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Abstract. In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation
with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on
the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local
and non-local problems, as well as regularity properties of these solutions in time and space. We then derive
error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and
Forward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on
random weighted graphs with n vertices. In particular, we establish that if the kernel scale parameter decreases
at an appropriate rate as n grows, then almost surely, the solution of the problem on graphs converges uniformly
to the viscosity solution of the local problem as the time step vanishes and the number vertices n grows large.

1. Introduction

In recent years, nonlinear partial differential equations (PDEs) on graphs and networks have attracted
increasing interest since they naturally arise in many practical problems in mathematics, physics, biology,
economy and data science (e.g., internet and vehicular traffic, social networks, population dynamics, image
processing and computer vision, machine learning); see [6, 22, 24, 40] and references therein. Among those
PDEs, Hamilton-Jacobi equations, including Eikonal-type equations, have been considered in [20, 21, 32,
50, 51, 52] on weighted graphs for data processing, and in [1, 9, 10, 29, 44] on topological networks or other
very special types of networks. From a different motivation, Hamilton-Jacobi equations on graphs were also
studied in [48] to derive discrete versions of some functional inequalities.

Our main goal in this paper is to rigorously study continuum limits of the Eikonal equation defined on
weighted graphs, as the number of vertices goes to infinity. The motivation behind considering the Eikonal
equation on graphs is the ability to extend it to any discrete data that can be represented by weighted graphs.
In such a setting, data points are vertices of the graph, and are connected by edges if sufficiently close in a
certain ground metric. The edges are assigned weights (e.g., based on the distances between data points).
Several works have considered the approximation of the Eikonal equation on triangular, unstructured meshes
or grids; see [5, 12, 33] and references therein. Adaptation of the Eikonal equation on graphs for discrete
data processing has been proposed in [50, 21]; see (1). This has led to many applications including semi-
supervised clustering and classification on meshes, point clouds, or images [50, 21, 52, 20]; see also [36]
which proposed a framework dedicated to solve the Eikonal equation on point clouds. Despite availability
of compelling numerical evidence for the efficiency of (1) for these tasks, a clear theoretical understanding
of its solutions is lacking and no results on its consistency are available to the best of our knowledge. In
particular it is largely open to determine whether solutions of the graph-based Eikonal equation converge, as
the number of available data points/vertices increases, to a solution of a limiting equation in the continuum
setting. It is our aim in this paper to settle this question.

1.1. Problem statement. Here and in the rest of the paper we use | · | to denote the euclidean norm in
Rm, Lip(Σ) is the space of Lipschitz continuous mappings on Σ, and for any h ∈ Lip(Σ), Lh denotes its
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Lipschitz constant. For a non-empty closed subset X ∈ Rm, the distance to X is the function

d(·, X) : x ∈ Rm 7→ min
z∈X
|x− z| ∈ [0,+∞[.

See also Section 1.4 for the rest of notations.
Throughout, we will work with the following sets and functions satisfying the standing assumptions:

(H.1) Ω, Ω̃ are compact subsets of Rm, with Ω̃ a finite subset of Ω;
(H.2) Γ ⊂ Ω and Γ̃ ⊂ Ω̃ are closed sets with Ω \ Γ open and Ω̃ \ Γ̃ ⊂ Ω \ Γ;
(H.3) P ∈ Lip(Ω \ Γ) and P̃ ∈ Lip(Ω̃ \ Γ̃) are non-negative potential functions;
(H.4) ψ ∈ Lip(Ω) and ψ̃ ∈ Lip(Ω̃).
(H.5) There exists a0, d0 > 0 such that d(·,Γ) isC1 onN a0

Γ \Γ whereN a0
Γ

def
= {x ∈ Ω, d(x,Γ) < a0},

and |∇d(x,Γ)| ≥ d0 for all x ∈ N a0
Γ \ Γ.

Assumptions (H.1)-(H.2) imply that ∂Ω ⊆ Γ. The fact that Ω̃ is finite in assumption (H.1) is only required
to get the existence of a solution for the non-local problem (Pε) (see Proposition 2.12). The rest of our
results, for instance our error bounds, do not need this finiteness assumption. Nevertheless, since our primary
motivation in this paper is the study of the Eikonal equation on graphs, this assumption is quite natural. Let
us also point out that the existence in the case of a continuous set Ω̃ should be obtained by a discretization of
this set. The regularity assumption (H.5) on the distance function is classically ensured when, for instance,
Γ is a compact smooth embedded manifold without boundary, in which case d0 = 1; see Appendix A for
a discussion. Thus, in the light of the previous observation that ∂Ω ⊆ Γ, (H.5) holds for instance if Ω is
a smooth manifold and Γ is a disjoint union of ∂Ω and a smooth embedded manifold without boundary.
We also remark that readers familiar with the theory of viscosity solutions of Hamilton-Jacobi equations
may have recognized that (H.5) is indeed very useful to construct super-solutions that are compatible with
boundary conditions.

Let G = (V,w) be a finite undirected weighted graph without parallel edges, where V ⊂ Ω is the vertex
set and every edge (u, v) ∈ V 2 is given a weight w(u, v), where w : V 2 → R+ is the weight function. It is
understood that w(u, v) = 0 whenever (u, v) are not connected. In [21], the authors proposed the following
Eikonal equation on a weighted graph G

(1)

{
maxv∈V

√
w(u, v)(f(v)− f(u))− = P̃ (u), u ∈ V \ V0,

f(u) = 0 u ∈ V0,

where (·)−
def
= −min(·, 0), and V0 ⊂ V corresponds to the set of initial seed vertices. By analogy to the

continuous setting, (1) describes the evolution of a ”propagation front” V0 on the graph G.
In this paper, inspired by (1), we propose to study the general non-local Eikonal equation in a time-

dependent form:

(Pε)


∂

∂t
f ε(u, t) = −

∣∣∇−Jεf ε(u, t)∣∣∞ + P̃ (u), (u, t) ∈ (Ω̃ \ Γ̃)×]0, T [,

f ε(u, t) = ψ̃(u), (u, t) ∈ (Γ̃×]0, T [) ∪ Ω̃× {0} .

The stationary solution of (Pε) would satisfy a corresponding Eikonal equation. There are many applications
motivating (1), for instance in data processing, analysis and machine learning on graphs, on unstructured
meshes or grids, and on point clounds; see [5, 12, 20, 21, 33, 32, 36, 50, 51, 52] with different choices made
for the potential P̃ , boundary points and data (Γ̃, ψ̃).

In (Pε), we have defined ∣∣∇−Jεf ε(u, t)∣∣∞ = max
v∈Ω̃
∇−Jεf

ε(u, v, t),
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where ∇−Jε is a non-local operator coined the weighted directional internal gradient operator, introduced in
[21], and reads

∇−Jεf
ε(u, v, t) = Jε(u, v)(f ε(v, t)− f ε(u, t))−,

where, for ε > 0, Jε : Rm × Rm → R+ is an ε-scaled kernel function,

Jε(u, v) =
1

ε
J
(u
ε
,
v

ε

)
with J(u, v) =

1

Cg
g(|u− v|),

whereCg > 0 will be defined in Remark 1.1. The above says that the kernel J is isotropic and g : R+ → R+

is its radial profile. It is easy to see that
∣∣∇−Jεf ε(u, t)∣∣∞ can be equivalently rewritten as

(2)
∣∣∇−Jεf ε(u, t)∣∣∞ = max

v∈Ω̃
Jε(u, v)(f ε(u, t)− f ε(v, t)).

In the above, ε is a length scale parameter allowing to take into account data density. Indeed, scaling J by ε
is intended to give significant weight to pairs of points up to distance ε. To capture properly interactions at
scale ε, g has to decay to zero at an appropriate rate. More precisely, our set of admissible kernels will have
to satisfy the following requirements:

(H.6) g is a non-negative function.
(H.7) ∃rg > 0 such that supp(g) ⊂ [0, rg].
(H.8) ∃a ∈]0, rg[ such that g is decreasing on [0, a] and satisfies g(a) > 0. We denote by cg

def
= g(a).

(H.9) g is Lg-Lipschitz continuous on its support.
These assumptions on the kernel are mild and rather standard.

Remark 1.1. We define

Cg
def
= sup

t∈R+

tg(t),

Cg is definitely bounded by (H.7) and (H.9). Moreover, in our proof, it turns out that the support compactness
assumption (H.7) is not mandatory. In fact, what is really important is that the supremum in Cg is attained
in [0, rg] and that g is bounded. Nevertheless, to make the proofs simpler to follow, we avoid delving into
these technicalities and impose (H.7).

(Pε) covers the case of weighted graphs with n vertices as a special case by properly instantiating the sets
(Ω̃, Γ̃); see Section 4. Having this in mind, for a given n-dependent scaling εn, we will eventually pose the
question of consistency on graphs as the continuum limit of the solution to (Pε) as n → +∞, as well as its
time discretized versions. We will therefore consider the time-dependent form of the local Eikonal equation
on the continuum:

(P)


∂

∂t
f(x, t) = − |∇f(x, t)|+ P (x), (x, t) ∈ (Ω \ Γ)×]0, T [,

f(x, t) = ψ(x), (x, t) ∈ (Γ×]0, T [) ∪ Ω× {0}

where∇f(x, t) denotes the (weak) gradient of f in the space variable x.
Before going further, let us perform an easy yet informative calculation just to convince the reader that

it is reasonable to hope for a convergence result of a solution of (Pε) to that of (P). More precisely, let us
look at the behaviour of the non-local directional internal gradient operator as ε is sent to 0. For simplicity,
we assume that Ω̃ = Ω and Γ = ∂Ω. Though this case does not comply with assumption (H.1), it gives a
fair idea of the computations we will have to carry out rigorously, and we will explain in Section 3.1 how to
handle properly the case of a discrete Ω̃. Let u ∈ Ω \ ∂Ω. To avoid trivialities, we assume that ∃v ∈ Ω such
that |u − v| ∈ εsupp(g) (this assumption will be discussed in detail later, see Sections 3.1 and 4). If f is
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differentiable at u, then we have for ε sufficiently small,∣∣∇−Jεf(u, t)
∣∣
∞ = max

v∈Ω,|u−v|∈εsupp(g)
Jε(u, v)(f(u, t)− f(v, t))

= max
v∈Ω,|u−v|∈εsupp(g)

(εCg)
−1g

(
|u− v|
ε

)
(f(u, t)− f(v, t))

= max
v∈Ω,|u−v|∈εsupp(g)

(εCg)
−1g

(
|u− v|
ε

)(
〈∇f(u, t), u− v〉+ o(1)

)
= max

τ∈[0,rg ]
(εCg)

−1g(τ) max
v∈Ω,|u−v|=ετ

〈∇f(u, t), u− v〉+ o(1).

For ε small enough, we have Bεrg(u) ⊂ Ω. This entails that∣∣∇−Jεf(u, t)
∣∣
∞ = max

τ∈[0,rg ]
(εCg)

−1g(τ) max
v∈Bετ (u)

〈∇f(u, t), v − u〉+ o(1)

= max
τ∈[0,rg ]

(εCg)
−1g(τ)ετ |∇f(u, t)|+ o(1)

= |∇f(u, t)|+ o(1).

It is our aim in this paper to give this formal calculation a rigorous meaning and to derive convergence rates.
In particular, an important issue in the the previous computation is that the choice of ε depends on the point
u. We will explain in Section 3.1 how to resolve this difficulty.

1.2. Contributions and relation to prior work. In this work we intend to provide two related contribu-
tions. Their combination allow to quantitatively analyze the Eikonal equation on graph sequences and their
continuum limiting behaviour. Our work relies on the important theory of viscosity solutions [4].

