
Implicit Regularization of the Deep Inverse Prior Trained with
Inertia

Nathan Buskulic*, Jalal Fadili and Yvain Quéau

Greyc, Normandie Univ., UNICAEN, ENSICAEN, CNRS, 6 Boulevard Maréchal Juin, Caen,
14000, France.

*Corresponding author(s). E-mail(s): nathan.buskulic@unicaen.fr;
Contributing authors: Jalal.Fadili@ensicaen.fr; yvain.queau@ensicaen.fr;

Abstract
Solving inverse problems with neural networks benefits from very few theoretical guarantees when it comes to
the recovery guarantees. We provide in this work convergence and recovery guarantees for self-supervised neural
networks applied to inverse problems, such as Deep Image/Inverse Prior, and trained with inertia featuring both
viscous and geometric Hessian-driven dampings. We study both the continuous-time case, i.e., the trajectory of
a dynamical system, and the discrete case leading to an inertial algorithm with an adaptive step-size. We show in
the continuous-time case that the network can be trained with an optimal accelerated exponential convergence rate
compared to the rate obtained with gradient flow. We also show that training a network with our inertial algorithm
enjoys similar recovery guarantees though with a less sharp linear convergence rate.

Keywords: Deep Inverse Prior Implicit regularization Self-supervised Inverse problems Momentum Hessian damping
Convergence Stable recovery

1 Introduction
1.1 Motivation
A ubiquitous problem in science and engineering is to retrieve an unknown signal x ∈ Rn from a noisy indirect
observation y ∈ Rm. This inverse problem in the linear, finite-dimensional setting is formalized with a forward
operator A : Rn → Rm and some additive noise ε as solving the following equation:

y = Ax+ ε. (1)

Throughout this paper, and without loss of generality, we will assume that y ∈ Im (A).
While the variational model-based approach with hand-crafted regularizers has been the dominated approach

for years to solve (1), data-driven approaches have emerged as powerful methods to solve inverse problems by
capturing the prior information directly from data, either partly or completely, explicitly or implicitly. This trend
has witnessed a dramatic increase with the rise of machine learning and notably (deep) neural networks [5, 31].
This type of approach has been applied to a variety of problems, and more specifically to solve imaging problems.
These networks are simply parametrized functions where the parameters are learned through some gradient-based
optimization algorithm to minimize a loss function that depends on the task at hand. Many works have been devoted
to the practical aspects of neural networks for inverse problems (see our review later), from the best architecture
for a given task to the evaluation of such models. However, while they now yield impressive results for various
problems, the theoretical understanding of their recovery properties remains largely lacking.

1

Our focus in this chapter is the Deep Inverse/Image Prior (DIP), that was introduced in [41] for simple image
processing tasks (denoising, super-resolution and in-painting). The central idea in the DIP is to train a neural
network which acts as a generator with a randomly generated input that can be thought of as a latent random
variable in dimension much smaller than n. The hope is that the architecture of this neural network will induce
some “implicit regularization” and will add more and more detailed content during training before overfitting to
noise. This already highlights the necessity of an early-stopping strategy that we will make rigorous later in this
chapter. The DIP approach has some advantages as it is self-supervised, and does account for the forward model,
hence ensuring consistency with observations. Furthermore, it is easy to implement with very good empirical
results if an appropriate network architecture is chosen for the task at hand. Recently, we provided convergence
and recovery guarantees of the DIP with general loss functions when the network’s parameters are trained through
gradient flow [10] or gradient descent [11]. In practice however, the parameters are trained through inertia-based
methods (such as the widely used ADAM [25]) as they provide empirically faster convergence rates. Inertia-based
methods have been actively studied and are known to provably lead to accelerated rates in the convex and strongly
convex cases. Motivated by this, we propose to study the trajectories of the DIP neural network parameters when
they are trained using inertial optimization dynamics, both in the continuous-time and discrete settings.

1.2 Problem statement
We will consider a feed-forward network g : (u, θθθ) ∈ Rd × Rp 7→ x ∈ Rn, equipped with some nonlinear
activation function ϕ, that transforms an input u ∈ Rd into a vector x ∈ Rn. We will restrict ourselves to fully
connected multilayer networks that are defined as follows:
Definition 1.1. Let d, L ∈ N and ϕ : R → R an activation map which acts componentwise on the entries
of a vector. A fully connected multilayer neural network with input dimension d, L layers and activation ϕ, is a
collection of weight matrices

(
W(l)

)
l∈[L]

and bias vectors
(
b(l)
)
l∈[L]

, where W(l) ∈ RNl×Nl−1 and b(l) ∈ RNl ,
with N0 = d, and Nl ∈ N is the number of neurons for layer l ∈ [L]. Let us gather these parameters as

θθθ =
(
(W(1),b(1)), . . . , (W(L),b(L))

)
∈

L×
l=1

((
RNl×Nl−1

)
× RNl

)
.

Then, a neural network parametrized by θθθ produces a function

g : (u, θθθ) ∈ Rd ×
L×

l=1

((
RNl×Nl−1

)
× RNl

)
7→ g(u, θθθ) ∈ RNL ,with NL = n,

which can be defined recursively as
g(0)(u, θθθ) = u,

g(l)(u, θθθ) = ϕ
(
W(l)g(l−1)(u, θθθ) + b(l)

)
, for l = 1, . . . , L− 1,

g(u, θθθ) = W(L)g(L−1)(u, θθθ) + b(L).

The parameters θθθ of the network are a solution of

min
θ∈Rp

Ly(Ag(u, θθθ)) (2)

where the loss function Ly : Rm → R+,Ag(u, θθθ) 7→ Ly(Ag(u, θθθ)) measures the discrepancy between the
observation y and the observed solution of the network Ag(u, θθθ). In this work, we will use the Mean Square Error
(MSE) as the loss function (see A-1).

We will first study the behavior of the network parameters trajectory in time when trained using the second-
order ODE {

θ̈θθ(t) + αθ̇θθ(t) + β d
dt∇θθθLy(y(t)) +∇θθθLy(y(t)) = 0

θθθ(0) = θθθ0, θ̇θθ(0) = 0,
(DIN)

where α, β ≥ 0 and y(t) = Ag(u, θθθ(t)) . This system is coined Dynamical Inertial Newton-like (DIN) after [1].
The parameter α corresponds to viscous damping while β is that of geometric Hessian-driven damping. When
β = 0, one recovers the celebrated Polyak Heavy-Ball (HBF) method with friction [35]. Taking β > 0 has been

2

shown to attenuate the transversal oscillations that HBF can suffer from. The system (DIN) is known to achieve
optimal accelerated convergence rates in both the convex and strongly convex cases when compared to gradient
flow [6].

1.3 General notations
For a matrix M ∈ Ra×b we denote by σmin(M) and σmax(M) its smallest and largest non-zero singular values,
and by κ(M) = σmax(M)

σmin(M) its condition number. We abuse this notation for the forward operator A and denote its
minimum singular value as σA. We also denote by ⟨, ⟩ the Euclidean scalar product, ∥·∥ the associated norm (the
dimension is implicit from the context), and ∥·∥F the Frobenius norm of a matrix. With a slight abuse of notation
∥·∥ will also denote the spectral norm of a matrix. We use Mi (resp. Mi) as the i-th row (resp. column) of M. We
denote the Kronecker product of matrices as ⊗. For two vectors x, z, [x, z] = {(1− ρ)x+ ρz : ρ ∈ [0, 1]} is the
closed segment joining them. We use the notation a ≳ b (resp. a ≲ b) if there exists a constant C > 0 such that
a ≥ Cb (resp. a ≤ Cb).

We also define x(t) = g(u, θθθ(t)) and y = A(x), and we recall that y(t) = Ag(u, θθθ(t)) = Ax(t) . The
Jacobian of the network is denoted Jg. The local Lipschitz constant of a mapping on a ball of radius R > 0 around
a point z is denoted LipB(z,R)(·). We omit R in the notation when the Lipschitz constant is global.

For some Θ ⊂ Rp, we define ΣΘ = {g(u, θθθ) : θθθ ∈ Θ} as the set of signals that the network g can generate
for all θ in the parameter set Θ. ΣΘ can thus be viewed as a parametric manifold. If Θ is closed (resp. compact), so
is ΣΘ. We denote dist(·,ΣΘ) the distance to ΣΘ which is well defined if Θ is closed and non-empty. For a vector
x, xΣΘ

is its projection on ΣΘ, i.e. xΣΘ
∈ Argminz∈ΣΘ

∥x− z∥. Observe that xΣΘ
always exists but might not

be unique. We also define TΣΘ
(x) the tangent cone of ΣΘ at x ∈ ΣΘ. The minimal (conic) singular value of a

matrix A ∈ Rm×n w.r.t. the cone TΣΘ
(x) is then defined as

λmin(A;TΣΘ
(x)) = inf{∥Az∥ / ∥z∥ : z ∈ TΣΘ

(x)}.

1.4 Contributions
We provide a theoretical analysis of the recovery properties of the DIP model for solving linear inverse problems
when trained using the inertial system (DIN) in continuous-time, or the corresponding discretized algorithm. In
the continuous-time setting, we show that the network can be trained to zero-loss with an (optimal) accelerated
exponential convergence rate compared the gradient flow case, as seen in practice, at the cost of a slightly stronger
condition on the initialization. We also give an early-stopping bound to avoid overfitting and an accelerated recovery
result in the signal space. We show how a sufficiently overparametrized two layer Deep Inverse Prior (DIP) net-
work [41] can meet the conditions to benefit from these guarantees. We also provide an inertial algorithm obtained
by appropriate discretization of the continuous-time system. When the algorithm is run with an adaptive step-size
to compensate for the lack of global Lipschitz smoothness, we demonstrate that the network can be trained while
maintaining comparable recovery guarantees. However, unlike the continuous-time setting, the convergence rate
we obtain in the algorithmic case, though linear, is not the optimal accelerated one.

2 Prior Work
Data-Driven Methods to Solve Inverse Problems Our review here is by no means exhaustive and the interested
reader may refer to the reviews [5, 31] (among others). A natural, yet naive, way to solve (1) is to learn from pairs
of (x,y) a neural network that approximates an analytic ”inverse” to the forward operator A. While this approach
can provide qualitatively satisfactory results, it does not take into account explicitly the physics of the problem
(the forward model (1)), and lacks in particular data consistency. This approach lacks a deep understanding of its
recovery guarantees with the only exception of the recent work of [34] who provided a generalization bound, which
is motivated by a machine learning perspective rather than an inverse problem one. To overcome some of these
shortcomings, the dominant state-of-the-art approach is hybrid, and consists in mixing model- and data-driven
methods to get the best of both worlds. There exists a vast array of such hybrid methods among which the most
prominent are Plug-and-Play (PnP, see the review in [24]), learned regularization of a variational problem [36],
and “unrolling” or “unfolding” methods (see the review [29]). While PnP uses a denoiser network to restrict the
range of acceptable signals, one could restrict the set of possible signals to the range of a generative model (see the
survey in e.g., [15]). When no or not enough data is available, a well known alternative is the DIP framework [41],
and its variants [26, 27, 38, 43, 40].

3

Several work have studied the theoretical aspects of DIP with various angles. In [20, 19], the authors show
various recovery results for early-stopped convolutional networks trained with gradient descent under some training
assumptions, and even show that early stopping might not be necessary in some compressive sensing settings. In
[22], under similar assumptions, the authors expand on the theory of untrained convolutional networks and on
theoretically sounded early-stopping criterion and the associated recovery guarantees. The author of [3] instead
study a variant of DIP know as analytical DIP which study LISTA like networks, and they show that in that setting,
training a network is very similar to solving a Tikhonov regularized problem. Our previous work [10, 11] give
recovery guarantees and convergence rates of DIP trained with gradient flow and gradient descent. Our aim in this
paper is to study recovery guarantees of the DIP when momentum-based inertial algorithms are used for training.
To the best of our knowledge, none of the above reviewed work has studied this setting.
Implicit regularization, Training Dynamics and Overparametrization Neural networks are very high-
dimensional non-linear parametric functions that are optimized/trained to minimize a given loss function. This
should lead to highly non-convex optimization problems that are known to be challenging due to possibly many
local minima and saddle points. Even more so in the context of inverse problems. In fact, even if the neural net-
work is complex enough (overparametrized) to ensure zero empirical error, the set of minimizers may be large.
Therefore, it may very well be the case that some minimizers are better than others (e.g. generalize, are stable,
etc.). Optimization algorithms such as gradient descent introduce a bias in this choice: an iterative method is biased
towards certain solutions of the problem it solves and thus may converge to a solution with certain properties.
Since this bias is a by-product rather than an explicitly enforced property, it is known in the literature as implicit
regularization. This clearly highlights the importance of the optimization algorithm as implicit regularizer, and
has played an important role in understanding either statistical learning guarantees of such implicit regularization
[8, 16], or the role of implicit regularization for inverse problems [23]. Understanding the role and implications
of implicit regularization of an iterative algorithm for learning neural networks to solve inverse problems is at the
heart of this chapter.

