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Abstract

We introduce an—inertial two quasi-Newton Forward Backward Sphttmg Algorlthms to
solve a class of monotone inclusion problems. ‘
: > The bottleneck is the evaluation of the resolvent operator Changing
the metrlc makes 1ts computation even harder, and this is even true for a simple operator whose
resolvent is known for the standard metric. To fully exploit the advantage of adapting the
metric, we develop a new efficient resolvent calculus for a low-rank perturbed standard metric,
which accounts exactly for quasi-Newton metrics. Moreover, we prove the convergence of our
algorithms, including linear convergence rates in case one of the two considered operators is
strongly monotone. As a by-product of our general monotone inclusion framework, we ins-
tianteintroduce two variants of quasi-Newton Primal-Dual Hybrid Gradient Method (PDHG)
for solving saddle point problems. The favourable performance of these two quasi-Newton
PDHG methods is demonstrated on several numerical experiments in image processing.

1 Introduction

Nowadays, convex optimization is prevalent in many modern disciplines, especially when dealing
with large-scale datasets. There is a strong need for efficient optimization schemes to solve such
large-scale problems. Unfortunately, the high dimensionality of the problems at hand makes the
use-of second-order methods intractable. A promising alternative is quasi-Newton type methods,
which aim to exploit cheap and accurate first-order approximations of the second-order information.
In particular, the so-called limited memory quasi-Newton method is highly effective for solving
unconstrained large-scale problems. However, many practical problems in machine learning, image
processing or statistics naturally have constraints or are non-smooth by eenstruetiondesign.

A problem structure that can cover a broad class of non-smooth problems in these applications
is the following inclusion problem in a real Hilbert space H:

find x € H such that (A+B)z>0, (1)

where A: H = H is a maximally monotone operator, B: H — H is a single-valued (-co-coercive
operator with 8 > 0. As a special case, (1) eomprisesincludes the setting of minimization problems
of the form

min f() + 9(x) e)

with a proper lower semi-continuous convex function f and convex function g with Lipschitz
continuous gradient by setting A = df and B = Vyg.

A fundamental algorithmic scheme to tackle the problem class (1) is Forward-Backward Split-
ting (FBS). However, this algorithm may exhibit slow convergence for ill-conditioned problems,
where exploiting the second-order information to adapt to the local geometry of the problem is de-
sirable. As a computationally affordable approximation, in this paper, we propose a quasi-Newton
variant that takes-advantagefromuses a variable metric that-is computed solely from first-order
information. We manageto—remedsyaddress the main computational bottlenecks for this type of
approaches by developing an efficient low-rank variable metric resolvent calculus.



Our approach is inspired by the proximal quasi-Newton method in [8]. We extend the framework
proposed in [8] to the resolvent setting with a “M + rank-r” or “M — rank-r” symmetric positive-
definite variable metric. We develop a resolvent calculus that allows for an efficient evaluation of
resolvent operators with respect to -this-type-of-these metrics by splitting the evaluation into two
computationally simple steps: ealewlatingevaluating a resolvent operator with respect to a simple
metric M, and solving a low dimensional root-finding problem. This allows for the incorporation
of popular quasi-Newton strategies, such as the limited memory SR1 or BFGS method, in our
framework. Then, we study the convergence of two variants of FBS algorithm with respect to
this type of metrics. One variant uses an inertial step which opens the door to acceleration.
Although accelerated rates are not proved yet, numerical results show that the inertial variant yields
significantly improved convergence rates. The second variant uses a relaxation techniquewhich,
enabling convergence under a weaker assumption on the variable metrics.

In-erder-to-exploitTo showcase the power and to illustrate the variety of problems that can be
solved via the framework in (1), the developed algorithms are instantiated for the following saddle
point problem:

min max (Kz,y) + g(2) + G(x) — f(y) — F(y), (3)

cEH1L yEH2
where g and f are lower semi-continuous convex functions, G and F are convex, differentiable with
Lipschitz-continuous gradients, (-,-) denotes the innerproduct in Hs and K is a bounded linear
operator between Hilbert spaces H; and Hs. We develop a quasi-Newton primal-dual methods
that has many potential applications in image processing, machine learning or statistics [12, 19].
The numerical performance of our algorithms is tested on several experimentsand, demonstrating
a clear improvement when using our quasi-Newton methods.

1.1 Related Works

Smooth quasi-Newton. Quasi-Newton methods are widely studied and used for optimization
with sufficiently smooth objective functions [42]. Their motivationgoal is to-build-a-cheapto design
a computationally inexpensive approximation to Newton’s method. If the approximation of the
second-order information (Hessian) is given by a positive-definite matrix, quasi-Newton methods
can be interpreted as iteratively and locally adapting the metric of the space to the objective
function. The success of these methods zequiresdepends on accurately approximating the second-
order information ef-the-ebjeetive by using the first-order information, which is-stilremains an
active research area. Recently, [34] proposed a greedy strategy to select basis vectors, rather than
using the difference of successive iterates for updating the Hessian approximations. Inspired by
[34], [28] developed an approximation of the indefinite Hessian of a twice continuously differentiable
function. However, all methods mentioned above require sufficient smoothness of the objective
functions.

Non-smooth quasi-Newton. A broad class of optimization problems can be interpreted as a
composition of a smooth function f and a non-smooth function h. To deal with the non-smoothness
of h efficiently, many authors consider a combination of FBS with the quasi-Newton methods. By
using the forward-backward envelope, [31, 39] reinterpret the FBS algorithm as a variable metric
gradient method for a smooth optimization problem in-order—to-applyto enable the application
of the classical Newton or quasi-Newton method. For a non-smooth function g as simple as an
indicator function of a non-empty convex set, [36, 37] proposed an elegant method namedcalled
projected quasi-Newton algorithm (PQN) which, however, requires either solving a subproblem or
using a diagonal metric. [26] extended PQN to a more general setting as long as the proximal
operator of h is simple to compute. For a class of low-rank perturbed metrics, [7, 8] developed
a proximal quasi-Newton method with a root-finding problem as the subproblem which can be
solved easily and efficiently. This method can be extended to the nonconvex setting [22]. Based
on [7, 8], [23] incorporated a limited-memory quasi-Newton update. The authors of [24] developed
a different algorithm to evaluate the proximal operator of the separable [; norm with respect to
a low-rank metric V.= M — UU . Recently, in [25], the authors proposed a generalized damped
Newton type based on second-order generalized Hessians.

In this paper, we extend the quasi-Newton approach of [7, 8] from the nonsmooth convex
minimization setting to monotone inclusion problems of type (1). Our framework opens the door
to new problems (e.g. saddle-point problems) and algorithms (e.g., primal-dual algorithms) that
are beyond the reach of the approach initiated in [7, 8]. It is generiecommon to use a variable
metric for solving a monotone inclusion problem (see [15, 16]). Its convergence relies on quasi-Fejér



monotonicity [15]. However, the efficient calculation of the resolvent remains an open problem.
Our approach uses a variable metric to obtain a quasi-Newton method with an efficient resolvent
calculus. Regularized Newton-type methods in continuous time, both for convex optimization
and monotone inclusions have been studied in a series of papers by Attouch and his co-authors:
[1, 3, 4, 2]. Time discretization of these dynamics gives algorithms providing insight into regularized
Newton’s method for solving monotone inclusions (see [1, 4, 2]). In [2], a relative error tolerance for
the solution of the proximal subproblem is also allowed. However, in all these papers, the Hessian
ends up being discretized.
PDHG. Primal-Dual Hybrid Gradient (PDHG) is widely used for solving saddle point problems
of the form (3). PDHG can be interpreted as a proximal point algorithm [20] with a fixed metric
applied to a monotone inclusion problem. Based on this idea, [30] proposed an inertial FBS method
apphed to the sum of set valued operators, from which a generalization of PDHG method is derived.
as ilar sSimilarly, [32] considered diagonal preconditioning to accelerate PDHG.
Thelr method can be regarded as using a fixed blocked matrix as a metric. Later, [29] considered
non-diagonal preconditioning and pointed out that if a special preconditioner is chosen, that-kind
ofthis preconditioned PDHG method will be a special form of the linearized ADMM. Their method
requires an inner loop due to the non-diagonal preconditioning. [19] introduced an adaptive PDHG
scheme which can also be understood as using a variable metric with step size tuned automatically.
However, [19] focuses on changes to the diagonal of the metric. Our resolvent calculus in Section 3
provides another peossibilityway to ehangemodify metrics at elements off the diagonal to deathandle
with resolvent operators. Additionally, in [27], the author investigated inexact inertial variable
proximal point algorithm with a different condition on the inertial step and distinct assumptions
on error terms compared to ours.

2 Preliminaries

Let us recall some essential notations and definitions. Let H be a Hilbert space equipped with
an inner product (-,-) and the induced norm || - || = \/(:,-). The symbols — and — respectively
denote weak and strong convergence. (1 (N) is the set of all summable sequences in [0, +00). An
operator K € B(D,H) is a linear bounded mapping from a Hilbert space D to H. The adjoint of
K is denoted by K*. We abbreviate B(H,H) to B(H). We define S(H) = {M € B(H)|M = M*}
and the identity operator by I € S(H). Without ambiguity, we also use the notation ||M]| for the
operator norm of M € S(H) with respect to || - ||. The partial ordering on S(H) is given by

VU e S(H)(YV eS(H)): U=V << (NVzeH): {Uzx,z)>(Vz,z). (4)

For o € [0, +0), we introduce S, (H) == {U € S(H)|U = oI)}. Similarly, we introduce Sy (H) =
{U € S(H)|U = 0}. In particular, S;4+(R™) denotes the set of n x n real symmetric positive
definite matrices. The norm || - ||as is defined by /(M-,-) for M € S (H). We say Q € So(H)
has finite rank 7 if » = dim(im(@)). Then, there are linearly independent vectors u; such that
Q:H—H, x>, (x,u;)u;. As a consequence, Q = UU* where U: R” — im(Q), a — Ua =
> i aju; is an isomorphism defined by (u;)i=1,.. -

A set valued operator A: H = H is defined by its graph

Graph A := {(z,y) € H|z € Dom(A),y € Az},

and has a domain given by
Dom(A) = {x € H|Az # 0}.
Given two set-valued operators A, B: H =% H, we define A + B: H = H as follows:
Dom(A + B) = Dom(A) N Dom(B),
(A+ B)x = Az + Bz = {y € H|Fy1 € Az, Jys € Bz such that y =y1 +ya2}.
The inverse of A is denoted by A~1 given by A~!(y) := {x € H|y € Az} and the zero set of A
is denoted by zer(A + B) == {z € H|(A + B)z > 0}. We say that A is y4-strongly monotone

with modulus v4 > 0 with respect to norm || - ||, if (z —y,u—v) > vyallx — y||? for any pair
(z,u), (y,v) € Graph A. A is maximally monotone, if for every (z,u) € H x H,

(x,u) € Graph A <= (V(y,v) € Graph A) (z —y,u—wv) >0.



For a proper, lower semi-continuous, convex function f, df is maximally monotone. Here, we
adopt the common definition of the subdifferential df [6, Definition 16.1] We say that a single
valued operator B is 3-co-coercive with respect to norm || - ||, if (x — y,u — v) > B|lu —v||? for any
pair (z,u), (y,v) € Graph B. The resolvent of A: H = H with respect to metric M € S;4(H) is
defined as

JM = (I + M~*A)"! and we set J4 = J} for the identity mapping I, (5)
which, as shown for example in [6], enjoys the following properties.