We start by showing that both the local problem (P) and the non-local one (Pε) are well-posed, i.e.,
existence and uniqueness of their viscosity solutions (see Proposition 2.5 and Proposition 2.12). We then
establish the regularity properties of these solutions in time and space in Theorem 2.8 and Theorem 2.15.
Capitalizing on this, our first consistency result provides error bounds between the viscosity solutions of (Pε)
and (P) (Theorem 3.1). This is extended to the case where (Pε) is discretized in time using forward Euler
schemes (Theorem 3.2). Though we focus on finite differences in time, due to their popularity and simplicity,
we believe that our proof can be adapted to other schemes such as those of semi-Lagrangian type. We finally
apply these error bounds to a sequence of random weighted graphs (Theorem 4.3). This entails in particular
that the time-discretized solution on a weighted graph with n vertices and an appropriately decreasing scale
parameter εn, converges almost surely uniformly to the viscosity solution of (P) as n → +∞ and the time
step goes to 0.

Studying consistency and continuum limits of certain evolution and variational problems on graphs and
networks is an active research area; see [28, 27, 38, 34, 35, 26, 25, 49, 13] for a non-exhaustive list and
references therein. In particular, the authors in [8, 42] studied continumm limits of Lipschitz learning on
graphs. The Euler-Lagrange equation for Lipschitz learning, as considered in [8], correspond to a stationary
special case of (Pε), where the operator (2) is replaced by the∞-Laplacian on graphs, P̃ ≡ 0, Ω̃ is a set of
n points in the flat torus Tm = Rm/Zm, and Γ̃ ⊂ Ω̃ is a fixed finite collection of points. In such a setting, it
is proved in [8] that the solution of the discrete problem converges uniformly to the unique viscosity solution
of an∞-Laplace type equation on the flat torus, as εn → 0 when n→ +∞. The limit equation turns out to
be the stationary version of (P) where Ω = Tm, P ≡ 0, ψ = ψ̃, Γ = Γ̃, and |∇·| is replaced with the∞-
Laplacian. While finalizing our paper, we also became aware of the recent work of [42] who used tools from
Γ-convergence theory to prove asymptotic consistency of Lipschitz learning on graphs (though the Γ-limit
is not unique), allowing moreover that Ω to be a sufficiently smooth closed set and Γ̃ possibly different from
Γ. In both [8, 42], for consistency to hold, it is required that the Hausdorff distance between Ω̃ and Ω (and
also between Γ̃ and Γ) is o(εα) (α = 3/2 in [8] and α = 1 in [42]). Some of their assumptions are different
or stronger from those we require in this paper. In addition, we are not aware of any work which establishes
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continuum limits for an Eikonal equation on weighted graphs of the form (Pε). We also provide and analyze
convergence of a concrete forward Euler discrete-time scheme to solve (Pε). It is also important to stress
the fact that our primary interest is in providing error bounds and non-asymptotic convergence rates. This is
known to be more challenging than deriving mere asymptotic consistency results.

Motivated by a continuous version of the shortest path problem, numerical approximations of the Hamilton-
Jacobi equations of Eikonal-type defined on a topological network were studied in [9, 10]. A topological
network is basically a graph embedded in Euclidean space, i.e., it is a collection of pairwise different points
(vertices) in a Euclidean space connected by differentiable, non self-intersecting curves (smooth edges). This
is a very special network structure far different from the weighted graph setting we study here.

1.3. Paper organization. The paper is organized as follows. In Section 2, we show that (P) and (Pε) are
well-posed in the sense of viscosity solutions, and we establish some important regularity results that will be
central in our error bounds. Section 3 states the main results of this paper. We start with a key error bound
between solutions of problems (Pε) and (P) in both time-continuous case and time-discrete cases using
explicit/forward Euler schemes. We then turn to applying these results to weighted graphs in Section 4.

1.4. Notations. In what follows, we will denote 〈·, ·〉 the scalar product on Rm, and Br(x) the Euclidean
ball centered at x ∈ Rm of radius r. For a non-empty and closed subset X ∈ Rm and x ∈ Rm, we denote
by ProjX(x) the projection of x on X , i.e., the set of nearest points of x in X:

ProjX(x) = {z ∈ X : |x− z| = d(x,X)} .

Since X is non-empty and closed, ProjX(x) is non-empty at any x ∈ Rm but is not necessarily single-
valued. The diameter of X is diam(X) = sup(x,z)∈X2 |x − z|. Let X and Y be two non-empty subsets of
Rm. Their Hausdorff distance is defined as

dH(X,Y ) = max

(
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

)
.

It is finite when X and Y are bounded, and when X and Y are closed, then dH(X,Y ) = 0 ⇐⇒ X = Y .
We will denote

∥∥ · ∥∥
L∞(Σ)

, the supremum norm on a domain Σ ⊂ Rm.
To lighten notation, we denote the bounded space-time cylinders ΩT = Ω×[0, T ] and ∂ΩT = (Γ×]0, T [)∪

Ω×{0}. We define similarly Ω̃T and ∂Ω̃T . For a time interval [0, T [ andNT ∈ N, we also use the shorthand
notation Ω̃NT = Ω̃× {0, . . . , tNT } and ∂Ω̃NT = Γ̃× {t1, . . . , tNT } ∪ Ω̃× {0}.

2. Well-posedness and regularity results

2.1. Problem (P). Since we will work with viscosity solutions, we refer to [4, 15, 18, 30] for a good intro-
duction. The notion of viscosity solutions was introduced by Crandall and Lions [16] as a notion of weak
solutions for a class of partial differential equations of Hamilton-Jacobi type. In this theory, the derivatives
of the unknown are replaced by the derivative of some test functions (see definition below). In order to
give the definition of viscosity solution for problem (P), we first recall the definition of upper and lower
semi-continuous envelope for a locally bounded function f : ΩT → R, respectively given by

f∗(x, t)
def
= lim sup

(y,s)→(x,t)
f(y, s) and f∗(x, t)

def
= lim inf

(y,s)→(x,t)
f(y, s).

Definition 2.1 (Viscosity solution for (P)). An upper semi-continuous function (usc) function f : ΩT → R
is a viscosity sub-solution of (P) in (Ω \ Γ)×]0, T [ if for any ϕ ∈ C1((Ω \ Γ)×]0, T [) such that f − ϕ
reaches a local maximum point at (x0, t0) ∈ (Ω \ Γ)×]0, T [, one has

∂

∂t
ϕ(x0, t0) ≤ −|∇ϕ(x0, t0)|+ P (x0).
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The function f is a viscosity sub-solution of (P) in ΩT if it satisfies moreover f(x, t) ≤ ψ(x) for all (x, t) ∈
∂ΩT .

A lower semi-continuous (lsc) function f : ΩT → R is a viscosity super-solution of (P) in (Ω\Γ)×]0, T [
if for anyϕ ∈ C1((Ω\Γ)×]0, T [) such that f−ϕ attains a local minimum point at (x0, t0) ∈ (Ω\Γ)×]0, T [,
one has

∂

∂t
ϕ(x0, t0) ≥ −|∇ϕ(x0, t0)|+ P (x0).

The function f is a viscosity super-solution of (P) in ΩT if it satisfies moreover f(x, t) ≥ ψ(x) for all
(x, t) ∈ ∂ΩT .

Finally, a locally bounded function f : ΩT → R is a viscosity solution of (P) in (Ω \ Γ)×]0, T [ (resp. in
ΩT ) if f∗ is a viscosity sub-solution and f∗ is a viscosity super-solution of (P) in (Ω \ Γ)×]0, T [ (resp. in
ΩT ).

We continue with a comparison principle for problem (P).

Proposition 2.2 (Comparison principle for (P)). Suppose that assumptions (H.1)–(H.4) hold. Let f , an usc
function, be a sub-solution of (P) and g, a lsc function, be a super-solution of (P). Then

f ≤ g in ΩT .

Proof. The proof can be found in [4, Theorem 5.1, Remark 5.1]. �

It is well-known that (P), which accounts for a ”Dirichlet-type” boundary condition, cannot be solved for
any function ψ; see e.g., [3, Section 2.6.3]. Thus, in order to construct solutions to (P), compatibility prop-
erties between the equation and the boundary conditions are necessary. This is precisely what we impose
through the following assumption:
(H.10) There exists ψb ∈ Lip(Ω), with ψb(x) = ψ(x) for all x ∈ Γ, such that ψb is a sub-solution of (P)

in ΩT .

Remark 2.3. To give better intuition and insight of (H.10), let’s give relevant examples of problems that
satisfy this assumption. First consider the simplified model, posed in R and without dependence in time:{

|u′| = 1 in ]− 1, 1[

u(x) = Kx for x ∈ {−1, 1},

for some constant K. Clearly, if |K| > 1, it is not possible to construct a solution satisfying the boundary
condition in a strong sense. However, it is still possible to construct a solution satisfying the boundary
condition in a weak sense (i.e. either the boundary condition or the equation is satisfied at the boundary; see
[3]) but this is not what we want to do here. This is the reason why we have to impose a kind of compatibility
condition between the boundary conditions and the equation. For this example, assumption (H.10) is ensured
as soon as |K| ≤ 1.

Another prominent example where assumption (H.10) is satisfied is when ψ = 0 and P ≥ 0 in (P). This
setting corresponds to a time-dependent Eikonal equation where the steady state solution can be interpreted
as the shortest traveling time or distance of a point x ∈ Ω to front Γ, where the travel inverse speed is
P . This example plays an important role for computing distance functions which is a key step in numerous
applications including image processing or computational computational geometry [37, 45, 46].

Remark 2.4. Assumption (H.10) entails in particular that

|∇ψb(x)| ≤ ‖P‖L∞(Ω\Γ),

and thus the Lipschitz constant Lψb satisfies

Lψb ≤ ‖P‖L∞(Ω\Γ).
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We then have the following result which gives the existence and uniqueness of viscosity solution for prob-
lem (P).

Proposition 2.5 (Existence and uniqueness for (P)). Suppose that assumptions (H.1)–(H.5) and (H.10) hold.
Then, problem (P) admits a unique viscosity solution f (which is in fact continuous). Moreover, there exists
a function f ∈ Lip(ΩT ), with a Lipschitz constant depending on a0, d0, Lψ and ‖P‖L∞(Ω\Γ), such that

(3) ψb ≤ f ≤ f in ΩT .

Before giving the proof of this proposition, we first define the notion of barrier solutions and then recall
Perron’s method.

Definition 2.6 (Barrier sub- and super-solution). An usc function f : ΩT → R is a barrier sub-solution of
(P) if it is a viscosity sub-solution in (Ω \ Γ)×]0, T [ and if it satisfies moreover

lim
y→x,s→t

f(y, s) = ψ(x) ∀(x, t) ∈ Γ× [0, T ].

A lsc function f : ΩT → R is a barrier super-solution of (P) if it is a viscosity super-solution in (Ω \
Γ)×]0, T [ and if it satisfies moreover

lim
y→x,s→t

f(y, s) = ψ(x) ∀(x, t) ∈ Γ× [0, T ].

Theorem 2.7 (Perron’s method [31]). Assume that there exists a barrier sub-solution f and a barrier super-
solution f of (P). Then there exists a (possibly discontinuous) viscosity solution f of (P) satisfying moreover

f ≤ f ≤ f in ΩT .

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. By assumption (H.10), ψb is a barrier sub-solution of (P). We then have to con-
struct a barrier super-solution f . Existence will then be a direct consequence of Perron’s method as recalled
in Theorem 2.7 while uniqueness and continuity will be direct consequences of the comparison principle
shown in Proposition 2.2.

Let
f1(x, t) = ψ(x) +K1t, (x, t) ∈ ΩT ,

where K1 = ‖P‖L∞(Ω\Γ), and

f2(x, t) = ψ(x) +K2d(x,Γ), (x, t) ∈ ΩT ,

with K2 > 0 large enough to be determined later. We set

(4) f(x, t) = min(f1(x, t), f2(x, t)) = min(ψ(x) +K1t, ψ(x) +K2d(x,Γ)).