The modern approach to convergence of neural network training is based on gradient dominated inequalities
from which one can deduce by simple integration an exponential convergence of the gradient flow to a zero-loss
solution. This allows to obtain convergence guarantees for networks trained to minimize a mean square error by
gradient flow [13] or gradient descent [14, 4, 32, 33]. Recently, it has been found that some kernels play a very
important role in the analysis of convergence of the gradient flow when used to train neural networks. In particular
the semi-positive definite kernel given by Jg(θθθ(t))Jg(θθθ(t))

⊤, where Jg(θθθ(t)) is the Jacobian of the network at
time t. When all the layers of a network are trained, this kernel is a combination of the Neural Tangent Kernel
(NTK) [21], i.e., the Jacobian with respect to all the parameters except those of the last layer, and the Random
Features Kernel (RF) [37], i.e., the Jacobian corresponding to the parameters of the last linear layer . The goal is
then to control the eigenvalues of the kernel to ensure that they remain bounded away from zero, which entails
convergence to a zero-loss solution at an exponential rate. The control of the eigenvalues of the kernel is done
through a random initialization and the overparametrization of the network. This is also closely related to the
celebrated Hartman-Grobman theorem in dynamical systems.

However, these works do not account for the inverse problem setting. Moreover, they only study the gradient
flow or gradient descent while inertia or momentum-based algorithms are dominant now. Thus there is a clear need
for an analysis targeting recovery guarantees of the DIP method for inverse problems by properly accommodating
for the forward operator.
Inertia-based Optimization A large body of literature has been devoted to studying inertial optimization methods
that we do not review for obvious space limitation. In the seminal work of Polyak [35], he proposed the HBF system
(i.e., setting β = 0 in (DIN)) which achieves exponential convergence for strongly convex smooth functions with
an optimal convergence rate when α is chosen as the square-root of the strong convexity modulus. This system is
however no faster than the gradient flow for the non-strongly convex case. It is also known that HBF may suffer
traverse oscillations which motivated the introduction of Hessian damping [1]. Note that the Hessian damping
term appears as the derivative of the gradient with respect to time, which opens the door to first-order optimization
algorithms after proper discretization. System (DIN) and its discretizations have been thoroughly studied in the
convex and strongly convex case where α is an asymptotically vanishing viscous damping coefficient, see [6]. In
the nonconvex case, (DIN) was studied in [28] and [12] with very promising performance when applied to neural
network training. Our work brings together optimization results for inertial dynamics with overparametrization to
obtain recovery results of the DIP method when solving linear inverse problems.

4

3 Continuous-time Setting
We will first analyze the trajectory of the parameters of a network trained through (DIN) as a continuous dynam-
ical system. We start by showing that it is a well-posed system and then present our results showing accelerated
convergence guarantees (and an associated recovery bound) compared to the gradient flow case for the right choice
of (α, β). We also provide an overparametrization bound under which a two-layer network benefits from these
guarantees. We will work under the following assumptions:

A-1. Ly is the MSE loss, i.e., Ly(z) =
1
2 ∥z− y∥2.

A-2. ϕ ∈ C1(R) and ∃B > 0 such that supx∈R |ϕ′(x)| ≤ B and ϕ′ is B-Lipschitz continuous.

Note also that the MSE loss allows to easily link the loss to its gradient. The MSE case is widely used and we
refrain from extending our results to a more general class of KL smooth losses as in [10, 11] to avoid unnecessary
technicalities. The above two assumptions ensure that θθθ 7→ ∇θθθLy(Ag(u, θθθ)) is locally Lipschitz continuous.
This will be important when studying local well-posedness of (DIN). Handling rigorously non-smooth activation
functions such as the ReLU requires more technicalities, including the use of involved generalized derivatives, that
we choose to leave to a future work.

3.1 Well-Posedness
When β > 0, the second-order dynamical system given in (DIN) can be equivalently formulated as a first-order
system both in time and space. We adapt the results given in [7] to show this equivalence.
Theorem 3.1. Suppose that α ≥ 0 and β > 0. Then the following statement are equivalent:

1. θθθ : [0,+∞[→ Rp is a solution trajectory of (DIN) with the initial conditions θθθ(0) = θθθ0 and θ̇θθ(0) = θ̇θθ0.
2. (θθθ,q) : [0,+∞[→ Rp × Rp is a solution trajectory of the first-order systemθ̇θθ(t) + β∇θθθLy(y(t))−

(
1
β − α

)
θθθ(t) + 1

βq(t) = 0

q̇(t)−
(

1
β − α

)
θθθ(t) + 1

βq(t) = 0
(3)

with initial conditions θθθ(0) = θθθ0 and q(0) = q0 = −β
(
θ̇θθ0 + β∇θθθLy(y(0))

)
+ (1− αβ)θθθ0.

Proof. 2 =⇒ 1. We start by differentiating the first equation of (3) which gives

θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))−

(
1

β
− α

)
θ̇θθ(t) +

1

β
q̇(t) = 0.

We replace q̇(t) by using the second line of (3) and obtain that

θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))−

(
1

β
− α

)
θ̇θθ(t) +

1

β

((
1

β
− α

)
θθθ(t)− 1

β
q(t)

)
= 0.

Now we replace q(t) by its expression from the first line of (3) and get

θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))−

(
1

β
− α

)
θ̇θθ(t) +

1

β

(
θ̇θθ(t) + β∇θθθLy(y(t))

)
= 0.

Once simplified, we obtain (DIN). The initial conditions are directly transferable as both θθθ(0) and θ̇θθ0 are defined
the same way in both (DIN) and (3)

1 =⇒ 2. Denoting q(t) = β
(
−θ̇θθ(t)− β∇θθθLy(y(t)) +

(
1
β − α

)
θθθ(t)

)
and differentiating, we get that

q̇(t) = β

(
−θ̈θθ(t)− β

d

dt
∇θθθLy(y(t)) +

(
1

β
− α

)
θ̇θθ(t)

)
.

In view of θ̈θθ(t) in (DIN), we obtain that

q̇(t) = θ̇θθ(t) + β∇θθθLy(y(t)).

5

By rearranging the terms and the definition of q(t), we obtain both expressions of (3). Furthermore, replacing in
q(0) the initial conditions given in (DIN) gives the initial conditions of (3) concluding the proof.

Theorem 3.1 is valid for any initial condition θ̇θθ(0), which includes the special case of (DIN) where θ̇θθ(0) = 0.
Therefore, from now on, and without loss of generality, we will take θ̇θθ(0) = 0. The reason for this choice will be
transparent later. Thanks to this first-order reformulation, we will be able to invoke the Cauchy-Lipschitz theorem
to show the existence and uniqueness of a solution of our original system. Towards this goal, we write (3) in the
compact form {

ż(t) +∇G (z(t)) +D (z(t)) = 0

z(0) = (θθθ0,−β (β∇θθθLy(y(0))) + (1− αβ)θθθ0) ,
(4)

where z(t) = (θθθ(t),q(t)) ∈ Rp×Rp,G : Rp×Rp 7→ (β∇θθθLy(y(t)),0) ∈ Rp×Rp andD : Rp×Rp → Rp×Rp

is given by

D(z(t)) =

(
−
(
1

β
− α

)
θθθ(t) +

1

β
q(t),−

(
1

β
− α

)
θθθ(t) +

1

β
q(t)

)
.

Equipped with this condensed form we can show that (4) is well-posed and thus so is (DIN). We start by defining
our notion of solution.
Definition 3.2. For T > 0, we will say that θθθ : t ∈ [0, T] → Rp is a strong solution of (DIN) on [0, T] if the
following holds:

• θθθ(·) ∈ C0([0, T]);
• θθθ(·) ∈ C1 on every compact set of the interior of [0, T [;
• θ̇θθ(·) is absolutely continuous on every compact set of the interior of [0, T [;
• (DIN) holds for almost all t ∈]0, T [.

A trajectory θθθ : t ∈ [0,+∞[→ Rp is a strong global solution of (DIN) if it is a strong solution on [0, T] for any
T > 0.

Proposition 3.3. Assume that A-1-A-2 hold and α ≥ 0 and β ≥ 0. Then there exists T (θθθ0) ∈ [0,+∞[and a
unique strong solution trajectory θθθ(·) of (DIN) on [0, T (θθθ0)].

Proof. Let us start with the case β > 0. We know by our assumptions and standard differential calculus on g(u, ·)
that ∇θθθLy(y(t)) is locally Lipschitz continuous. Furthermore, the affine operator D is itself globally Lipschitz.
Then by the Cauchy-Lipschitz Theorem [18, Theorem 0.4.1], we obtain that (4) has a unique maximal solution
z(·) ∈ C0([0, T (θθθ0)]), where the dependence is only on the initial condition θθθ0 as we took θ̇θθ0 = 0. Moreover,
z(·) ∈ C1 on every compact set of the interior of [0, T (θθθ0)[. This gives us the first item thanks to Theorem 3.1. Since
θθθ ∈ C1 on every compact set of the interior of [0, T (θθθ0)[and ∇θθθLy(Ag(u, ·)) is locally Lipschitz continuous, we
get that t 7→ ∇θθθLy(Ag(u, θθθ(t))) is Lipschitz continuous, hence absolutely continuous, on every compact set of
the interior of [0, T (θθθ0)[. The second and third claims then follow from the first line of (3).

For the case β = 0, we use the standard equivalent first-order system of (DIN) in phase-space (position-
velocity) by introducing the velocity variable v(t) = θ̇θθ(t). The same reasoning as above yields the claim.

The time T (θθθ0) is known as the maximal existence time of the solution. By the blow-up alternative, either
T (θθθ0) = +∞ and in that case we say that the solution is global, or T (θθθ0) < +∞ and the solution blows-up in
finite time i.e., ∥θθθ(t)∥ → +∞ when t → T (θθθ0). In fact, thanks to Lemma 3.8 and Lemma 3.9 to be stated and
proved later, we can show that the local strong solution is actually global provided that α and β are well-chosen
and the dynamic is well initialized.
Proposition 3.4. Assume that A-1-A-2 hold, α > 0 and 0 < β < 2/α. Suppose also that (5) is verified. Then
(DIN) has a unique global strong solution.

Proof. By Proposition 3.3, we know that there exists a unique strong maximal solution to (DIN). Following the
above discussion, it is sufficient to show thatθθθ(·) is bounded. This follows from Lemma 3.8 and Lemma 3.9(iii).

3.2 Convergence and Recovery Guarantees
We now state in the next theorem how, if a given network obeys some condition on its initialization and is trained
with (DIN), we obtain accelerated convergence guarantees of the loss and the network parameters to a zero loss
solution, with respect to the guarantees obtained with gradient flow. We also give the associated accelerated early-
stopping bound and signal convergence bound.

6

Theorem 3.5. Assume that A-1-A-2 hold. Let θθθ(·) be a solution trajectory of (DIN) with α = σmin(Jg(θθθ0))σA

and β = 1
2α where the initialization θθθ0 is such that

σmin(Jg(θθθ0)) > 0 and R′ < R, (5)

where R′ and R obey

R′ = η
√

ξLy(y(0)) and R =
σmin(Jg(θθθ0))

2LipB(θθθ0,R)(Jg)
(6)

with

ξ = 1 +
κ(Jg(θθθ0))

2κ(A)2

4
and η =

4max
(
σmin(Jg(θθθ0))σA, 1+

√
2

2

)
min

(
σmin(Jg(θθθ0))2σ2

A, 3
4

) .

Then, the following holds:
(i) the loss converges to 0 at the rate

Ly(y(t)) ≤ ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

2
t

)
. (7)

Moreover, θθθ(t) converges to a global minimizer θθθ∞ at the rate

∥θθθ(t)− θθθ∞∥ ≤ η
√

ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

4
t

)
. (8)

(ii) We have

∥y(t)− y∥ ≤ 2 ∥ε∥ when t ≥ 4

σmin(Jg(θθθ0))σA
ln

(√
2ξLy(y(0))

∥ε∥

)
. (9)

(iii) If, moreover,
A-3. ker (A) ∩ TΣ′(xΣ′) = {0} with Σ′ def

= ΣBR′+∥θθθ0∥ ,
then

∥x(t)− x∥ ≤

√
2ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

4 t
)

λmin(A;TΣ′(xΣ′))
+

∥ε∥
λmin(A;TΣ′(xΣ′))

+

(
1 +

∥A∥
λmin(A;TΣ′(xΣ′))

)
dist(x,Σ′).

