Mk+1
≤ (1 + ηk)∥zk+1 − z∥2Mk

. (50)

Since zk+1 = ẑk+1 + ϵk, it follows that

∥zk+1 − z∥2Mk
= ∥ẑk+1 − z + ϵk∥2Mk

≤ ∥ẑk+1 − z∥2Mk
+ 2∥ϵk∥Mk

∥ẑk+1 − z∥Mk
+ ∥ϵk∥2Mk

. (51)

The assumption that B is β-co-coercive yields that

⟨z̄k − z,Bkz̄k −Bkz⟩Mk
= ⟨z̄k − z,Bz̄k −Bz⟩ ≥ β∥Bz̄k −Bz∥2 . (52)

The assumption that Mk − 1
2β I ∈ Sκ(H) yields that 2βI −M−1

k ∈ S++(H).
The co-coercivity of B and monotonicity of B yield the following estimates (I) and (II) respectively:

∥(z̄k −Bkz̄k)− (z −Bkz)∥2Mk
= ∥z̄k − z∥2Mk

− 2 ⟨z̄k − z,Bkz̄k −Bkz⟩Mk
+ ∥Bkz̄k −Bkz∥2Mk

(i)
= ∥z̄k − z∥2Mk

− 2 ⟨z̄k − z,Bz̄k −Bz⟩+ ∥Bz̄k −Bz∥2
M−1

k

(ii)

≤ ∥z̄k − z∥2Mk
− ∥Bz̄k −Bz∥2

2β−M−1
k

(I)

or

(iii)

≤ ∥z̄k − z∥2Mk
− ∥Bz̄k −Bz∥2

β−M−1
k

− γB∥z̄k − z∥2 , (II)

where (i) uses ∥Bkz̄k−Bkz∥2Mk
= ∥Bz̄k−Bz∥2

M−1
k

, (ii) uses (52) and (iii) uses strong monotonicity

of B. Note that we use the shorthand β − M−1
k for βI − M−1

k . The fact that JMk

A is firmly
non-expansive since A is maximally monotone with respect to Mk implies that

∥ẑk+1 − z∥2Mk
= ∥JMk

A (z̄k −Bkz̄k)− JMk

A (z −Bkz)∥2Mk

≤ ∥(z̄k −Bkz̄k)− (z −Bkz)∥2Mk

− ∥(I − JMk

A )(z̄k −Bkz̄k)− (I − JMk

A )(z −Bkz)∥2Mk

≤ ∥z̄k − z∥2Mk
− ∥Bz̄k −Bz∥2

2β−M−1
k

− ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk
,

(53)

where the last inequality uses (I). It follows from Assumption 1 that the term ∥Bz̄k−Bz∥2
2β−M−1

k

≥
0. We continue to bound the first term on the right hand side of (53). Using [6, Lemma 2.14] and
the definition of z̄k, we obtain the following:

∥z̄k − z∥2Mk
= (1 + αk)∥zk − z∥2Mk

− αk∥zk−1 − z∥2Mk
+ (1 + αk)αk∥zk − zk−1∥2Mk

, (54)

and by using the triangle inequality, we also obtain another estimation:

∥z̄k − z∥Mk
≤ (1 + αk)∥zk − z∥Mk

+ αk∥zk−1 − z∥Mk
. (55)
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In order to address complete update step, we make the following estimation:

∥zk+1 − z∥2Mk+1
≤ (1 + ηk)∥zk+1 − z∥2Mk

(i)

≤ (1 + ηk)
(
∥ẑk+1 − z∥2Mk

+ 2∥ϵk∥Mk
∥ẑk+1 − z∥Mk

+ ∥ϵk∥2Mk

)
(ii)

≤ (1 + ηk)
(
∥z̄k − z∥2Mk

+ 2∥ϵk∥Mk
∥z̄k − z∥Mk

+ ∥ϵk∥2Mk

− ∥Bz̄k −Bz∥2
2β−M−1

k

− ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk

)
(iii)

≤ (1 + ηk)
(
(1 + αk)∥zk − z∥2Mk

− αk∥zk−1 − z∥2Mk

+ (1 + αk)αk∥zk − zk−1∥2Mk

+ 2∥ϵk∥Mk
((1 + αk)∥zk − z∥Mk

+ αk∥zk−1 − z∥Mk
)

+ ∥ϵk∥2Mk
− ∥Bz̄k −Bz∥2

2β−M−1
k

− ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk

)
(iv)

≤ (1 + ηk)
(
∥zk − z∥2Mk

+ αk(∥zk − z∥Mk
− ∥zk−1 − z∥Mk

)(∥zk − z∥Mk
+ ∥zk−1 − z∥Mk

)

+ (1 + αk)αk∥zk − zk−1∥2Mk

+ 2∥ϵk∥Mk
((1 + αk)∥zk − z∥Mk

+ αk∥zk−1 − z∥Mk
)

+ ∥ϵk∥2Mk
− ∥Bz̄k −Bz∥2

2β−M−1
k

− ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk

)
(v)

≤ (1 + ηk)
(
∥zk − z∥2Mk

+ αk∥zk − zk−1∥Mk
(∥zk − z∥Mk

+ ∥zk−1 − z∥Mk
)

+ (1 + αk)αk∥zk − zk−1∥2Mk
+ 2∥ϵk∥Mk

((1 + αk)∥zk − z∥Mk
+ αk∥zk−1 − z∥Mk

)

+ ∥ϵk∥2Mk
− ∥Bz̄k −Bz∥2

2β−M−1
k

− ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk

)
.