We claim that f is a barrier super-solution.
First, observe that

Lf ≤ max
(
Lf1 , Lf2

)
≤ Lψ + max

(
‖P‖L∞(Ω\Γ),K2

)
,

since ψ ∈ Lip(Ω) by (H.4) and Ld(·,Γ) = 1 as Γ 6= ∅. In particular, f is continuous.
Moreover, we have for x ∈ Γ,

f2(x, t) = ψ(x) ≤ f1(x, t).

Hence

(5) f(x, t) = ψ(x), ∀(x, t) ∈ Γ× [0, T ],

which shows, via continuity that the limit property required in Definition 2.6 holds. It remains to prove that
f is a super-solution on (Ω \ Γ)×]0, T [ for K2 large enough.
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Observe first that by taking K2 ≥ K1T/a0, we have for all x ∈ Ω \ N a0
Γ (recall that N a0

Γ is defined in
assumption (H.5)),

f2(x, t) ≥ ψ(x) +K2a0 ≥ ψ(x) +K1T ≥ f1(x, t),

and thus (4) becomes

(6) f(x, t) =

{
min(f1(x, t), f2(x, t)) if (x, t) ∈ N a0

Γ × [0, T ],

f1(x, t) if (x, t) ∈ Ω \ N a0
Γ × [0, T ].

Following Definition 2.1, let ϕ ∈ C1((Ω \ Γ)×]0, T [) such that f − ϕ reaches a local minimum at some
(x0, t0) ∈ (Ω \ Γ)×]0, T [. This is equivalent to

(7) f(y, s)− ϕ(y, s) ≥ f(x0, t0)− ϕ(x0, t0),

for all (y, s) ∈ (Ω \ Γ)×]0, T [ sufficiently close to (x0, t0). We now distinguish different cases.
Case 1 x0 ∈ Ω \ N a0

Γ . In this case, since (Ω \ N a0
Γ ) ⊂ (Ω \ Γ), it follows from (6) and (7) that

f1(y, s)− ϕ(y, s) ≥ f(y, s)− ϕ(y, s) ≥ f1(x0, t0)− ϕ(x0, t0),

for all (y, s) ∈ (Ω \ Γ)×]0, T [ sufficiently close to (x0, t0). As ]0, T [ is open, we take y = x0 and
s = t0 + h ∈]0, T [ for h > 0 sufficiently small, which gives us

(8) ϕ(x0, t0 + h)− ϕ(x0, t0) ≤ f1(x0, t0 + h)− f1(x0, t0) = K1h.

Dividing by h and passing to the limit as h→ 0+, we get

(9)
∂

∂t
ϕ(x0, t0) ≤ K1.

Embarking from (8) where we replace h by −h yields

(10)
∂

∂t
ϕ(x0, t0) ≥ K1,

and thus

(11)
∂

∂t
ϕ(x0, t0) = K1.

We then deduce that1

(12)
∂

∂t
ϕ(x0, t0) + |∇ϕ(x0, t0)| − P (x0) ≥ K1 − P (x0) ≥ K1 − ‖P‖L∞(Ω\Γ) = 0,

which shows the desired inequality in this case2.
Case 2 x0 ∈ N a0

Γ \ Γ. Let I0
def
=
{
i ∈ {1, 2} : f(x0, t0) = f i(x0, t0)

}
. Thus, for any i0 ∈ I0, we have

from (7) that

(13) f i0(y, s)− ϕ(y, s) ≥ f(y, s)− ϕ(y, s) ≥ f(x0, t0)− ϕ(x0, t0) = f i0(x0, t0)− ϕ(x0, t0)

for all y ∈ N a0
Γ \ Γ close enough to x0. If 1 ∈ I0 then we are done thanks to Case 1. It remains to

consider the case where I0 = {2}. Embarking from (13) with i0 = 2, and arguing as we have done
for f1 in Case 1 to show (11), and using that f2 is actually t-independent, we get in this case that

(14)
∂

∂t
ϕ(x0, t0) = 0.

1Actually, only the lower bound inequality (10) is needed here.
2In fact, this portion of the proof shows that f1 is a super-solution of (P) in (Ω \ Γ)×]0, T [.
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On the other hand, since N a0
Γ \ Γ is open by (H.2) and (H.5), we have y = x0 + hz ∈ N a0

Γ \ Γ
for h > 0 small enough and any z ∈ Rm such that |z| = 1. Thus, in view of (H.5), inequality (13)
becomes

(ϕ(·, t0)−K2d(·,Γ))(x0 + hz)− (ϕ(·, t0)−K2d(·,Γ))(x0)

h
≥ ψ(x0 + hz)− ψ(x0)

h
≥ −Lψ.

Passing to the limit as h→ 0+, we get

〈∇ϕ(x0, t0)−K2∇d(x0,Γ), z〉 ≥ −Lψ.
If ∇ϕ(x0, t0)−K2∇d(x0,Γ) = 0, we have from (14) and (H.5) that
∂

∂t
ϕ(x0, t0) + |∇ϕ(x0, t0)| − P (x0) = K2∇d(x0,Γ)− P (x0) ≥ K2d0 − ‖P‖L∞(Ω\Γ) ≥ 0(15)

for K2 ≥ ‖P‖L∞(Ω\Γ)/d0. In the case where ∇ϕ(x0, t0)−K2∇d(x0,Γ) 6= 0, we choose

z = ± ∇ϕ(x0, t0)−K2∇d(x0,Γ)

|∇ϕ(x0, t0)−K2∇d(x0,Γ)|
to arrive at

|∇ϕ(x0, t0)−K2∇d(x0,Γ)| ≤ Lψ.
Combining this inequality with (14) and (H.5), we get

∂

∂t
ϕ(x0, t0) + |∇ϕ(x0, t0)| − P (x0) ≥K2|∇d(x0,Γ)| − |∇ϕ(x0, t0)−K2∇d(x0,Γ)| − P (x0)

≥K2d0 − Lψ − ‖P‖L∞(Ω\Γ)

≥0(16)

for K2 ≥ (Lψ + ‖P‖L∞(Ω\Γ))/d0.
In summary, taking K2 ≥ max

(
(Lψ + ‖P‖L∞(Ω\Γ))/d0,K1T/a0

)
, the inequalities (12), (15) and (16)

hold in each respective case, and thus the desired super-solution inequality is satisfied in all cases. We then
conclude that f is a barrier super-solution. The existence of f and the bound (3) are then direct consequences
of Perron’s method. �

We finish this section by a regularity result.

Theorem 2.8 (Regularity of the solution of (P)). Suppose that assumptions (H.1)–(H.5) and (H.10) hold.
Then the unique viscosity solution to the problem (P) satisfies the following regularity properties

f(x, ·) ∈ Lip([0, T [) with Lf(x,·) ≤ ‖P‖L∞(Ω\Γ) + Lψ, ∀x ∈ Ω,(17)
f(·, t) ∈ Lip(Ω) with Lf(·,t) ≤ 2‖P‖L∞(Ω\Γ) + Lψ, ∀t ∈ [0, T ].(18)

Proof. When x ∈ Γ, (17) obviously holds. It remains to consider the case (x, t) ∈ (Ω \ Γ)× [0, T [.
Let h > 0 sufficiently small and set l(x, t) = f(x, t + h) for all (x, t) ∈ ΩT . One then has l(x, 0) =

f(x, h) for all (x, t) ∈ (Γ×]0, T [) ∪ Ω× {0} and thus it is easy to verify that l satisfies
∂

∂t
l(x, t) = −|∇l(x, t)|+ P (x), (x, t) ∈ (Ω \ Γ)×]0, T [,

l(x, t) = f(x, h), (x, t) ∈ (Γ×]0, T [) ∪ Ω× {0}.

This entails that f(x) and f(x, t + h) are solutions of the same equation (P), respectively with initial con-
ditions ψ and f(x, h). Applying again the comparison result of Proposition 2.2 we have

(19) |f(x, t+ h)− f(x, t)| ≤ |f(x, h)− ψ(x)|.
To conclude, it remains to show that the right hand side of (19) is O(h). Let us define, for (x, t) ∈ ΩT ,

f1(x, t) = ψ(x)− Lt; f2(x, t) = ψ(x) + Lt,
9



where L = ‖P‖L∞(Ω\Γ) + Lψ. Arguing in the same way as we have done for f1 in the proof of Proposi-
tion 2.5, we get that f1 and f2 are respectively a sub- and a super-solution of (P). Hence, by the comparison
principle in Proposition 2.2, we obtain

ψ(x)− Lt ≤ f(x, t) ≤ ψ(x) + Lt,

whence we get

|f(x, t)− ψ(x)| ≤ Lt,(20)

Combining (19) and (20) yields
|f(x, t+ h)− f(x, t)| ≤ Lh.

We now turn to the space regularity bound (18) and adapt the argument of [4, Theorem 8.1]. We introduce
the test-function

Ψ : (x, t, y) ∈ ΩT × Ω 7→ f(x, t)− f(y, t)−K|x− y|,
and we aim at showing that Ψ is negative for sufficiently large K > 0. When t = 0 or (x, y) ∈ Γ2, we can
choose K ≥ Lψ to have that (18) holds.

We argue by contradiction, assuming that

sup
(x,t,y)∈ΩT×Ω

Ψ(x, t, y) > 0.

Continuity of f and compactness of ΩT ×Ω entail that the supremum of Ψ is actually a maximum attained at
some point (x̄, t̄, ȳ) ∈ ΩT × Ω. In order to use viscosity solutions arguments, we use the classical doubling
of the variable in time, and introduce the function, for α > 0,

Ψα : (x, t, y, s) ∈ Ω2
T 7→ f(x, t)− f(y, s)−K|x− y| − |t− s|

2

2α
.

This function has a maximum attained at some point in Ω2
T , say (xα, tα, yα, sα). We obviously have

(21) Ψα(xα, tα, yα, sα) ≥ Ψα(x̄, t̄, ȳ, t̄) = Ψ(x̄, t̄, ȳ) > 0.

Observe also that for α sufficiently small, we cannot have xα = yα as otherwise Ψα(xα, tα, yα, sα) would
be negative, hence contradicting (21).

If xα ∈ Γ, then f(xα, tα) = ψ(xα) = ψb(xα). Moreover, by Proposition 2.5, ψb(yα) ≤ f(yα, sα). It
then follows that

Ψα(xα, tα, yα, sα) ≤ψb(xα)− f(yα, sα)−K|xα − yα|
≤ψb(xα)− ψb(yα)−K|xα − yα|
≤(Lψb −K)|xα − yα|
≤(‖P‖L∞(Ω\Γ) −K)|xα − yα|

where we used Remark 2.4. Taking K ≥ ‖P‖L∞(Ω\Γ) contradicts positivity of Ψα(xα, tα, yα, sα) on Γ.
Consider in the rest the case xα ∈ Ω \Γ. Since xα 6= yα, the function (x, t) 7→ f(yα, sα) +K|x− yα|+

|t−sα|2
2α is smooth at (xα, tα) and since f is sub-solution, we have

tα − sα
α

+K ≤ P (xα).

On the other hand, maximality of Ψα at (xα, tα, yα, sα) implies, for all t ∈ [0, T ]

f(xα, t)−
|t− sα|2

2α
≤ f(xα, tα)− |tα − sα|

2

2α
.
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Choosing t such that tα − sα and tα − t are of same sign, and using (17), we get

L|t− tα| ≥f(xα, tα)− f(xα, t)

≥|tα − sα|
2

2α
− |t− sα|

2

2α

=− |t− tα|
2

2α
+ |t− tα|

|tα − sα|
α

.

Dividing by |t− tα| and taking t→ tα, we get

|tα − sα|
α

≤ L.

Hence,
K ≤ ‖P‖L∞(Ω\Γ) + L.