Proposition 2.1. Let A: H = H be mazimally monotone, M € Sy (H) and y € H. Then, the
following holds

Y= J%(x) = rzcy+yM Ay —= z—ycyM Ay < (y,y 'M(x —y)) € Graph A.
(6)
Proposition 2.2. Let A: H = H be mazimally monotone. Then, for every sequence (T, uk)keN
in Graph A and every (z,u) € H X H, if xz, — = and up — u, we have (x,u) € Graph A.

Lemma 2.3. Let A: H = H be a maximally monotone operator and let M € Sy (H). Then, for
any z € H, we have Ji(2) = M2 0 Jyo1/eapg-1/2 0 MY (2).

Proof. See [6, Proposition 23.34]. O
Lemma 2.4. If A is strongly monotone with modulus y4 > 0 and M € S, then JA is Lipschitz

continuous with respect to || - ||ar with constant 1/(1 4 %) € (0,1] for any C satisfying || M| <
C < o0.

Proof. See Appendix A.1. O

Proposition 2.5 (Variable Metric quasi-Fejér monotone sequence [15]). Let o € (0,400), let
@: [0,400) = [0, +00) be strictly increasing and such that lim;_, 1o @(t) = 400, let (My)ken be in
S, (H), let C be a nonempty subset of H, and let (xx)ren be a sequence in H such that

Gm)ren € £4(N))(Vz € C)((ex)ren € L4(N))(Vk € N):
elzrtr = 2llans) < (L4 m)e(llzr — 2llar) + €k -
(7)
(a) Then (xy)ken is bounded and, for every z € C, (||zx — 2|, )ken converges.

(b) If additionally, there exists M € S,(H) such that My — M pointwisely, as is the case when
211;N) | M|l < +oo and  (3(nk)ren € LL(N))(Vk € N): (14 )My, = My, (8)
€

then (xk)ren converges weakly to a point in C if and only if every weak sequential cluster
point of (x)ren lies in C.

A key result for our resolvent calculus in Section 3 is the following Attouch-Théra abstract
duality principle.
Lemma 2.6 (A duality result for operators [5]). Let T: H =2 H be an operator such that T~1 is
single-valued and let R: H — H be a single-valued operator. Then, the following holds for x,u € H.:
0eTz+ Rz r € Rty Rr=u
. . — — . (9)
0e RMtu—T7"1(—u) —ueTx x=T71(—u)

Moreover, if there exists x € H such that 0 € Tx + Rx or there exists u € H such that 0 €
R7'u — T~Y(—~u), then there exists a unique primal-dual pair (z,u) that satisfies the equivalent
conditions above.

We also need the following lemma which was stated as [33, Lemma 2.2.2].
Lemma 2.7. Let C;, > 0 and let
Cri1 < (1 +v5)Cp + Gy v 20, G >0,

Zuk<oo, ch<oo. (10)

keN keN

Then, Cy converges to a non-negative limit.



3 Resolvent Calculus for Low-Rank Perturbed Metric

In this section, we extend the proximal calculus of [8] to the setting of resolvent operators JY with
a symmetric positive definite metric V.= M + sQ, where s € {—1,+1}, M is symmetric positive
definite, and @ is symmetric positive semi-definite. This extension is called resolvent calculus.
Then, we show the application of our resolvent calculus to a forward-backward update step.

3.1 Resolvent Calculus

This is a key result, as it enables an efficient application of quasi-Newton methods for solving
monotone inclusion problems. Computing the resolvent operator JY (z) involves evaluating JA at
a shifted point z — M ~'v* € H, where v* € H is derived from a root-finding problem, solvable by a
semi-smooth Newton method (Algorithm 1) or a bisection method (Algorithm 2). In conclusion, if
JA can be computed efficiently, the same is true for J} . The result crucially relies on the abstract
duality principle of Attouch-Théra [5] (see Lemma 2.6). We first state the abstract result in a
Hilbert space H in Theorem 3.1 and illustrate it in Corollary 3.3 with H = R™,n € N.

Theorem 3.1. Let A: H = H be a mazimally monotone operator, V := M +sQ€ Sy (H) where
se€{-1,1}, M € 8 . (H) and Q € So(H) having finite rank r. Then, the resolvent JY (z) can be
computed as follows:

" = JM(z—sM~1Ua*) and
=7 (2) = a* € R" solves l(a) =0 (11)
where {(a) =U*Q Wa+ U*(z — J{(z —sM~1U«)),

where U: R" — im(Q), o — Ua == Y., ayu; is an isomorphism defined by any r linearly in-
dependent uy,...,u, € im(Q). The function £: R" — R" is Lipschitz continuous with constant
|U*Q~U| + ||M~Y2U||? and strictly monotone.

Proof. See Appendix A.4. O

Remark 3.2. If Q = UU*, then U*Q™'U = 1.
In finite dimensions, Theorem 3.1 simplifies to the following corollary.

Corollary 3.3. Let A: R® = R" be a mazimally monotone operator and consider V. := M +
sQ€ S+ (R™) wheres € {—1,+1}, M € S; 1 (R") and Q € So(R™). Let Q = UU " where U: R™ —
R™ is a matriz of full rank r with r < n. Then, the resolvent operator JX can be computed as
follows:

" = JM(z—sM~Ua*) and
r=J4(2) <<= a* € R" solves £(a) =0 (12)
where £(a) = a+U"(z— JY (2 —sM~1Ua)).

The solution o™ is the unique root of £: R™ — R" which is Lipschitz continuous with constant
L+ [|[M~Y2U|? and strictly monotone.

Proof. See Appendix A.5. O

If » < n, then we have a so-called low rank perturbed metric M + sUU ", which leads to a
root-finding problem of low dimension r. Together with the simple metric M, with respect to
which the resolvent operator is easy to evaluate, this setup leads to an efficient evaluation of a
resolvent operator with respect to a low rank perturbed metric.

We will
delete it.



3.2 Forward-backward update step

Proximal quasi-Newton methods also incorporate a forward step, which is adapted to the metric.
In our case, the forward-backward step (the resolvent quasi-Newton step) is JY (z —V ~1 Bz) where
A: H = H is a maximally monotone operator, B: H — H is a single-valued operator, V =
M +s@Q and @Q = UU* for a bounded linear isomorphism U: R” — im(Q). The resolvent calculus
(Theorem 3.1) can be directly usedapplied to the forward-backward step at the shifted point
2z — V~1Bz. However, evaluating this point involves inverting V. Since V has a special structure,
we will show that the update amounts to inverting solely M without applying the Sherman-
Morrison-Woodburry formula.

Proposition 3.4. Consider the setting of Theorem 3.1. Let B be a single-valued operator. Let
Q € So(H) with Q@ = UU* for a bounded linear isomorphism U: R™ — im(Q). Then the forward-
backward step JY (z — V~1Bz) can be equivalently expressed by

JX(z =V 'Bz) = JM (2 = M~'Bz —sM~1UE™). (13)
Here, £* € R" is the unique zero of J: R" — R",
JE) =U(z—J (2= M'Bz —sM™'U¢*)) + ¢ =0. (14)
The function J is Lipschitz continuous with constant 1+ ||[M~Y2U|?> and strictly monotone.

Proof. See Appendix A.8. O

3.3 Solving the Root-Finding Problem

The efficiency of the reduction in Theorem 3.1 relies also on the-selutien—efsolving a root-finding
problem which we discuss thoroughly in this subsection. We consider the space R” and the root-
finding problem with £: R™ — R". In several instances, the root-finding problem can be solved
exactly, for example, with A = dg for special functions g as enumerated in [8, Table 3.1]. In such
cases, the root-finding problem simplifies to one involving the proximal operator rather than the
resolvent. Similarly, when JA can be represented as a composition of proximal mappings with
respect to these special functions, the associated root-finding problem can be exactly solved. In
situations where this subproblem cannot be exactly solved, we employ a semi-smooth Newton
approach which enjoys local super-linear convergence. To narrow down the neighborhood of the
sought root for 7 = 1, we complement the semi-smooth Newton strategy with a bisection method
in Section 3.3.2. For cases where r > 1, a globalization strategy is available as shown in [38].

3.3.1 Semi-smooth Newton Methods

In order to solve £(a)) = 0 in (11) efficiently, we employ a semi-smooth Newton method. A locally
Lipschitz function is called semi-smooth if its Clarke Jacobian defines a Newton approximation
scheme [18, Definition 7.4.2]. If ¢(«) is semi-smooth and any element of the Clarke Jacobian
0%¢(a*) is non-singular, then the inexact semi-smooth Newton method outlined in Algorithm 1
(analogous to [8]) can be applied. Semi-smoothness may seem restrictive. However, as shown in [9],
the broad class of tame locally Lipschitz functions is semi-smooth. We refer to [9] for the definition
of tameness. Therefore, it is sufficient to ensure ¢(«) is tame, which is asserted if the monotone
operator A in £(«) is a tame map [21]. In this case, the convergence result for Algorithm 1 can be
adapted from [8].

Proposition 3.5. Let ¢(a) be defined as in Theorem 3.1, where A is a set-valued tame mapping.
Then £(a) is semi-smooth and all elements of 9 ¢(a*) are non-singular where o* is the unique root
of U(a) from (11). In turn there exists 7j such that if ng, < 77 for every k, there exists a neighborhood
of a* such that for all ag in that neighborhood, the sequence generated by Algorithm 1 is well defined
and converges to o linearly. If n, — 0, the convergence is superlinear.

Proof. See Appendix A.6. O

Example 3.6. If f is a tame function and locally Lipschitz, then by [21, Proposition 3.1], Of is
a tame map.



Algorithm 1 Semi-smooth Newton method to solve ¢(a) =0

Initialization: A point ay € R". N is the maximal number of iterations.
Update for £ =0,...,N:
if ¢(ay) =0 then
stop
else
Select Gy, € 9°¢(ay,), compute a1 such that

E(Ozk) + G;g(ozkﬂ - ak) =eg,

where ej, € R is an error term satisfying ||ex| < nx||Gr|| and n; > 0.
end if
End

Example 3.7. The assumption that A is a tame mapping is not restrictive. For example, in

?g( gf as defined by (33). If g and f are

both tame functions, then Og and Of are tame as well [21]. As a result, A is a tame mapping.

PDHG setting we have a set-valued operator A =

3.3.2 Bisection

In the case where H = R™ and r = 1, we set U = u € R™*! and solve the root-finding problem
£(a)) = 0 via the bisection method in Algorithm 2. A similar bound on the range of a* as in [§]
holds.

Proposition 3.8. Consider the setting of Corollary 3.3. For r = 1, the root a* of £(a)) = 0 in
Corollary 3.3 lies in the set [—(, (], where

¢ = llullv-@llzllv + X (O)]v) - (15)
Moreover, if V€ S.(R™) and |V| < C, then
c %
¢ = —lullllzll + 17 (0)1]) - (16)

Proof. See Appendix A.7. O

Algorithm 2 Bisection method to solve ¢(a) = 0 when r =1

Initialization: Tolerance ¢ > 0, number of iterates IV
Compute the bound ¢ from (15), and set k = 0.
Set a— = —( and a4 = (.