(10)

Proof. See Section 3.5.1

3.3 Discussion and consequences
Role ofα and accelerated rate The first result of our theorem shows that if the network training is well-initialized,
i.e. according to (5), and with an appropriate choice of α and β, the network weights will converge to a zero-loss
solution and the loss decreases at an exponential rate that depends on σmin(Jg(θθθ0))σA. [10, Theorem 3.2], the
authors proved that if θθθ(·) is a solution trajectory of the gradient flow{

θ̇θθ +∇θθθLy(y(t)) = 0

θθθ(0) = θθθ0,

and if
2
√
2

σFσmin(Jg(θθθ0))

√
Ly(y(0)) < R and σmin(Jg(θθθ0)) > 0,

then

Ly(y(t)) ≤ Ly(y(0)) exp

(
−σmin(Jg(θθθ0))

2σ2
A

4
t

)
. (11)

7

Moreover, θθθ(t) converges to a global minimizer θθθ∞ of Ly(A(g(u, ·))), at the rate

∥θθθ(t)− θθθ∞∥ ≤ 2

σmin(Jg(θθθ0))σA
exp

(
−σmin(Jg(θθθ0))

2σ2
A

4
t

)
.

Clearly, training with gradient flow has also exponential convergence rates. However, compared to (11), our rate
in Theorem 3.5 is provably accelerated in the ill-conditioned case. This is expected as it is known for optimization
dynamics featuring inertia in the smooth and strongly convex case when α is appropriately tuned as the square-
root of the strong convexity modulus [35, 6]. This rate is known to be optimal [30] for this class of objectives. Our
setting is of course more intricate and general as our problem is nonconvex. One also observes that the effect of
acceleration depends on the conditioning of the forward operator and specifically, the worse the conditioning, the
better the acceleration. However, whereas in the gradient flow case the multiplying constant in the rate depends
solely on Ly(y(0)), the extra-term ξ in the constant in the rates of Theorem 3.5 reveals a quadratic dependence on
the condition numbers κ(Jg(θθθ0)) and κ(A). This is a mild price to pay compared to the exponential gain in the
rate.

The viscous and geometric damping parameters α and β were optimized to achieve the (optimal) accelerated
exponential rate. However, one has to keep in mind that this rate only holds in the initialization regime where (5) is
true (which will turn out to hold in the overparameterized regime as we will show in the forthcoming section). Since
bothR′ and the bound (8) on the convergence of the network parameters grow linearly with η, it is tempting to make
η as small as possible by adjusting α and β as η clearly depends on them, see (17). However, minimizing η in such
a way should be done without harming the exponential convergence rate, particularly in the ill-conditioned setting
i.e. σA small. In fact, minimizing (17) in α and β suggests to take β = 1/α and α as a constant. In turn, from (21),
the convergence rate would be O(1), which is vacuous. Even choosing β arbitrarily close to, but strictly less than,
1/α, would result in a rate O

(
exp(−cσmin(Jg(θθθ0))

2σ2
At)
)
, for some c > 0, when σA is small. This is the same

rate as the gradient flow which cancels out the advantage brought by inertia. On the other hand, our choice of α and
β leads to the (optimal) accelerated rate, but does not minimize η, which will scale as O(σmin(Jg(θθθ0))

−2σ−2
A)

for the ill-conditioned case. η would scale as O(σmin(Jg(θθθ0))
−1σ−1

A) when minimizing it in α and β.
Early stopping While (7) ensures convergence to a zero-loss solution, it does so by overfitting the noise inherent
to the inverse problem. A classical way to avoid this is to use an early stopping strategy, hence ensuring that the
solution in the observation space will lie in a ball around the sought after observation y. This is precisely what
(9) states. It is worth mentioning that early stopping has been used by practitioners of the DIP model trained with
gradient descent and our results give this intuition firm theoretical grounds. In view of our discussion on the rate
accelerated above, it is clear that our early stopping bound is much better than that of [10, Theorem 3.2] for gradient
flow.
Signal recovery Similarly to the case of gradient flow, see [10, Theorem 3.2], our recovery bound on x in (10)
is the sum of three terms. The last two ones correspond respectively to the “noise error” inherent to the forward
model, and the “modeling error” which captures the expressivity of the trained network, i.e. its ability to generate
solutions close to x. These two terms are exactly the same as those in [10, Theorem 3.2]. The first term (10) is an
“optimization error”. This is where the role of inertia is important and this error in our case is much smaller as
discussed above.

The bounds in (10) depend on λmin(A;TΣ′(xΣ′)), the minimal conic singular value, which is bounded away
from zero thanks to the restricted injectivity condition (A-3). This is a classical and minimal assumption in the
inverse problem literature if one hopes for recovering x even in the noiseless case. Assuming the rows of A are
linearly independent, one easily checks that (A-3) imposes that m ≥ dim(TΣ′(xΣ′)). As it was also observed in
[10], there is a trade-off between the restricted injectivity condition (A-3) and the expressivity of the network. If
the model is highly expressive then dist(x,Σ′) will be smaller. But this is likely to come at the cost of making
λmin(A;TΣ′(xΣ′)) decrease, as restricted injectivity may be required to hold on a larger subset (cone). Although
this observation is to be tempered as the dimension TΣ′(xΣ′) does not necessarily increase as Σ′ gets larger.
This discussion relates with the work on the instability phenomenon observed in learned reconstruction methods
[2, 17]. In fact, one fundamental problem that creates these instabilities in the reconstruction is that ker(A) can
be non-trivial. The restricted injectivity condition guarantees stable reconstruction but the error bound degrades
with decreasing λmin(A;TΣ′(xΣ′)).

8

3.4 Wide Two-Layer DIP Network
It is now natural to ask when a network obeys (5) and thus enjoys the convergence and reconstruction guarantees of
Theorem 3.5. Our way of ensuring this is to be in a sufficiently overparametrized regime; see Section 2 for a review
of the role of overparametrized when training neural networks. Informally, the question pertains to determining,
for a network architecture and a random initialization, the number of neurons or parameters of the network to
ensure the validity of (5) with high probability. Indeed, good statistical properties arise from overparametrized
networks, enabling control over the eigenspace of the network Jacobian at initialization. Similar to other related
works, we will primarily focus on studying shallow networks. Extensions to deeper network are beyond the scope
of this chapter.

Recall that in our self-supervised DIP setting, the input u is sampled randomly and fixed during training. The
network is then trained to map u to a signal x such that Ax is close to y. We use a one-hidden layer network by
taking L = 2 in Definition 1.1, which we write as

g(u, θθθ) =
1√
k
Vϕ(Wu) (12)

with V ∈ Rn×k and W ∈ Rk×d, and ϕ an element-wise nonlinear activation function. To establish our over-
parametrization bound, we will impose the following assumptions where we define Cϕ =

√
EX∼N (0,1) [ϕ(X)2]

and Cϕ′ =
√
EX∼N (0,1) [ϕ′(X)2]1:

Assumptions on the network input and initialization

A-4. u is a uniform vector on Sd−1;
A-5. W(0) has iid entries from N (0, 1) and Cϕ < +∞;
A-6. V(0) is independent from W(0) and u, and its entries are zero-mean independent D-bounded random
variables of unit variance.
These assumptions are quite standard for neural networks and very easy to verify. For A-6, as an example,

one can use iid entries chosen from the uniform distribution on a compact interval. We can now state our over-
parametrization bound under which (5) holds, and thus, so do the guarantees of Theorem 3.5. We denote the
signal-to-noise ratio as SNR = ∥Ax∥ / ∥ε∥.
Theorem 3.6. Suppose that assumptions A-1 and A-2 hold. Consider the one-hidden layer network (12) where
both layers are trained with the initialization satisfying A-4 to A-6 and the architecture parameters obeying

k ≥ C(1 + κ(A)4)
max

(
σ4
A, c1

)
min (σ8

A, c2)
n
(
∥A∥4 n2 + ∥Ax∥4∞

(
1 + SNR−1

)4
m2
)
.

Then (5) holds with probability at least 1 − 5e−(n−1) − 2n−1. Here c1, c2, C > 0 are absolute constants that
depend only on Cϕ, Cϕ′ , B and D.

Proof. See Section 3.5.2.

The overparametrization bound scales as k ≥ n3 + nm2, which is similar to gradient flow [10, Theorem 4.1].
However, as we discussed in Section 3.3, training with (DIN) achieves an optimal exponential rate but at the
price of the initialization condition which becomes more stringent as the conditioning of A degrades. This is
clearly reflected in our overparametrization bound. Indeed, in the extremely ill-conditioned case, we have an extra
multiplying factor that scales as κ(A)4 compared to [10, Theorem 4.1]. Whether this can be improved to get the
best of both worlds is an open question that we leave to a future work.

We observe again that the set Σ′ on which A-3 is required to hold is random. Nevertheless, using similar
arguments as in [10, Remark 4.2], one can show that Σ′ ⊂ ΣBρ(0), where

ρ ≲
max

(
σA, (c1)

1
4

)
min

(
σ2
A, (c2)

1
4

) (1 + κ(A))
(
∥A∥

√
n+ ∥Ax∥∞

(
1 + SNR−1

)√
m
)

+
√
k
(√

n+
√
d
)

1Observe that Cϕ′ ≤ B under A-2.

9

with probability at least 1 − 5e−(n−1) − 2e−kd − 2n−1. In the overparametrized regime, ρ scales as
O
(√

k
(√

n+
√
d
))

. This confirms the intuitively expected behaviour that expressivity of Σ′ is better as the
overparametrization increases.

3.5 Proofs
3.5.1 Proof of Theorem 3.5
We will start by showing some intermediate lemmas necessary to prove our main theorem. For these proofs, we
will use the following Lyapunov function given in the original work of [1]:

V (t) = Ly(y(t)) +
1

2

∥∥∥θ̇θθ(t) + β∇θθθLy(y(t))
∥∥∥2 . (13)

We prove in the following lemma that V (t) converges which is then used in the proof of Proposition 3.4 to obtain
that θθθ is a global solution of (DIN).
Lemma 3.7. Assume that A-1-A-2 hold, α > 0 and 0 ≤ β ≤ 2

α . Let θθθ(·) be a solution trajectory of (DIN). Then,
(i) V (t) is nonincreasing and converges.
(ii) θ̇θθ(·) ∈ L2([0,+∞[). If β ∈]0, 2/α[, then ∇θθθLy(y(·)) ∈ L2([0,+∞[).
(iii) If θθθ(·) is bounded and β ∈]0, 2/α[, then limt→+∞ ∥∇θθθLy(y(t))∥ = 0.

Proof. We start by differentiating the Lyapunov function V (t) and obtain that

V̇ (t) ≤ ⟨∇θθθLy(y(t)), θ̇θθ(t)⟩+ ⟨θ̇θθ(t) + β∇θθθLy(y(t)), θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))⟩

≤ ⟨θ̇θθ(t),∇θθθLy(y(t)) + θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))⟩

+β⟨∇θθθLy(y(t)), θ̈θθ(t) + β
d

dt
∇θθθLy(y(t))⟩.

We now replace θ̈θθ(t) + β d
dt∇θθθLy(y(t)) by using (DIN) which gives

V̇ (t) ≤ −α
∥∥∥θ̇θθ(t)∥∥∥2 − β ∥∇θθθLy(y(t))∥2 + βα⟨∇θθθLy(y(t)),−θ̇θθ(t)⟩.

Applying Young’s inequality we get

V̇ (t) ≤ −α
∥∥∥θ̇θθ(t)∥∥∥2 − β ∥∇θθθLy(y(t))∥2 +

β2α

2
∥∇θθθLy(y(t))∥2 +

α

2

∥∥∥θ̇θθ(t)∥∥∥2
≤ −α

2

∥∥∥θ̇θθ(t)∥∥∥2 − β

(
1− βα

2

)
∥∇θθθLy(y(t))∥2 . (14)

We get claim (i) as V is nonnegative and given the choice of β. Integrating (14), we also obtain claim (ii).
By our assumptions, we know that ∇θθθLy(Ag(u, ·)) is locally Lipschitz continuous. By the boundedness

assumption, we have that ∇θθθL(y(·)) ∈ L∞([0,+∞[). Moreover, since θ̇θθ(·) ∈ L2([0,+∞[) and is continuous,
then θ̇θθ(·) ∈ L∞([0,+∞[). These facts imply that there exists L > 0 such that for every s, t ≥ 0

| ∥∇θθθL(y(t))∥2 −∥∇θθθL(y(s))∥2 |
≤ 2 sup

τ≥0
∥∇θθθL(y(τ))∥ ∥∇θθθL(y(t))−∇θθθL(y(s))∥

≤ 2L sup
τ≥0

∥∇θθθL(y(τ))∥ ∥θθθ(t)− θθθ(s)∥

≤ 2L sup
τ≥0

∥∇θθθL(y(τ))∥ sup
u≥0

∥∥∥θ̇θθ(u)∥∥∥ |t− s|,

and thus ∥∇θθθL(y(·))∥2 is uniformly continuous. Since it is also integrable, Barbălat’s lemma [39, Lemma 1] yields
claim (iii).

