
Generalized Conditional Gradient with Augmented Lagrangian for

Composite Minimization

Antonio Silveti-Falls
1, Cesare Molinari

1, Jalal Fadili
1

1Normandie Université, ENSICAEN, UNICAEN, CNRS, GREYC, France.

Tonys.Falls@gmail.com, Cecio.Molinari@gmail.com

Jalal.Fadili@ensicaen.fr.

Résumé – Dans ce travail, nous proposons un schéma d’éclatement en optimisation non lisse, hybridant le gradient conditionnel avec une étape

proximale que nous appelons CGALP , pour minimiser la somme de fonctions propres fermées et convexes sur un compact deRn. La minimisation

est de plus sujette à une contrainte affine, que nous prenons en compte par un Lagrangien augmenté, en qui permet en particulier de traiter des

problèmes composites à plusieurs fonctions par une technique d’espace produit. Certaines fonctions sont autorisées à être non lisses mais dont

l’opérateur proximal est simple à calculer. Notre analyse et garanties de convergence sont assurées pour un large choix de paramètres "en boucle

ouverte". Comme résultats principaux, nous montrons la faisabilité asymptotique de la variable primale, la convergence de toute sous-suite vers

une solution du problème primal, la convergence de la variable duale à une solution du problème dual, et la convergence du Lagrangien. Des taux

de convergence sont aussi fournis. Les implications et illustrations de l’algorithme en traitement des données sont discutées.

Abstract – In this paper we propose a splitting scheme which hybridizes generalized conditional gradient with a proximal step which we call

CGALP algorithm, for minimizing the sum of closed, convex, and proper functions over a compact set of Rn. The minimization is subject to an

affine constraint, which we address by the augmented Lagrangian approach, that allows in particular to deal with composite problems of sum of

three or more functions by the usual product space technique. We allow for possibly nonsmooth functions which are simple, i.e., the associated

proximal mapping is easily computable. Our analysis is carried out for a wide choice of algorithm parameters satisfying so called open loop rules.

As main results, under mild conditions, we show asymptotic feasibility with respect to the affine constraint, convergence of the dual variable to a

solution of the dual problem, and convergence of the Lagrangian values to the saddle-point optimal value. We also provide (subsequential) rates

of convergence for both the feasibility gap and the Lagrangian values. Experimental results in signal processing are finally reported.

1 Introduction

1.1 Problem Statement

In this work, we consider the composite optimization problem,

min
x∈C⊂Rn

{f(x) + g(Tx) : Ax = b} , (P)

where A : Rn → R
m and T : Rn → R

l are linear operators,

b ∈ Im (A), f and g are closed, convex, and proper functions,

and C is a compact subset of Rn. While g is assumed to be

prox-friendly it is not necessarily differentiable, however f is

assumed to be differentiable with ∇f Lipschitz-continuous.

Problem (P) can be seen as a generalization of the classical

Frank-Wolfe (or conditional gradient) problem in [1] of min-

imizing a differentiable function f with Lipschitz-continuous

gradient∇f on a convex closed bounded subset C ⊂ R
n, which

is recovered by setting A ≡ 0, b ≡ 0, and g ≡ 0.

1.2 Contribution

The structure of (P) generalizes Frank-Wolfe in two important

ways. We consider a possibly nonsmooth term g for which the

prox operator is easily computable and problems with an affine

constraint which means that our framework can be applied to the

splitting of a wide range of composite optimization problems,

through a product space technique, including those involving

sums of finitely many nonsmooth functions gi, and, in particu-

lar, the intersection of finitely many nonempty compact convex

sets Ci which will be accessed separately; see Section 3.2.1.

We develop and analyze a novel algorithm to solve (P) which

combines penalization for the nonsmooth function g with the

augmented Lagrangian method for the affine constraintAx = b.
In turn, this achieves full splitting of all the parts in the compos-

ite problem (P) by using the proximal mapping of g (assumed

prox-friendly) and a linear oracle for C of the form min
s∈C
〈v, s〉.