Update for £k =0,...,N:
Set ap = 3(a— + ay).
if /(o) > 0 then
a4 <— Qg
else
a_ < O
end if
if k> 1 and |ay — ag—1| < € then
return oy
end if
End

Furthermore, we can combine the semi-smooth Newton method with the bisection method.
Since the semi-smooth Newton method is locally convergent, it requires a starting point in a
sufficiently nearclose neighborhood of the solution. Using the bisection method, we can gener-
ate a sequence of points approaching the solution. When these points reach the neighborhood
required for convergence of the semi-smooth Newton method, we transition to using the semi-
smooth Newton method to achieve faster convergence. In Proposition 3.5, g is required to belong



to a neighborhood of o*, which can be achieved by Algorithm 2, i.e., we can assert that a point «
can be found such that |a — o*| < ¢ in log,((2¢/0)) steps, where ( is as in (15).

4 Quasi-Newton FBS for Monotone Inclusions
We consider the monotone inclusion problem in a real Hilbert space H:
find z € H such that (A+ B)z>0, (17)
where
1. A: H = H is a maximally monotone operator,
2. A is strongly monotone with modulus y4 > 0,
B: H — H is a single-valued p-co-coercive operator with 5 > 0,

B is strongly monotone with modulus yg > 0,

orok W

and zer(A + B) # 0.

Note that by setting y4 = 0 or yg = 0, we include the general case of monotone operators
that are not necessarily strongly monotone. The most common method to solve (17) are FBS-
type methods with respect to some metric M, which generate a sequence of points (zx)gen. For
instance, the major update step of the classic FBS method is given by

k41 = J‘ilwk (2 — M;lBZk) . (18)

Instead of a fixed My = M, in this paper, we derive FBS-type methods with variable metric Mj.
Before introducing our algorithms in detail, we first provide a quasi-Newton framework by which
we generate the variable metrics based on the sequence (zj)ren.

4.1 A General O0SR1 Quasi-Newton Metric

In this subsection, we detail a quasi-Newton framework by which we compute the variable met-
ric M} such that the requirement of applying resolvent calculus is satisfied. We start with the
motivation. We note that if we set in the inclusion problem (17) A = 0, and B = Vf of some
convex smooth function f, the update step (18) reduces to Gradient Descent when My = I and to
the classic Newton method when M), = V2 f(z;). Motivated by classic Newton and quasi-Newton
methods, we construct My as an approximation of Bz at zg, i.e. we generalize the quasi-Newton
method OSR1 from Vf (SR1 method with 0-memory) to a co-coercive operator B. The approxi-
mation M) shall satisfy the modified secant condition:

Mysy =y, where wy, = Bz, — Bzi_1, Sp=2p— 2k_1- (19)

Choose M € Sy (H) to be positive-definite. When k = 0, set My = M. For k > 1, update M), as
follows. If (yr — M sy, s;) = 0, skip the update of the metric. If (yx, — Msy, si) # 0, the update is:

My = M +sUU;  with s = sign((yr, — Msg, si)), (20)
and Ux: R - H, a — Ura == a /ity is a bounded linear mapping with

ik = (yr — M)/ /|y — Msg, i) |- (21)

The parameter v, € [0,+00) needs to be selected such that Mj, is positive-definite.



4.2 Algorithms

We propose two variants of an efficiently implementable quasi-Newton Forward-Backward Splitting
(FBS) algorithm. The main update step is a variable metric FBS step of the following form:

241 = J%A(fk — MlngEk) + €k,

i.e., a forward step with respect to the co-coercive operator B, followed by a proximal point step
(computation of the resolvent) of the maximally monotone operator A, both evaluated with the
iteration dependent metric M} from Section 4.1. Both variants account for potential errors in the
evaluation of the forward-backward step. In contrast to related works, as discussed in Section 1.1,
we emphasize the importance of efficiently implementable resolvent operators (see Section 3).

The two variants allow for more or less flexibility for the choice of the metric. Algorithm 3
combines a FBS step with an additional inertial step which has the potential of accelerating the
convergence, as we illustrate in our numerical experiments in Section 6. It is a generalization
of the algorithms in [11, 30] to a quasi-Newton variant. In [30], Lorenz and Pock proposed an
inertial Forward-Backward Splitting algorithm with a fixed metric, namely, M;, = M for some
M € S, (H), which is different from our Algorithm 3 where M, is a variable metric M; =
M + sULU; with s € {—1,1}. By setting M = M and U, = 0, we can retrieve the algorithm
n [30]. Algorithm 4 combines FBS with a relaxation step in (iii) which yields convergence under
weak assumptions on the metric. It generalizes the correction step introduced in [20] which can be
retrieved by setting M = M and B = 0.

Algorithm 3 Inertial Quasi-Newton Forward-Backward Splitting to solve (1)

Initialization: 2o € H, N >0, M € Sy (H), (ex)ren C H with (||ex)ren € £ (N)
Update for £ =0,...,N:

(i) Compute My, = M + sUiU,: according to the quasi-Newton framework in Section 4.1.

(ii) Compute the inertial step (extrapolation step):

Zr=2k + og (26 — 2K-1) (22)
(iii) and the forward-backward step:
Zpy1 = JA (2 — M Bz, — sM ™ Ur&) + e (23)
where & solves J (&) = 0 and
T (&) = Ui (Ze — JY 2k — M7 Bz — sM'ULEL)) + & - (24)

End




Algorithm 4 Relaxed Quasi-Newton Forward-Backward Splitting to solve (1)

Initialization: 2o € H, N >0, M € Sy (H), (ex)ren C H with (|lex|)ren € £ (N)
Update for £ =0,...,N

(i) Compute My, = M + sUxU,: according to the quasi-Newton framework in Section 4.1.

(ii) Compute the forward-backward step:
% = JN (2, — M™1Bz, — sM™'ULEL) + e, (25)
where & solves J (&) = 0 and

T (&) = U (ze — JA (2 — M71Bzy, — sM1ULER)) + &k, (26)

(iii) and relaxation step:
(21 — 2k, (M — B)(2k — Z))
2|(My = B)(zx — Z6)I*

Zk+1:Zk — tk[(Mk — B)(Zk — gk)] . (28)

t, =

End

4.3 Convergence Guarantees

In this subsection, we prove the convergence of Algorithm 3 and Algorithm 4. The implementation
details for the specific quasi-Newton features were discussed in Section 3.

4.3.1 Algorithm 3: Inertial Quasi-Newton Forward-Backward Splitting

The following convergence result is a generalization of [13, Theorem 3.1] to an inertial version of
variable metric Forward-Backward Splitting.

Assumption 1. Let o € (0,400). (My)ren is a sequence in Sy(H) such that

C = supkEN”MkH <0, (29)
G )ren € LL(N))(VE €N): (1 + ) My, = My

and My, — ﬁ] € S:(H) for all k € N and some £ > 0.

Theorem 4.1. Consider Problem (17) and let the sequence (zx)ren be generated by Algorithm 3
where Assumption 1 holds. The sequence (ay)ken is selected such that ay, € (0, A] with A < 0o and

> apmax{|lzr — ze-1llag 2k — 21134, } < +o0.
keN

Then (zx)ken is bounded and weakly converges to a point z* € zer(A+ B), i.e. z — z* as k — 0.
Furthermore, if additionally we assume e, =0 for any k € N, v4 > 0 orvyg > 0 and M — %I €

S.(H) for some k > 0, then there exist some & € (0,1), some © > 0 and some Ky € N such that
for any k > Ky,

k—1

2k = 2" 30, < (A= 2k = 2[R, + Y O =& s max{||zi — zi1|lag,, 12— 21|13, }
1=Ky

(30)

Proof. See Appendix A.2. O

Remark 4.2. e Using Lemma 3.1 (i) from [1/], we deduce that the second term on the right
hand of inequality (30) converges to 0.

o The linear convergence factor 1 — £ is chosen such that there exists Ko € N with

1— 28
(1+77k)< %><1—£ for all k> K.
1+ 22
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e The convergence rate for the strongly monotone setting can be influenced by the decay rate of
Q.

(i) If i = O(q*) for g =1 — &, we have convergence rate of O(kq®) for k > Ky where Ko
18 sufficiently large.

(i) If ap = O(k%), we have convergence rate of O(%) for k > Ky where Ky is sufficiently
large.

Remark 4.3. In practice, Assumption 1 is hard to verify and restrictive, however, it is a common
assumption for variable metric methods [16]. It can be avoided by relazation methods, which we
propose in the next section for this reason.

In the rest of this subsection, we provide conditions under which Mj, defined in (21) meets
Assumption 1. We introduce a bounded linear mapping uy: R — H, a — aty where uy € H is
defined by (21). For convenience, we will also equate U, U} with viuguj.

Lemma 4.4. Let M be symmetric positive-definite and B is 3-co-coercive. Suppose that M — % €
Sc(H) for ¢ > 0. Let (ni)ren € €4 (N).

(i) Case My = M+~ypupu): take v, = HJ’#(I/[ﬁrc), and assume that (ng)ken s non-increasing.
Then for all k € N, My, — % € S.(H) and My, verifies Assumption 1.

(i1) Case My = M — ypuguy: take v, = ﬁ(l/ﬁ + ¢), where k €]1/(1 + Be), 1], and assume
that supen i < 1/k — 1. Then M), is positive-definite and satisfies Assumption 1.

Proof. See Appendix A.10. O

Remark 4.5. The proof of Lemma 4.4 does not rely on co-coercivity of B unlike that of Lemma 4.10.
If one uses that property, and more precisely the bounds in (103), then the choice of v can be
made independent of uy in the form vy = Cny, where C' is a positive constant that depends only
on (B¢, ||M]]).

4.3.2 Algorithm 4: Relaxed Quasi-Newton Forward-Backward Splitting

At the expense of a relaxation instead of an inertial step, we achieve a substantial enhancement
in the flexibility of selecting the metric. This method is inspired by [20]. It is worth noting that,
without loss of generality, we assume Zj # zj for all k € N, since otherwise Zj, would already solve
the inclusion problem. -after-a—fini —of iterations

Assumption 2. Let o € (0,400). (My)ren is a sequence in Sy(H) such that:
(i) For all k € N, we have (M}, — %I) € Sc(H), for some ¢ > 0,
(ii) C = supgenl| M| < oo,

Theorem 4.6. Consider Problem (17), and let the sequence (zx)ken be generated by Algorithm 4
where Assumption 2 holds. Then (||zk — 2*||)ken s bounded for any z* € zer(A + B) and (z)ken
weakly converges to some z* € zer(A + B), i.e. z — z* as k — 0.

Moreover, if e, =0, then ||z — 2*|| decreases for any z* € zer(A+ B) as k — co. Furthermore, if
Y4 >0 or yg > 0, then zi converges linearly: there exist some & € (0,1) such that

Izt — 212 < (1= &)F[l20 — 2*|1>. (31)
Proof. See Appendix A.3. O
Remark 4.7. The linear convergence factor is given by
¢ = Smin{2(va +75),c}, whered = TCTITA? -

Remark 4.8. In [20], the authors studied a relaxed proximal point algorithm for primal-dual
splitting with a fized metric. Our setting and Algorithm 4 here are much breadergeneral.
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Remark 4.9. It is noteworthy that Algorithm 4 can be interpreted as a closed loop system that uses
the previous iterates (states) to update the relazation parameter t and the quasi-Newton metric
My, meaning that the update does not explicitly depend on k.