10

Lemma 3.8. Assume that A-1 and A-2 hold, α > 0 and 0 < β < 2
α . Let θθθ(·) be a solution trajectory of (DIN). If

for all t ≥ 0, σmin(Jg(θθθ(t))) ≥ σmin(Jg(θθθ0))
2 > 0, then θ̇θθ(·) ∈ L1([0,+∞[). In turn, limt→+∞ θθθ(t) exists.

Proof. By assumption, we have for all t > 0 that

∥∇θθθLy(y(t))∥2 =
∥∥Jg(t)

⊤A⊤ (y(t)− y)
∥∥2 ≥ 2σmin(Jg(θθθ0))

2σ2
ALy(y(t)) (15)

where, in the inequality, we used that y(t) − y ∈ Im (A) = ker(A⊤)⊥. This argument will be used repeatedly
though we will not specify it. Now if we proceed to our Lyapunov function V (t), we observe that

V (t) = Ly(y(t)) +
1

2

∥∥∥θ̇θθ(t) + β∇θθθLy(y(t))
∥∥∥2

≤ Ly(y(t)) +
∥∥∥θ̇θθ(t)∥∥∥2 + β2 ∥∇θθθLy(y(t))∥2

(15) ≤
∥∥∥θ̇θθ(t)∥∥∥2 + (β2 +

(
2σmin(Jg(θθθ0))

2σ2
A

)−1
)
∥∇θθθLy(y(t))∥2

≤ max
(
1, β2 +

(
2σmin(Jg(θθθ0))

2σ2
A

)−1
)(∥∥∥θ̇θθ(t)∥∥∥2 + ∥∇θθθLy(y(t))∥2

)
. (16)

We now look at dV (t)1/2

dt . Without loss of generality, we assume that V (t) ̸= 0 as otherwise V (s) = 0 for all s ≥ t

(remember that V is nonincreasing), and thus θ̇θθ(s) = ∇θθθLy(y(s)) = 0 for all s ≥ t, and there is nothing to prove.
We have the following chain of inequalities

d

dt

√
V (t) =

V̇ (t)

2
√

V (t)

(14) ≤
−α/2

∥∥∥θ̇θθ(t)∥∥∥2 − β
(
1− βα

2

)
∥∇θθθLy(y(t))∥2

2
√

V (t)

(16) ≤ −
min

(
α/2, β

(
1− βα

2

))(∥∥∥θ̇θθ(t)∥∥∥2 + ∥∇θθθLy(y(t))∥2
)1/2

2max
(
1, β +

(√
2σmin(Jg(θθθ0))σA

)−1
)

≤ −η−1

(∥∥∥θ̇θθ(t)∥∥∥2 + ∥∇θθθLy(y(t))∥2
)1/2

,

where we let

η =
2max

(
1, β +

(√
2σmin(Jg(θθθ0))σA

)−1
)

min
(
α/2, β

(
1− βα

2

)) . (17)

Integrating, we get ∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds ≤ ∫ t

0

(∥∥∥θ̇θθ(s)∥∥∥2 + ∥∇θθθLy(y(s))∥2
)1/2

ds

≤ −η

∫ t

0

dV (s)1/2

ds
ds

≤ η
√

V (0)

≤ η

(
Ly(y(0)) +

β2

2
∥∇θθθLy(y(0))∥2

)1/2

.

where in the last inequality we used that θ̇θθ(0) = 0. In view of A-1, we have

∥∇θθθLy(y(0))∥ =
∥∥Jg(θθθ0)

⊤A⊤(y(t)− y)
∥∥ ≤ ∥Jg(θθθ0)∥ ∥A∥

√
2Ly(y(0)). (18)

11

Combining this with (3.5.1), we obtain∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds ≤ η

√(
1 + β2 ∥Jg(θθθ0)∥2 ∥A∥2

)
Ly(y(0)). (19)

Passing to the limit, we get that θ̇θθ(·) ∈ L1 ([0,+∞[) and thus, limt→+∞ θθθ(t) exists by applying Cauchy’s criterion
to

θθθ(t) = θθθ0 +

∫ t

0

θ̇θθ(s)ds.

Lemma 3.9. Assume that A-1 and A-2 hold, α = σmin(Jg(θθθ0))σA and β = 1
2α . Recall R and R′ from (6). Let

θθθ(·) be a solution trajectory of (DIN).
(i) If θθθ ∈ BR(θθθ0) then

σmin(Jg(θθθ)) ≥ σmin(Jg(θθθ0))/2.

(ii) If for all s ∈ [0, t], σmin(Jg(θθθ(s))) ≥ σmin(Jg(θθθ0))
2 then

θθθ(t) ∈ BR′(θθθ0).

(iii) If R′ < R, then for all t ≥ 0, σmin(Jg(θθθ(t))) ≥ σmin(Jg(θθθ0))/2.

Proof. (i) Similar to [10, Lemma 3.11(i)].
(ii) Using (19), we have for t > 0

∥θθθ(t)− θθθ0∥ ≤
∫ t

0

∥∥∥θ̇θθ(s)∥∥∥ds ≤ η

√(
1 + β2 ∥Jg(θθθ0)∥2 ∥A∥2

)
Ly(y(0)).

Replacing α and β in (17) by their values according to our choice, the rhs of the last inequality is precisely
R′, whence we get the claim.

(iii) Similar to [10, Lemma 3.11(iii)].

Proof of Theorem 3.5. (i) We follow a standard Lyapunov analysis. By Jensen’s inequality,

−
∥∥∥θ̇θθ(t)∥∥∥2 ≤ −1

2

∥∥∥θ̇θθ(t) + β∇θθθLy(y(t))
∥∥∥2 + β2 ∥∇θθθLy(y(t))∥2 .

Combining this with (14) gives

V̇ (t) ≤ −α

4

∥∥∥θ̇θθ(t) + β∇θθθLy(y(t))
∥∥∥2 − β (1− βα) ∥∇θθθLy(y(t))∥2

(15) ≤ −α

4

∥∥∥θ̇θθ(t) + β∇θθθLy(y(t))
∥∥∥2

− 2β (1− βα)σmin(Jg(θθθ0))
2σ2

ALy(y(t))

≤ −min
(α
2
, 2β (1− βα)σmin(Jg(θθθ0))

2σ2
A

)
V (t). (20)

Integrating, we obtain

Ly(y(t)) ≤ V (t)

≤ V (0) exp
(
−min

(α
2
, 2β (1− βα)σmin(Jg(θθθ0))

2σ2
A

)
t
)
.

(21)

12

The optimal rate is obtained by setting β = 1
2α and α = σmin(Jg(θθθ0))σA corresponding to the choice in the

theorem, hence leading to

Ly(y(t)) ≤ V (t) ≤ V (0) exp

(
−σmin(Jg(θθθ0))σA

2
t

)
. (22)

By assumption we set θ̇θθ(0) = 0 which means that

V (0) = Ly(y(0)) +
β2

2
∥∇θθθLy(y(0))∥2 .

From (18), we get that
V (0) ≤ ξLy(y(0))

where ξ = 1+ β2 ∥Jg(θθθ0)∥2 ∥A∥2. Replacing β with its value in the expression of ξ and plugging into (22)
concludes the proof of (7).

By Lemma 3.8, we know that θθθ(·) converges to some θ∞. We use (22) and a similar reasoning as for (3.5.1)
to obtain

∥θθθ(t)− θθθ∞∥ ≤
∫ +∞

t

∥∥∥θ̇θθ(s)∥∥∥ds
≤ η
√

V (t)

≤ η
√

V (0) exp

(
−σmin(Jg(θθθ0))σA

4
t

)
≤ η

√
ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

4
t

)
which shows (8).

(ii) Continuity of A and g(u, ·) indicate that y(·) also converges to y∞ = Ag(u, θθθ∞). The early stopping bound
can be obtained by using (7). Observe that

∥y(t)− y∥ ≤ ∥y(t)− y∥+ ∥y − y∥

≤
√

2Ly(y(t)) + ∥ε∥

≤
√

2ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

4
t

)
+ ∥ε∥ .

Thus, choosing t ≥ 4
σmin(Jg(θθθ0))σA

log

(√
2ξLy(y(0))

∥ε∥

)
gives (9).

(iii) We recall that by Lemma 3.9, θθθ(t) ∈ BR′ (θθθ0) for all t ≥ 0, which in turn entails that x(t) ∈ Σ′ for all t ≥ 0.
Then, we have using A-3 the following chain of inequalities:

∥x(t)− x∥ ≤ ∥x(t)− xΣ′∥+ dist (x,Σ′)

≤ λmin(A;TΣ′(xΣ′))−1 (∥y(t)−AxΣ′∥) + dist (x,Σ′)

≤ λmin(A;TΣ′(xΣ′))−1(∥y(t)− y∥
+ ∥y −Ax∥+ ∥A(x− xΣ′)∥) + dist (x,Σ′)

≤

√
2ξLy(y(0)) exp

(
−σmin(Jg(θθθ0))σA

4 t
)

λmin(A;TΣ′(xΣ′))
+

∥ε∥
λmin(A;TΣ′(xΣ′))

+

(
1 +

∥A∥
λmin(A;TΣ′(xΣ′))

)
dist(x,Σ′),

which proves (10).

13

3.5.2 Proof of Theorem 3.6
Our proof is in the same vein as that of [10, Theorem 4.1]. However, we will improve not only the scaling but we
will also accommodate better the linear operator, the new form of R′ and the presence of η within it, since the
latter depends on σmin(Jg(θθθ0)).

We start by providing a bound on the Lipschitz constant of Jg which is slightly tighter than the one in [10].
Lemma 3.10. Suppose that assumptions A-2, A-4 and A-6 are satisfied. For the one-hidden layer network (12),
we have for any θθθ0 and ρ > 0:

LipB(θθθ0,ρ)(Jg) ≤ 2B(1 + nD + ρ))

√
1

k
.

Proof. Let θθθ ∈ Rk(d+n) be the vectorized form of any parameters (W,V) of the network . The Jacobian Jg at θθθ
reads

1√
k

[
ϕ(W1u)In . . . ϕ(Wku)In ϕ′(W1u)V1u

⊤ . . . ϕ′(Wku)Vku
⊤] . (23)

It then follows that ∀θθθ, θ̃̃θ̃θ ∈ B(θθθ0, ρ),∥∥∥Jg(θθθ)− Jg(θ̃̃θ̃θ)
∥∥∥2 =

∥∥∥∥(Jg(θθθ)− Jg(θ̃̃θ̃θ)
)(

Jg(θθθ)− Jg(θ̃̃θ̃θ)
)⊤∥∥∥∥

=
1

k

∥∥∥ k∑
i=1

(
ϕ(Wiu)− ϕ(W̃iu)

)2
In+(

ϕ′(Wiu)Vi − ϕ′(W̃iu)Ṽi

)(
ϕ′(Wiu)Vi − ϕ′(W̃iu)Ṽi

)⊤ ∥∥∥
≤ 1

k

k∑
i=1

((
ϕ(Wiu)− ϕ(W̃iu)

)2
+
∥∥∥ϕ′(Wiu)Vi − ϕ′(W̃iu)Ṽi

∥∥∥2)

≤ 1

k

k∑
i=1

(
ϕ(Wiu)− ϕ(W̃iu)

)2
+ 2ϕ′(Wiu)2

∥∥∥Vi − Ṽi

∥∥∥2
+ 2

(
ϕ′(Wiu)− ϕ′(W̃iu)

)2 ∥∥∥Ṽi

∥∥∥2
≤ 1

k

k∑
i=1

(
B2
∥∥∥Wi − W̃i

∥∥∥2 + 2B2
∥∥∥Vi − Ṽi

∥∥∥2 + 2B2
∥∥∥Wi − W̃i

∥∥∥2 ∥∥∥Ṽi

∥∥∥2)
≤ 2B2

k

∥∥∥θθθ − θ̃̃θ̃θ
∥∥∥2 + 2B2

k

(
max
i∈[k]

∥∥∥Ṽi

∥∥∥2)∥∥∥W − W̃
∥∥∥2
F
.