(56)

where (i) uses (51), (ii) uses (53), (iii) uses (54) and (55), (iv) uses factorization of the quadratic,
and (v) uses the triangle inequality to obtain the bound ∥zk−z∥Mk

−∥zk−1−z∥Mk
≤ ∥zk−zk−1∥Mk

.
Now, our goal is to conclude boundedness using Lemma 2.7. For simplicity, we set:

ek := αk∥zk − zk−1∥2Mk

rk := αk∥zk − zk−1∥Mk

θk := ∥zk − z∥Mk

mk := ∥zk−1 − z∥Mk

pk := ∥Bz̄k −Bz∥2
2β−M−1

k

qk := ∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk
.

By Assumption 1, we have mk ≤ (1 + ηk−1)θk−1. Without loss of generality, we can assume
0 < ηk < 1 for any k ∈ N. Replacing each term in (56) with new corresponding notations, we
obtain:

θ2k+1 ≤ (1 + ηk)
(
θ2k + rk(θk +mk)

+ (1 + αk)ek + 2∥ϵk∥Mk
((1 + αk)θk + αkmk) + ∥ϵk∥2Mk

− pk − qk
)

≤ (1 + ηk)
(
θ2k + rk(θk + (1 + ηk−1)θk−1)

+ (1 + αk)ek + 2∥ϵk∥Mk
((1 + αk)θk + αk(1 + ηk−1)θk−1) + ∥ϵk∥2Mk

)
≤ (1 + ηk)

(
θ2k + rk(θk + 2θk−1) + (1 + Λ)ek + 2∥ϵk∥Mk

((1 + Λ)θk + 2Λθk−1) + ∥ϵk∥2Mk

)
,

(57)

where the last inequality uses 0 < αk ≤ Λ and 0 < ηk < 1. Now, we claim that θk is bounded in
two steps. We introduce an auxiliary bounded sequence (Ck)k∈N (step 1) such that θk ≤ Ck for
any k ∈ N (step 2). The boundedness of θk follows from that of Ck.
Step1: We construct a sequence Ck as the following:{

C0 = max{θ0, 1} ,
Ck+1 = (1 + ηk)Ck + νk ,

(58)
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where νk = (1 + ηk)((1 + Λ)ek + 2rk + (1 + 3Λ)∥ϵk∥Mk
). From our assumptions, it holds that

(Mk)k∈N is bounded from above, (rk)k∈N ∈ ℓ1+(N), (ek)k∈N ∈ ℓ1+(N) and (∥ϵk∥)k∈N ∈ ℓ1+(N), which
implies (νk)k∈N ∈ ℓ1+(N). Using Lemma 2.7, we obtain the convergence of Ck to some C∞ < +∞.
Step2: From the update step of (58), we observe that (Ck)k is a non-decreasing sequence and
Ck ≥ 1 for any k ∈ N. We claim that for each k, θk ≤ Ck. We argument by induction. Clearly, we
have θ0 ≤ C0. Assume θi ≤ Ci holds true for i ≤ k. Then, (57) yields that

θ2k+1 ≤ (1 + ηk)
(
C2

k + rk(Ck + 2Ck−1) + (1 + Λ)ek + 2∥ϵk∥Mk
((1 + Λ)Ck + 2ΛCk−1) + ∥ϵk∥2Mk

)
(∗)
≤ (1 + ηk)

(
C2

k + 4rkCk + 2(1 + Λ)ekCk + 2(1 + 3Λ)∥ϵk∥Mk
Ck + ∥ϵk∥2Mk

)
≤ (1 + ηk)

(
Ck + 2rk + (1 + Λ)ek + (1 + 3Λ)∥ϵk∥Mk

)2
,

(59)

where (∗) uses Ck ≥ Ck−1 ≥ 1 and rk > 0. By the definition of Ck+1, we obtain

θk+1

(i)

≤
√
1 + ηk

(
Ck + 2rk + (1 + Λ)ek + (1 + 3Λ)∥ϵk∥Mk

)
(ii)

≤ (1 + ηk)Ck + (1 + ηk)(2rk + (1 + Λ)ek + (1 + 3Λ)∥ϵk∥Mk
)

(iii)

≤ (1 + ηk)Ck + νk

= Ck+1 ,

(60)

where (i) uses (59), (ii) holds true since (1+ ηk) > 1 and (iii) uses definition of νk. This concludes
the induction, and we deduce that θk is bounded and therefore, zk and z̄k are both bounded.
Weak convergence:
This part of the proof is adapted from the one for [13, Theorem 4.1]. Since θk is bounded, we set
ζ := supk∈N θk. The last inequality in (56) implies that

θ2k+1 ≤ (1 + ηk)
(
θ2k + rk(ζ + 2ζ) + (1 + Λ)ek + 2(1 + 3Λ)∥ϵk∥Mk

ζ + ∥ϵk∥2Mk
− pk − qk

)
≤ (1 + ηk)

(
θ2k + 3rkζ + (1 + Λ)ek + 2(1 + 3Λ)∥ϵk∥Mk

ζ + ∥ϵk∥2Mk
− pk − qk

)
≤ θ2k + ηkθ

2
k + (1 + ηk)

(
3rkζ + (1 + Λ)ek + (2 + 6Λ)∥ϵk∥Mk

ζ + ∥ϵk∥2Mk

)
− pk − qk

≤ θ2k + ηkζ
2 + 2(3rkζ + (1 + Λ)ek + (2 + 6Λ)∥ϵk∥Mk

ζ + ∥ϵk∥2Mk
)︸ ︷︷ ︸

δk

−pk − qk .

(61)

We set δk := ηkζ
2+2(3rkζ+(1+Λ)ek+(2+6Λ)∥ϵk∥Mk

ζ+∥ϵk∥2Mk
) and observe that (δk)k∈N ∈ ℓ1+(N).

Now, (61) yields that
θ2k+1 ≤ θ2k + δk . (62)

Using (62) and Lemma 2.7, we obtain the convergence of θ2k = ∥zk − z∥2Mk
for any z ∈ zer(A+B).