In the rest of this subsection, we provide conditions under which M} defined in (21) meets
Assumption 2. We use the same notations as previous.

Lemma 4.10. Let M be symmetric positive-definite and B is B-co-coercive. Suppose that M—% €
Sc(H) for ¢ > 0.

(i) If My = M + ypugu), where 0 < infreny i < supgen v < +00, then for all k € N, My, — % €
Sc(H) and My, verifies Assumption 2.

(i1) If My = M — ypupuy, where 0 < infrenyyie < Suprenve < W, then My, is positive-
definite and satisfies Assumption 2.

Proof. See Appendix A.9. O

5 Quasi-Newton PDHG for Saddle-point Problems

In this section, we consider a min-max problem as follows:

Jfnin max g(z) + G(2) + (Kx,y) = f(y) = F(y) (32)
with a linear mapping K: H; — Ho and proper lower semi-continuous convex functions g: H; —
R = RU {+o00} and f: Hy — R. Additionally, we consider continuously differentiable convex
functions G: H; — R and F': Hy — R both with Lipschitz continuous gradients. This problem
can be solved using Primal-Dual Hybrid Gradient Method (PDHG). Alternatively, the-problemit
can be expressed as a special monotone inclusion problem. By Fermat’s rule, the optimality
condition for (32) is the following inclusion problem:

0€ Az + Bz withz = (;) , where Az = (a%i)++0[;(*yy)> and Bz = (VG’(I)) . (33)

Then, PDHG can be viewed as a FBS method for solving Problem (33) with a specific fixed metric
M (see Proposition 5.1).

Proposition 5.1 (PDHG update step as a special FBS update step [20]). The update step of

PDHG at some z, = (?) € Hyi X Ho can be regarded as a forward-backward update step with
k

special metric M :
21 = JA (B — M™'Bz), (34)

—1 Ik
where 241 = Tht1 € Hy X Ho, M = T I_{l with two fixed operators T € Sy (H1)
Yk+1 -K X

and ¥ € Sy (Hso) such that M = 0. The latter is verified when | X2 KTY?|| < 1.

Remark 5.2. [t is straightforward to verify that

-1
M= (1 [SV2ETV2)) (TO 201>

If T =71 and X = ol, we can retrieve a PDHG algorithm with constant stepsizes T > 0 and
o > 0. Moreover, M = (1 —7'/2¢"/2||K||) min(7'/2, 0'/2), and a sufficient condition for M = 0 is
that To|K|? < 1.

Remark 5.3. In Proposition 5.1, if we set Zx, = zx, we obtain the classic PDHG update step [11].
Conversely, if we set Zx = zr + a(z, — zx—1) for some a € Ry, then we obtain inertial PDHG
update step [30].
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The interpretation of PDHG in Proposition 5.1 allows us to develop novel quasi-Newton PDHG
methods by instantiating the major update steps of Algorithms 3 and 4 with (33) and My =
M + sULU; where s € {—1,1} and Uy as in Section 4.1. Here, M is the fixed metric from

Proposition 5.1. For U, € B(R",H; x Hs), we set U = <g’”> with Uy, € B(R",H;1) and

k,y
Uky € B(R",Hs). To show how to calculate the update step using Proposition 3.4 in quasi-

Newton PDHG (Algorithm 5 and Algorithm 6), we introduce Proposition 5.4. In practice, this
turns out to be more tractable than other ways to evaluate the variable metric proximal mapping,
e.g. using coordinate descent to solve a subproblem which has the same dimension as the original
problem [35].

Proposition 5.4. The update step from zj, = (gk) (zr = <§k>) to zk41 = (xk"’l) (Zr = (xk>)
k k

Yk+1 Uk
in Algorithm 5 (Algorithm 6), which is the quasi-Newton PDHG update step, reduces to compute

Tl = Jg;l(:fk — TVG(CZ‘]C) — TK*gk — STUk,xfk)
Yo = J3 (U — EVF(Gk) + XK (22511 — T1) — sXUp 4 Ex) -
(35)

Zk4+1 = J%k(gk — Mk_lBEk) <~ {

where, & € R™ is the unique zero of J: R™ — R":

J (&) = (Ukz)"[Zr — Jg;il(i"k —TVG(@y) — TK g, — 8T Uy 2)]
zr+1(8) (36)
+ (Uk,y) " [9k — Jgfil(gk = XVF(gk) + 2K (2wx11(8) — Tk) — sZUk )] + €.

Proof. 1t is a direct consequence of Proposition 3.4 and Proposition 5.1. O

Algorithm 5 Inertial quasi-Newton PDHG to solve (33)

Initialization: zy = (;;S) € H, N >0, (ex)ken C H with ([lex])ren € L (N), T € Sy4(Ha),

T—l _K*>

Y e S++(H2) and M = <—K 2_1

Update for £k =0,...,N:

(i) Compute 0-SR1 metric My = M + sUU; according to the quasi-Newton framework in
Section 4.1.

(ii) Compute the inertial step with parameter ay:

Ty = ok + ap(Tr — 2p—1),

37
Uk = Yk + ar(Ye — Yr-1) - 37

(iii) Compute the main quasi-Newton PDHG step:
Tl = Jg;l (i‘k — TVG(i'k) — TK*:U]C — STUk’sz) + €kx s (38)

-1, _ _
Ykt1 = Jop (G — EVF(Gk) + XK (2011 — Tr) — sBUk &k) + €k,

where &, solves J (&) = 0 (see (36)) and € = (Zkr> is the error caused by computation
ky
at the k-th iterate.

End

Remark 5.5. By switching zi, with zx, and zi4+1 with Zj., we obtain the update step for Algorithm 6.
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Algorithm 6 Relaxed Quasi-Newton PDHG to solve (33)

Initialization: 2z, = (zo> € H, N >0, (ex)ren C H with ([lex]|)ren € L (N), T € Sy4(Hq),
0

7'71 —_K*
Y e S++(7‘[2) and M = <—K 2_1)

Update for £k =0,...,N:

(i) Compute 0-SR1 metric My = M + sU,U} according to the quasi-Newton framework in
Section 4.1.

(ii) Compute the main quasi-Newton PDHG step:

Ty = Jg;l(l“k —TVG(xg) = TK yr — sTUk 2&k) + €ka

1 (39)
Uk = J5r (Yp — SVF(yi) + SK (28, — x1) — sSUky&k) + €ry »

where &, solves J (&) = 0 and ¢ = <Ekx) is the error caused by computation at the k-th
.y
iterate.

(iii) Relaxation step:

e (51250 (55005) - (REG2) @

to compute the relaxation parameter t

and update = and yj as follows

End

Remark 5.6. In special cases, the root-finding problem can be solved exactly. For instance, when
T=7l,Y=0l, K=1,9=0 and f(y) = ||y|l1, according to [8], the root-finding problem with
r =1 is piece-wisely linear and can be solved exactly.

We would like to emphasize that using Proposition 5.4, we can avoid the computation of M, !
in the primal and dual setting, which is a computationally significant advantage. The convergence
of Algorithms 5 and 6 is a direct consequence of Theorems 4.1 and 4.6.

Proposition 5.7 (Convergence of quasi-Newton PDHG method). Let My = M as defined in (34)
and My, = M +sULU;; for k > 1.

(i) If (My)ren satisfies Assumption 1 (see e.g. Lemma 4.4), then (xy,yr) generated by Algo-
rithm & converges weakly to some solution of (3). Furthermore, if g and f are both strongly
convex (or G and F are both strongly convez), then we obtain the same convergence rate as
i Theorem 4.1.

(i) If (My)ren satisfies Assumption 2 (see e.g. Lemma 4.10), then (xk,yr) generated by Algo-
rithm 6 converges weakly to some solution of (3). Furthermore, if g and f are both strongly
convex (or G and F are both strongly convex) , then we obtain linear convergence.

6 Numerical experiments

The algorithms that we analyze in the experiments are summarized in Table 1.
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Algorithm Algorithm Name Metric
FBS Foward-Backward Primal-Dual Hybrid Gradient Method M fixed as in (34)
IFBS Inertial Primal-Dual Hybrid Gradient Method M fixed as in (34)

. quasi-Newton . o Sl AL ALAS £ a2,
QN-FBS Primal-Dual Hybrid Gradient Method Gradient Variable metric as in (21) with M5=-2MM from (34)
RQN-FBS Relaxed Quasi-Newton Primal-Dual Hybrid Gradient Method ~ Variable metric as in (21) with 35=-24M from (34)

Inertial quasi-Newton . s . EVEY .
IQN-FBS Primal-Dual Hybrid Gradient Method Variable metric as in (21) with #45=23M from (34)

Table 1: Summary of algorithms used in the numerical experiments. Details are provided within
each section.

Note that PDHG is used interchangeably as FBS in the later experiments since PDHG is a
specialization of FBS.

6.1 TV-[;, deconvolution

In this experiment, we solve a problem that is used for image deconvolution [10]. Given a blurry
and noisy image b € RV=Nu (interpreted as a vector by stacking the N, columns of length N,), we

seek to find a clean image = € RN="v by solving the following optimization problem:
2
o<rg?£55 2 HLx bll3 + pllDzl2,1, (43)

where L € RNeNv*NalNy g 3 linear operator that acts as a blurring operator and || Dz||2,1 imple-
ments a discrete version of the isotropic total variation norm of = using simple forward differences
in the horizontal and vertical directions with ||D| < 2v/2. The parameter p > 0 stresses the
influence of the regularization term || Dz||s,1 versus the data fidelity term | Lz — b|?. In-erderto
dealwithTo address the non-smoothness, we rewrite the problem as a saddle point problem:

. 1
min max (D, y) + da(z) + §||Lx = blI5 = Og) oo <y (¥) 5 (44)

x Y

where A = {z € RN=Nv|0 < x; < 255,Vi € {1,...,N,N,}}. We can cast this problem into the
general class of problems (32) by setting K = D, f = df|.|,...<x}, G(z) = 5[ Lz — b3, F(p) =0
and g = 0a. Here, G is 1/B-smooth with 8 = 2/3 as we took ||L||* < 3/2. Let z; = (zx,yx) be
the primal-dual iterate sequence. Choosing 7 = 71 = 0.05] and ¥ = ol = 0.051, it follows from
Proposition 5.1 and Remark 5.2 that M — %I = (16 — 3/2)I > 0 as desired. We compute the low-

rank part Qy = ypuru, by (21) with Bz, = (LTLTS—LT”) which is of course 3-co-coercive. This
leads to a metric that affects only the primal update. In each iteration, we use the semi-smooth
Newton method (Algorithm 1) to locate the root.