This combination of methods provides significant flexibility for

the algorithm to be efficiently applied to a wide range of struc-

tured problems in both signal processing and machine learning,

e.g. problems involving sparsity, low-rank, etc. The linear or-

acle can be significantly cheaper than proximal alternatives to

compute, e.g. projecting on the nuclear ball, and in practice can

often be exploited for memory efficient storage, c.f. [2], [3].

Our analysis shows asymptotic feasibility for the affine con-

straint, convergence of the dual variable to a solution of the dual

problem, convergence of the classical Lagrangian to optimality,

and establishes convergence rates for a family of sequences of

step sizes and sequences of smoothing/penalization parameters



which satisfy so-called "open loop" rules, i.e. the allowable se-

quences of parameters do not depend on the iterates, in contrast

to a "closed loop" rule, e.g. line search or other adaptive step

sizes. Our analysis also shows, when (P) admits a unique mini-

mizer, convergence of the primal variable to a solution of (P).

2 Algorithm and Theoretical Guarantees

2.1 Algorithm

As described in the introduction, we combine penalization with

the augmented Lagrangian approach to form the following func-

tional

Jk (x, y, µ) = f (x) + g (y) + ιC (x) + 〈µ,Ax− b〉

+
ρ

2
‖Ax − b‖2 + 1

2βk
‖y − Tx‖2 , (2.1)

where ιC is the indicator function for the set C, µ is the dual

variable, and ρ and βk are non-negative parameters. The steps

of our scheme, then, are summarized in Algorithm 1.

Algorithm 1: Conditional Gradient with Augmented

Lagrangian and Proximal-step (CGALP )

Input: x0 ∈ C; µ0 ∈ Im (A); (γk)k∈N
, (βk)k∈N

∈ ℓ+;

ρ > 0; k = 0.

repeat
yk = proxβkg (Txk)

zk = ∇f(xk) + T ∗ (Txk − yk) /βk +
A∗ (µk + ρ (Axk − b))

sk ∈ Argmin
s∈C

{〈zk, s〉}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + γk (Axk+1 − b)

k← k + 1

until convergence;

Output: xk+1.

For the interpretation of the algorithm, notice that the first step

is equivalent to

{yk} = Argmin
y∈Rl

Jk (xk, y, µk) . (2.2)

Now define the functional Ek (x, µ) def
= f (x) + gβk (Tx) +

〈µ,Ax− b〉 + ρ
2 ‖Ax− b‖2 . It is an augmented Lagrangian

where we do not consider the non-differentiable function ιC and

we replace g by its Moreau envelope gβk . One can immediately

verify that zk is just ∇xEk (xk, µk) and the first three steps of

the algorithm can be condensed in

sk ∈ Argmin
s∈C

{〈∇xEk (xk, µk) , s〉} . (2.3)

Thus the primal variable update of each step of our algorithm

boils down to conditional gradient applied to the functionEk (·, µk),

where the next iterate is a convex combination between the pre-

vious one and the new direction sk. By convexity of the set C
and the definition of xk+1 as a convex combination of xk and

sk, the sequence (xk)k∈N
remains in C for all k ∈ N. Mean-

while, the affine constraint Axk = b might only be satisfied

asymptotically. A standard update of the Lagrange multiplier

µk follows.

2.2 Assumptions

2.2.1 Assumptions on the functions

We define the classical Lagrangian,

L (x, µ) def
= f (x) + g (Tx) + ιC (x) + 〈µ,Ax− b〉 (2.4)

Recall that (x⋆, µ⋆) ∈ R
n × R

m is a saddle-point for the La-

grangian L if, for every (x, µ) ∈ R
n × R

m,

L (x⋆, µ) ≤ L (x⋆, µ⋆) ≤ L (x, µ⋆) . (2.5)

It is well-known from standard Lagrange duality, see e.g. [4,

Proposition 19.19], that the existence of a saddle point (x⋆, µ⋆)
ensures strong duality, that x⋆ solves (P) and µ⋆ solves the dual

problem,

min
µ∈Rm

(f + g ◦ T + ιC)
∗(−A∗µ) + 〈µ, b〉 . (D)

The following assumptions on the problem will be necessary

for the theoretical guarantees:

(A.1) The functions f and g ◦T are closed, convex, and proper.