Rearranging (61) to pk ≤ θ2k − θ2k+1 + δk, using Assumption 1 and summing it for k = 0, · · · , N ,

there exists some ε := ρmin(2βI −M−1
k ) > 0 s.t.

ε

N∑
k=0

∥Bz̄k −Bz∥2 ≤
N∑

k=0

∥Bz̄k −Bz∥2
2β−M−1

k

=

N∑
k=0

pk ≤ θ20 − θ2N +

N∑
k=0

δk ≤ ζ2 +

N∑
k=0

δk . (63)

Since (δk)k∈N ∈ ℓ1+(N), by taking limit as N → +∞, we obtain∑
k∈N
∥Bz̄k −Bz∥2 ≤ 1

ε2
(ζ2 +

∑
k∈N

δk) < +∞ . (64)

Similarly, we obtain from (61) using qk ≤ θ2k − θ2k+1 + δk that∑
k∈N
∥(z̄k − ẑk+1)− (Bkz̄k −Bkz)∥2Mk

< +∞ . (65)

Set z∗ as an arbitrary weak sequential cluster point of (zk)k∈N, namely, a subsequence zkn ⇀ z∗

as n→∞.
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In order to obtain weak convergence of zk, by Proposition 2.5 with φ(t) = t2, (62) and As-
sumption 1, it suffices to show that z∗ ∈ zer(A+B). It follows from the selection of αk that:

∥z̄k − zk∥ ≤ αk∥zk − zk−1∥ → 0 . (66)

Thus, (66) yields z̄kn
⇀ z∗. From (64), we obtain that Bz̄kn

→ Bz as n → ∞. Since B is
co-coercive, it is maximally monotone and we can use the weak strong graph closedness of B in
Proposition 2.2 to infer that (z∗, Bz) ∈ GraphB, i.e. Bz ∈ Bz∗. However, since B is single valued,
we obtain Bz∗ = Bz and hence Bz̄kn → Bz∗. Setting uk := Mk(z̄k − ẑk+1)−Bz̄k, by definition of
the resolvent JMk

A , we have uk ∈ A(ẑk+1) for all k ∈ N. From (65), we obtain as k → +∞,

∥uk +Bz∗∥ = ∥Mk(z̄k − ẑk+1 −Bkz̄k +Bkz
∗)∥

≤ C∥z̄k − ẑk+1 −Bkz̄k +Bkz
∗∥

≤ C√
σ
∥z̄k − ẑk+1 −Bkz̄k +Bkz

∗∥Mk
→ 0 .

(67)

Furthermore, from (64) and (65), we have

∥z̄k − ẑk+1∥ ≤ ∥z̄k − ẑk+1 −Bkz̄k +Bkz
∗∥ + ∥Bkz̄k −Bkz

∗∥

≤ ∥z̄k − ẑk+1 −Bkz̄k +Bkz
∗∥ + 1√

σ
∥Bz̄k −Bz∗∥ → 0 .

(68)

Therefore, together with (68), z̄kn ⇀ z∗ implies ẑkn+1 ⇀ z∗ as n → ∞. Now we already have
ukn → −Bz∗ as n→∞ and

(∀k ∈ N) : (ẑkn+1, ukn
) ∈ GraphA . (69)

Since A is maximally monotone and using Proposition 2.2, we infer that −Bz∗ ∈ Az∗, hence
z∗ ∈ zer(A+B). As mentioned above, the result follows from Proposition 2.5 with φ(t) = t2.
Convergence rate:
In the following part, we are going to show the convergence rate of Algorithm 3: Assume ϵk ≡ 0
for k ∈ N and either γA > 0 or γB > 0. Because of (50), Assumption 1 and Lipschitz continuity of
JMk

A , we obtain for any z ∈ zer(A+B) that

∥zk+1 − z∥2Mk+1
≤ (1 + ηk)∥zk+1 − z∥2Mk

Lemma 2.4
≤ (1 + ηk)

( 1

1 + γA

C

)2

∥(z̄k −Bkz̄k)− (z −Bkz)∥2Mk

(i)

≤ (1 + ηk)
( 1

1 + γA

C

)2(
∥z̄k − z∥2Mk

− ∥Bz̄k −Bz∥2
β−M−1

k

− γB∥z̄k − z∥2
)

(ii)

≤ (1 + ηk)
( 1

1 + γA

C

)2

(1− γB
C

)
(
∥z̄k − z∥2Mk

)
(iii)
= (1 + ηk)

(1− γB

C )

(1 + γA

C )2
(
(1 + αk)∥zk − z∥2Mk

− αk∥zk−1 − z∥2Mk

+ (1 + αk)αk∥zk − zk−1∥2Mk

)
= (1 + ηk)

(1− γB

C )

(1 + γA

C )2
(
∥zk − z∥2Mk

+ αk(∥zk − z∥2Mk
− ∥zk−1 − z∥2Mk

)

+ (1 + αk)αk∥zk − zk−1∥2Mk

)
(iv)

≤ (1 + ηk)
(1− γB

C )

(1 + γA

C )2
(
∥zk − z∥2Mk

+ αk∥zk − zk−1∥Mk
(∥zk − z∥Mk

+ ∥zk−1 − z∥Mk
) + (1 + αk)αk∥zk − zk−1∥2Mk

)
(v)

≤ (1 + ηk)
(1− γB

C )

(1 + γA

C )2
(
∥zk − z∥2Mk

+ αk∥zk − zk−1∥Mk
(∥zk − z∥Mk

+ (1 + ηk−1)∥zk−1 − z∥Mk−1
) + (1 + αk)αk∥zk − zk−1∥2Mk

)
(vi)
= (1 + ηk)

(1− γB

C )