Figure 1 shows the primal gap against the number of iterations and against the time (seconds),
where the optimal primal value was computed by running the original PDHG method for 10000
iterations. For the variable metric at iteration k, we fixed v = min(0.8,15/||ux3). Thus, As-
sumption 2 is satisfied and the convergence of RQN-FBS (Algorithm 4) is guaranteed. Although
Assumption 1 can be guaranteed by appropriately defining (nx)ken in the view of Lemma 4.4, we
choose not to include the condition that (1+nk)Mk - Mkﬂ Wlth (Uk)keN e o TN ) in the numerical
experiments. This decision ¢ S ¢ : aeticewas made due
to the practical difficulties in settmg (MK ) keN and the concern that imposing stringent conditions
on (Mg )ken in advance might negate the benefits of utilizing a variable metric. In this practical
problem, we still observe the convergence of IQN-FBS (Algorithm 3). We notice that our quasi-
Newton type algorithms IQN-FBS, RQN-FBS and QN-FBS are much faster than original FBS
algorithm and inertial FBS (IFBS) according to the left plot in Figure 1. This can be explained by
the fact that the Hessian of G(x) is not the identity. By applying our quasi-Newton SR1 methods,
we can adapt the metric to the local geometry of the objective. Even though we are concerned
about the cost of solving the root-finding problem, the right plot illustrates the-additionalthat the
extra iterations can pay off , as shown by the convergence results over time. Quasi-Newton type
algorithms (QN-FBS, IQN-FBS) achieve higher accuracy compared to FBS and IFBS within the
same amount of time.
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Figure 1: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with p = 0.0001, 7 = 0.05, ¢ = 0.05 and inertial parameter ag = 10,
_ 10
Uk = T max{lee—zr 1o T The left plot £ e ) : )
iterationsillustrates convergence in terms of the number of iterations, Whlle the right plot shows the

convergence with respect to time (seconds). We observe that our two quasi-Newton type algorithm
QN-, and IQN-FBS significantly outperform the original FBS and IFBS algorithm.

6.2 TV-I; deconvolution with infimal convolution type regularization

A source of optimization problems that fits (32) is derived from the following:

min g(z) + G(z) + (fUR)(D2), (45)
where fOA(-) == inf,erm f(v)+h(-—v) denotes the infimal convolution of f and h. As a prototypical
image processing problem, we define a regularization term as the infimal convolution between the
total variation norm and a weighted squared norm, i.e. g =0, G(z) = ||[Lz —b||?, h(-) = 1|W - ||?
and f(-) = p|| - [|2,1. This yields the problem:

1
min o || Lz — b||> + uR(Dx) (46)

where R(-) = inf,crm [|v]]21 + 5 HW( v)||?, W is a diagonal matrix of weights which is given
to favor discontinuities along i 1mage edges and L, b, D are defined as in the first experiment. In
practice, W can be computed by additional edge finding steps or by extra information. Here, we
select W such that & < ||[W/||? < 1. The optimization problem (46) given in primal type can be
converted into the saddle point problem:

: 1 1
min max (Dz,y) + §||Lac —b|* - S lzso<ny (V) — §||W Lyl (47)

€T

1 *W—l .
constructs a metric that affects both the primal and dual update. Here), B isy [-co-coercive with
B > 1/6. In each iteration, we combine the bisection method (Algorithm 2) with the semi-smooth
Newton method (Algorithm 1) to locate the root.

Figure 2 also shows the primal gap where the optimal primal value was computed by running
original PDHG for 10000 iterates. For the variable metric at iterate k, we fixed v, = 0.64,
T =71 =0.011 and ¥ = ol = 0.011. Thus, by Lemma 4.10, Assumption 2 is satisfied. As for
Assumption 1, we follow the same strategy as in the previous experiment and drop the condition
that (1 + nx) My = Myiawith (nx)ken € E}F(N) in this numerical experiment. We can observe
from Figure 2: IQN-FBS is still the fastest one. Moreover, the two quasi-Newton type methods
(IQN-FBS and QN-FBS) converge more quickly than IFBS and FBS. Inertial methods (IQN-FBS,
IFBS) are slightly faster than QN-FBS and FBS, respectively.

— T ; _( LTLxx—LTb -
We compute the low-rank part Qr = yiupu, by (21) with Bz, = (W . This approach
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Figure 2: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-
gorithms in the Table 1 with 4 = 0.5, 7 = 0.011, 0 = 0.01 and the extrapolation parameter
ap =1, a, = min{ kl'l(maX{HZkfzkl_Olll,IIz;rzk_l\I?}) ,1}. Our quasi-Newton type algorithm IQN-FBS
can converge faster than the original FBS and IFBS algorithm.

6.2.1 Image denoising

We consider the same setting as in (47). By setting L = I in (47), we derive an image denoising
problem with a special norm defined by infimal convolution of total variation and weighted norm,
which has strong convexity for both primal part and dual part. Besides, due to the simple formula,
we obtain the dual problem explicitly, allowing us to calculate the primal and dual gap. The dual
problem reads

1 1
max_ —|[ D"y — bl — S||W " y?. (48)
lyllz,c0<t 2 2
10°
1004 Ay
SO
103 N,
“\
a S
S 10 S
s >
] NG
i s
£ Methods: ~
1004 0(1/1.17k) "
4~ FBS ~
10-14 ~*- IFBS \‘\\
= QN-FBS X So
_ RQN-FBS
1072 IQN-FBS X

6 1‘0 2‘0 3‘0 4‘0 5‘0 66
Iterations
Figure 3: We compare convergence of the inertial quasi-Newton PDHG (IQN-FBS) to other al-

gorithms in the Table 1 with g = 0.1, 7 = 0.1, ¢ = 0.1 and extrapolation parameter ay = 10,
ap = —— s7- The plot shows that all algorithms converge linearly and faster than
max{kl-1 k1-1|z—2zr_1]%}

O(135).

Figure 3 shows the convergence of the primal-dual gap. For constructing Q, we set v, =
W, T =71 =011 and X = ol = 0.11. Assumption 2 is satisfied. However, Assumption 1
is not satisfied since we do not include the condition that (1 + ng)My = Mgiiwith (ng)ken €
@_ (N) in this numerical experiment. As observed in Figure 3, quasi-Newton type methods exhibit
linear convergence as expected from Theorem 4.1 and 4.6. However, Figure 3 shows that in this
experiment quasi-Newton type algorithms are in fact not more efficient compared to FBS or IFBS,

which is plausible due to the well-conditioned H = 1.
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6.3 Conclusion

In this paper, we extend the framework of [8] for variable metrics to the setting of resolvent opera-
tors, solving efficiently the monotone inclusion problem ((1)) consisting of a set-valued operator A
and a co-coercive operator B. We propose two variants of quasi-Newton Forward-Backward Split-
ting. We develop a general efficient resolvent calculus that applies to this quasi-Newton setting.
The convergence of the variant with relaxation requires mild assumptions on the metric which are
easy to satisfy, whereas the other variant implements an inertial feature and is therefore often fast.
As a special case of this framework, we develop an inertial quasi-Newton primal-dual algorithm that
can be flexibly applied to a large class of saddle point problems. Throughout the paper, we employ
a rank-1 perturbed variable metric denoted as M;, = M +sU,U}’ with r =1 and Uy : R — H which
is generated using the 0-memory SR1 method. Alternatively, one can generate the variable metric
using an m-memory quasi-Newton method (refer to [23, 41]), wherein Uy : R™ — H. Consequently,
we are able to derive an m-memory quasi-Newton primal-dual method.

Another potential application of our resolvent calculus in Theorem 3.1 lies in non-diagonal pre-
conditioning of the primal-dual method (PDHG). Moreover, there are many directions to improve
our methods. Further investigation is needed to develop an optimal sequence of variable metrics
(My)ken. Given that our variable metrics are currently designed solely based on the geometry of
the single valued operator B, it is reasonable to explore a metric that adapts to both operators A
and B. Additionally, there remains an open question regarding how to eliminate the condition that
the growth of My is controlled by a summable sequence (7 )ren while ensuring fast convergence.

Acknowledgement

We sincerely appreciate the valuable feedback provided by the Associate Editor and the two anony-
mous referees. Our work is supported by the ANR-DFG joint project TRINOM-DS under number
ANR-20-CE92-0037-01, and OC150/5-1.

Appendices

A Appendix

A.1 Proof of Lemma 2.4

Proof. This proof is adapted from [6]. Let (u,v) = (JA(z), J¥ (y)) for some x,y € H. By the
definition of resolvent operator J4!, we obtain

u=J(2) <= M(z—u) € Au.
Similarly, we obtain M (y — v) € Av. Then 74-strong monotonicity of A yields

(M(z —u) = M(y = v),u = v) > yallu—v|?
(M(z = y),u—v) = (M(u—v),u—v) >yalu—v|
(M(z = y),u—v) = yallu—ol® + [lu— vl -

Since || M| is bounded by C, we obtain
(M(z = y),u—v) = yallu—v|* + u—vlF = 1+ ) lu— vl (49)

Consequently, JA is (1+ T4 )-co-coercive in the metric M and Lipschitz continuous with constant
1/(1+4 %) with respect to the norm || - [|az. O

A.2 Proof of Theorem 4.1

Proof. For convenience, we set By := M,;lB. Fix z € zer(A + B) which is equivalent to z =
Jilw’“ (z — Bgz). We set Zp4q = Ji‘/[’“ (Zx — BrZk), i.e., zk41 = Zpt1 + €k
Boundedness:
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First, we are going to show that ||z — z||ar, is bounded. The following are several useful estimates
we will use later. Assumption 1 yields

lzk+1 = 2130, < Q) llzke1 — 213y, - (50)
Since zp+1 = Zk+1 + €k, it follows that
lzk41 = 2037, = 12641 — 2 + ells, < M2er = 2130, + 2llenllan 12601 = 2llan, + llexll3s, - (51)
The assumption that B is 5-co-coercive yields that
(Zx, — 2z, Bpzi — BkZ>Mk = (z; — z,BZ, — Bz) > B||Bzi, — Bz||2 . (52)

The assumption that My — %I € S, (M) yields that 281 — M, " € S; 4 (H).
The co-coercivity of B and monotonicity of B yield the following estimates (I) and (II) respectively:

1(Zx — Brzx) — (2 — Br2)llar, = 2 — 2l13s, — 2 (2 — 2, Brzx — Biz)yy, + |1 Bezk — Brzlliy,

() = 5 5 >
2 (12 — 23, — 2 (3 — 2 Bz — B2) + | Bz — Bz},

i) B
< Iz = 2l = 1B2 — B2ll35_5 D
or
(i) ) ~ ) _ 5
< =k = 2l5s, = 1Bz = B2[[5_ 0 = vBllzk — 2|7 (IT)
where (i) uses || Bz, — Brz|3;, = Bz fBzH?wk_l, (ii) uses (52) and (iii) uses strong monotonicity

of B. Note that we use the shorthand g — M,;l for pI — M,;l. The fact that Jﬂ/[’“ is firmly
non-expansive since A is maximally monotone with respect to My, implies that

12k1 = 2l137, = 174" (21 — Buze) — J3™* (= = Be2) s,
< |(zx = Brzi) — (= = Bi2)|1 3, (53)
— (= T3") (2 = Bez) = (I = J3™) (= = Bi2)ll3y,
< |1z — 213, — 1Bz — BZ||§[3_M;1 — 1(Zk — Zk41) — (Bezx — Be2) I3y, »
where the last inequality uses (I). It follows from Assumption 1 that the term || Bz fBzﬂg st 2
.