(24)

Now, for any i ∈ [k], the following holds∥∥∥Ṽi

∥∥∥2 ≤ 2 ∥Vi(0)∥2 + 2
∥∥∥Ṽi −Vi(0)

∥∥∥2 ≤ 2 ∥Vi(0)∥2 + 2 ∥θθθ − θθθ0∥2 ≤ 2nD2 + 2ρ2.

Plugging this into (24) and taking the square-root, we conclude.

We will also need to bound η and ξ, and control the spectrum of the Jacobian Jg at the initial point θθθ0.
Lemma 3.11. Consider the one-hidden layer network (12) such that A-2 holds and the initialization θθθ0 obeys
A-4-A-6. We have

∥Jg(θθθ0)∥ ≤ Cϕ +B + C

√
n

k

with probability at least 1− 3e−n, and

σmin(Jg(θθθ0)) ≥
√

C2
ϕ + C2

ϕ′/2

14

with probability at least 1 − 2n−1 provided that k/ log(k) ≥ C ′n log(n). Here, C and C ′ > 0 are large enough
absolute constants that depend on B, Cϕ, Cϕ′ and D.

Proof. The second bound comes from [10, Lemma 4.9]. Let us now focus on the first one.
Arguing as in (24), we have

∥Jg(θθθ0)∥2 ≤ 1

k
∥ϕ(W(0)u)∥2 + 1

k

∥∥∥∥∥
k∑

i=1

ϕ′(W(0)iu)2V(0)iV(0)⊤i

∥∥∥∥∥ . (25)

We first concentrate ∥ϕ(W(0)u)∥ around its expectation. Using A-4, A-5 and orthogonal invariance of the
Gaussian distribution, we have W(0)u is N (0, Ik). Therefore,

E
[

1√
k
∥ϕ(W(0)u)∥

]
≤ 1√

k

√√√√ k∑
i=1

E [ϕ(W(0)iu)2] ≤ Cϕ.

We also know from A-2 that ∥ϕ(·)∥ is B-Lipschitz. Thus by the Gaussian concentration inequality,

P
(

1√
k
∥ϕ(W(0)u)∥ ≥ Cϕ + τ

)
≤ P

(
1√
k
∥ϕ(W(0)u)∥ ≥ E

[
1√
k
∥ϕ(W(0)u)∥

]
+ τ

)
≤ exp

(
− τ2k

2B2

)
.

By choosing τ = B
√

2n
k , we obtain that

1√
k
∥ϕ(W(0)u)∥ ≤ Cϕ +B

√
2n

k
(26)

with probability at least 1− e−n.
We now turn to bounding the second term of (25). We first note that by A-2, we have

1

k

∥∥∥∥∥
k∑

i=1

ϕ′(W(0)iu)2V(0)iV(0)⊤i

∥∥∥∥∥ ≤ B2

k

∥∥V(0)⊤
∥∥2 .

By A-6 and [42, Example 5.8], the entries of V(0) are centered sub-gaussian random variables. Since they are
also independent, we get from [42, Lemma 5.24] that the columns V(0)i are independent centered sub-gaussian
random vectors, with sub-gaussian norm K

def
= CD, where C is an absolute constant. They are also isotropic

thanks to A-6. We are then in position to invoke [42, Theorem 5.41] to assert that

P
(

1√
k

∥∥V(0)⊤
∥∥ ≥ 1 + (c

−1/2
K + CK)

√
n

k

)
≤ 2e−n,

where cK , CK > 0 are absolute constants that depend only on the sub-gaussian norm K (hence on D). Plugging
the last bounds into (25) and then into (18), and using a union bound, we get the claim.

We finally need to provide a bound on the initial loss Ly(y(0)), similarly to [10, Lemma 4.11]. Although the
conclusion there was true, the proof used an independence argument to bound ∥x(0)∥ which was incorrect. Here,
we will fix this using Hoeffding’s inequality for sub-gaussian variables.
Lemma 3.12. Suppose that A-2 holds and the initialization θθθ0 obeys A-4-A-6. Then

∥y(0)− y∥ ≤ C ∥A∥

(
Cϕ +B

√
2n

k

)
√
n+ ∥Ax∥∞

(
1 + SNR−1

)√
m,

with probability at least 1− 2e−(n−1), where C > 0 is an absolute constant that depends on D.

15

Proof. We have
∥y(0)− y∥ ≤ ∥A∥ ∥x(0)∥+

√
m ∥Ax∥∞

(
1 + SNR−1

)
,

with x(0) = g(u, θθθ(0)) = 1√
k

∑k
i=1 ϕ(W

i(0)u)Vi(0). Let us denote a
def
= 1√

k
ϕ(W(0)u). We are going to use

a covering argument to bound ∥x(0)∥. Let Nϵ be an ϵ-net of Sn−1 for some ϵ ∈]0, 1[. Let s ∈ Sn−1 such that
∥x(0)∥ = ⟨x(0), s⟩. Let z ∈ Nϵ which approximates s as ∥s− z∥ ≤ ϵ. We have

||⟨x(0), s⟩| − |⟨x(0), z⟩|| ≤ ϵ ∥x(0)∥ .

Thus
|⟨x(0), z⟩| ≥ |⟨x(0), s⟩| − ϵ ∥x(0)∥ = (1− ϵ) ∥x(0)∥ .

This implies that

∥x(0)∥ ≤ (1− ϵ)−1 sup
z∈Nϵ

|⟨x(0), z⟩| = (1− ϵ)−1 sup
z∈Nϵ

∣∣∣∣∣
k∑

i=1

ai⟨Vi(0), z⟩

∣∣∣∣∣ .
We then have

P (∥x(0)∥ ≥ δ) ≤P

(
sup
z∈Nϵ

∣∣∣∣∣
k∑

i=1

ai⟨Vi(0), z⟩

∣∣∣∣∣ ≥ (1− ϵ)δ

∣∣∣∣ ∥a∥ < ν

)
+ P (∥a∥ ≥ ν) .

Let us fix z ∈ Sn−1. By assumption A-6 and [42, Lemma 5.9], ⟨Vi(0), z⟩ are independent zero-mean sub-gaussian
random variables with sub-gaussian norm K = C ′D, where C ′ is an absolute constant. It then follows from
Hoeffding’s inequality ([42, Proposition 5.10]) that

P

(∣∣∣∣∣
k∑

i=1

ai⟨Vi(0), z⟩

∣∣∣∣∣ ≥ (1− ϵ)δ

∣∣∣∣ ∥a∥ < ν

)
≤ e−

c(1−ϵ)2δ2

K2ν2 ,

where c > 0 is an absolute constant. A union bound then yields

P

(
sup
z∈Nϵ

∣∣∣∣∣
k∑

i=1

ai⟨Vi(0), z⟩

∣∣∣∣∣ ≥ (1− ϵ)δ

∣∣∣∣ ∥a∥ < ν

)
≤ |Nϵ|e−

c(1−ϵ)2δ2

K2ν2 .

Taking ϵ = 1/2, we have |Nϵ| ≤ 5n; see [42, Lemma 5.2]. Moreover, we know from (26) that

P

(
∥a∥ ≥ Cϕ +B

√
2n

k

)
≤ e−n.

Taking ν = Cϕ +B
√

2n
k and δ = 2Kν

√
3n
c , we get the claim.

Proof of Theorem 3.6. The goal is to show that (5) holds with high probability under the given scaling. We start
by upper-bounding R′. We can invoke Lemma 3.11 to infer that, whenever k ≳ n log(n) log(k), with probability
at least 1− 3e−n − 2n−1,

η ≲
max

(
σA, (c1)

1
4

)
min

(
σ2
A, (c2)

1
4

) and ξ ≲ 1 + κ(A)2.

Using Lemma 3.10 and Lemma 3.11, and arguing similarly to the first part of the proof of [10, Theorem 4.1], we
have

R ≳

(
k

n

)1/4

(27)

16

with the same probability as above. Now, Lemma 3.12 allows to assert that√
Ly(y(0)) ≲ ∥A∥

√
n+ ∥Ax∥∞

(
1 + SNR−1

)√
m

with probability at least 1− 2e−(n−1). Piecing all these bounds together, and using a union bound, one sees that

R′ ≲
max

(
σA, (c1)

1
4

)
min

(
σ2
A, (c2)

1
4

) (1 + κ(A))
(
∥A∥

√
n+ ∥Ax∥∞

(
1 + SNR−1

)√
m
)

(28)

with probability at least 1 − 5e−(n−1) − 2n−1. Combining (27) and (28) and using that (a+ b)
4 ≤ 8

(
a4 + b4

)
for a, b ∈ R, we get the claim.

4 Discrete Setting
Let us now turn to the discretization of (DIN) using explicit finite differences approximation. This gives a first-order
(i.e., gradient-based) scheme summarized in Algorithm 1.

Algorithm 1:
Input: θθθ−1 = θθθ0; s0 > 0; δ ∈]0, 2[; ρ ∈]0, 1[; α > 0; β > 0.

1 for τ = 0, 1, . . . do
2 Compute

qτ = θθθτ + αsτ (θθθτ − θθθτ−1)− βs2τ (∇θθθLy(yτ)−∇θθθLy(yτ−1)) ,

θθθτ+1 = qτ − sτ∇θθθLy(yτ)
(29)

with sτ = ρiτ s0, where iτ is the smallest nonnegative integer such that

Ly(Ag(u, θθθτ+1)))− Ly(Ag(u, θθθτ)))

− ⟨∇θθθLy(Ag(u, θθθτ))), θθθτ+1 − θθθτ ⟩ ≤
δ

2sτ
∥θθθτ+1 − θθθτ∥2

and

∥∇θθθLy(Ag(u, θθθτ+1)))−∇θθθLy(Ag(u, θθθτ)))∥ ≤ δ

sτ
∥θθθτ+1 − θθθτ∥ .

3 end

As in the continuous case, α is the ”momentum” parameter which controls the friction while β controls the
geometric ”Hessian”-driven2 damping. The choice of the parameter sequences αsτ and βs2τ may seem cryptic at
this stage, and is not stemming precisely from the time discretization of the continuous dynamic. We will however
clarify later the reasons behind this choice which is flexible enough to get the desired convergence behaviour under
solely local Lipschitz continuity of the objective gradient. Indeed, global Lipschitz continuity allows to take a
standard upper-bound on the choice of the step-size sτ . However, such an assumption is unrealistic when training
neural networks. To cope with this, a line search procedure with backtracking is crucial which poses additional
technical difficulties that we must deal with carefully.
Remark 4.1. It is worth mentioning at this stage that one can replace the backtracking update in our algorithm by
sτ = ρiτ sτ−1. This update may have some benefits in practice. Our results and proofs extend readily to this case
by a mild adaptation of Lemma 4.3. Therefore, we will not elaborate more on it.

2The quotation marks is because the Hessian does not appear explicitly but is rather approximated with the difference of gradients.

17

4.1 Convergence result
In the next theorem, we give sufficient conditions on (α, β, δ) that ensure linear convergence of the network training
to a zero-loss solution. We also provide the convergence rates as well as the global convergence of the whole
sequence (θθθτ)τ∈N.
Theorem 4.2. Assume that A-1 and A-2 hold. Let (θθθτ)τ∈N be the sequence generated by Algorithm 1 with the
parameters (α, β, δ) satisfying s0 ≥ 1 and 0 < 2δ2 < s−1

0 (1 − δ/2), where δ2 = α+βδ
2 . Moreover, let the

initialization θθθ0 be such that
σmin(Jg(θθθ0)) > 0 and R′ < R (30)

with

R′ =

√
2

δ1(1− 2s0δ2)

(
2

sσmin(Jg(θθθ0))σA
+

1√
δ2s0

)√
Ly(y0) and (31)

R =
σmin(Jg(θθθ0))

2LipB(θθθ0,R)(Jg)
(32)

where δ1 = s−1
0

(
1− δ

2

)
−2δ2 and 0 < s

def
= infτ∈N sτ ≤ s

def
= supτ∈N sτ ≤ s0. Then, the loss converges linearly

to 0 with

Ly(yτ) ≤
δR′2

2s

(
ρ

1 + ρ

)τ

where ρ ≤ 8δ−1
1 (1− 2s0δ2)

−1

(
1

sσmin(Jg(θθθ0))σA
+

1

2
√
δ2s0

)2

.