Choosing K > ‖P‖L∞(Ω\Γ) + L we get again a contradiction of the positivity of Ψα(xα, tα, yα, sα) on
Ω \ Γ. The above proof shows then that

f(x, t)− f(y, t)−K|x− y| ≤ 0

fo all (x, y, t) ∈ Ω2× [0, T ] and everyK > 2‖P‖L∞(Ω\Γ) +Lψ, i.e., f(·, t) is globally Lipschitz continuous
uniformly in t, hence providing the bound (18). �

2.2. Problem (Pε). We begin by the definition of viscosity solution for problem (Pε).

Definition 2.9 (Viscosity solution for (Pε)). An usc function f ε : Ω̃T → R is a viscosity sub-solution of
(Pε) in (Ω̃\ Γ̃)×]0, T [ if for any (u0, t0) ∈ (Ω̃\ Γ̃)×]0, T [ and ϕ ∈ C1(]0, T [) such that f ε(u0, ·)−ϕ attains
a local maximum point at t0 ∈]0, T [, one has

∂

∂t
ϕ(t0) ≤ −

∣∣∇−Jεf ε(u0, t)
∣∣
∞ + P̃ (u0).

The function f ε is a viscosity sub-solution of (Pε) in Ω̃T if it satisfies moreover f ε(u, t) ≤ ψ̃(u) for all
(u, t) ∈ ∂Ω̃T .

A lsc function f ε : Ω̃T → R is a viscosity super-solution of (Pε) in (Ω̃ \ Γ̃)×]0, T [ if for any (u0, t0) ∈
(Ω̃ \ Γ̃)×]0, T [ and ϕ ∈ C1(]0, T [) such that f ε(u0, ·)− ϕ attains a local minimum point at t0, one has

∂

∂t
ϕ(t0) ≥ −

∣∣∇−Jεf ε(u0, t)
∣∣
∞ + P̃ (u0).

The function f ε is a viscosity super-solution of (Pε) in Ω̃T if it satisfies moreover f ε(u, t) ≥ ψ̃(u) for all
(u, t) ∈ ∂Ω̃T .

Finally, a locally bounded function f ε : Ω̃T → R is a viscosity solution of (Pε) in (Ω̃ \ Γ̃)×]0, T [ (resp.
in Ω̃T ) if (f ε)∗ is a viscosity sub-solution and (f ε)∗ is a viscosity super-solution of (Pε) in (Ω̃ \ Γ̃)×]0, T [

(resp. in Ω̃T ).

We define barrier sub-solution and super-solution of (Pε) in a similar way as we have done for the local
case in Definition 2.6, just replacing by the non-local notion of viscosity sub- and super-solution defined
above.

We start by providing a comparison result for problem (Pε).

Proposition 2.10 (Comparison principle for (Pε)). Suppose that assumptions (H.1)–(H.2) and (H.6) hold.
Assume that f ε (resp. gε) is a bounded viscosity sub- (resp. super-) solution of (Pε). Then

f ε ≤ gε in Ω̃T .
11



Proof. We argue by contradiction and suppose that there exists some point (z, s) ∈ Ω̃T such that

f ε(z, s)− gε(z, s) > 0.

For η > 0 sufficiently small, we introduce the function Ψη : (u, t) ∈ Ω̃T 7→ f ε(u, t) − gε(u, s) − η
T−t and

denote
Mη = sup

(u,t)∈Ω̃T

Ψη(u, t).

By upper semi-continuity and compactness, Mη is actually a maximum attained at some point on Ω̃T , say
(ũ∗, t̃∗). Moreover, from the positivity assumption, we have Mη > 0 for η > 0 small enough.

We now duplicate the time variable and consider, for γ > 0, the function

Ψη,γ : (u, t, s) ∈ Ω̃× [0, T ]2 7→ f ε(u, t)− gε(u, s)− |t− s|
2

2γ
− η

T − t
,

and we denote
Mγ,η = sup

(u,t,s)∈Ω̃×[0,T ]2
Ψη,γ(u, t, s).

Again, upper semi-continuity and compactness entails that the supremum is actually a maximum which is
attained at some point (ūγ , t̄γ , s̄γ) ∈ Ω̃× [0, T ]2. We also have for η sufficiently small

Mγ,η ≥ Ψη,γ(ũ∗, t̃∗, t̃∗) = Ψη(ũ
∗, t̃∗) = Mη > 0.

Using classical arguments (see, e.g., [4, Lemma 5.2]), we deduce that there exists (u∗, t∗) ∈ Ω̃ × [0, T [
such that

(22)


ūγ → u∗ as γ → 0,

t̄γ , s̄γ → t∗ as γ → 0,

Ψη(u
∗, t∗) = Mη.

Note that if t∗ = 0, then we would have

0 < Mη = f ε(u∗, 0)− gε(u∗, 0)− η

T
≤ ψ̃(u∗)− ψ̃(u∗) = 0,

which is absurd. Hence t∗ > 0 which, in view of (22), implies that t̄γ > 0 for γ small enough. Moreover, if
ūγ ∈ Γ̃, then

0 < Mγ,η ≤ f ε(ūγ , t̄γ)− gε(ūγ , s̄γ) ≤ ψ̃(ūγ)− ψ̃(ūγ) = 0,

which is again absurd. Hence ūγ ∈ Ω̃ \ Γ̃.
The function t 7→ gε(ūγ , s̄γ) +

|t−s̄γ |2
2γ + η

T−t is smooth at t̄γ > 0, and reaches a maximum in t̄γ . Since
f ε is a viscosity sub-solution of (Pε), we deduce that

t̄γ − s̄γ
γ

+
η

T 2
+
∣∣∇−Jεf ε(ūγ , t̄γ)

∣∣
∞ − P̃ (ūγ) ≤ 0.

Arguing in the same way, but now on gε, and using it is a viscosity super-solution of (Pε), we get that
t̄γ − s̄γ
γ

+
∣∣∇−Jεgε(ūγ , s̄γ)

∣∣
∞ − P̃ (ūγ) ≥ 0.

Subtracting the last two inequalities, we obtain
η

T 2
≤
∣∣∇−Jεgε(ūγ , s̄γ)

∣∣
∞ −

∣∣∇−Jεf ε(ūγ , t̄γ)
∣∣
∞.(23)

We now use the fact that (ūγ , t̄γ , s̄γ) is a maximum point of Ψγ,η defined above. This implies in particular
that

f ε(v, t̄γ)− gε(v, s̄γ)− |t̄γ − s̄γ |
2

2γ
− η

T − t̄γ
≤ f ε(ūγ , t̄γ)− gε(ūγ , s̄γ)− |t̄γ − s̄γ |

2

2γ
− η

T − t̄γ
,
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whence we get
gε(ūγ , s̄γ)− gε(v, s̄γ) ≤ f ε(ūγ , t̄γ)− f ε(v, t̄γ).

Multiplying both sides of this inequality by Jε, which is non-negative by (H.6), taking the maximum over
v ∈ Ω̃ and recalling (2), (23) becomes

η

T 2
≤ 0

leading to a contradiction. �

In the same vein as for problem (P), the following assumption is intended to impose compatibility prop-
erties between (Pε) and the boundary conditions on ∂Ω̃T :

(H.11) There exists ψ̃b ∈ Lip( Ω), with ψ̃b(u) = ψ̃(u) for all u ∈ Γ̃, such that ψ̃b is a sub-solution of
(Pε) in Ω̃T .

Remark 2.11. We refer to Remark 2.3 for a discussion on this assumption, which is similar to the one made
in the local case. For instance, (H.11) holds when ψ̃ = 0 and P̃ ≥ 0. This example, when considered
on weighted graphs (see Section 4), corresponds to computing distances on discrete images, meshes, point
clouds, or any data that can be represented as a weighted graph; see [52, 20] and references therein.

We are ready to provide an existence result. As for the local case, the proof is based on Perron’s method
and on the construction of barriers.

Proposition 2.12 (Existence result for (Pε)). Suppose that assumptions (H.1)–(H.4), (H.6)–(H.8) and (H.11)
hold. Then, problem (Pε) admits a unique viscosity solution f ε (which is in fact continuous). Moreover,
there exists a function f ε ∈ Lip(Ω̃) such that

(24) ψ̃b ≤ f ε ≤ f ε in Ω̃T .

Remark 2.13. A close inspection of the forthcoming proof reveals that the Lipschitz constant estimate of the
barrier super-solution f ε depends on the minimal distance between two points of Ω̃ and can be very large.
This is rather pessimistic but seems the price to pay to construct a barrier super-solution. On the other hand,
and fortunately, this estimate will not enter our error bounds.

Remark 2.14. The authors of [32, 20] proved existence and uniqueness of the solution (not a viscosity one)
in the special case of (1).

Proof. The proof follows the same lines as the one of Proposition 2.5, but adapted to the non-local setting. By
assumption (H.11), ψ̃b is a barrier sub-solution of (Pε). We then have to construct a barrier super-solution.
Existence will then be a direct consequence of the Perron’s method while uniqueness and continuity will be
direct consequences of the comparison principle provided in Proposition 2.10.

Let
f ε1(u, t) = ψ̃(u) +K1t and f ε2(u, t) = ψ̃(u) +K2d(u, Γ̃), (u, t) ∈ Ω̃T ,

where K1 = ‖P̃‖L∞(Ω̃\Γ̃) and K2 large enough to be determined. We then define

(25) f ε(u, t) = min(f ε1(u, t), f ε2(u, t)).

We will show that f ε is a barrier super-solution of (Pε). Arguing similarly to the proof of Proposition 2.5,
one has that f ε is (Lipschitz) continuous, hence lsc, and that the limit property required in Definition 2.6
holds since for u ∈ Γ̃, we have

f ε2(u, t) = ψ̃(u) ≤ f ε1(u, t), ∀(u, t) ∈ Γ̃× [0, T ],

and thus
f ε(u, t) = ψ̃(u), ∀(u, t) ∈ Γ̃× [0, T ].
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It remains to show that f ε is a super-solution on (Ω̃ \ Γ̃)×]0, T [ for K2 large enough.
Let N η

Γ̃

def
=
{
u ∈ Ω̃ : d(u, Γ̃) ≤ η

}
, for η small enough to be chosen shortly. Taking K2 ≥ K1T/η, we

have for any u ∈ Ω̃ \ N η

Γ̃

f ε2(u, t) ≥ ψ̃(x) +K2η ≥ ψ̃(u) +K1T ≥ f ε1(u, t).

In turn, f ε = f ε1 on Ω̃ \ N η

Γ̃
× [0, T ]. Let ϕ ∈ C1(]0, T [) and u0 ∈ Ω̃ \ Γ̃ × [0, T ] such that f ε(u0, ·) − ϕ

attains a local minimum at some t0 ∈]0, T [.
If u0 ∈ Ω̃ \ N η

Γ̃
, then f ε(u0, t0) = f ε1(u0, t0). One easily shows following the same steps as for f1 in the

proof of Proposition 2.5, that
∂

∂t
ϕ(t0) = K1.

It then follows that
∂

∂t
ϕ(t0) + |∇−Jεf

ε
1(u0, t0)|∞ − P̃ (u) ≥ K1 − P̃ (u) ≥ K1 − ‖P̃‖L∞(Ω̃\Γ̃) = 0.

If u0 ∈ N η

Γ̃
\ Γ̃, we have two cases. Either f ε(u0, t0) = f ε1(u0, t0), and we are done, or f ε(u0, t0) =

f ε2(u0, t0). In this case, we have (see again the proof of Proposition 2.5) that
∂

∂t
ϕ(t0) = 0,

and thus, for every v ∈ Γ̃, we have
∂

∂t
ϕ(t0) + |∇−Jεf

ε
2(u0, t0)|∞ − P̃ (u0) ≥ Jε(u0, v)(f ε2(u0, t0)− f ε2(v, t0))− P̃ (u0)

=
1

ε
C−1
g g

(
|u0 − v|

ε

)
(ψ̃(u0) +K2d(u0, Γ̃)− ψ̃(v))− P̃ (u0).(26)

Denoted by d̃0 the minimal distance between two points of Ω̃ (note that, since u0 ∈ N η

Γ̃
\ Γ̃, d̃0 ≤ η), we get

that there exists v0 ∈ Γ̃ such that
d(u0, Γ̃) = |u0 − v0| ∈ [d̃0, η].