0. We continue to bound the first term on the right hand side of (53). Using [6, Lemma 2.14] and
the definition of zj, we obtain the following:

126 = 2013, = 1+ aw)llze — 20137, — arllze—1 — 2l3s, + (1 +ar)arllzr — ze-1ll3y, - (54)
and by using the triangle inequality, we also obtain another estimation:

12e — 2lla, < 1+ aw)llze — 2llar + arllze-1 — 2l - (55)
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In order to address complete update step, we make the following estimation:

lzke1 — 23000, < T+ m0)llzker — 213,
i
< (L4 m0) (12ke1 — 2132, + 2llerllan 1 Zesr — 2llag, + llexll3s,)
(i) B B
< (L+ ) (I2k — 21130, + 2llexllan 12k — 2llaz, + el

— 1Bz — BZHEBfM,:l — 1(Zx = Zk41) — (Brze — Br2)||3s,)

(iii)
< (1 +me) ((L+ aw)llze — 213, — anllze—1 — 213,

+ (1 + ag)ag|lzrx — Zk—lH?uk
+ 2[Jex || ar, (1 + a2k — 2l m + allzi—1 — 2llar,)

+ llexll3s, — [I1BZ — BZ||§5,MR—1 — 12k = Zrs1) — (Brzk — Br2)ll3s,)

—
=

(iv)
< (L) (12 — 2I13s,
+ aw(llzk — 2l = llze—1 — 2llan ) (lzk = 2llaze + [l20-1 — 2lla)
+ (1 + ag)al|lzrx — Zk—lH?wk
+ 2llerllar, (1 + cw)ll2x — zllar, + allzr—1 — zllaz)
+ llexll3s, — B2 — leliﬁ,Mk-l — 12k = Zks1) — (Brzr — Br2)ll3s, )
(v)
< () (I — 2037, + arllze — 21l 2k = 2llan, + llz6-1 = 2llaz)
+ (1 + ap)arllze — 2r-13r, + 2llexllan (L+ar)llzr — zllan, + arllze—1 — 2[lar,)
+ [lexll3s, — 1Bz — BZ||§5_M;1 — 1k — Zk41) — (Bezk — Bi2)ll3s, ) -

(56)
where (i) uses (51), (ii) uses (53), (iii) uses (54) and (55), (iv) uses factorization of the quadratic,
and (v) uses the triangle inequality to obtain the bound ||zx —z||ar, — |2k—1— 2|0, < |2k —28—1 | pss. -

Now, our goal is to conclude boundedness using Lemma 2.7. For simplicity, we set:

ek = Oék||Zk - Zk—1||%wk

T = Oék“zk - Zk—1||Mk

O =2k — 2||lm,

me = ||zk—1 — 2| M,

pr =Bz — BZ”ga—M,;l

ae = ||(Zk — Zr41) — (Brzk — Br2)|%y, -

By Assumption 1, we have my < (1 + ng—1)0k—1. Without loss of generality, we can assume
0 < mr < 1 for any k € N. Replacing each term in (56) with new corresponding notations, we
obtain:

071 < (14 m) (07 + re(Or + mu)
+ (1 + aw)er + 2l el an (1 + ox)Ok + axma) + llexl3s, — pr — ar)
< (L4 ne) (07 + (0 + (1 + mp—1)0—1)
+ (1 + ar)er + 2llenlar (1 + )8k + ax (1 +mk-1)0k-1) + llekllas,)
< (1 m0) (0% + 70k + 205-1) + (14 New + 2lexl|ar (1 + A)0r + 2A05 1) + ||6k||?\4k)(, |
57

where the last inequality uses 0 < aj < A and 0 < 1, < 1. Now, we claim that 6, is bounded in
two steps. We introduce an auxiliary bounded sequence (Cy)ren (step 1) such that 8, < Cy for
any k € N (step 2). The boundedness of 8}, follows from that of Cj.

Stepl: We construct a sequence C}, as the following;:

{ Co = max{6o, 1},

58
Crt1 =1 +m)Cx + v, (58)
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where v, = (1 + nx)((1 + Aer + 2r, + (1 + 3A)||€k||ar, ). From our assumptions, it holds that
(M},)ken is bounded from above, (r4)gen € (1 (N), (ex)ren € ¢1(N) and (||ex|)ren € €4 (N), which
implies (Vg )ken € K}r(N). Using Lemma 2.7, we obtain the convergence of C} to some Cy, < +00.
Step2: From the update step of (58), we observe that (Cy)x is a non-decreasing sequence and
Cy > 1 for any k € N. We claim that for each k, 0, < Ci. We argument by induction. Clearly, we
have 6y < Cp. Assume 0; < C; holds true for i < k. Then, (57) yields that

0£+1 <1+ nk)(Cz +7.(Cr +2CK_1) + (1 + A)eg, + 2||ex|lar, (1 + A)Cr + 2AC, 1) + ||ek||?wk)

(%)
< (1 + nk)(C’l% + 4r, C), + 2(]. + A)eka + 2(]. + 3A)||€k||Mka + HEkH?V[k)
<A +n)(Cr 42 + (14 A)ep + (1 + 3A)H€kHMk)2 )

(59)
where (x) uses Cy > Ci_1 > 1 and r, > 0. By the definition of Cj1, we obtain
()
Op+1 < /140 (Cr + 2rk + (1 + Aex + (1 + 3A) [|ex]ar,,)
(ii)
< (T +m6)Ck + (14 mk) (2rk + (L + A + (14 3A) [|ex | ary.) (60)

(iii)
< (T4 m)Ck + v

- Ck+1 )

where (i) uses (59), (ii) holds true since (14 1) > 1 and (iii) uses definition of vj. This concludes
the induction, and we deduce that 6 is bounded and therefore, z; and Z; are both bounded.
Weak convergence:

This part of the proof is adapted from the one for [13, Theorem 4.1]. Since 6y, is bounded, we set
¢ = supyey k. The last inequality in (56) implies that

Or 1 < (L+m) (0% + (¢ +2¢) + (14 Aeg +2(1 + 3A) [[exllar ¢ + Nl — pr — ax)
< (L4 m0) (67 + 3riC + (L + Aer +2(1+30) [lerllanC + llewllir, —pr — ar)
< O + b7 + (14 ne) Bre¢ + (1 + Aex + (24 6A) [lexllar, ¢ + lexllis) —pe —ax  (61)
<O +meC 4203+ (1 + Ae + (24 6A)|Jexll ¢ + llellFe,) —pr — ak -

Ok

We set 6, == nk(Q+2(3rkC+(1+A)ek+(2+6A)||€k||MkC+||€k||?\/[k) and observe that (Jk)kEN € E},'_(N)
Now, (61) yields that
071 < O + 0k . (62)

Using (62) and Lemma 2.7, we obtain the convergence of 07 = ||z — z||3,, for any z € zer(A+ B).
Rearranging (61) to py < 07 — 07| + 0k, using Assumption 1 and summing it for k = 0,--- , N ,
there exists some € == pyin (261 — M,;l) > 0 s.t.

N N N N N
e 1Bz —Bz|> <Y 1Bz~ Bzl, \, =Y pe <050+ o<+ 0. (63)
k=0 k=0 k=0 k=0 k=0
Since (0x)ren € ¢4 (N), by taking limit as N — +o00, we obtain

3 1Bz — Bz|)? < g%(CQ +361) < +oo. (64)

keN keN

Similarly, we obtain from (61) using g, < 67 — 9,§+1 + dy that

> (zk = 2r41) — (Brzk — Biz)|l3y, < +o00. (65)
keN

Set z* as an arbitrary weak sequential cluster point of (zj)ren, namely, a subsequence zg, — z*
as n — oo.
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In order to obtain weak convergence of zj, by Proposition 2.5 with ¢(t) = 2, (62) and As-
sumption 1, it suffices to show that z* € zer(A + B). It follows from the selection of ay, that:

Hék—zkH §o¢ksz—zk_1|| — 0. (66)

Thus, (66) yields z, — z*. From (64), we obtain that Bz, — Bz as n — oo. Since B is
co-coercive, it is maximally monotone and we can use the weak strong graph closedness of B in
Proposition 2.2 to infer that (2*, Bz) € Graph B, i.e. Bz € Bz*. However, since B is single valued,
we obtain Bz* = Bz and hence Bz, — Bz*. Setting uy, := My (2Zx — Zx+1) — BZx, by definition of
the resolvent J4™ | we have uy, € A(zkH) for all k € N. From (65), we obtain as k — 400,

Huk + BZ*” = ||Mk(2k — Zp+1 — Bz + Bkz*)||
< Cl|zx — Zk+1 — Brzi + Brz"||

. (67
< %H?k — Zk+1 — BiZr + Bez"||lm, — 0.
Furthermore, from (64) and (65), we have
Zk — Zr+1ll < ||Zk — Zrx+1 — BrZx + Bp2z™|| + HBkzk — B2 (
68)

< ||§k — Zk41 — Brzr + Brz™|| + Bz* || —0.

||sz -
\/>
Therefore, together with (68), zy, — z* implies 2, ., — 2* as n — oo. Now we already have
ug, — —Bz* as n — oo and

(Vk e N): (2, 41,uk,) € Graph A. (69)

Since A is maximally monotone and using Proposition 2.2, we infer that —Bz* € Az*, hence
2* € zer(A + B). As mentioned above, the result follows from Proposition 2.5 with o(t) = 2.
Convergence rate:

In the following part, we are going to show the convergence rate of Algorithm 3: Assume ¢; = 0
for k € N and either v4 > 0 or v5 > 0. Because of (50), Assumption 1 and Lipschitz continuity of
J4" we obtain for any z € zer(A + B) that

lzki1 = 20300, < (L +m)lzken — 234,

Lemma 2.4 1 2 B 9
<) (1) 16— B — (- By,
C
) 2 2 - 2 - 2
< ) (1) (1 = 2l — 152 — BaIR_ o0 — vl — P)
C
(ii) 1 2
< () (7)) 0= B~ =l3s)
C
)

(i) -7
= (L+m )( ﬁ)z((1+0¢k)||zk 23, — arllze—1 — 213,
C
+ (14 aw)ag||zk — Zk—1||Mk)
(1-% 5

=(1+ ﬂk)m(ﬂzk — zlar, + ar(llze — 2037, — l2e—1 — 2[34,) (70)

+ (14 ap)ollzr — 2e-1l3s,)
(iv) (1-22)
< (1 +m)~—=55
= ( Wk) (1+ '\/A)

+ llze—1 — zllag) + (1 + ar)owllze — zk-1l34,)
)
2

5 (2 — 2134, + awllze — 2e—1llaz, (20 — 2|0,

) (1-2

<1+ ﬂk)ﬁ(”zk = 2|3g, + allze — zi-1llan (12 — 2llar,
C
+ (4 me-1)llze-1 — 2llag ) + (14 cw)arllzk — zk-1ll3s,)
(vi) (1-7)
= (1+ nk)m(ll% - Z”Mk + 3aiCllzk — zk—1l My

+ (14 Nagllze — zr-1l134,)
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where (i) uses (II), (ii) uses the fact My is bounded uniformly and the assumption that Mj — %I €
Sk (H), (iii) uses (54), (iv) uses factorization of the quadratic and uses the triangle inequality to

obtain the bound ||z — z||ar, — [|26—1 — 2||la, < |12k — 2Zk—1]|a1,, (V) uses Assumption 1 and (vi)
B

uses boundedness of ay, and ||z, — #||as, . Since either v4 > 0 or yp > 0, UTTXB}Q < 1. Then there
C

exists sufficient large Ky > 0 such that for any k > K, (1 + 77@(%) < 1—-¢ <1 for some
C
& €(0,1). Thus, we infer that for any k > Kjy:

k—1

low = 2035, < Q=" 0llzry = 2030, + D (1= (3¢ 2 —2imallag, + (L + M)z — zi-1ll3s,) -
i=Ko
(71)
Let © =3¢ + (1 4+ A). Therefore (71) can be simplified as the following:

k—1

ek —2l3s, < (1= llzr, —2llRr, + Y O1=6)" s max{||zi—zi-1ll,,
=Ky

lzi—zi—1ll3g } - (72)

Since zj, is bounded and My, € S,(H), it follows that

k—1

2k = 2lI* < 2(1 = & F0l|zi, — 2[3p,, +O(D (1= ). (73)
i=Ko

Furthermore, if o; = 0, for k > K and for any z € zer(A 4+ B), we obtain linear convergence:
1 -
loksr = 2% < —(1 =" llaky = 2l - (74)
If oy # 0, a, = O(3%) and Ky large enough, then ||z;41 — 2||? converges in the rate of O(3) for

k > Ko according to [33, Lemma 2.2.4 (Chung)]; if . # 0 and oy, = O(g*) for ¢ = 1 — £ and
k > Ko, then ||z41 — 2||? converges in the rate of O(kq*) for k > K since (73).