(A.2) The gradient∇f is Lipschitz continuous on the set C.
(A.3) The set C ⊂ R

n is compact.

(A.4) TC ⊂ dom(∂g) and sup
x∈C

(

inf
g′∈∂g(Tx)

‖g′‖
)

<∞.

(A.5) There exists a saddle-point (x⋆, µ⋆) ∈ R
n × R

m for the

Lagrangian L.

(A.6) The following holds










A−1 (b) ∩ relint (dom(g ◦ T )) ∩ relint (C) 6= ∅
and

Im (A∗) ∩ par (dom(g ◦ T ) ∩ C)⊥ = {0} .
(2.6)

where int denotes the interior, relint the relative interior,

A−1 (b) the pre-image of b under A, and par denotes the

parallel subspace.

2.2.2 Assumptions on the parameters

We also use the following assumptions on the parameters of

Algorithm 1:

(P.1) ∀k ∈ N, γk ∈]0, 1] and the sequences
(

γ2
k

)

k∈N
,
(

γ2
k

βk

)

k∈N

and (γkβk)k∈N
belong to ℓ1+ with (γk)k∈N

/∈ ℓ1.

(P.2) (βk)k∈N
∈ ℓ+ is non-increasing and converges to 0.



(P.3) There exist positive constants M and M such that,

1 ≤M ≤ infk (γk/γk+1) ≤ supk (γk/γk+1) ≤M .

(P.4) ρ > 2M where M is defined above.

There is a large class of sequences that fulfill the require-

ments (P.1)-(P.4). A typical one is as follows.

Example 2.1. Take, ∀k ∈ N,

γk =
(log(k + 2))a

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

a ≥ 0, 0 ≤ 2b < δ < 1, δ < 1− b, and ρ > 22−b.

(2.7)

One can then take the crude bounds M = (log(2)/ log(3))a

and M = 21−b.

2.3 Main results

Theorem 2.2. Suppose that assumptions (A.1)-(A.6) and (P.1)-

(P.4) hold. Let (x⋆, µ⋆) be a saddle-point pair for the Lagrangian.

Then,

(i) Asymptotic feasibility:

lim
k→∞

Axk = b. (2.8)

(ii) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ
⋆) = L (x⋆, µ⋆) . (2.9)

(iii) Every cluster point x̄ of (xk)k∈N
is a solution of the pri-

mal problem (P), and (µk)k∈N
converges to µ̄ a solution

of the dual problem (D), i.e., (x̄, µ̄) is a saddle point of

L.

(iv) Pointwise rate: there exists a subsequence
(

xkj

)

j∈N
such

that

L
(

xkj
, µ⋆

)

− L (x⋆, µ⋆) +
ρ

2
‖Axkj

− b‖2 ≤ 1

Γkj

.

(2.10)

(v) Ergodic rate: let x̄k
def
=

∑k
i=0 γixi/Γk, then

L (x̄k, µ
⋆)− L (x⋆, µ⋆) ∈ O

(

1

Γk

)

. (2.11)

Corollary 2.3. Under the assumptions of Theorem 2.2, if the

problem (P) admits a unique solution x⋆, then the sequence of

primal iterates (xk)k∈N
converges to x⋆. Moreover, ∀k ∈ N,

L (xk, µ
⋆)− L (x⋆, µ⋆) ≤ 1

Γk
and ‖Axk − b‖ ≤ 1√

Γk

.