(1 + γA

C )2
(
∥zk − z∥2Mk

+ 3αkζ∥zk − zk−1∥Mk

+ (1 + Λ)αk∥zk − zk−1∥2Mk

)

(70)
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where (i) uses (II), (ii) uses the fact Mk is bounded uniformly and the assumption that Mk− 1
β I ∈

Sκ(H), (iii) uses (54), (iv) uses factorization of the quadratic and uses the triangle inequality to
obtain the bound ∥zk − z∥Mk

− ∥zk−1 − z∥Mk
≤ ∥zk − zk−1∥Mk

, (v) uses Assumption 1 and (vi)

uses boundedness of αk and ∥zk − z∥Mk
. Since either γA > 0 or γB > 0,

1− γB
C

(1+
γA
C )2

< 1. Then there

exists sufficient large K0 > 0 such that for any k > K0, (1 + ηk)
(

1− γB
C

(1+
γA
C )2

)
< 1 − ξ < 1 for some

ξ ∈ (0, 1). Thus, we infer that for any k > K0:

∥zk−z∥2Mk
≤ (1−ξ)k−K0∥zK0−z∥2MK0

+

k−1∑
i=K0

(1−ξ)k−iαi(3ζ∥zi−zi−1∥Mi +(1+Λ)∥zi−zi−1∥2Mi
) .

(71)
Let Θ = 3ζ + (1 + Λ). Therefore (71) can be simplified as the following:

∥zk−z∥2Mk
≤ (1−ξ)k−K0∥zK0

−z∥2MK0
+

k−1∑
i=K0

Θ(1−ξ)k−iαi max{∥zi−zi−1∥Mi
, ∥zi−zi−1∥2Mi

} . (72)

Since zk is bounded and Mk ∈ Sσ(H), it follows that

∥zk − z∥2 ≤ 1
σ (1− ξ)k−K0∥zK0

− z∥2MK0
+O(

k−1∑
i=K0

(1− ξ)k−iαi) . (73)

Furthermore, if αi ≡ 0, for k > K0 and for any z ∈ zer(A+B), we obtain linear convergence:

∥zk+1 − z∥2 ≤ 1

σ
(1− ξ)k−K0∥zK0

− z∥2MK0
. (74)

If αk ̸= 0, αk = O( 1
k2 ) and K0 large enough, then ∥zk+1 − z∥2 converges in the rate of O( 1k ) for

k > K0 according to [33, Lemma 2.2.4 (Chung)]; if αk ̸= 0 and αk = O(qk) for q = 1 − ξ and
k > K0, then ∥zk+1 − z∥2 converges in the rate of O(kqk) for k > K0 since (73).

A.3 Proof of Theorem 4.6

Proof. For simplicity, we set{
ẑk := JMk

A (zk −M−1
k Bzk), and, z̃k = ẑ + ϵk ,

δk := max{1, ρ}∥ϵk∥ ,
(75)

where ρ = 1
2

√
C
σc (C + 1

β ) and (δk)k∈N ∈ ℓ1+(N). We set z∗ such that −Bz∗ ∈ Az∗.

Boundedness:
We claim that by choosing proper tk for each k ∈ N, we have

∥zk+1 − z∗∥ ≤ ∥zk − z∗∥ + δk. (76)

Note that if (76) is satisfied, it follows from Lemma 2.7 that ∥zk − z∗∥ is bounded and converges.
To stress the relation between zk+1 and tk, we define z(t) := zk − t[(Mk −B)(zk − z̃k)] and we

will use zk+1 and z(tk) interchangeably. We also set γk(t) := (δk + ∥zk − z∗∥)2 − ∥z(t)− z∗∥2.
In order to prove (76), it is sufficient to show that for proper tk at each iterate, γk(tk) > 0. It

results from the definition of γk(tk) that

γk(t) = (∥zk − z∗∥ + δk)
2 − ∥z(t)− z∗∥2

= ⟨zk − z∗ + z(t)− z∗, zk − z(t)⟩+ 2δk∥zk − z∗∥ + δ2k

= 2t ⟨zk − z∗, (Mk −B)(zk − z̃k)⟩︸ ︷︷ ︸
(I)

− t2∥(Mk −B)(zk − z̃k)∥2︸ ︷︷ ︸
(II)

+ 2δk∥zk − z∗∥ + δ2k .

(77)

We need several useful properties to estimate (I) and (II).
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It follows from the definition of ẑk that −Mk(ẑk−zk)−Bzk ∈ Aẑk, and γA-strong monotonicity
of A implies that

γA∥ẑk − z∗∥2 ≤ ⟨ẑk − z∗,−Mk(ẑk − zk)−Bzk +Bz∗⟩
= ⟨ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk −Bẑk +Bz∗⟩
= ⟨ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk⟩ − ⟨ẑk − z∗, Bẑk −Bz∗⟩ .

(78)

We deduce by (78) and γB-strong monotonicity of B that

⟨ẑk − z∗,Mk(zk − ẑk)−Bzk +Bẑk⟩ ≥ ⟨ẑk − z∗, Bẑk −Bz∗⟩+ γA∥ẑk − z∗∥2

≥ γB∥ẑk − z∗∥2 + γA∥ẑk − z∗∥2 .
(79)

JMk

A is Lipschitz since A is monotone. Therefore,

∥ẑk − z∗∥2Mk
≤ ∥(zk −Bkzk)− (z∗ −Bkz

∗)∥2Mk

= ∥zk − z∗∥2Mk
− 2 ⟨zk − z∗, Bkzk −Bkz

∗⟩Mk
+ ∥Bkzk −Bkz

∗∥2Mk

≤ ∥zk − z∗∥2Mk
− ∥Bzk −Bz∥2β−M−1

k

(∗)
≤ ∥zk − z∗∥2Mk

,

(80)

where (∗) uses Assumption 2 that Mk− 1
β I ∈ Sc(H). Using the assumption that Mk− 1