(33)

In addition, (θθθτ)τ∈N converges linearly to a global minimizer θθθ∞ of (2) with

∥θθθτ − θθθ∞∥ ≤ R′
(

ρ

1 + ρ

)τ/2

. (34)

If, moreover, (A-3) holds, then

∥xτ − x∥ ≤
√

δ/sR′

λmin(A;TΣ′(xΣ′))

(
ρ

1 + ρ

)τ/2

+
∥ε∥

λmin(A;TΣ′(xΣ′))

+

(
1 +

∥A∥
λmin(A;TΣ′(xΣ′))

)
dist(x,Σ′).

(35)

This theorem ensures that the neural network can be trained to zero loss using Algorithm 1 with a proper choice
of α, β and δ. The condition s0(α+βδ) < 1− δ

2 balances the effect of viscous (momentum) and Hessian damping
with respect to the user-chosen parameter δ of the backtracking procedure to ensure convergence of the network
training.

Understanding more precisely the effect of the choice of α, β and δ, for fixed s0, on the convergence guarantees
in this discrete setting boils down to understanding their role in δ1 and δ2, which in turn influence both R′ and our
convergence rates. First, we see that the closer δ is to 2, the more limited is the choice of α and β in order to comply
with the condition s0(α + βδ) < 1 − δ

2 . Furthermore, this means that both δ1 and δ2 would go towards 0, hence
making R′ scaling as O(δ−1δ

−1/2
2 (1− δ/2)−1) and ρ as O(δ−1δ−1

2 (1− δ/2)−1). This regime is undesirable as it
may induce a very slow training convergence rate. On the other hand, choosing δ smaller allows for larger choices
of α and β to balance between δ1 and δ2. Indeed, for fixed s0, one can decide to keep δ2 larger at the expense
of shrinking δ1 and vice versa. Observe also that choosing δ small may have a cost by potentially increasing the
backtracking procedure termination iteration. This would then make s smaller hence increasing ρ and R′. Thus,
there is a clear tradeoff in the choice of δ, α and β.

Observe that under our initialization condition, our result states that the parameters of the network remain
in a ball near that initialization on which σmin(Jg((θθθτ)τ∈N)) is bounded away from zero, hence verifying the
Łojasiewicz inequality with exponent 1/2, hence the linear convergence rate. For the ill-conditioned case, ρ
scales as O

(
1

δ1s2σmin(Jg(θθθ0))2σ2
A

)
, hence giving the convergence rate 1

1+cδ1s2σmin(Jg(θθθ0))σA
2 for some constant

c > 0. Our estimate of the convergence rate seems overly pessimistic as it strictly larger than the convergence

18

rate 1
1+cσmin(Jg(θθθ0))σA

known to be the optimal rate of first-order methods for strongly convex L-smooth objec-
tives [30]. Note however that we are dealing with a nonconvex objective whose gradient is only locally Lipschitz
continuous.

Whether our estimate of the rate can be improved or not is an open question. A possible way to have a
tighter estimate is to to lift the problem to the product space (θθθτ − θθθ∞, θθθτ−1 − θθθ∞) and using a linearization of
∇θθθLy(Ag(u, θθθ)) around θθθ∞, and then studying the spectral properties of the resulting matrix in the linearization,
see [35]. We would like to explore this further in a future work.

Theorem 3.6 can be adapted to the new form of R′ and R in Theorem 4.2 with minor modifications. The
resulting scaling of the network architecture will be similar. We refrain from giving the details which are left to
the reader.

4.2 Proofs
Lemma 4.3 (Finite termination and well-definedness). The backtracking procedure in Algorithm 1 terminates in a
finite number of iterations and s def

= supτ∈N sτ ≤ s0. If the sequence (θθθτ)τ∈N is bounded, then s def
= infτ∈N sτ > 0.

Proof. To lighten notation, let f def
= Ly ◦A ◦ g(u, ·), and denote the Bregman divergence of f as

Df (θ̃θθ,θθθ)
def
= f(θ̃θθ)− f(θθθ)− ⟨∇f(θθθ), θ̃θθ − θθθ⟩.

We write generically each iteration of Algorithm 1 as

θθθ+(µi)
def
= θθθ + αi (θθθ − θθθ−)− βi (∇f(θθθ)−∇f(θθθ−))− µi∇f(θθθ), where

µi = ρis0, αi = αµi, βi = βµ2
i ,∀i ∈ N.

Clearly, θθθ+(µi) → θθθ as i → ∞. Thus ∀ϵ > 0, ∃lϵ > 0 such that θθθ+(µi) ⊂ B(θθθ, ϵ), ∀i ≥ lϵ. It then follows
from the local Lipschitz continuity of ∇f (thanks to A-1 and A-2) and the descent lemma [9, Lemma 2.64(i)] that
∃Lϵ > 0 such that ∀i ≥ lϵ, ∥∥∇f(θθθ+(µi))−∇f(θθθ)

∥∥ ≤ Lϵ

∥∥θθθ+(µi)− θθθ
∥∥

and Df (θθθ
+(µi), θθθ) ≤

Lϵ

2

∥∥θθθ+(µi)− θθθ
∥∥2 . (36)

Assume by contradiction that the backtracking procedure does not terminate. That is, for all i ≥ 0,

µi

∥∥∇f(θθθ+(µi))−∇f(θθθ)
∥∥ > δ

∥∥θθθ+(µi)− θθθ
∥∥

or µiDf (θθθ
+(µi), θθθ) >

δ

2

∥∥θθθ+(µi)− θθθ
∥∥2 . (37)

This together with (36) entails that for all i ≥ lϵ,

δ
∥∥θθθ+(µi)− θθθ

∥∥ < µi

∥∥∇f(θθθ+(µi))−∇f(θθθ)
∥∥ ≤ µiLϵ

∥∥θθθ+(µi)− θθθ
∥∥

or
δ

2

∥∥θθθ+(µi)− θθθ
∥∥2 < µiDf (θθθ

+(µi), θθθ) ≤
µiLϵ

2

∥∥θθθ+(µi)− θθθ
∥∥2 .

Simplifying gives in both cases that δ < µiLϵ. Passing to the limit as i → ∞ yields δ = 0, a contradiction.
The fact that s ≤ s0 is immediate. We will now show that s > 0. We have by assumption that (θθθτ)τ∈N ⊂ Ω,

for some convex bounded set Ω. The descent lemma used above implies that there exists LΩ ≥ 0 such that for all
τ ≥ 0,

Df (θθθτ+1, θθθτ) ≤
LΩ

2
∥θθθτ+1 − θθθτ∥2 .

We now show by induction that for all τ ≥ 0,

sτ ≥ min(s0, ρδL
−1
Ω) > 0. (38)

19

This is obviously true for τ = 0. Assume that (38) holds at some τ ≥ 1. Recall that sτ+1 = ρiτ+1s0. If iτ+1 ≤ iτ
then sτ+1 ≥ sτ and we are done. If iτ+1 ≥ iτ + 1, we suppose for contradiction that sτ+1 < min(s0, ρδL

−1
Ω).

Thus, the descent property above entails that

Df (θθθτ+1, θθθτ) <
δ

2ρiτ+1−1s0
∥θθθτ+1 − θθθτ∥2 ,

meaning that the backtracking terminates at iτ+1 − 1, leading to a contradiction as it was supposed to terminate
at iτ+1. This concludes the proof.

Proof of Theorem 4.2. We will first derive a Lyapunov function, then show how the parameters of the network
remain bounded under (30) and the devised choice of (α, β, sτ)) which gives a lower bound on σmin(Jg(θθθτ)) for
all τ ∈ N∗, which finally allow us to derive convergence rates.
Step 1: Lyapunov analysis. We first perform a Lyapunov analysis by designing an appropriate energy function.
Let us now observe that the update (29) can be equivalently written

θθθτ+1 = argmin
θθθ∈Rp

1

2
∥θθθ − qτ + s∇θθθLy(yτ)∥2 .

Using the 1-strong convexity of θθθ 7→ 1
2 ∥θθθ − qτ + s∇θθθLy(yτ)∥2, we get

1

2
∥θθθτ+1 − qτ + s∇θθθLy(yτ)∥2 ≤ 1

2
∥θθθτ − qτ + s∇θθθLy(yτ)∥2

−1

2
∥θθθτ+1 − θθθτ∥2 .

(39)

Let us denote for short ατ = αsτ , βτ = βs2τ , vτ = θθθτ − θθθτ−1 with v0 = 0 and zτ = ατvτ −
βτ (∇θθθLy(yτ)−∇θθθLy(yτ−1)). We have qτ = θθθτ+zτ . Expanding the terms on both sides of (39), we obtain that

⟨∇θθθLy(yτ),vτ+1⟩ ≤ −∥vτ+1∥2

sτ
+

⟨zτ ,vτ+1⟩
sτ

. (40)

Combining (40) with the backtracking termination condition of Algorithm 1, which is well-defined thanks to
Lemma 4.3, we have

Ly(yτ+1) ≤ Ly(yτ) + ⟨∇θθθLy(yτ),vτ+1⟩+
δ

2sτ
∥vτ+1∥2

≤ Ly(yτ) +
⟨zτ ,vτ+1⟩

sτ
− 1

sτ

(
1− δ

2

)
∥vτ+1∥2

≤ Ly(yτ) +
ατ

sτ
⟨vτ+1,vτ ⟩ −

βτ

sτ
⟨vτ+1,∇θθθLy(yτ)−∇θθθLy(yτ−1)⟩

− 1

sτ

(
1− δ

2

)
∥vτ+1∥2

≤ Ly(yτ) +
ατ

sτ
∥vτ+1∥ ∥vτ∥+

δβτ

s2τ
∥vτ+1∥ ∥vτ∥ −

1

sτ

(
1− δ

2

)
∥vτ+1∥2 .

Applying Young’s inequality twice with ϵ, ϵ′ > 0, and using that sτ ≤ s0, we get

Ly(yτ+1) ≤ Ly(yτ) +
ϵ+ ϵ′

2
∥vτ∥2 −

(
s−1
0

(
1− δ

2

)
− α2

2ϵ
− β2δ2

2ϵ′

)
∥vτ+1∥2 .

Adding ϵ+ϵ′

2 ∥vτ+1∥2 on both sides gives

Ly(yτ+1) +
ϵ+ ϵ′

2
∥vτ+1∥2 ≤ Ly(yτ) +

ϵ+ ϵ′

2
∥vτ∥2

20

−
(
s−1
0

(
1− δ

2

)
− α2

2ϵ
− β2δ2

2ϵ′
− ϵ+ ϵ′

2

)
∥vτ+1∥2 . (41)

To ensure that the last term is nonpositive, we need that

s−1
0

(
1− δ

2

)
− α2

2ϵ
− β2δ2

2ϵ′
− ϵ+ ϵ′

2
> 0.

Optimizing over ϵ and ϵ′, we obtain ϵ = α and ϵ′ = βδ. Thus, the last condition is equivalent to s0(α + βδ) <
1− δ/2, hence our condition imposed on the parameters. We are now in position to define our Lyapunov sequence
as Vτ = Ly(yτ) + δ2 ∥vτ∥2, where δ2 = α+βδ

2 . (41) then yields

Vτ+1 ≤ Vτ − δ1 ∥vτ+1∥2 (42)

with δ1
def
= s−1

0 (1− δ/2) − 2δ2 > 0. Clearly Vτ is nonnegative decreasing sequence, and thus it converges.
Moreover, as δ1 > 0, we get that

∑
τ∈N ∥vτ∥2 < +∞, entailing that limτ→∞ ∥vτ∥ = 0. Thus the loss Ly(yτ)

converges to the same limit as Vτ .
Step 2: Network weights are bounded under initialization condition. Now that we have a Lyapunov function,
we would like to have a similar result as in Lemma 3.9 for the continuous case, that is, where we show that θθθ will be
bounded in some ball of radius R given some initialization condition. These results adapted to the discrete setting
are presented in the following lemma.

Lemma 4.4. Assume A-1 and A-2 hold. Recall R and R′ from (30) with σmin(Jg(θθθ0)) > 0. Let (θθθτ)τ∈N be the
sequence given by Algorithm 1 and assume that s0(α+ βδ) < 1− δ/2.

(i) If θθθ ∈ B(θθθ0, R) then

σmin(Jg(θθθ)) ≥ σmin(Jg(θθθ0))/2.

(ii) If ∀ l ∈ {0, . . . , τ}, (θθθl)l≤τ ⊂ B(θθθ0, R) and σmin(Jg(θθθl)) ≥ σmin(Jg(θθθ0))
2 , then

θθθτ+1 ∈ B(θθθ0, R′).