For obvious space limitations, the proofs of all these results

can be found in the long version [5].

Example 2.4. Suppose that the sequences of parameters are

chosen according to Example 2.1. Then one can show that

Γ−1
k ∈



















o
(

1
(k+2)b

)

a = 1, b > 0,

O
(

1
(k+2)b

)

a = 0, b > 0,

O
(

1
log(k+2)

)

a = 0, b = 0.

(2.12)

3 Numerical Experiments

In this section we present some numerical experiments exempli-

fying the applicability of Algorithm 1 to some compoosite prob-

lems in signal processing. First, a simple problem to demon-

strate the effect of the parameters on convergence. After, an in-

verse problem which demonstrates the flexibility of CGALP by

employing the linear oracle for a constraint which would oth-

erwise be computationally intense, e.g. when using proximal

methods.

3.1 Projection problem

First, we consider a simple projection problem,

min
x∈R2

{

1

2
‖x− y‖22 : ‖x‖1 ≤ 1, Ax = 0

}

, (3.1)

where y ∈ R
2 is the vector to be projected and A : R2 → R

2

is a rank-one matrix. To exclude trivial projections, we choose

randomly y /∈ B
1
1∩ker(A), whereB1

1 is the unit ℓ1 ball centered

at the origin. Then Problem (3.1) is nothing but Problem (P)

with f (x) = 1
2 ‖x− y‖22, g = 0, and C = B

1
1.
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Fig. 1: Ergodic convergence profiles for CGALP applied to the

simple projection problem.

The assumptions mentioned previously, i.e. (A.1)-(A.6), all

hold in this setting as f is a closed, convex, and proper func-

tion, ∇f is Lipschitz-continuous on C, g has full domain, and

0 ∈ ker(A) ∩ int(C). Regarding the parameters and the as-

sociated assumptions, we choose γk according to Example 2.1

with (a, b) ∈ {(0, 0), (0, 1/3 − 0.01), (1, 1/3 − 0.01)} and

ρ = 22−b + 1. The ergodic convergence profiles of the La-

grangian are displayed in Figure 1 along with the theoretical

rates (see Theorem 2.2 and Example 2.4). The observed rates

agree with the predicted ones ofO
(

1
log(k+2)

)

, O
(

1
(k+2)b

)

and

o
(

1
(k+2)b

)

for the respective choices of (a, b).

3.2 Matrix completion problem

We consider the following more complicated matrix completion

problem,

min
X∈RN×N

{

‖ΩX − y‖1 : ‖X‖∗ ≤ δ1, ‖X‖1 ≤ δ2
}

, (3.2)



where δ1 and δ2 are positive constants, Ω : RN×N → R
l is a

masking operator, y ∈ R
l is a vector of observations, and ‖·‖∗

and ‖·‖1 are respectively the nuclear and ℓ1 norms. The mask

operatorΩ is generated randomly by specifying a sampling den-

sity, in our case 0.8, i.e. 80% of entries were kept. We generate

the vector y randomly in the following way. We first generate a

sparse vector ỹ ∈ R
N with N/5 non-zero entries independently

uniformly distributed in [−1, 1]. We take the exterior product

ỹỹ⊤ = X0 to get a rank-1 sparse matrix which we then mask

with Ω. The radii of the contraints in (3.2) are chosen accord-

ing to the nuclear norm and ℓ1 norm of X0, δ1 =
‖X0‖∗

2 and

δ2 =
‖X0‖1

2 .