O
A.3 Proof of Theorem 4.6
Proof. For simplicity, we set
s . My, -1 ~ A
Zy = J " (2 — M, "Bzy),and, 2, = 2+ €, (75)
Or = max{1, p}lexl ,
where p = 3,/ £(C + %) and (05 )ken € €1 (N). We set z* such that —Bz* € Az*.
Boundedness:
We claim that by choosing proper t; for each k& € N, we have
241 = 27| < ||z — 27| + 0. (76)

Note that if (76) is satisfied, it follows from Lemma 2.7 that ||z — z*|| is bounded and converges.
To stress the relation between zj11 and ti, we define z(t) == 2z — t[(My — B)(zr — 2x)] and we
will use 2541 and z(ty) interchangeably. We also set v (t) = (0% + ||zx — 2*[])% — ||2(t) — 2*||%.
In order to prove (76), it is sufficient to show that for proper t; at each iterate, vx(tg) > 0. It
results from the definition of 7 (t) that

() = (lak = 27| +61)* = [[2(t) — 2"
= (zp — 2"+ 2(t) — 2%, 21 — 2(t)) + 20k || 21 — 2*|| + 67
=2t (z — 2%, (M, — B) (21, — %)) — || (Mg — B)(zx — )| (77)

) (1)
+ 26kH2k - Z*” + (5,% .

We need several useful properties to estimate (I) and (II).
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It follows from the definition of 2 that —My (2, — 2 ) — Bz, € A2, and 7 4-strong monotonicity
of A implies that

Yallze — 2°|1* < (8 — 2%, =My (2, — 2) — Bz + Bz*)
= <2k - 2", Mk(zk — 2].3) — Bz, + Bz, — BZ, + BZ*> (78)
= <72k — z*7Mk(zk — ék) — Bz, + B2k> — <ék — 2", Bz, — BZ*> .

We deduce by (78) and yp-strong monotonicity of B that

<2k — Z*7Mk(2k — 7:'k) — Bz, + Bék> > <2k — Z*7B,§k — BZ*> +7A||2k — Z*H2

. . (79)
> ypl|2e — 2|7+ yallsr — 2|12
Jﬁ/[’“ is Lipschitz since A is monotone. Therefore,
126 = 2" 130, < (2 = Brezw) — (2* = Biz") |3,
= ”Zk - Z*”?\/Ik -2 <Zk — 2%, Brzp — Bkz*>Mk + ||Bkzk — BkZ*”?\/[k
< llz = 2" I3, — 1 B2k = Bzllyg_p (80)

() * (|2
< llzk = 2"l »

where (%) uses Assumption 2 that M}, — %I € S.(H). Using the assumption that M, — %I € S.(H)
again, we obtain

<Zk — 2, (Mk — B)(Zk — Zk» > ||Zk — 2k||f\4 1, >0. (81)
kB
Combining (79), (80), the first term (I) in (77) can be estimated by the following:
(I) =2t <Zk — Z*, (Mk — B)(Zk — ék»
= 2t (21, — Zp, (Mi — B) (2 — Zx)) + 2t (Zk — 2, (Mi — B)(2k — Zk))
+ 2t <2k - 2", (Mk — B)(Zk — fk» + 2t <2k — 2", (Mk — B)(i’k — Zk)>

(é) 2t (2 — 2, (M = B) (21 — 21)) + 2t (2 — 2, (My — B) (2 — 21))

+2t(ya +v8)||2x — 27|17 + 2t (3 — 2%, (M), — B) (3 — Z1))

(ii)
> 2tz — 2k, (M), — B) (2 — Z1)) — 2t|ex||[|( My — B) (21 — Z)||
+2t(va +yB)l12k — 27I° = 2t (My — B)ellpy—1 1125 — 2",

(i)
> 2tz — 2y (Mi — B) (2 — Z1)) — llexll® — 2([(My — B) (2 — Z&) ||

+2t(va +8)l12e — 27|17 = 252 (C + H)tllerll 2k — 2" llas,

(82)

(iv)
> 2t (2 — 2, (Mi — B) (21 — 2)) — llexll* = [|(My — B) (2 — Z)II?
+200va + v8) 12 — 712 = 2/ S(C + Dtlleal o — =71
where (i) uses (79), (ii) uses Cauchy inequality and (iii) uses (80), 2ab < a?+b* and Assumption 2.
We set by, = (zx — 2k, (Mg — B)(21, — Z)) and ay == ||(My, — B)(2x — Z&)||*>. The definition of &;
yields that 8 > |lex||? and it follows from (82) that:
’yk(t) > 2thy — 2t2ak + 25k||zk — Z*H + 5;3 — ||€k||2
=2/ S(C+ Htherlllzr — 2l + 2t(va +v8) |2 — 27|

> 2tby, — 262y +2t(va + v8) |25 — 271”200k — ) S(C + L)tllerl) ]Iz — 2*] -
(111)

(83)

av)

We continue to find a proper t; such that v (¢x) > 0. This goal boils down to ensuring both
(III) and (IV) are positive.

Let ¢, = %. We first show tj = 2% is the proper value to make sure (III) is positive. From

k

(81), we observe that by > 0. Since ar > 0 and by > 0, the quadratic term (III) in (83) will be
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zero for tp = 0 or t, = % and will be strictly positive for any t; € (0, bg/ax) with the maximum

ak
value obtained at t; = ;T"k As a result, (II) is strictly positive.

Second, we will show (IV) is positive when t;, = 2. We observe that 0 < tj, = 2= < 2%5 for

ap Qak
k

Assumption 2. Thus, the definition of d; and t; = 2%6 imply that

(IV) = 2(dx — \/?(C + $tellerDllze — 27

> (25— /2 + Dllala - 2| (84
0.

v

Since (IIT) and (IV) both are positive when t; = 2 (83) yields:

2ay’

W (te) > 2tebr — 2670 + 2t (ya +v8) |12k — 2* (12 + (205 — \/ S (C + B)llexl)l2r — 27|
2

b . *
> £ 4 2t (ya +vB) |2k — 27|
2ak

>0,

(85)

Tt results from (85) and the definition of v (¢) that for each k € N, (||z —2*||+ k) > ||z(tx) —2*|| =
l|zk+1—2*||. We conclude that if ¢}, = %’1, then x(tr) > 0 for all k € N and the sequence ||z, — z*||
is bounded and converges as k — 400 by using Lemma 2.7.
Weak convergence:
The sequence (zj)ren generated by Algorithm 4 is bounded and ||z, — z|| converges as k — oo and
~i(tx) converges to zero as k — oo for all z € zer(A 4+ B). Set 2* as an arbitrary weak sequential
cluster point of (zx)ren and there exists a subsequence (z, Jnen such that z,, — z*.

In order to obtain weak convergence of zj, by Proposition 2.5 with ¢(¢) = ¢t and fixed metric
My, = I and (76), it suffices to show that z* € zer(A + B).

Using Assumption 2, (Mj)gen is bounded uniformly by C. Together with boundedness of
operator B, we obtain ay, is bounded by (C + %)QHZ;C — Zk||? for each k € N. Using Assumption 2,

we obtain that by > ||z — Zk|? 1, > c|lzr — Z]|?>. By definition of t; and (85), we have

B

Tolt)> 2 > ﬁ”zk — Z]12. Since i(t) — 0, ||z — Z1]| — 0 as k — co. Moreover, since
ex — 0, ||zx — Z&| ﬂ—> 0. We set up = My(zr — %) + B2y, — Bzg. Therefore, we obtain that
ur — 0 as k — 400 and 25, — 2z* as n — +o00. We observe that ug € A%, + BZ;. Then, by using
Proposition 2.2 and the fact that A + B is maximally monotone, we conclude that 0 € Az* + Bz*.
Besides, ||z, — 2*|| decreases since z* € zer(A + B). As mentioned above, the result follows from
Proposition 2.5 with ¢(t) = t.

Linear convergence rate:

If we assume ¢, = 0, tglen 2, = Zi and ), = 0. Therefore, from (85) we can obtain an estimation

k

for v (tr) when ty = STE

* * b2 2 *
W) = llze = 211" = llzn — 27I° > ﬁ + 2tk (4 +y8) 12 — 2717 (86)

The following part is to derive linear convergence for the case that either v4 > 0 or yg > 0. The
definition of by and that of aj yield the following estimation for ¢:

. P | |
g e (o= 2 (My = B2k — &) O S (87)
"Toar - 2[(Mi—B)ak— 22 T 200+ 52l —al? T 2(C+ D2

where both (i) and (ii) use Assumption 2. For convenience, we denote ﬁ by §. Using
L

B

Assumption 2 again, we have the estimation for the first term at the right hand side of (86):

by

e 2 0|2k — '2’“”?\@— Y (88)

=
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Furthermore, combining (86) with (87), (88) and the definition vk (tx) := |2k — 2*||* — ||2k+1 — 2*||%,
we obtain
P < Hlzw = 2511”20y +v8)dlI12k — 2*|1* — bz — 2

< law = 2*|I* — 3 min{2(ya +v5)3, e} (2] 2k — 271" + 2l| 21 — 2 1?)

@
< llok — 2|1 — 3 min{2(ya +v5)d, cd} (|26 — 2*[| + ll2x — 2&[)? (89)

|2k41 — 2

ii)
< Jlox — 2| — & min{2(ya + y2)3, 3}z — =°

<(1- %mm{Q(q/A +B8)3,cd}) ||z — 2 ||?,
where (i) uses inequality 222 + 2y > (x + y)? and (ii) uses triangle inequality. Consequently, we
obtain linear convergence if (y4 + vg) > 0:
Iz = 2*[1” < (1= €)*[l20 — 2*[I?, (90)

where £ = £ min{2(v4 +v5)d, c6} > 0. O

A.4 Proof of Theorem 3.1

Now, we give the proof of Theorem 3.1. For convenience, we define translation operator 7,: H — H
by 7p(x) =  — p with inverse szl =T_p.