Since Γ̃ ⊂ Ω̃, and in view of Remark 1.1 and (H.8), we can chooseK2 ≥ Cgc−1
g εd̃−1

0 ‖P̃‖L∞(Ω̃\Γ̃) +Lψ̃ and
η = aε (recall the definition of a from assumption (H.8)). Then continuing from (26), and using (H.8), we
get

∂

∂t
ϕ(t0) + |∇−Jεf

ε
2(u0, t0)|∞ − P̃ (u0) ≥ C−1

g

|u0 − v0|
ε

g

(
|u0 − v0|

ε

)
(K2 − Lψ̃)− P̃ (u0)(27)

≥ C−1
g

d̃0

ε
g(a)(K2 − Lψ̃)− ‖P̃‖L∞(Ω̃\Γ̃)

= C−1
g cg

d̃0

ε
(K2 − Lψ̃)− ‖P̃‖L∞(Ω̃\Γ̃)

≥ 0.

To summarize, taking η = aε andK2 ≥ max
(
Cgc

−1
g εd̃−1

0 ‖P̃‖L∞(Ω̃\Γ̃) +Lψ̃,K1T/η
)
, we conclude that

the desired super-solution inequality is satisfied in all cases. We then conclude that f ε is indeed a barrier
super-solution as claimed. Existence and uniqueness then follow from Perron’s method and the comparison
principle.

�

We now establish regularity properties for the solution of (Pε).
14



Theorem 2.15. Suppose that assumptions (H.1)–(H.4), (H.6)–(H.8) and (H.11) hold. Let f ε be the bounded
continuous viscosity solution of (Pε). Then

f ε(u, ·) ∈ Lip([0, T [) with Lfε(u,·) ≤ L, ∀u ∈ Ω̃,(28)

where
L = Lψ̃ + ‖P̃‖L∞(Ω̃\Γ̃).

Moreover, for all (u, v) ∈ Ω̃2 and t ∈ [0, T [ such that |u− v| ≤ aε, where a is defined in (H.8), we have

|f ε(u, t)− f ε(v, t)| ≤ c−1
g Cg

(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
ε.(29)

Assume also that for (u, v) ∈ Ω̃2, there exists k(ε) ∈ N and a path (u1 = u, u2, . . . , uk(ε) = v) with
|ui+1 − ui| ≤ aε, i = 1, . . . , k(ε)− 1. Then for all t ∈ [0, T [, we have

|f ε(u, t)− f ε(v, t)| ≤ c−1
g Cg

(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
k(ε)ε.(30)

Proof. For u ∈ Γ̃, (28) trivially holds. We consider hereafter u ∈ Ω̃ \ Γ̃, and we first show that for any
t ∈ [0, T [,

|f ε(u, t)− f ε(u, 0)| ≤ Lt.(31)

We define for (u, t) ∈ Ω̃T

f ε1 (u, t) = ψ̃(u)− Lt; f ε2 (u, t) = ψ̃(u) + Lt.

We claim that f ε1 (resp. f ε2 ) is a sub-solution (resp. super-solution) of (Pε). Since f ε1 and f ε2 are smooth in
time, it’s enough to prove it pointwise.

We have f ε1 ≤ ψ̃ on ∂Ω̃T , and for all (u, t) ∈ (Ω̃ \ Γ̃)×]0, T [,

(32)

∂

∂t
f ε1 (u, t) +

∣∣∇−Jεf ε1 (u, t)
∣∣
∞ − P̃ (u) = −L+ max

v∈Ω̃
(εCg)

−1g

(
|u− v|
ε

)
(ψ̃(u)− ψ̃(v))− P̃ (u)

≤ −L+ Lψ̃ max
v∈Ω̃

C−1
g

|u− v|
ε

g

(
|u− v|
ε

)
+
∥∥P̃∥∥

L∞(Ω̃\Γ̃)

≤ 0,

where we used (H.4) in the first inequality and Remark 1.1 in the last one. Therefore, this shows our claim
on f ε1 . A similar argument shows also that f ε2 is a super-solution of (Pε).

Now, for any (u, t) ∈ ∂Ω̃T , we have

f ε1 (u, t) ≤ ψ̃(u) = f ε(u, t) ≤ f ε2 (u, t).

Hence, since f ε1 and f ε2 are bounded and continuous (by assumption on ψ̃), and so is f ε, applying the com-
parison principle of Proposition 2.10 twice yields that for any (u, t) ∈ Ω̃× [0, T [,

f ε(u, 0)− Lt = ψ̃(u)− Lt ≤ f ε(u, t) ≤ ψ̃(u) + Lt = f ε(u, 0) + Lt,

which shows (31). We now apply this estimate to prove (28). Let h > 0 sufficiently small. We have that
f ε is a solution of (Pε) with initial condition f ε(·, 0) and f ε(·, · + h) is also a solution of (Pε) with initial
condition f ε(·, h). Applying again the comparison principle of Proposition 2.10 and using (31), we obtain
for any (u, t) ∈ Ω̃× [0, T [,

|f ε(u, t+ h)− f ε(u, t)| ≤ |f ε(u, h)− f ε(u, 0)|
≤ Lh.

Passing to the limit as h→ 0 yields the desired time regularity claim.
Let us turn to the space regularity estimate (29). Let (u, t) ∈ Ω̃T . If u ∈ ∂Ω̃t, then

f ε(u, t)− f ε(v, t) ≤ ψb(u)− ψb(v) ≤ Lψb |u− v|
15



and (29) holds. Assume now that (u, t) ∈ (Ω̃ \ Γ̃)×]0, T [ is such that f ε is differentiable in time at (u, t).
For such points, we have from (Pε) and (28) that∣∣∇−Jεf ε(u, t)∣∣∞ ≤ L+ ‖P̃‖L∞(Ω̃\Γ̃).

Let v ∈ Ω̃ be such that |u− v| ≤ aε. We then have, recalling (H.8), that

cg(εCg)
−1 (f ε(u, t)− f ε(v, t)) ≤ (εCg)

−1g

(
|u− v|
ε

)
(f ε(u, t)− f ε(v, t))

= Jε(u, v) (f ε(u, t)− f ε(v, t))
≤
∣∣∇−Jεf ε(u, t)∣∣∞

≤
(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
.

Exchanging the role of u and v, we get the result.
The global estimate is now a direct consequence of (29). Indeed, we have

∣∣f ε(u, t)− f ε(v, t)∣∣ ≤ k(ε)−1∑
i=1

∣∣f ε(ui+1, t)− f ε(ui, t)
∣∣ ≤ c−1

g Cg
(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

) k(ε)−1∑
i=1

ε

≤ c−1
g Cg

(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
k(ε)ε.

�

The following lemma gives a sufficient condition under which the requirements of the global estimate of
Theorem 2.15 hold true.

Lemma 2.16. Suppose that assumptions (H.1)–(H.4), (H.6)–(H.8) and (H.11) hold. Let f ε be the bounded
continuous viscosity solution of (Pε). Assume also that

(33) max
x∈Ω

d(x, Ω̃) < aε/(4
√
m).

Then for all (u, v) ∈ Ω̃2 and t ∈ [0, T [, the following holds

|f ε(u, t)− f ε(v, t)| ≤ K (|u− v|+ ε) ,(34)

where K = 2c−1
g Cg

(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
m3/2.

Proof. We use a discretization argument3 through the notion of δ-nets. Consider Ω as a metric space endowed
with the metric induced by the | · |∞-norm. A δ-net of Ω is a set {x1, x2, . . . , xN}

def
= Sδ ⊂ Ω such that for

all x ∈ Ω, there exists y ∈ Sδ such that |x−y|∞ ≤ δ. This is equivalent here to saying that Ω can be covered
by hypercubes of side length 2δ centered at the points in Sδ. It is known that Ω is compact if and only if Sδ
is finite.

Choose δ = aε/(4
√
m). Thus, using that Sδ ⊂ Ω, we get

max
x∈Sδ

min
y∈Ω̃
|x− y|∞ ≤ max

x∈Sδ
d(x, Ω̃)

≤ max
x∈Ω

d(x, Ω̃) = dH(Ω, Ω̃),

where the last identity follows from the fact that Ω̃ ⊂ Ω. It then follows from (33) that

max
x∈Sδ

min
y∈Ω̃
|x− y|∞ < aε/(4

√
m),

3A similar argument is implicitly underlying the proof of [8, Lemma 15] for the special case where Ω is the flat torus and Ω̃ is
discrete.
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whence we deduce that each hypercube of the δ-covering contains at least one point in Ω̃. This in turn entails
that for any (u, v) ∈ Ω̃2 that belong to two horizontally or vertically adjacent hypercubes in the δ-covering,
centered say at respectively xi and xj in Sδ, one has∣∣u− v∣∣ ≤ ∣∣u− xi∣∣+

∣∣xi − xj∣∣+
∣∣v − xj∣∣ ≤ √m (δ + 2δ + δ) = aε.

This allows to infer that for any (u, v) ∈ Ω̃2, there exists a path (u1 = u, u2, u3, . . . , uk = v), where ui ∈ Ω̃
and |ui+1 − ui| ≤ aε for all i. Moreover, we have the simple estimate

k ≤ mε−1
(
2
√
m|u− v|+ ε

)
.

Injecting this in (30), we get the result. �

Remark 2.17. A consequence of the proof of Lemma 2.16 is that, under assumption (33), since a ≤ rg, we
have

(35) ∀u ∈ Ω̃,∃v ∈ Ω̃, v 6= u such that |u− v| ∈ εsupp(g).

This assumption is quite natural. It basically avoids that the non-local operator
∣∣∇−Jεf ε(u, s)∣∣∞ is trivially

zero for all u ∈ Ω̃ when ε is too small. In particular, as Ω̃ is finite, this condition imposes that Ω̃ has to fill
out Ω at least as fast as the rate at which ε goes to 0.

3. Consistency and error bounds

3.1. Continuous time non-local to local error bound. In this section we provide an estimate that compares
viscosity solutions of (Pε) and (P). This estimate will be instrumental to derive the remaining error bounds.
For this, we need to strenghthen (33) by assuming:

(H.12) maxx∈Ω d(x, Ω̃) ≤ aε1+ν/(4
√
m), ν > 0.

Theorem 3.1. Let T > 0, ε0 = min(1/(2rg)
2, 1) and ε ∈]0, ε0]. Suppose that assumptions (H.1)–(H.12)

hold, and let f and f ε be the unique viscosity solutions of respectively (P) and (Pε), given in Proposition 2.5
and Proposition 2.12. Then, there exists a constant K > 0 depending only on the dimension m, ‖ψ‖L∞(Ω),
‖P‖L∞(Ω\Γ), Lψ, Lψ̃, LP , LP̃ , Lg, Cg and cg such that∥∥f ε − f∥∥

L∞(Ω̃×[0,T [)
≤K(T + 1)

(
εmin(ν,1/2) +

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

)
+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+KdH(Γ, Γ̃),

In particular, if dH(Γ, Γ̃) = O(εmin(ν,1/2)), then∥∥f ε − f∥∥
L∞(Ω̃×[0,T [)

≤ K(T + 1)
(
εmin(ν,1/2) +

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

)
+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
.

The fastest convergence rate in ε is then achieved when ν = 1/2 provided that dH(Ω, Ω̃) = O(ε3/2) and
dH(Γ, Γ̃) = O(ε1/2).

Proof. The idea of the proof is inspired by that in [17] and revisited in [23] for non-local equations. The main
difficulties in our case come from the fact that the sets and the boundaries in the two equations are different
and from the fact that Ω̃ is finite. In the following, K denotes any positive constant that depends only on the
data, but may change from one line to another.