β I ∈ Sc(H)
again, we obtain

⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩ ≥ ∥zk − z̃k∥2
Mk−

1
β I

> 0 . (81)

Combining (79), (80), the first term (I) in (77) can be estimated by the following:

(I) = 2t ⟨zk − z∗, (Mk −B)(zk − z̃k)⟩
= 2t ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩+ 2t ⟨z̃k − ẑk, (Mk −B)(zk − z̃k)⟩
+ 2t ⟨ẑk − z∗, (Mk −B)(zk − ẑk)⟩+ 2t ⟨ẑk − z∗, (Mk −B)(ẑk − z̃k)⟩

(i)

≥ 2t ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩+ 2t ⟨z̃k − ẑk, (Mk −B)(zk − z̃k)⟩
+ 2t(γA + γB)∥ẑk − z∗∥2 + 2t ⟨ẑk − z∗, (Mk −B)(ẑk − z̃k)⟩

(ii)

≥ 2t ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩ − 2t∥ϵk∥∥(Mk −B)(zk − z̃k)∥
+ 2t(γA + γB)∥ẑk − z∗∥2 − 2t∥(Mk −B)ϵk∥M−1

k
∥ẑk − z∗∥Mk

(iii)

≥ 2t ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩ − ∥ϵk∥2 − t2∥(Mk −B)(zk − z̃k)∥2

+ 2t(γA + γB)∥ẑk − z∗∥2 − 2 1√
σ
(C + 1

β )t∥ϵk∥∥zk − z∗∥Mk

(iv)

≥ 2t ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩ − ∥ϵk∥2 − t2∥(Mk −B)(zk − z̃k)∥2

+ 2t(γA + γB)∥ẑk − z∗∥2 − 2
√

C
σ (C + 1

β )t∥ϵk∥∥zk − z∗∥ ,

(82)

where (i) uses (79), (ii) uses Cauchy inequality and (iii) uses (80), 2ab ≤ a2+b2 and Assumption 2.
We set bk := ⟨zk − z̃k, (Mk −B)(zk − z̃k)⟩ and ak := ∥(Mk − B)(zk − z̃k)∥2. The definition of δk
yields that δk ≥ ∥ϵk∥2 and it follows from (82) that:

γk(t) ≥ 2tbk − 2t2ak + 2δk∥zk − z∗∥ + δ2k − ∥ϵk∥2

− 2
√

C
σ (C + 1

β )t∥ϵk∥∥zk − z∗∥ + 2t(γA + γB)∥ẑk − z∗∥2

≥ 2tbk − 2t2ak︸ ︷︷ ︸
(III)

+2t(γA + γB)∥ẑk − z∗∥2 + 2(δk −
√

C
σ (C + 1

β )t∥ϵk∥)∥zk − z∗∥︸ ︷︷ ︸
(IV)

.

(83)

We continue to find a proper tk such that γk(tk) > 0. This goal boils down to ensuring both
(III) and (IV) are positive.

Let tk = bk
2ak

. We first show tk = bk
2ak

is the proper value to make sure (III) is positive. From

(81), we observe that bk > 0. Since ak > 0 and bk > 0, the quadratic term (III) in (83) will be
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zero for tk = 0 or tk = bk
ak

and will be strictly positive for any tk ∈ (0, bk/ak) with the maximum

value obtained at tk = bk
2ak

. As a result, (III) is strictly positive.

Second, we will show (IV) is positive when tk = bk
2ak

. We observe that 0 < tk = bk
2ak

< 1
2
√
c
for

Assumption 2. Thus, the definition of δk and tk = bk
2ak

imply that

(IV) = 2(δk −
√

C
σ (C + 1

β )tk∥ϵk∥)∥zk − z∗∥

≥ (2δk −
√

C
σc (C + 1

β )∥ϵk∥)∥zk − z∗∥

≥ 0 .

(84)

Since (III) and (IV) both are positive when tk = bk
2ak

, (83) yields:

γk(tk) ≥ 2tkbk − 2t2ka+ 2tk(γA + γB)∥ẑk − z∗∥2 + (2δk −
√

C
σc (C + 1

β )∥ϵk∥)∥zk − z∗∥

≥ b2k
2ak

+ 2tk(γA + γB)∥ẑk − z∗∥2

> 0 ,

(85)

It results from (85) and the definition of γk(tk) that for each k ∈ N, (∥zk−z∗∥+δk) ≥ ∥z(tk)−z∗∥ =
∥zk+1−z∗∥. We conclude that if tk = bk

2ak
, then γk(tk) > 0 for all k ∈ N and the sequence ∥zk−z∗∥

is bounded and converges as k → +∞ by using Lemma 2.7.
Weak convergence:
The sequence (zk)k∈N generated by Algorithm 4 is bounded and ∥zk− z∥ converges as k →∞ and
γk(tk) converges to zero as k →∞ for all z ∈ zer(A+ B). Set z∗ as an arbitrary weak sequential
cluster point of (zk)k∈N and there exists a subsequence (zkn

)n∈N such that zkn
⇀ z∗.

In order to obtain weak convergence of zk, by Proposition 2.5 with φ(t) = t and fixed metric
Mk = I and (76), it suffices to show that z∗ ∈ zer(A+B).