(iii) If R′ < R, then for all τ ∈ N, (θθθτ)τ∈N ⊂ B(θθθ0, R) and σmin(Jg(θθθ(τ))) ≥ σmin(Jg(θθθ0))/2.

Proof. (i) The proof of this claim is the same as that of [10, Lemma 3.10(i)].
(ii) We know that sl ≤ s0 for all l ∈ N. Moreover, since (θθθl)l≤τ , we can invoke Lemma 4.3 to deduce that there

exists s > 0 such that sl ≥ s > 0 for all l ≤ τ . The update equation (29) then gives

s ∥∇θθθLy(yτ)∥ ≤ ∥sτ∇θθθLy(yτ)∥
= ∥θθθτ+1 − qτ∥
≤ ∥θθθτ+1 − θθθτ∥+ ∥θθθτ − qτ∥
≤ ∥vτ+1∥+ (α+ βδ)s0 ∥vτ∥
= ∥vτ+1∥+ 2s0δ2 ∥vτ∥ .

Thus, we get from Step 1 that limτ→∞ ∥∇θθθLy(yτ)∥ = 0. Let us observe that by the condition of the
lemma on σmin(Jg(θθθl)) for any l ∈ {0, . . . , τ}, we have that

σmin(Jg(θθθ0))σA√
2

√
Ly(yl) ≤ ∥∇θθθLy(yl)∥ ≤ 1

s
(∥vl+1∥+ 2s0δ2 ∥vl∥) , (43)

Without loss of generality, we assume that Vl ̸= 0, as otherwise, the algorithm has converged and there is
nothing to prove. By concavity of

√
·, we have

√
Vl+1 −

√
Vl ≤

1

2
√
Vl

(Vl+1 − Vl)

21

(42) ≤ −δ1 ∥vl+1∥2

2
√
Vl

(43) ≤ −δ1 ∥vl+1∥2

2
(

∥∇θθθLy(yl)∥
2−1/2σmin(Jg(θθθ0))σA

+
√
δ2 ∥vl∥

) .
Let us define

(
∆
√
V
)
l
=

√
Vl −

√
Vl+1. Then

∥vl+1∥2 ≤ 2

δ1

(
∥∇θθθLy(yl)∥

2−1/2σmin(Jg(θθθ0))σA
+
√

δ2 ∥vl∥
)(

∆
√
V
)
l

(43) ≤ 2

δ1

(
∥vl+1∥+ 2s0δ2 ∥vl∥

2−1/2sσmin(Jg(θθθ0))σA
+
√

δ2 ∥vl∥
)(

∆
√
V
)
l

≤ 2
√
2

δ1

(
∥vl+1∥

sσmin(Jg(θθθ0))σA
+

(
2s0δ2

sσmin(Jg(θθθ0))σA
+
√

δ2

)
∥vl∥

)
×
(
∆
√
V
)
l
.

By Young’s inequality, we have that for any ϵ > 0

∥vl+1∥ ≤ ϵ√
2

(
∥vl+1∥

sσmin(Jg(θθθ0))σA
+

(
2s0δ2

sσmin(Jg(θθθ0))σA
+
√

δ2

)
∥vl∥

)

+

(
∆
√
V
)
l

δ1ϵ
.

Hence (
1− ϵ√

2sσmin(Jg(θθθ0))σA

)
∥vl+1∥

≤ ϵ√
2

(
2s0δ2

sσmin(Jg(θθθ0))σA
+
√

δ2

)
∥vl∥+

(
∆
√
V
)
l

δ1ϵ
.

For any ϵ ∈]0,
√
2sσmin(Jg(θθθ0))σA[, we divide by the factor on the left-hand

(
1− ϵ√

2sσmin(Jg(θθθ0))σA

)
on

both sides. The goal is now to choose ϵ such that

ϵ
(
2s0δ2 +

√
δ2sσmin(Jg(θθθ0))σA

)
√
2sσmin(Jg(θθθ0))σA − ϵ

< 1,

or equivalently

ϵ <

√
2sσmin(Jg(θθθ0))σA

1 + 2s0δ2 +
√
δ2sσmin(Jg(θθθ0))σA

. (44)

It follows that any ϵ verifying this bound entails that there is 0 < ν < 1 and C1 > 0 such that

∥vl+1∥ ≤ (1− ν) ∥vl∥+ C1

(
∆
√
V
)
l
. (45)

We then choose

ϵ =

√
2δ2s0sσmin(Jg(θθθ0))σA

2
√
δ2s0 + sσmin(Jg(θθθ0))σA/2

.

22

Using our condition that 2s0δ2 ∈]0, 1− δ/2[, one can easily check that such a choice obeys (44). It also gives
us ν = 1− 2s0δ2 ∈]δ/2, 1[and

C1 =

(
2
√
δ2s0 + sσmin(Jg(θθθ0))σA/2

)2
√
2δ2δ1s0sσmin(Jg(θθθ0))σA

(√
δ2s0 + sσmin(Jg(θθθ0))σA/2

) . (46)

We then obtain

C1 ≤
4
(√

δ2s0 + sσmin(Jg(θθθ0))σA/2
)

√
2δ2δ1s0sσmin(Jg(θθθ0))σA

≤
√
2

δ1

(
2

sσmin(Jg(θθθ0))σA
+

1√
δ2s0

)
.

(47)

Since (45) holds for any l ∈ {0, . . . , τ} and θθθ−1 = θθθ0, we get that

∥θθθτ+1 − θθθ0∥ ≤
τ+1∑
l=0

∥vl∥ ≤ ν−1
τ+1∑
l=0

(
∥vl∥ − ∥vl+1∥+ C1

(
∆
√
V
)
l

)
≤ ν−1C1

(√
V0

)
+ ν−1 ∥v0∥ (48)

= ν−1C1

√
Ly(y0).

(iii) We prove this by induction. For τ = 0, the claim trivially holds. Suppose now that R′ < R and that (θθθl)l≤τ ⊂
B(θθθ0, R) and σmin(Jg(θθθl)) ≥ σmin(Jg(θθθ0))

2 for all l ∈ {0, . . . , τ}. Let us now show that this also holds at
θθθτ+1. By the induction assumption and (ii), we have θθθτ+1 ∈ B(θθθ0, R′) ⊂ B(θθθ0, R). In view of (i), we get the
claim.

In view of the condition of the theorem on (α, β, δ) and the assumption that R′ < R, Lemma 4.4(iii) applies
to ensure that (θθθτ)τ∈N ⊂ B(θθθ0, R) and σmin(Jg(θθθ(τ))) ≥ σmin(Jg(θθθ0))

2 for all τ ∈ N. Equipped with this result,
we can embark from (45) and pass to the limit as τ → +∞ to get that

∑
τ∈N ∥vτ∥ < +∞, i.e., the sequence

(θθθτ)τ∈N has finite length, and thus it converges to some point θθθ∞.
Step 3: Linear convergence rate. Let us define ∆τ =

∑+∞
l=τ ∥vl+1∥. The triangle inequality yields ∥θθθτ − θθθ∞∥ ≤

∆τ . Therefore it is sufficient to analyze the rate of ∆τ to get that of the iterates. Summing (45) from l = τ to ∞,
we have

∆τ−1 =

+∞∑
l=τ

∥vl∥ ≤ ν−1 ∥vτ∥+ ν−1C1

√
Vτ .

Thus, we have the recursion

∆τ = ∆τ−1 − ∥vτ∥ ≤ 1− ν

ν
∥vτ∥+ ν−1C1

√
Vτ

≤ 1− ν

ν
(∆τ−1 −∆τ) +

C1

ν

√
Vτ .

(49)

From the definition of our Lyapunov function and (43) we get

√
Vτ ≤ ∥vτ+1∥+ 2δ2s0 ∥vτ∥

2−1/2sσmin(Jg(θθθ0))σA
+
√

δ2 ∥vτ∥

≤
(√

2

sσmin(Jg(θθθ0))σA
+
√

δ2

)
(∥vτ+1∥+ ∥vτ∥)

=

(√
2

sσmin(Jg(θθθ0))σA
+
√

δ2

)
(∆τ−1 −∆τ+1) ,

23

where we used that 2δ2s0 < 1− δ/2 < 1 by assumption. Plugging this into (49) we get

∆τ ≤ 1− ν

ν
(∆τ−1 −∆τ) +

(√
2

sσmin(Jg(θθθ0))σA
+
√
δ2

)
C1

ν
(∆τ−1 −∆τ+1) .

Let us denote C2 = max
((√

2
sσmin(Jg(θθθ0))σA

+
√
δ2

)
C1, 1− ν

)
. One can see, using (47), that 2s0δ2 < 1 and

1− ν = 2s0δ2, that

C2 ≤ max

(
4δ−1

1

(
1

sσmin(Jg(θθθ0))σA
+
√

δ2

)(
1

sσmin(Jg(θθθ0))σA
+

1

2
√
δ2s0

)

, 2s0δ2

)

≤ max

(
4δ−1

1

(
1

sσmin(Jg(θθθ0))σA
+

1

2
√
δ2s0

)2

, 2s0δ2

)
.

We claim that the maximum in the rhs is given by the first term. Indeed,

4δ−1
1

(
1

sσmin(Jg(θθθ0))σA
+

1

2
√
δ2s0

)2

=
1

δ1δ2s20

(
2
√
δ2s0

sσmin(Jg(θθθ0))σA
+ 1

)2

≥ 2,

since by assumption 2δ2s0 < 1 which also entails s0δ1 < 1. Therefore

C2 ≤ 4δ−1
1

(
1

sσmin(Jg(θθθ0))σA
+

1

2
√
δ2s0

)2

.

Using now that ∆τ+1 ≤ ∆τ , we obtain

∆τ+1 ≤ ∆τ ≤ C2

ν
(∆τ−1 −∆τ+1 +∆τ−1 −∆τ) ≤

2C2

ν
(∆τ−1 −∆τ+1) .

Equivalently,
∆τ+1 ≤ ρ

1 + ρ
∆τ−1

where ρ = 2C2

ν . This implies

∆τ ≤
(

ρ

1 + ρ

)τ/2

∆0.

Observing that ∆0 ≤ ν−1C1

√
Ly(y0) = R′ (see (48)), it follows that

∥θθθτ − θθθ∞∥ ≤ ∆τ ≤ R′
(

ρ

1 + ρ

)τ/2

.

By the well-posedness of the backtracking procedure, we obtain

Ly(yτ) ≤
δ

2s
∥θθθτ − θθθ∞∥2 ≤ δR′2

2s

(
ρ

1 + ρ

)τ

.

which concludes the proof.

24

5 Numerical Experiments
In order to validate our results, we performed different numerical experiments. Throughout these experiments, we
used a two-layer neural network equipped with the sigmoid activation function and where the entries of W(0) are
sampled from a standard normal distribution and the entries of V(0) from a uniform distribution between −

√
3

and
√
3. The networks then obviously obey our assumptions. We train both layers of the networks.

In our first experiment shown in Figure 1, our goal is to see the impact of the parameters α and β on the
convergence speed of the network applied to a simple inverse problem of relatively low dimension with n = 10
and m = 5 and without noise. The entries of x are iid samples from N (0, 1) and those of A from N (0, 1/

√
n).

Standard random matrix theory results ensure that the non-zero singular values of A are concentrated around 1.
To solve this problem, we use networks where k = 104 and d = 1. We trained the network for each instance
using our inertial algorithm with s0 = 0.1 fixed, and varied α and β to assess their influence. We generate 50
different problems instances characterized by an operator A, a signal x and a network initialization. For each
pair of parameters (α, β), we computed the average number of iterations over the 50 problem instances that were
necessary to achieve machine precision accuracy (i.e., Ly(yτ) ≤ 10−14).

(a) Number of iterations necessary for a network to converge
on average, for different pairs (α, β)

(b) Effect of β on the number of iterations necessary to con-
verge for α = 10−0.2

Fig. 1: Convergence rates of an inertial system for different α and β. Better α allows for much faster convergence
while for this problem, β does not appear to be necessary.

For this problem, it is obvious that α is the driving factor of convergence speed. We see a clear acceleration
of the training of the network as α progresses until the network start diverging when α = 1. The acceleration we
observe is very important as we go on average from 9000 iterations to converge when α = 0 (the gradient descent
case typically) to only 3000 when we chose α = 10−0.1. We see in Figure 1b the effect of β on the convergence
when α = 10−2. We observe a slight degradation of the convergence rate when β progresses, revealing that for this
problem, Hessian damping is not necessary and only the effect of viscous damping drives the acceleration. This
is due to the fact that for this problem we do not observe oscillations around the minima, which is what Hessian
damping helps to prevent.