The proof is divided into three steps:
• In the first step, we use the classical doubling of variables argument by introducing the test-function

(36) Ψγ,η(u, s, x, t) = f ε(u, s)− f(x, t)− |x− u|
2

2γ
− |t− s|

2

2γ
− ηs,

for γ > 0 and η > 0, and we show that the maximum point is attained at (ū, s̄, x̄, t̄) ∈ Ω̃T × ΩT .
We also show some estimates on this point of maximum.
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• In the second step, we show that the maximum point (ū, s̄, x̄, t̄) is actually achieved on the boundary
for η large enough; we have either (ū, s̄) ∈ Nα

Γ × [0, T [∪ Ω̃×{0} or (x̄, t̄) ∈ Nα
Γ × [0, T [∪Ω×{0}.

This step is the most complicated and the most technical one.
• Finally, in the last step, we show, for η large enough and using the estimates over the maximum

points, the claimed bound.

Step 1. Test-function and maximum point.
The function Ψγ,η being continuous (since f and f ε are) on the compact set Ω̃T ×ΩT (see (H.1)),

it achieves its maximum at a point which we denote by (ū, s̄, x̄, t̄) ∈ Ω̃T × ΩT . At this point, we
have Ψγ,η(ū, s̄, x̄, t̄) ≥ Ψγ,η(ū, s̄, ū, t̄) since ū ∈ Ω̃ ⊂ Ω by (H.1). This implies, in view of (18)
(see Theorem 2.8), that

|x̄− ū|2

2γ
≤ f(ū, t̄)− f(x̄, t̄) ≤ K|x̄− ū|,

and thus,

(37) |x̄− ū| ≤ Kγ.
In the same way, using that Ψγ,η(ū, s̄, x̄, t̄) ≥ Ψγ,η(ū, t̄, x̄, t̄), we get using (28),

(38) |t̄− s̄| ≤ (K + η)γ.

Step 2. Excluding interior points from the maximum.
We fix α = ε1/2 so that ε < α/rg for ε ≤ ε0. We show that for η large enough, we have either
(ū, s̄) ∈ Nα

Γ × [0, T [ ∪ Ω̃ × {0} or (x̄, t̄) ∈ Nα
Γ × [0, T [ ∪ Ω × {0}. We argue by contradiction,

assuming that (ū, s̄) ∈ (Ω̃ \ Nα
Γ )×]0, T [ and (x̄, t̄) ∈ (Ω \ Nα

Γ )×]0, T [. Using that s̄ is a maximum
point of the function s 7→ Ψγ,η(ū, s, x̄, t̄) and the fact that f ε is a viscosity sub-solution of (Pε), we
get

(39) η +
s̄− t̄
γ
≤ −

∣∣∇−Jεf ε(ū, s̄)∣∣∞ + P̃ (ū),

In the same way, using that (x̄, t̄) is a minimum point of the function (x, t) 7→ −Ψγ,η(ū, s̄, x, t) and
the fact that f is a super-solution of (P), we get

(40)
s̄− t̄
γ
≥ −|x̄− ū|

γ
+ P (x̄).

Observe that ∀v ∈ Ω̃, we have

Ψγ,η(ū, s̄, x̄, t̄)−Ψγ,η(v, s̄, x̄, t̄) = f ε(ū, s̄)− f ε(v, s̄) +
|x̄− v|2 − |x̄− ū|2

2γ
.

(ū, s̄, x̄, t̄) being a maximizer of Ψγ,η, we have for any v ∈ Ω̃

2γ (f ε(ū, s̄)− f ε(v, s̄)) ≥ |x̄− ū|2 − |x̄− v|2

= −|ū− v|2 + 2〈v − ū, x̄− ū〉.
It then follows that

(41)

∣∣∇−Jεf ε(ū, s̄)∣∣∞ = max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)(f ε(ū, s̄)− f ε(v, s̄))

≥ (2γ)−1 max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)
(
−|ū− v|2 + 2〈v − ū, x̄− ū〉

)
≥ (2γ)−1

(
2 max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉︸ ︷︷ ︸
T1

− max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)|ū− v|2︸ ︷︷ ︸
T2

)
.
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To bound the term T2, we have, using (H.6), Remark 1.1 and Remark 2.17 (see (35))

(42)

T2 ≤ max
v∈Bεrg (ū)

Jε(ū, v)|ū− v|2

= max
τ∈[0,rg ]

max
|ū−v|=ετ

(εCg)
−1g

(
|ū− v|
ε

)
|ū− v|2

= ε max
τ∈[0,rg ]

τ2C−1
g g(τ) ≤ rgε.

Let us now turn to bounding T1. Observe that T1 ≥ 0 since ū ∈ Ω̃ ∩Bεrg(ū). We then decompose
T1 as

(43) T1 = max
v∈Ω∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉︸ ︷︷ ︸
T3

+
(

max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉 − max
v∈Ω∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉
)
.

Note that T3 is also non-negative. Since d(ū,Γ) ≥ α, we have, for ε ≤ ε0, Bεrg(ū) ⊂ Ω, and in
turn,

(44)

T3 = max
v∈Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉

= max
τ∈[0,rg ]

max
|ū−v|=ετ

(εCg)
−1g

(
|ū− v|
ε

)
〈v − ū, x̄− ū〉

= max
τ∈[0,rg ]

(εCg)
−1g(τ)ετ |x̄− ū| = |x̄− ū|.

On the other hand, one can bound T3 from above as follows. Let β = aε1+ν/(4
√
m). In view of

(H.12), we have Ω ⊂ Ω̃ +Bβ(0), and thus for ε small enough so that β < ε and using (H.9)

(45)

0 ≤ T3 ≤ max
v∈(Ω̃+Bβ(0))∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉

≤ max
v∈(Ω̃∩Bε(rg+1)(ū))+Bβ(0)

Jε(ū, v)〈v − ū, x̄− ū〉

= (εCg)
−1 max

v∈Ω̃∩Bε(rg+1)(ū),w∈Bβ(0)
g

(
|v − ū+ w|

ε

)
〈v − ū+ w, x̄− ū〉

= (εCg)
−1 max

v∈Ω̃∩Bε(rg+1)(ū),w∈Bβ(0)

(
g

(
|v − ū|
ε

)
+ Lg

|w|
ε

)
〈v − ū+ w, x̄− ū〉

= max
v∈Ω̃∩Bε(rg+1)(ū),w∈Bβ(0)

(
Jε(ū, v) + LgC

−1
g

|w|
ε2

)
〈v − ū+ w, x̄− ū〉

≤ max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)〈v − ū, x̄− ū〉+ max
v∈Ω̃∩Bεrg (ū),w∈Bβ(0)

Jε(ū, v)〈w, x̄− ū〉

+ LgC
−1
g max

v∈Ω̃∩Bε(rg+1)(ū),w∈Bβ(0)

|w|
ε2
〈v − ū, x̄− ū〉+ LgC

−1
g max

w∈Bβ(0)

|w|
ε2
〈w, x̄− ū〉.
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We have using again (H.9) and (37),

(46)

max
v∈Ω̃∩Bεrg (ū),w∈Bβ(0)

Jε(ū, v)〈w, x̄− ū〉 =
(

max
v∈Ω̃∩Bεrg (ū)

Jε(ū, v)
)(

max
w∈Bβ(0)

〈w, x̄− ū〉
)

≤ β|x̄− ū| max
τ∈[0,rg ],|v−ū|=τε

(εCg)
−1

(
g(0) + Lg

|v − ū|
ε

)
≤ Kβ

ε
γ ≤ Kενγ.

Similar computation gives

(47)

LgC
−1
g max

v∈Ω̃∩Bε(rg+1)(ū),w∈Bβ(0)

|w|
ε2
〈v − ū, x̄− ū〉 ≤ Kβ

ε
γ ≤ Kενγ and

LgC
−1
g max

w∈Bβ(0)

|w|
ε2
〈w, x̄− ū〉 ≤ K

(
β

ε

)2

γ ≤ Kενγ.

Plugging (46) and (47) into (45), and then combining with (44) and (43), we get

T1 ≥ |x̄− ū| −Kενγ.

Injecting this and (42) into (41), we arrive at∣∣∇−Jεf ε(ū, s̄)∣∣∞ ≥ |x̄− ū|2γ
−K

(
εν +

ε

γ

)
.

Injecting this bound into (40) and combining with (39), we deduce that if (ū, s̄) ∈ (Ω̃ \Nα
Γ )×]0, T [

and (x̄, t̄) ∈ (Ω \ Nα
Γ )×]0, T [, then

η ≤ K
(
εν +

ε

γ

)
+ P̃ (ū)− P (x̄)

≤ K
(
εν +

ε

γ

)
+ LP |x̄− ū|+

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

< 2K

(
εν +

ε

γ

)
+ LPKγ +

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

≤ K
(
εν +

ε

γ
+ γ

)
+
∥∥P − P̃∥∥

L∞(Ω̃\Γ̃)

def
= η̄,(48)

for large enough constant K > 0, where we used (H.2) and (H.3) in the second inequality and
estimate (37) in the third one. Then we conclude that for η ≥ η̄ either (ū, s̄) ∈ Nα

Γ ×[0, T [∪ Ω̃×{0}
or (x̄, t̄) ∈ Nα

Γ × [0, T [ ∪ Ω× {0}.

Step 3. Conclusion. We take η ≥ η̄. Assume first that (x̄, t̄) ∈ Nα
Γ × [0, T [ ∪ Ω× {0}. If t̄ = 0, then

Ψγ,η(ū, s̄, x̄, t̄) ≤ f ε(ū, s̄)− ψ(x̄)

= (f ε(ū, s̄)− f ε(ū, 0)) + (ψ̃(ū)− ψ(ū)) + (ψ(ū)− ψ(x̄))

≤ Ks̄+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+ Lψ|x̄− ū|

≤ K(η + 1)γ + ‖ψ − ψ̃‖L∞(Ω̃),

where, in the second inequality, we used (28) in Theorem 2.15 to get the first term, and (H.1) and
(H.4) to get the last two terms. In the last inequality, we invoked (37) and (38). In the same way, if
x̄ ∈ Nα

Γ and t̄ > 0, let ũ ∈ ProjΓ̃(x̄), i.e.,

|x̄− ũ| = d(x̄, Γ̃) ≤ dH(Γ, Γ̃) + α.
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Such ũ exists by closedness of Γ̃, see (H.2). Since (33) is in force under (H.12), (34) holds (see
Theorem 2.15 and Lemma 2.16). Using this with (H.4) and (37), we obtain

(49)

Ψγ,η(ū, s̄, x̄, t̄) ≤ f ε(ū, s̄)− ψ(x̄)

= (f ε(ū, s̄)− f ε(ũ, s̄)) + (ψ̃(ũ)− ψ(ũ)) + (ψ(ũ)− ψ(x̄))

≤ K(|ū− ũ|+ ε) +
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+ Lψ|x̄− ũ|

≤ K(|x̄− ū|+ ε) +
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+K|x̄− ũ|+ Lψ|x̄− ũ|

≤ K(γ + ε) + ‖ψ − ψ̃‖L∞(Ω̃) +K(dH(Γ, Γ̃) + α).

We conclude that for all (x̄, t̄) ∈ Nα
Γ × [0, T [ ∪ Ω× {0}, and for η ≥ η̄, we have

Ψγ,η(ū, s̄, x̄, t̄) ≤ K(γ + ε) + ‖ψ − ψ̃‖L∞(Ω̃) +K(dH(Γ, Γ̃) + α) +Kηγ.

The same bound holds for (ū, s̄) ∈ Nα
Γ × [0, T [ ∪ Ω̃× {0} whenever η ≥ η̄. Indeed, if s̄ = 0 then

Ψγ,η(ū, s̄, x̄, t̄) ≤ ψ̃(ū)− f(x̄, t̄)

= (ψ̃(ū)− ψ(ū)) + (ψ(ū)− ψ(x̄)) + (f(x̄, 0)− f(x̄, t̄))

≤
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+ Lψ|x̄− ū|+Kt̄

≤ K(η + 1)γ +
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
,

where we have now invoked (17) in Theorem 2.8. If ū ∈ Nα
Γ and s̄ > 0, define x̂ ∈ Γ in the

projection of ū on Γ. Thus, using (18) in Theorem 2.8, we arrive at

Ψγ,η(ū, s̄, x̄, t̄) ≤ ψ̃(ū)− f(x̄, t̄)

= (ψ̃(ū)− ψ(ū)) + (ψ(ū)− ψ(x̂)) + (f(x̂, t̄)− f(x̄, t̄))

≤
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+ Lψ|x̂− ū|+K|x̂− x̄|

≤
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+ Lψα+K(α+ γ)

≤ K(α+ γ) + ‖ψ − ψ̃‖L∞(Ω̃).