Using Assumption 2, (Mk)k∈N is bounded uniformly by C. Together with boundedness of
operator B, we obtain ak is bounded by (C + 1

β )
2∥zk − z̃k∥2 for each k ∈ N. Using Assumption 2,

we obtain that bk ≥ ∥zk − z̃k∥2
Mk−

1
β I
≥ c∥zk − z̃k∥2. By definition of tk and (85), we have

γk(tk)≥ b2k
2ak
≥ c2

2(C+
1
β )2
∥zk − z̃k∥2. Since γk(tk) → 0, ∥zk − z̃k∥ → 0 as k → ∞. Moreover, since

ϵk → 0, ∥zk − ẑk∥ → 0. We set uk := Mk(zk − ẑk) + Bẑk − Bzk. Therefore, we obtain that
uk → 0 as k → +∞ and ẑkn

⇀ z∗ as n→ +∞. We observe that uk ∈ Aẑk +Bẑk. Then, by using
Proposition 2.2 and the fact that A+B is maximally monotone, we conclude that 0 ∈ Az∗ +Bz∗.
Besides, ∥zk − z∗∥ decreases since z∗ ∈ zer(A + B). As mentioned above, the result follows from
Proposition 2.5 with φ(t) = t.
Linear convergence rate:
If we assume ϵk ≡ 0, then ẑk = z̃k and δk ≡ 0. Therefore, from (85) we can obtain an estimation
for γk(tk) when tk = bk

2ak
:

γk(tk) = ∥zk − z∗∥2 − ∥zk+1 − z∗∥2 ≥ b2k
2ak

+ 2tk(γA + γB)∥ẑk − z∗∥2 . (86)

The following part is to derive linear convergence for the case that either γA > 0 or γB > 0. The
definition of bk and that of ak yield the following estimation for tk:

tk =
bk
2ak

=
⟨zk − ẑk, (Mk −B)(zk − ẑk)⟩

2∥(Mk −B)(zk − ẑk)∥2
(i)

≥
∥zk − ẑk∥2

Mk−
1
β

2(C + 1
β )

2∥zk − ẑk∥2
(ii)
>

c

2(C + 1
β )

2
, (87)

where both (i) and (ii) use Assumption 2. For convenience, we denote c

2(C+
1
β )2

by δ. Using

Assumption 2 again, we have the estimation for the first term at the right hand side of (86):

b2k
2ak
≥ δ∥zk − ẑk∥2

Mk−
1
β I

> cδ∥zk − ẑk∥2 . (88)
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Furthermore, combining (86) with (87), (88) and the definition γk(tk) := ∥zk−z∗∥2−∥zk+1−z∗∥2,
we obtain

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − 2(γA + γB)δ∥ẑk − z∗∥2 − cδ∥zk − ẑk∥2

≤ ∥zk − z∗∥2 − 1
2 min{2(γA + γB)δ, cδ}(2∥ẑk − z∗∥2 + 2∥zk − ẑk∥2)

(i)

≤ ∥zk − z∗∥2 − 1
2 min{2(γA + γB)δ, cδ}(∥ẑk − z∗∥ + ∥zk − ẑk∥)2

(ii)

≤ ∥zk − z∗∥2 − 1
2 min{2(γA + γB)δ, cδ}∥zk − z∗∥2

≤ (1− 1
2 min{2(γA + γB)δ, cδ})∥zk − z∗∥2 ,

(89)

where (i) uses inequality 2x2 + 2y2 ≥ (x + y)2 and (ii) uses triangle inequality. Consequently, we
obtain linear convergence if (γA + γB) > 0:

∥zk − z∗∥2 ≤ (1− ξ)k∥z0 − z∗∥2 , (90)

where ξ = 1
2 min{2(γA + γB)δ, cδ} > 0.

A.4 Proof of Theorem 3.1

Now, we give the proof of Theorem 3.1. For convenience, we define translation operator τp : H → H
by τp(x) = x− p with inverse τ−1

p = τ−p.

Proof. Computing the resolvent operator shows the following equivalences

x∗ = JV
A (z) = (I + V −1A)−1(z)

⇐⇒ V z ∈ (V +A)(x∗)

⇐⇒Mz ∈ (M +A)(x∗) + sQ(x∗ − z)

[y∗ = M1/2x∗] ⇐⇒Mz ∈ (M +A)(M−1/2y∗) + sQ(M−1/2y∗ − z)

⇐⇒Mz ∈ (M +A)(M−1/2y∗) + sQM−1/2(y∗ −M1/2z)

⇐⇒Mz ∈ (M1/2 +AM−1/2)(y∗) + sQM−1/2(y∗ −M1/2z)

[W = M−1/2QM−1/2] ⇐⇒M1/2z ∈ (I +M−1/2AM−1/2)(y∗) + sW (y∗ −M1/2z) .

(91)

Since uniqueness and existence of x∗ is guaranteed by the properties of JV
A , Lemma 2.6 yields the

existence of a unique primal-dual pair (x∗, u∗) that satisfies the equivalent relations in Lemma 2.6
with R := +sW ◦ τM1/2z and T := τM1/2z ◦ (I +M−1/2AM−1/2). The mapping R is single-valued
and, as A is a maximally monotone operator and M is positive-definite, T−1 = JM−1/2TM−1/2 ◦
τ−M1/2z is single valued. Therefore, the solution of JV

A can be computed by finding u∗∈ im(W ),

namely, u∗ ∈ im(M−1/2Q), such that

0 ∈ R−1u∗ − T−1(−u∗) = [(sW )−1u∗ +M1/2z]− JM−1/2AM−1/2(M1/2z − u∗) , (92)

and the using

x∗ = M−1/2y∗ and y∗ = T−1(−u∗) = JM−1/2AM−1/2(M1/2z − u∗) . (93)

Substituting u∗ = sM−1/2v∗∈ im(M−1/2Q) in both problems, multiplying the former one from
left with M−1/2, and using M−1/2W−1M−1/2 = Q−1 where Q−1 is a set-valued inverse operator
of Q defined by the graph {(v, w) ∈ im(Q)×H|Qv = w} leads to{