3.2.1 CGALP

Problem (3.2) can be posed in a product space in the following

way. Denote X
def
=

(

X(1)

X(2)

)

∈ R
(N×N)2 , f = 0, g (ΩX) =

1
2

2
∑

i=1

∥

∥ΩX(i) − y
∥

∥

1
, C = B

δ1∗ ×B
δ2
1 where Bδ1∗ and B

δ2
1 are the

nuclear and ℓ1 balls of radii δ1 and δ2. Then problem (3.2) is

equivalent to

min
X∈C⊂R(N×N)2

{

g (ΩX) : ΠV⊥X = 0
}

, (3.3)

where ΠV⊥ is the orthogonal projection onto V⊥, the orthogo-

nal complement of V def
=

{

X ∈ R
(N×N)2 : X(1) = X(2)

}

. It

is trivial to show that our assumptions (A.1)-(A.6) hold. In-

deed, g is closed, convex, and proper and thus (A.1) and (A.2)

are verified. The set C = B
δ1∗ × B

δ2
1 is a non-mepty convex

compact set. We also have ΩC ⊂ dom(∂g) = R
l × R

l, and

for any z ∈ R
l × R

l, ∂g(z) ⊂ B
1/2
∞ × B

1/2
∞ and thus (A.4) is

verified. We also have, since dom(g ◦Ω) = R
(N×N)2 ,

0 ∈ V ∩ int (dom(g ◦Ω)) ∩ int (C) = V ∩ int(Bδ1
∗ )× int(Bδ2

1 ),

(3.4)

which shows that (A.6) is verified. The latter is nothing but

the condition in [4, Fact 15.25(i)] which, when combined with

(A.6), ensures (A.5).

We use Algorithm 1 by choosing the sequence of parameters

γk = 1
k+1 , βk = 1√

k+1
, and ρ = 15, which verify all our

assumptions (P.1)-(P.4) in view of Example 2.1.

3.2.2 GFB

We will use a similar product space to apply GFB. DenoteW
def
=





W (1)

W (2)

W (3)



 ∈ R
(N×N)3 ,Q (W ) =

∥

∥ΩW (1) − y
∥

∥

1
+ι

B
δ1
‖·‖∗

(

W (2)
)

+

ι
B
δ2
‖·‖1

(

W (3)
)

. Then we reformulate problem (3.2) as

min
W∈Hp

{

Q (W ) : W ∈ V
}

, (3.5)

which fits the framework to apply the GFB algorithm proposed

in [6] (in fact Douglas-Rachford since the smooth part vanishes).

We choose the step sizes λk = γ = 1.

3.2.3 Results

We compare the performance of CGALP with GFB for varying

dimension,N , using their respective ergodic convergence crite-

ria. For CGALP this is the quantity L
(

X̄k, µ
∗)− L (X⋆,µ⋆)

where X̄k =
k
∑

i=0

γiXi/Γk. Meanwhile, for GFB, we know

from [7] that the Bregman divergence Dv
⋆

Q

(

Ūk

)

= Q(Ūk)−

Q(W ⋆) −
〈

v⋆, Ūk −W ⋆
〉

, with Ūk =
k
∑

i=0

U i/(k + 1) and

v⋆ = (W ⋆ − Z⋆)/γ, converges at the rate O(1/(k + 1)). To

compute the convergence criteria, we first run each algorithm

for 105 iterations to approximate the optimal variables (X⋆ and

µ⋆ for CGALP , and Z⋆ and W ⋆ for GFB). Then, we run each

algorithm again for 105 iterations, this time recording the con-

vergence criteria at each iteration. The results are displayed in

Figure 2.
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(Ū

k)

O(1k )
N̄=̄128
N̄=̄64
N̄=̄32

Fig. 2: Convergence profiles for CGALP (left) and GFB (right)

for N = 32, N = 64, and N = 128.

It can be observed that our theoretically predicted rate is in

close agreement with the observed one. On the other hand,

as is very well-known, employing a proximal step for the nu-

clear ball constraint will necessitate computing an SVD which

is much more time consuming than computing the linear min-

imization oracle for large N . For this reason, even though the

rates of convergence guaranteed for CGALP are worse than for

GFB per iteration, one can expect CGALP to be a more time

computationally efficient algorithm for large N as each itera-

tion is cheaper.
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