Thus, taking η = η̄ and (u, s) ∈ Ω̃T we have from above that

f ε(u, s)− f(u, s)− η̄T ≤Ψγ,η(ū, s̄, x̄, t̄)

≤K(γ + ε) + ‖ψ − ψ̃‖L∞(Ω̃) +K(dH(Γ, Γ̃) + α) +Kη̄γ.

Before concluding, we look at what happens when we revert the role of f and f ε. In this case, our
reasoning remains valid with only a few changes. The main ingredient is to redefine Ψγ,η as follows

Ψγ,η(u, s, x, t) = f(x, t)− f ε(u, s)− |x− u|
2

2γ
− |t− s|

2

2γ
− ηt.

Then all our bounds remain true, and with even simpler arguments4. We leave the details to the
reader for the sake of brevity.

Overall, we have shown that

|f ε(u, s)− f(u, s)| ≤ K(γ + ε) + ‖ψ − ψ̃‖L∞(Ω̃) +K(dH(Γ, Γ̃) + α) + η̄(γ + T ).

4This is the case for the analogous version of (41) which will be derived by a simple triangle inequality (see also (56)). This
asymmetry in the proofs when reverting the roles of fε and f is intriguing but not surprising.
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With the optimal choice γ = ε1/2, taking the supremum over (u, s) and after rearrangement, we get∥∥f ε − f∥∥
L∞(Ω̃×[0,T [)

≤K
(

(T + 1)εmin(ν,1/2) + ε
)

+K(T + ε1/2)
∥∥P − P̃∥∥

L∞(Ω̃\Γ̃)

+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
+K(dH(Γ, Γ̃) + α),

which is the claimed bound since ε ∈]0, 1] and α = ε1/2.
�

3.2. Forward Euler discrete time non-local to local error bound. We consider the time-discrete approx-
imation of (Pε) using forward Euler discretization. Then we will show an error estimate between a solution
of this equation with the continuous viscosity solution of (P).

Using the forward/explicit Euler discretization scheme, a time-discrete counterpart of (Pε) reads

(PFD
ε )

{
fε(u,t)−fε(u,t−∆t)

∆t = −
∣∣∇−Jεf ε(u, t−∆t)

∣∣
∞ + P̃ (u), (u, t) ∈ (Ω̃ \ Γ̃)× {t1, . . . , tNT } ,

f ε(u, t) = ψ̃(u), (u, t) ∈ ∂Ω̃NT ,

where ti = i∆t for all i ∈ {0, . . . , NT }.
In Appendix B, we prove that (PFD

ε ) is well-posed. Indeed, Lemma B.3 shows existence and regularity of
a discrete-time solution (in the sense of Definition B.1). Uniqueness follows from the comparison principle
in Lemma B.2.

We are now in position to state the following error estimate.

Theorem 3.2. Let T > 0, ε0 = min(1/(2rg)
2, 1) and ε ∈]0, ε0]. Suppose that assumptions (H.1)–(H.12)

hold, and that dH(Γ, Γ̃) = O(εmin(ν,1/2)). Let f be the unique viscosity solution of (P) and f ε be a solution
of (PFD

ε ). Assume also that

0 < ∆t ≤ εCg
supt∈R+

g(t)
.(50)

Then there exists a constant K > 0 depending only on the dimension m, ‖ψ‖L∞(Ω), ‖P‖L∞(Ω\Γ), Lψ, Lψ̃,
LP , LP̃ , Lg, Cg and cg such that for any ε small enough∥∥f ε − f∥∥

L∞(Ω̃×{0,...,tNT })
≤K(T + 1)

(
εmin(ν,1/2) + ∆t1/2 +

∆t

ε
+
∥∥P − P̃∥∥

L∞(Ω̃\Γ̃)

)
+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
.

In particular, if P̃ = P on Ω̃ \ Γ̃ and ψ̃ = ψ on Ω̃, then for ∆t = o(ε), we have

lim
ε→0,∆t→0

∥∥f ε − f∥∥
L∞(Ω̃×{0,...,tNT })

= 0.

The fastest convergence rate in ε is then achieved when ∆t = O(ε3/2) and ν = 1/2 provided that dH(Ω, Ω̃) =

O(ε3/2) and dH(Γ, Γ̃) = O(ε1/2).

Remark 3.3. It is worth noting that (50) is a CFL condition; see [19] for a recent overview. Obviously, we
have supt∈R+

g(t) < +∞ under our assumptions since g is a continuous function on its compact support.
It is also possible to discretize (Pε) in time using a backward/implicit Euler scheme:

(PBD
ε )

{
fε(u,t)−fε(u,t−∆t)

∆t = −
∣∣∇−Jεf ε(u, t)∣∣∞ + P̃ (u), (u, t) ∈ (Ω̃ \ Γ̃)× {t1, . . . , tNT } ,

f ε(u, t) = ψ̃(u), (u, t) ∈ ∂Ω̃NT ,

In that case, the CFL condition (50) is not required anymore and we can prove the following error estimate∥∥f ε − f∥∥
L∞(Ω̃×{0,...,tNT })

≤ K(T + 1)
(
εmin(ν,1/2) + ∆t1/2 +

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

)
+
∥∥ψ − ψ̃∥∥

L∞(Ω̃)
.
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The proof is completely similar to the one of Theorem 3.2, the only difference is that η̄ in the proof will
be independent of the term ∆t/ε. It is worth noting that in the backward Euler scheme, the difficulty is to
construct a discrete solution. This is done for the reader’s convenience in Lemma C.1 in the appendix.

The proof of Theorem 3.2 is quite similar to the one of Theorem 3.1. We highlight only the steps where we
have to handle properly the discrete time approximation. For instance, we will need the Lipschitz regularity
properties of f ε both in time and space (see Lemma B.3).

Proof. Again,K will denote in this proof any positive constant that depends only on the data, but may change
from one line to another. Here we focus on the case f − f ε on purpose to complement the details provided
in the proof Theorem 3.1.
Step 1. Test-function and maximum point.

For γ > 0 and η > 0, we consider maximizing over ΩT × Ω̃NT the test-function

Ψγ,η(x, t, u, s) = f(x, t)− f ε(u, s)− |x− u|
2

2γ
− |t− s|

2

2γ
− ηt.

Since ΩT × Ω̃NT is compact and Ψγ,η is continuous, the maximum is attained at some point
(x̄, t̄, ū, t̄i). Exactly as in the proof of Theorem 3.1, we have

|x̄− ū| ≤ Kγ and(51)
|t̄− t̄i| ≤ (K + η)γ.(52)

Step 2. Excluding interior points from the maximum.
We show that for η large enough, we have either (x̄, t̄) ∈ ∂ΩT or (ū, t̄i) ∈ ∂Ω̃NT . We argue again by
contradiction and assume that (x̄, t̄) ∈ Ω \Γ×]0, T [ and (ū, t̄i) ∈ Ω̃ \ Γ̃×{t1, . . . , tNT }. Using that
(x̄, t̄) is a maximum point of the function (x, t) 7→ Ψγ,η(x, t, ū, t̄i) and the fact that f is a viscosity
sub-solution of (P), we have

η +
t̄− t̄i
γ
≤ −|x̄− ū|

γ
+ P (x̄).(53)

Using now that t̄i > 0 and that f ε is a solution of (PFD
ε ), we have

(54)
f ε(ū, t̄i)− f ε(ū, t̄i −∆t)

∆t
= −

∣∣∇−Jεf ε(ū, t̄i −∆t)
∣∣
∞ + P̃ (ū).

We set ϕ : (u, s) ∈ Ω̃NT 7→ f(x̄, t̄) − |x̄−u|
2

2γ − |t̄−s|
2

2γ − ηt̄. In particular, (ū, t̄i) is the minimum
point of f ε − ϕ over Ω̃NT . This implies that

f ε(ū, t̄i)− f ε(ū, t̄i −∆t) ≤ ϕ(ū, t̄i)− ϕ(ū, t̄i −∆t),

and so

f ε(ū, t̄i)− f ε(ū, t̄i −∆t)

∆t
≤ t̄− t̄i

γ
+

∆t

2γ
.(55)

(x̄, t̄, ū, t̄i) is a maximizer of Ψγ,η, whence we get

f ε(ū, t̄i)− f ε(v, t̄i) ≤
|x̄− v|2 − |x̄− ū|2

2γ
, ∀v ∈ Ω̃.
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Thus we estimate the right hand side of (54) to show that
(56)∣∣∇−Jεf ε(ū, t̄i −∆t)

∣∣
∞ = max

v∈Ω̃,|ū−v|∈εsupp(g)
Jε(ū, v)(f ε(ū, t̄i −∆t)− f ε(v, t̄i −∆t))

= max
v∈Ω̃,|ū−v|∈εsupp(g)

Jε(ū, v)(f ε(ū, t̄i −∆t)− f ε(ū, t̄i) + f ε(ū, t̄i)− f ε(v, t̄i)

+ f ε(v, t̄i)− f ε(v, t̄i −∆t))

≤ max
v∈Ω̃,|ū−v|∈εsupp(g)

Jε(ū, v)(K∆t+ f ε(ū, t̄i)− f ε(v, t̄i))

≤ max
v∈Ω̃,|ū−v|∈εsupp(g)

Jε(ū, v)
(
K∆t+ (2γ)−1

(
|x̄− v|2 − |x̄− ū|2

))
≤ K∆t max

v∈Ω̃,|ū−v|∈εsupp(g)
Jε(ū, v)

+ (2γ)−1 max
v∈Ω̃,|ū−v|∈εsupp(g)

Jε(ū, v)
(
|x̄− v| − |x̄− ū|

)(
|x̄− v| − |x̄− ū|+ 2|x̄− ū|

)
≤ K∆t

ε
sup
t∈R+

g(t) + (2γ)−1 max
v∈Ω̃,|ū−v|∈εsupp(g)

Jε(ū, v)|ū− v|
(
|ū− v|+ 2|x̄− ū|

)
≤ K∆t

ε
+ max
v∈Ω̃,|ū−v|∈εsupp(g)

|x̄− ū|
γ

|ū− v|
Cgε

g

(
|ū− v|
ε

)
+ max
v∈Ω̃,|ū−v|∈εsupp(g)

|ū− v|2

2γCgε
g

(
|ū− v|
ε

)
≤ K∆t

ε
+
|x̄− ū|
γ

+ rg
ε

2γ
.

Plugging (55) and (56) into (54) we get

t̄− t̄i
γ

+
∆t

2γ
≥ −K∆t

ε
− |x̄− ū|

γ
−K ε

γ
+ P̃ (ū).(57)

From (53) and (57), we finally obtain

η ≤ K

(
∆t+ ε

γ
+

∆t

ε

)
+ P (x̄)− P̃ (ū)

≤ K

(
∆t+ ε

γ
+

∆t

ε

)
+K|x̄− ū|+

∥∥P − P̃∥∥
L∞(Ω̃\Γ̃)

< K

(
∆t+ ε

γ
+ γ +

∆t

ε

)
+
∥∥P − P̃∥∥

L∞(Ω̃\Γ̃)

def
= η̄.

We then conclude that either (x̄, t̄) ∈ ∂ΩT or (ū, t̄i) ∈ ∂Ω̃NT for η ≥ η̄. When reverting the roles of
f ε and f , only η̄ will be changed taking the additional terms εν and α (see the proof of Theorem 3.1).
The rest of the proof is exactly the same as Step 3. in the proof of Theorem 3.1, where we now invoke
Lemma B.3.