0 ∈ Q−1v∗ + z −M−1/2 ◦ JM−1/2AM−1/2 ◦M1/2(z−sM−1v∗)

x∗ = M−1/2 ◦ JM−1/2AM−1/2 ◦M1/2(z−sM−1v∗) .
(94)

Since a unique solution to JV
A exists, there exists v∗ ∈ im(Q) that satisfies the inclusion. We notice

that im(Q−1) = im(Q+)+kerQ where Q+ : im(Q)→ im(Q) is the inverse of Q restricted on im(Q)
and ker(Q) denotes the kernel of Q. Given the linear mapping U : Rr → im(Q), which can be
realized using r linearly independent u1, · · · , ur ∈ H by α →

∑r
i=1 αiui, the inclusion problem is

equivalent to finding the unique root α∗ ∈ Rr of ℓ(α), namely,

ℓ(α) := U∗Q+Uα+ U∗(z − JM
A (z − sM−1Uα)) , (95)
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where U∗ denotes the adjoint of U and JM
A is an abbreviation of the mappingM−1/2◦JM−1/2AM−1/2◦

M1/2. The following shows that ℓ(α) is Lipschitz continuous with constant ∥U∗Q+U∥+∥M−1/2U∥2:
(We abbreviate JM−1/2AM−1/2 by J in the following)

⟨ℓ(α)− ℓ(β), α− β⟩

=∥α− β∥2U∗Q+U −
〈
J(M1/2z − sM−1/2Uα)− J(M1/2z − sM−1/2Uβ),M−1/2U(α− β)

〉
≤∥U∗Q+U∥∥α− β∥2 + ∥M−1/2U∥2∥α− β∥2 ,

(96)

where, in the last line, we use the 1-Lipschitz continuity (non-expansive) of J .
The following shows strict monotonicity of l. We rewrite ℓ(α) as follows:

ℓ(α) = U∗Q+Uα+ U∗M−1/2(M1/2z − JM−1/2AM−1/2(M1/2z − sM−1/2Uα))

= U∗Q+Uα+ sU∗M−1Uα+ U∗M−1/2(I − JM−1/2AM−1/2)(M1/2z − sM−1/2Uα)

= U∗(Q+ + sM−1)Uα+ U∗M−1/2JM−1/2A−1M−1/2(M1/2z − sM−1/2Uα) .

(97)

Using the 1-co-coercivity of JM1/2A−1M1/2 , the function ℓ(α) can be seen to be strictly monotone if
α 7→ U∗(Q++sM−1)Uα is strictly monotone. This fact is clear for the case s = 1. Therefore, in the
remainder, we show strictly monotonicity of α 7→ U∗(Q+−M−1)Uα = U∗M−1/2(M1/2Q+M1/2−
I)M−1/2Uα. We observeM−Q ∈ S0(H) implies that ∥M−1/2QM−1/2∥ < 1 and by 1 ≤ ∥TT−1∥ ≤
∥T∥∥T−1∥, we conclude that ∥M1/2Q+M1/2∥im(M−1/2Q) > 1 for the restriction of the operator

norm to im(M−1/2Q), hence, Q+ −M−1 ∈ S++(H).
According to Lemma 2.3, we can replace M−1/2 ◦ JM−1/2AM−1/2 ◦M1/2 with JM

A . Then we
obtain the formula in the statement of Theorem 3.1.

Remark A.1. A priori Q−1 is set-valued, however it is easy to check that U∗Q−1U is single-
valued (see Appendix A.4.1). We define Q+ : im(Q) → im(Q) as the inverse of Q restricted to
im(Q) which is a single-valued mapping. It allows us to replace Q−1 by Q+ in (11).

A.4.1 Proof of Remark A.1

Proof. Given y ∈ im(Q), assume there exist U∗x1, U
∗x2 ∈ U∗Q−1y with x1, x2 ∈ Q−1y. For

arbitrary β ∈ Rr, we have ⟨β, U∗x1 − U∗x2⟩ = ⟨Uβ, x1 − x2⟩. Since Uβ ∈ imQ, then there exists
some z such that Uβ = Qz. As a result, ⟨β, U∗x1 − U∗x2⟩ = ⟨Uβ, x1 − x2⟩ = ⟨Qz, x1 − x2⟩ =
⟨z,Qx1 −Qx2⟩ = 0. We notice that ⟨β, U∗x1 − U∗x2⟩ holds for arbitrary β ∈ Rr. It implies
U∗x1 = U∗x2 and U∗Q−1y is single-valued.

A.5 Proof of Corollary 3.3

Proof. Let H = Rn. In this case, we can identify a linear mapping U : Rr → H with a low rank
matrix U ∈ Rn×r. Similarly, we can also identify U∗ : H → Rr with U⊤ ∈ Rn×r. Since Q = UU⊤

for some U ∈ B(Rr,Rn), we have

im(Q) = {UU⊤v|v ∈ Rn} = {Uα|α ∈ Rr} . (98)

Since Q+ is inverse of Q on im(Q), the following holds for arbitrary v ∈ Rn:

QQ+Qv = Qv ⇐⇒ UU⊤Q+UU⊤v = UU⊤v ⇐⇒ UU⊤Q+Uα = Uα . (99)

Since the column vectors {ui}i=1,··· ,r of U are independent with each other, UU⊤Q+Uα = Uα
yields that U⊤Q+Uα = α. Therefore, the root-finding problem in Theorem 3.1 simplifies to
(12).
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A.6 Proof of Proposition 3.5

Proof. Our proof relies on the convergence result [18, Theorem 7.5.5]. By the same argument
as the one in Appendix B.5 paper [8], we obtain ∂C l(α∗) is non-singular. If ℓ(α) is tame, then
by [9, Theorem 1], ℓ(α) is semi-smooth. In order to apply this result it remains to show that
ℓ(α) is tame. The property of definable functions is preserved by operations including the sum,
composition by a linear operator, derivation and canonical projection ([40], [17]). Since A is a tame
mapping, I +M−1/2AM−1/2 is tame as well as its graph. Here I is identity. Then the resolvent
JM−1/2AM−1/2 = (I +M−1/2AM−1/2)−1 which is defined by the inverse of the same graph is tame
([21]) and single-valued. By the stability of the sum and composition by linear operator, we obtain
that ℓ(α) is tame.