Proof. Computing the resolvent operator shows the following equivalences
zt=JY(2) =+ V1A (2)
= Vze (V+A)(z")
= Mze (M+ A)(z") +sQ(z" —
[y = MY22*] = Mz e (M + A)(M~Y?y*) +5 ( N2 ) (91)
= Mze (M+ A (M Y2y +sQM~ Y2 (y* — MY/22)
= Mze (MY?+ AM~Y2)(y*) +sQM Y2 (y* — M'/22)
(W =M2QM~ Y2 = MYV2z e (I + M~Y2AM™Y2)(y*) + sW (y* — M*/2z).
Since uniqueness and existence of z* is guaranteed by the properties of J} , Lemma 2.6 yields the
existence of a unique primal-dual pair (z*,u*) that satisfies the equivalent relations in Lemma 2.6
with R := +sW o Typ1/2, and T := Tpp1/2, o (I + M~/2AM~/2). The mapping R is single-valued
and, as A is a maximally monotone operator and M is positive-definite, 771 = Jyr-172pp-1/2 ©

T_1/2, is single valued. Therefore, the solution of JY can be computed by finding u*€ im(W),
namely, u* € im(M~1/2Q), such that

0€ R — T (—u*) = [(sW) 2™ + MY22] — Jyporseang—re(MY?2 —u*), (92)
and the using
o= MY2 and =T H—u*) = Jyoreang-1e(MY?2 —u¥). (93)

Substituting u* = sM~'/2v*c im(M~'/2Q) in both problems, multiplying the former one from
left with M~1/2, and using M~Y2W—1M~1/2 = Q= where Q! is a set-valued inverse operator
of @ defined by the graph {(v,w) € im(Q) x H|Qu = w} leads to

0e Qil’l)* +z— M—1/2, JM—1/2AM—1/2 o M1/2(27SM71”U*) (94)

T = M_1/2 o JM*I/QAM*1/2 o M1/2(Z—SM_1U*) .

Since a unique solution to JX exists, there exists v* € im(Q) that satisfies the inclusion. We notice
that im(Q~!) = im(Q™) +ker@ where Q*: im(Q) — im(Q) is the inverse of @ restricted on im(Q)
and ker(Q) denotes the kernel of . Given the linear mapping U: R” — im(Q), which can be

realized using r linearly independent uq,--- ,u, € H by a — Z:=1 a;u;, the inclusion problem is
equivalent to finding the unique root a* € R" of ¢(«), namely,

o) =UQTUa+U*(z — JY (2 —sM~'Ua)), (95)
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where U* denotes the adjoint of U and J4! is an abbreviation of the mapping M=Y20 ]y, 1/2 Apg-1/20

M1/2, The following shows that £(«) is Lipschitz continuous with constant ||U*Q*U||4-|| M ~1/2U ||*:
(We abbreviate Jy;-1/2 437172 by J in the following)

((a) = £(B), = B)
=l — Bl grv — <J(M1/2z —sM~Y2Ua) — J(MY?2 —sM~Y2UB), M~ Y2U (o — 5)> (96)
<|U*Q U lo = BI” + | M~ 2U )Pl - BI?,

where, in the last line, we use the 1-Lipschitz continuity (non-expansive) of J.
The following shows strict monotonicity of [. We rewrite ¢(«) as follows:

f(a) = U*Q+UC¥ + U*Mfl/Q(Ml/QZ _ JM*1/2AM*1/2 (M1/2Z o SMﬁl/zUQ{))
= U*Q+Ua L sUM ™ 'Ua + U*M—1/2(I _ ']Mfl/?AJV[*l/?)(Ml/QZ o SM_l/QUoz) (97)
- U*(Q+ + SM_l)Ua + U*M_l/QJM*IﬂA*lMﬂ/z (M1/2z — SM_1/2U0é) .

Using the 1-co-coercivity of Jy 12 4-171/2, the function £(a) can be seen to be strictly monotone if
a v U*(QT+sM~1)Ua is strictly monotone. This fact is clear for the case s = 1. Therefore, in the
remainder, we show strictly monotonicity of a +— U*(Qt — M~ Ua = U*M~Y2(MY2QT M*/? —
I)M~2Ua. We observe M —Q € Sy(H) implies that [|[M~1/2QM~1/?|| < Tand by 1 < |TT!| <
|T|[[|T~||, we conclude that ||M1/2Q+M1/2Him(M71/zQ) > 1 for the restriction of the operator
norm to im(M ~1/2Q), hence, QT — M~' € S, (H).

According to Lemma 2.3, we can replace M~/2 o Jy ;12 4p-1/2 © MY/? with J}I. Then we
obtain the formula in the statement of Theorem 3.1. O

Remark A.1. A priori Q= is set-valued, however it is easy to check that U*Q~'U is single-
valued (see Appendiz A.4.1). We define QT : im(Q) — im(Q) as the inverse of Q restricted to
im(Q) which is a single-valued mapping. It allows us to replace Q= by Q* in (11).

A.4.1 Proof of Remark A.1

Proof. Given y € im(Q), assume there exist U*xq,U*zy € U*Q ™'y with 21,20 € Q~'y. For
arbitrary 8 € R", we have (5, U*z1 — U*zs) = (UB,x1 — x2). Since UB € im@, then there exists
some z such that U8 = Qz. As a result, (8,U*x1 — U*xs) = (UB,x1 — x2) = (Qz,x1 — z3) =
(z,Qx1 — Qx2) = 0. We notice that (8,U*xy — U*xs) holds for arbitrary § € R". It implies
Uz, = U*zy and U*Q ™y is single-valued. O

A.5 Proof of Corollary 3.3

Proof. Let H = R™. In this case, we can identify a linear mapping U: R" — H with a low rank
matrix U € R™*". Similarly, we can also identify U*: H — R” with UT € R**". Since Q = UU "
for some U € B(R",R™), we have

im(Q) = {UU "v|v € R"} = {Uaja € R"}. (98)
Since Q7 is inverse of @ on im(Q), the following holds for arbitrary v € R™:
QRTQu=Quv <= UU'QTUUTv=UU"v < UU'Q"Ua =Ua. (99)

Since the column vectors {u;};=1....,» of U are independent with each other, UUTQTUa = Ua
yields that UT Q1 U« = a. Therefore, the root-finding problem in Theorem 3.1 simplifies to
(12). O
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A.6 Proof of Proposition 3.5

Proof. Our proof relies on the convergence result [18, Theorem 7.5.5]. By the same argument
as the one in Appendix B.5 paper [8], we obtain 9“I(a*) is non-singular. If ¢(a) is tame, then
by [9, Theorem 1], ¢(«) is semi-smooth. In order to apply this result it remains to show that
¢(«) is tame. The property of definable functions is preserved by operations including the sum,
composition by a linear operator, derivation and canonical projection ([40], [17]). Since A is a tame
mapping, I + M~1/2AM~1/2 is tame as well as its graph. Here I is identity. Then the resolvent
Tap-172an-1/2 = (I +M~2AM~1/2)=1 which is defined by the inverse of the same graph is tame
([21]) and single-valued. By the stability of the sum and composition by linear operator, we obtain
that £(«) is tame. O

A.7 Proof of Proposition 3.8

Proof. Let p = JY(z). Since resolvent operator is non-expansive with respect to V, ||p||y =
7% (2)|lv < ||lzllv + |7Y (0)||y. By duality, optimal o* will satisfy a* = u' (p — 2). Then,

af|=u"(p—2z
la*| = [u"(p — 2)| . (100)
< ullv-2@[Izllv + |74 (0)][v) -
If V e §.(R™) is bounded by a constant C, then
N C
] < lully-1 2[l2llv + 17X (0)]|v) < <l @ll=] + 17X ). O (101)
O]

A.8 Proof of Proposition 3.4

Proof. {(a) is as defined in Theorem 3.1. Set ¥ = z — V! Bz. Substituting a = { + U*V 1Bz in
{(a), we obtain J(§) = £(a). Then, there exists £* such that o* = &* +U*V =1 Bz. In (11), we do
the same substitution.

2=JM(-sM'Ua¥)

=J¥ (2 —sM™U¢ —sM'UU*V 1 Bz)
(
(

=J(z =M 'MV™'Bz —sM'UU*V'Bz — sM~'U¢*) (102)
=JM(z =M (M +sUU*)V 1Bz —sM~1UEY)
N————’

=V
=J{(z - M'Bz —sM~U¢").

Due to Theorem 3.1, £(c) is Lipschitz with constant 1+ || ~'/2U]|? and strongly monotone. Since
J (&) is obtained by translation, it enjoys the same properties. O

A.9 Proof of Lemma 4.10

Proof. (i) M is symmetric positive-definite and v uruj, is symmetric positive semi-definite since
infgen 7y > 0. Thus, My = M showing that M), is symmetric positive-definite. Moreover,
My, — %I = M — %I = cI, which shows part (i) of Assumption 2. We now show that Mj
obeys (ii) of the assumption. Since B is S-co-coercive, we have in view of [6, Remark 4.34

and Proposition 4.35] that
Bllyell® < (yr, su) < llskl?/B- (103)

Assume that s; # 0 (otherwise, there is nothing to prove). Thus
(Ms — o s) = llswllRs — (s su) = Nselldr = lswll?/8 = llsellRi—ar > ellsxll*.
Combining this with (103), we get
lye — Ml _ lyell + 1M ]HIsell /8 + [ M]

(Jukll = < <
VA MSsg = yr, Sk) Vel skl Ve

This entails that

(104)

sup v < +00.

(1/8 +[[Mm])
c keN

sup || M| < [|M] +supy|ug | < [[M]] +
keN keN
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(ii) Let us focus on part (i) of Assumption 2. We have, using (104),

1 1
My—=I=M-—~
A 3

and the last term is positive under the prescribed choice of . To verify part (ii), it is
sufficient to observe that || M| < || M].

(1/8+ |M||)2%>

T — gt T = (¢ — ellus|)I = ( g

O

A.10 Proof of Lemma 4.4
Proof. (i) As in the proof of Lemma 4.10, My, = M > (1/5 + ¢)I > 0. Moreover
(1 +me) My — My1 = mie M+ (1 + 1k ) Vet — Vi1 W41
= k()8 + )T — Y luria ||

=me(1/B+ ) — g1 (1/B + )l
= (1/B+c)(m — Mr41)1 = 0,

since 7y is non-increasing. The uniform boundedness of M is straightforward as ||[Mj|| <
M| +ne(1/8 + ¢).

(ii) We have in this case
My = 31 M = 1= lluw|1 = (e = mn(L/8+ ) I = (e (1= m)(1/3+ ) I

Under our condition on k, we have ¢ — (1 — k)(1/5 + ¢ > 0. In addition,

(1 +me)Mi — My = M — (1 + mr ) Vet + Vet 1 W14
= nk(1/B+ )l — (14 ne)ner(1/8 + c) I
=m(1/B+c) (1= (1+m)k) =0

since N < (1 — k)/Kk. My, is also uniformly bounded with the same argument as above. This

completes the proof.
O
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