In the next experiment, we kept the same setting but we fixed β = 0.05 and varied both k and α. We train once
again 50 networks for each pair (k, α) and we plot in Figure 2 the probability of each network to achieve machine
precision loss in less than 15000 iterations. From these results we see different regimes. When the network is too
small, whatever α is chosen, the network will not converge to a zero-loss solution, which is in agreement with
our theoretical predictions. On the other side, when α is too large, the algorithm will not converge either whatever
the size of the network. However, when the network is big enough, the choice of α has a clear impact on the
convergence speed. It is to be noted that in some cases, much more iterations would lead to convergence, but it
seems that even by taking this into account, using the right α does help a network to find a zero-loss solution even
when its size is relatively small. This might be related to a better trap-avoidance property of inertial dynamics that
would be worth investigating precisely in the future.

25

Fig. 2: Empirical probability of a network to be trained in less than 15000 iterations for different k and α. Choosing
α correctly helps when k is above a certain threshold.

For our next experiment, we explore the effects of α and β on an imaging inverse problem. We consider the
image as a vector in [0, 255]4096 and use a network with k = 7000 hidden neurons, which is enough to achieve
convergence empirically. We study a deconvolution problem where A is a Gaussian kernel of standard deviation
1, and added an N (0, 2.52) noise. We trained different networks using various α and β and show in Figure 3 the
evolution of the loss and of the distance to the true solution for each pair of parameters. We also show in Figure 4
the final image obtained after a selected number of iterations for both gradient descent (α = 0 and β = 0) and
when α = 1 and β = 0.1 which is one of the fastest converging combination.

Let us first focus on the evolution of the loss given in Figure 4. The first thing to note is that for the right
combination of α and β (α = 1 and β ∈ {0.1, 1}), there is considerable acceleration phenomenon compared
to gradient descent. More precisely, the acceleration happens at some point, either in the beginning for (α =
1, β = 0.1) or later on for (α = 1, β = 1), and then the optimization seems to continue at a similar rate as the
gradient descent. Contrary to the previous toy example, this time the acceleration can only be achieved by a good
combination of α and β showing the interplay between viscous and Hessian dampings for more complex inverse
problems. Indeed, for (α = 1, β = 0), we see that the loss oscillates without converging and on the other side
(α = 0, β = 1) does converge but at a slower rate than gradient descent – note that such phenomenon also appears
for (α = 0.1, β = 1). Finally, choosing small α and β will not provide the desired acceleration or can even hinder
the convergence rate compared to gradient descent.

If we now observe the evolution of the error between the reconstructed signal and the true solution x, we
see this error decreases and then starts increasing before reaching a plateau that fits the noise level. This effect is
amplified here, as the convolution operator, while being injective, is very badly conditioned (σmin(A) ∼ 10−5).
This validates the need for an early stopping strategy. However in our case, we have that ∥ε∥ ∼ 150, which
combined with the conditioning of the operator means that our early stopping bound is far from being reached in
our experiments but we observe in Figure 4 that the reconstructed image has already severely overfitted the noise
after 50000 iterations. Similarly, our bound on ∥xτ − x∥ is far from being reached because the noise term will
be very large, showing the difficulties faced when using very badly conditioned operators. Finally, let us observe
that in Figure 4, both gradient descent and the inertial system will overfit the noise, albeit at different times due to
slower convergence of gradient descent.

We did a second imaging experiment where we changed the convolution operator to a better conditioned one
and with higher level of noise to see how the optimization trajectories behave under these conditions. The operator
A that we are using is built from the combination of two orthonormal matrices and a diagonal matrix with entries in
the range [1, 2] (the goal is to have the same matrices produced by an SVD). We used a Gaussian noise vector with
entries iid sampled from N (0, 25). We plot the evolution of the loss for different parameters in Figure 5 and we
see different behaviors than for the convolution operator. By choosing β too large (1 here), the algorithm diverges

26

Fig. 3: Effects on the loss and the signal convergence of different combination of α and β for a deconvolution
problem. Inertial systems can provide faster convergence but they are sensible to the parameters α and β and a
wrong choice can prevent convergence.

Fig. 4: Qualitative results of a deconvolution problem with low noise for different α and β. Both gradient descent
and inertial system converge in observation space but they overfit the noise in signal space even for very reduced
level of noise.

which did not happen in the previous experiment meaning that the conditioning of the operator plays an important
role in the right choice of α and β to ensure convergence as we discussed after our theoretical results above. We
also see that the choice (α = 1, β = 0.1) provides faster convergence at the beginning but then starts oscillating
and reaches the convergence threshold later than gradient descent. It appears that choosing (α = 0.5, β = 0)
provides the fastest convergence rate, indicating that maybe for this problem, Hessian damping is not as necessary
and the solution landscape is smoother.

27

Fig. 5: Effects on the loss and the signal convergence of different combination of α and β for a well-conditioned
operator. We observe faster convergence for a variety of parameters and the networks converge to the same signal
as the problem is well-posed.

Fig. 6: Qualitative results with a well-conditioned operator and heavy noise for different α and β. The signal is
well recovered despite the heavy noise level for both gradient descent and inertial systems.

When we look at the evolution of the curves in Figure 5, there are some surprises. Notably the case (α =
1, β = 0.1) which shows these swings in the loss, is the fastest in signal space. Furthermore, we see that for a lot of
cases, the algorithm converges in a stable way in the signal space and stays around the solution before overfitting
the noise. This was expected as the operator is well-conditioned and thus overfitting the noise, even if it is to quite
high level like here, does not require big changes in signal space. We see this effect in the qualitative results of
Figure 6 where the solution found by gradient descent and the inertial algorithm are very similar and do not show
the same artifacts as was the case for the convolution operator.

References
[1] Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system

with hessian-driven damping.: Application to optimization and mechanics. Journal de mathématiques pures
et appliquées 81(8), 747–779 (2002)

[2] Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image
reconstruction and the potential costs of ai. Proceedings of the National Academy of Sciences 117(48),

28

30088–30095 (2020)
[3] Arndt, C.: Regularization theory of the analytic deep prior approach. Inverse Problems 38(11), 115005 (2022)
[4] Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and generalization for

overparameterized two-layer neural networks. In: International Conference on Machine Learning. pp. 322–
332 (2019)

[5] Arridge, S., Maass, P., Ozan, O., Schönlieb, C.B.: Solving inverse problems using data-driven models. Acta
Numerica 28, 1–174 (May 2019)

[6] Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems with
hessian driven damping. Mathematical Programming 193, 1–43 (2022)

[7] Attouch, H., Fadili, J., Kungurtsev, V.: On the effect of perturbations in first-order optimization methods with
inertia and Hessian driven damping. Evolution Equations and Control Theory 12(1), 71 (2023)

[8] Bartlett, P.L., Montanari, A., Rakhlin, A.: Deep learning: a statistical viewpoint. Acta numerica 30, 87–201
(2021)

[9] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS
Books in Mathematics, Springer International Publishing, Cham (2017)

[10] Buskulic, N., Fadili, J., Quéau, Y.: Convergence and recovery guarantees of unsupervised neural networks
for inverse problems. Journal of Mathematical Imaging and Vision 66, 1–22 (2024)

[11] Buskulic, N., Fadili, J., Quéau, Y.: Recovery guarantees of unsupervised neural networks for inverse problems
trained with gradient descent. 32nd European Signal Processing Conference (2024)

[12] Castera, C., Bolte, J., Févotte, C., Pauwels, E.: An inertial Newton algorithm for deep learning. J. Mach.
Learn. Res. 22, 1–31 (2021)

[13] Chizat, L., Oyallon, E., Bach, F.: On lazy training in differentiable programming. Advances in neural
information processing systems 32 (2019)

[14] Du, S.S., Zhai, X., Poczos, B., Singh, A.: Gradient Descent Provably Optimizes Over-parameterized Neural
Networks. In: ICLR. pp. 1–19 (2019)

[15] Duff, M., Campbell, N., Ehrhardt, M.J.: Regularising inverse problems with generative machine learning
models. Journal of Mathematical Imaging and Vision 66(1), 37–56 (2024)

[16] Fang, C., Dong, H., Zhang, T.: Mathematical models of overparameterized neural networks. Proceedings of
the IEEE 109(5), 683–703 (2021)

[17] Gottschling, N.M., Antun, V., Adcock, B., Hansen, A.C.: The troublesome kernel on hallucinations: no free
lunches and the accuracy-stability trade-off in inverse problems. arXiv preprint arXiv:2001.01258 (2020)

[18] Haraux, A.: Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées,
vol. 17. Masson, Paris (1991)

[19] Heckel, R., Soltanolkotabi, M.: Compressive sensing with un-trained neural networks: Gradient descent finds
a smooth approximation. In: International Conference on Machine Learning. pp. 4149–4158 (2020)

[20] Heckel, R., Soltanolkotabi, M.: Denoising and regularization via exploiting the structural bias of convolu-
tional generators. In: International Conference on Learning Representations (2020)

[21] Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and generalization in neural networks.
Advances in neural information processing systems 31 (2018)

[22] Jahn, T., Jin, B.: Early stopping of untrained convolutional neural networks. SIAM Journal on Imaging
Sciences 17(4), 2331–2361 (2024)

[23] Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative regularization methods for nonlinear ill-posed
problems, vol. 6. Walter de Gruyter (2008)

[24] Kamilov, U.S., Bouman, C.A., Buzzard, G.T., Wohlberg, B.: Plug-and-play methods for integrating physical
and learned models in computational imaging: Theory, algorithms, and applications. IEEE Signal Processing
Magazine 40(1), 85–97 (2023)

[25] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
[26] Liu, J., Sun, Y., Xu, X., Kamilov, U.S.: Image restoration using total variation regularized deep image prior.

In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 7715–7719
(2019)

[27] Mataev, G., Milanfar, P., Elad, M.: Deepred: Deep image prior powered by red. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops. pp. 0–0 (2019)

[28] Maulen-Soto, R., Fadili, J., Ochs, P.: Inertial methods with viscous and Hessian driven damping for non-
convex optimization. arXiv:2407.12518 (2024)

[29] Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: Interpretable, efficient deep learning for signal and image

29

processing. IEEE Signal Processing Magazine 38(2), 18–44 (2021)
[30] Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science &

Business Media (2013)
[31] Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep Learning Techniques for

Inverse Problems in Imaging. IEEE Journal on Selected Areas in Information Theory pp. 39–56 (May 2020)
[32] Oymak, S., Soltanolkotabi, M.: Overparameterized nonlinear learning: Gradient descent takes the shortest

path? In: International Conference on Machine Learning. pp. 4951–4960 (2019)
[33] Oymak, S., Soltanolkotabi, M.: Toward moderate overparameterization: Global convergence guarantees for

training shallow neural networks. IEEE Journal on Selected Areas in Information Theory 1(1), 84–105 (2020)
[34] Pineda, A.F.L., Petersen, P.C.: Deep neural networks can stably solve high-dimensional, noisy, non-linear

inverse problems. Analysis and Applications 21(01), 49–91 (2023)
[35] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Computational

Mathematics and Mathematical Physics 4(5), 1–17 (Jan 1964)
[36] Prost, J., Houdard, A., Almansa, A., Papadakis, N.: Learning local regularization for variational image

restoration. In: International Conference on Scale Space and Variational Methods in Computer Vision. pp.
358–370 (2021)

[37] Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: Replacing minimization with randomization
in learning. Advances in neural information processing systems 21 (2008)

[38] Shi, Z., Mettes, P., Maji, S., Snoek, C.G.: On measuring and controlling the spectral bias of the deep image
prior. International Journal of Computer Vision 130(4), 885–908 (2022)

[39] Tao, G.: A simple alternative to the barbalat lemma. IEEE Transactions on Automatic Control 42(5), 698–
(1997)

[40] Tirer, T., Giryes, R., Chun, S.Y., Eldar, Y.C.: Deep internal learning: Deep learning from a single input. IEEE
Signal Processing Magazine 41(4), 40–57 (2024)

[41] Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 9446–9454 (2018)

[42] Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Compressed Sensing:
Theory and Applications, pp. 210–268. Cambridge University Press, Cambridge (2012)

[43] Zukerman, J., Tirer, T., Giryes, R.: Bp-dip: A backprojection based deep image prior. In: 28th European
Signal Processing Conference. pp. 675–679. IEEE (2021)

30

	Introduction
	Motivation
	Problem statement
	General notations
	Contributions

	Prior Work
	Continuous-time Setting
	Well-Posedness
	Convergence and Recovery Guarantees
	Discussion and consequences
	Wide Two-Layer DIP Network
	Proofs
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Discrete Setting
	Convergence result
	Proofs

	Numerical Experiments