A.7 Proof of Proposition 3.8

Proof. Let p = JV
A (z). Since resolvent operator is non-expansive with respect to V , ∥p∥V =

∥JV
T (z)∥V ≤ ∥z∥V + ∥JV

A (0)∥V . By duality, optimal α∗ will satisfy α∗ = u⊤(p− z). Then,

|α∗| = |u∗(p− z)|
≤ ∥u∥V −1(2∥z∥V + ∥JV

A (0)∥V ) .
(100)

If V ∈ Sc(Rn) is bounded by a constant C, then

|α∗| ≤ ∥u∥V −1(2∥z∥V + ∥JV
A (0)∥V ) ≤

C

c
∥u∥(2∥z∥ + ∥JV

A (0)∥) . (101)

A.8 Proof of Proposition 3.4

Proof. ℓ(α) is as defined in Theorem 3.1. Set z̆ = z − V −1Bz. Substituting α = ξ + U∗V −1Bz in
ℓ(α), we obtain J (ξ) = ℓ(α). Then, there exists ξ∗ such that α∗ = ξ∗ +U∗V −1Bz. In (11), we do
the same substitution.

ẑ = JM
T (z̆ − sM−1Uα∗)

= JM
A (z̆ − sM−1Uξ∗ − sM−1UU∗V −1Bz)

= JM
A (z −M−1MV −1Bz − sM−1UU∗V −1Bz − sM−1Uξ∗)

= JM
A (z −M−1 (M + sUU∗)︸ ︷︷ ︸

=V

V −1Bz − sM−1Uξ∗)

= JM
A (z −M−1Bz − sM−1Uξ∗) .

(102)

Due to Theorem 3.1, ℓ(α) is Lipschitz with constant 1+∥M−1/2U∥2 and strongly monotone. Since
J (ξ) is obtained by translation, it enjoys the same properties.

A.9 Proof of Lemma 4.10

Proof. (i) M is symmetric positive-definite and γkuku
∗
k is symmetric positive semi-definite since

infk∈N γk > 0. Thus, Mk ⪰ M showing that Mk is symmetric positive-definite. Moreover,
Mk − 1

β I ⪰ M − 1
β I ⪰ cI, which shows part (i) of Assumption 2. We now show that Mk

obeys (ii) of the assumption. Since B is β-co-coercive, we have in view of [6, Remark 4.34
and Proposition 4.35] that

β∥yk∥2 ≤ ⟨yk, sk⟩ ≤ ∥sk∥2/β. (103)

Assume that sk ̸= 0 (otherwise, there is nothing to prove). Thus

⟨Msk − yk, sk⟩ = ∥sk∥2M − ⟨yk, sk⟩ ≥ ∥sk∥2M − ∥sk∥2/β = ∥sk∥2M−βI ≥ c∥sk∥2.

Combining this with (103), we get

∥uk∥ =
∥yk −Msk∥√
⟨Msk − yk, sk⟩

≤ ∥yk∥ + ∥M∥∥sk∥√
c∥sk∥

≤ 1/β + ∥M∥√
c

. (104)

This entails that

sup
k∈N
∥Mk∥ ≤ ∥M∥ + sup

k∈N
γk∥uk∥2 ≤ ∥M∥ +

(1/β + ∥M∥)2

c
sup
k∈N

γk < +∞.
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(ii) Let us focus on part (i) of Assumption 2. We have, using (104),

Mk −
1

β
I ⪰M − 1

β
I − γk∥uku

∗
k∥I = (c− γk∥uk∥2)I ⪰

(
c− (1/β + ∥M∥)2

c
γk

)
and the last term is positive under the prescribed choice of γk. To verify part (ii), it is
sufficient to observe that ∥Mk∥ ≤ ∥M∥.

A.10 Proof of Lemma 4.4

Proof. (i) As in the proof of Lemma 4.10, Mk ⪰M ⪰ (1/β + c)I > 0. Moreover

(1 + ηk)Mk −Mk+1 = ηkM + (1 + ηk)γkuku
∗
k − γk+1uk+1u

∗
k+1

⪰ ηk(1/β + c)I − γk+1∥uk+1∥2

= ηk(1/β + c)I − ηk+1(1/β + c)I

= (1/β + c)(ηk − ηk+1)I ⪰ 0,

since ηk is non-increasing. The uniform boundedness of Mk is straightforward as ∥Mk∥ ≤
∥M∥ + ηk(1/β + c).

(ii) We have in this case

Mk −
1

β
I ⪰M − 1

β
I − γk∥uku

∗
k∥I ⪰ (c− ηkκ(1/β + c)) I ⪰ (c− (1− κ)(1/β + c)) I

Under our condition on κ, we have c− (1− κ)(1/β + c > 0. In addition,

(1 + ηk)Mk −Mk+1 = ηkM − (1 + ηk)γkuku
∗
k + γk+1uk+1u

∗
k+1

⪰ ηk(1/β + c)I − (1 + ηk)ηkκ(1/β + c)I

= ηk(1/β + c)(1− (1 + ηk)κ)I ⪰ 0

since ηk ≤ (1− κ)/κ. Mk is also uniformly bounded with the same argument as above. This
completes the proof.

Availability of data

In order to record the exact algorithmic details for our experiments, all code for experiments from
this paper is available at https://github.com/wsdxiaohao/quasi_Newton_FBS.git.
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