�

4. Application to graph sequences

LetGn = (Vn, wn) be a finite weighted graph with non-negative edge weights wn. Here Vn is the set of n
vertices/nodes {u1, . . . , un} ⊂ Ω, En ⊂ V 2

n is the set of edges, and the weights wn are given by the kernel
J at scale εn, i.e., wn(ui, vj) = Jεn(ui, vj).
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Let Γn ⊂ Vn. For a time interval [0, T [ and NT ∈ N, we use the shorthand notation (Vn \ Γn)NT =
(Vn \ Γn) × {t1, . . . , tNT } and ∂(Vn)NT = (Γn × {t1, . . . , tNT }) ∪ Vn × {0}. We now consider the fully
discretized Eikonal equation on Gn with a forward Euler time-discretization as

(PFD
Gn

)

{
fn(u,t)−fn(u,t−∆t)

∆t = −
∣∣∇−wnfn(u, t−∆t)

∣∣
∞ + P̃ (u), (u, t) ∈ (Vn \ Γn)NT ,

fn(u, t) = ψ̃(u), (u, t) ∈ ∂(Vn)NT ,

where ti = i∆t for all i ∈ {0, . . . , NT }.
In the notation of (PFD

ε ), it is easy to identify Vn with Ω̃ and Γn with Γ̃. Our aim in this section is to
establish consistency of solutions to (PFD

Gn
) as n→ +∞ and ∆t→ 0.

In practice, we do not have that much control over the way the vertices Vn in the graph are constructed;
the precise configuration of points may not be known, or the points can be obtained by sampling through
an acquisition device (e.g., point clouds), or given from a learning or modeling process (e.g., images). It
then appears more realistic to consider graphsGn on random point configurations Vn, and then conveniently
estimate the probability of achieving a prescribed level of consistency as a function of n.

Towards this goal, we will consider a random graph model whose nodes are latent random variables inde-
pendently and identically sampled on Ω. This random graph model is inspired from [7] and is quite standard.
More precisely, we construct Vn and the boundary Γn as follows:

Definition 4.1. Given a probability measure µ over Ω and εn > 0:
(1) draw the vertices in Vn as a sequence of independent and identically distributed variables (ui)

n
i=1

taking values in Ω and whose common distribution is µ;
(2) set Γn =

{
ui ∈ Vn : d(ui,Γ) ≤ aε1+ν

n /(2
√
m)
}

, ν > 0.

From now on, we assume that

(H.13) µ has a density ρ on Ω with respect to the volume measure, and infΩ ρ > 0.

A typical example is that of the uniform probability distribution on Ω, in which case ρ(u) = (
∫

Ω dvol(x))−1

for u ∈ Ω, where dvol is the volume measure. Though we will focus on this setting, our results can be ex-
tended following the developments hereafter to other sampling models, in particular those adapted to the
manifold geometry, in which case the covering arguments that we will use will be done with geodesic balls.
We will not elaborate more on this in this paper. We observe in passing that by construction, Vn and Γn are
compact sets, and that Vn \ Γn ⊂ Ω \ Γ.
Before stating the main result of this section, the following lemma gives a proper choice of εn for which the
construction of Definition 4.1 ensures that the key assumption (H.12) is in force together with Γn 6= ∅ and
dH(Γ,Γn) = O(ε1+ν

n ) with high probability. To lighten notation, we define the event

(58) En =
{

(H.12) holds and dH(Γ,Γn) ≤ aε1+ν
n /(2

√
m)
}
.

Lemma 4.2. Let Vn and Γn generated according to Definition 4.1 where µ satisfies (H.13). Then, there
exists two constants K1 > 0 and K2 > 0 that depend only on m, a and diam(Ω), and for any τ > 0 there
exists n(τ) ∈ N such that for n ≥ n(τ), taking

(59) ε1+ν
n = K1(1 + τ)1/m

(
log n

n

)1/m

,

the event En in (58) holds with probability at least 1−K2n
−τ .

See Appendix D for the proof.

We are now ready to establish a quantified version of uniform convergence in probability of fn towards f .
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Theorem 4.3. Let T, ν > 0, and Vn and Γn be constructed according to Definition 4.1 where µ satisfies
(H.13). Suppose that assumptions (H.1)–(H.11) hold5. Let f be the unique viscosity solution of (P) and fn
be a solution of (PFD

Gn
). Take ∆t = o(εn) where εn is as given in (59). Then, the following holds.

(i) There exists two constants K > 0 and K2 > 0 that depend only on m, a, diam(Ω), ‖ψ‖L∞(Ω),
‖P‖L∞(Ω\Γ), Lψ, Lψ̃, LP , LP̃ , cg, Cg, Lg and ν, and for any τ > 0, there exists n(τ) ∈ N such that
for n ≥ n(τ),

∥∥fn − f∥∥
L∞(Vn×{0,...,tNT })

≤ K(T + 1)

(
(1 + τ)

min(ν,1/2)
(1+ν)m

(
log n

n

)min(ν,1/2)
(1+ν)m

(60)

+

(
1 + (1 + τ)

1
2(1+ν)m

(
log n

n

) 1
2(1+ν)m

)
o(1)

)
+K(T + 1)

∥∥P − P̃∥∥
L∞(Vn\Γn)

+
∥∥ψ − ψ̃∥∥

L∞(Vn)
.

with probability at least 1−K2n
−τ . The best convergence rate isO

(
logn
n

) 1
3m obtained for ν = 1/2

and ∆t = O(ε
3/2
n ).

(ii) Let δn(τ) be the right hand side of (60). If τ > 1, then

Pr
(∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
> δn(τ) infinitely often

)
= 0.

(iii) Take ∆t = O(ε
3/2
n ). Assume that P̃ = P on Vn \ Γn and ψ̃ = ψ on Ωn, then

lim
n→+∞

∥∥fn − f∥∥
L∞(Vn×{0,...,tNT })

= 0 almost surely.

Proof. (i) To get the error bound (60), combine Theorem 3.2 and Lemma 4.2 and observe that

dH(Γ,Γn) ≤ aε1+ν
n /(2

√
m) = o

(
εmin(ν,1/2)
n

)
with the stated probability.

(ii) We have ∑
n≥n(τ)

Pr
(∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
> δn

)
< K2

∑
n≥n(τ)

n−τ < +∞,

since τ > 1. The claim then follows from the (first) Borel-Cantelli lemma.

(iii) In this case, we have δn(τ) = K(T + 1)(1 + τ)
1

3m

(
logn
n

) 1
3m for a possibly higher constant K.

Define the event

An =
{∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
≤ δn(τ)

}
.

5It is clear that our assumptions (H.1)–(H.2) concern only Ω and Γ and not Vn and Γn which comply with (H.1)–(H.2) by
construction.
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For any δ > 0, q > 1 and n large enough, we have by the Tchebychev inequality that

Pr
(∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
> δ
)
≤ δ−3mqE

(∥∥fn − f∥∥3mq

L∞(Vn×{0,...,tNT })
)

= δ−3mq
(
E
(∥∥fn − f∥∥3mq

L∞(Vn×{0,...,tNT })
1An

)
+ E

(∥∥fn − f∥∥3mq

L∞(Vn×{0,...,tNT })
1Acn

))
≤ δ−3mq

(
E
(∥∥fn − f∥∥3mq

L∞(Vn×{0,...,tNT })
1An

)
+ E

(∥∥fn − f∥∥3mq

L∞(Vn×{0,...,tNT })
1Acn

))
≤ δ−3mq

(
δn(τ)3mq + C3mq Pr (Acn)

)
≤ δ−3mq

(
δn(τ)3mq +K2C

3mqn−τ
)

≤ δ−3mqKτ,T,m,q

((
log n

n

)q
+ n−τ

)
,

for some constant Kτ,T,m,q > 0, and where we used the fact that
∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
is

almost surely bounded by some constant C > 0. Since q > 1, the right-hand side is summable for
any τ > 1. The claim then follows using again the (first) Borel-Cantelli lemma.

�

Remark 4.4. One can also easily derive from (60) a bound in expectation. Indeed arguing as in the proof
of the third claim of Theorem 4.3, we have

E
(∥∥fn − f∥∥

L∞(Vn×{0,...,tNT })
)

≤K(T + 1)

(
(1 + τ)

min(ν,1/2)
(1+ν)m

(
log n

n

)min(ν,1/2)
(1+ν)m

+

(
1 + (1 + τ)

1
2(1+ν)m

(
log n

n

) 1
2(1+ν)m

)
o(1)

)
+ T

∥∥P − P̃∥∥
L∞(Vn\Γn)

+
∥∥ψ − ψ̃∥∥

L∞(Vn)
+ CK2n

−τ ,

When P̃ = P and ψ̃ = ψ on Vn\Γn and Ωn respectively, we again conclude that
∥∥fn−f∥∥

L∞(Vn×{0,...,tNT })
converges to 0 in expectation as n→ +∞.

Appendix A. Smoothness of the distance function

The regularity of the distance function to a set from that of the set itself is a classical and well understood
subject. Indeed, characterizing some classes of Cp-smooth submanifolds of an arbitrary Hilbert space via
some smoothness properties of square distance functions (or projection mappings) has been studied by many
authors [41, 11, 47, 43]; see also the survey [14]. On Rm, such results can be found in [2]. We summarise
this in the following proposition.

Proposition A.1. Let p ≥ 1 be an integer and Γ ∈ Rm be a compact Cp+1-smooth submanifold without
boundary. Then there is a0 > 0 such that d(·,Γ) is Cp onN a0

Γ \ Γ and |∇d(x,Γ)| = 1 for all x ∈ N a0
Γ \ Γ.

Appendix B. Well-posedness and regularity properties of (PFD
ε )

We first define the notions of discrete sub- and super-solution.

Definition B.1 (Discrete sub- and super-solution). We say that f ε is a sub-solution of (PFD
ε ) if for all (u, t) ∈

(Ω̃ \ Γ̃)× {t1, . . . , tNT }
f ε(u, t)− f ε(u, t−∆t)

∆t
≤ −

∣∣∇−Jεf ε(u, t−∆t)
∣∣
∞ + P̃ (u),

and if for all (u, t) ∈ ∂Ω̃NT ,
f ε(u, t) ≤ ψ̃(u).
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In the same way, we say that f ε is a super-solution of (PFD
ε ) if for all (u, t) ∈ (Ω̃ \ Γ̃)× {t1, . . . , tNT }

f ε(u, t)− f ε(u, t−∆t)

∆t
≥ −

∣∣∇−Jεf ε(u, t−∆t)
∣∣
∞ + P̃ (u),

and if for all (u, t) ∈ ∂Ω̃NT ,
f ε(u, t) ≥ ψ̃(u).

f ε is a discrete solution of (PFD
ε ) if it is both a discrete sub-solution and super-solution.

We start with a comparison principle, which is a direct consequence of the monotonicity.

Lemma B.2 (Comparison principle for the scheme (PFD
ε )). Assume that (H.1), (H.2) and (H.6) hold, and

that f ε, gε are respectively bounded sub- and super-solution of (PFD
ε ). Assume also that the CFL condition

(50) holds. Then

sup
Ω̃×{0,...,tNT }

(f ε − gε) ≤ sup
Γ̃×{t1,...,tNT }∪Ω̃×{0}

|f ε − gε|.(61)

Proof. Since the scheme is invariant by addition of constant, we can assume that f ε ≤ gε on Γ̃×{t1, . . . , tNT }∪
Ω̃× {0}, and prove that f ε ≤ gε on Ω̃× {0, . . . , tNT }.

We argue by contradiction, and suppose that for η > 0 small enough, we have
Mη = sup

(u,t)∈Ω̃×{0,...,tNT }
f ε(u, t)− gε(u, t)− ηt > 0.(62)

By upper semi-continuity of the objective and compactness of Ω̃×{0, . . . , tNT }, the supremum is actually
a maximum achieved at some point (ū, t̄). Since f ε ≤ gε on Γ̃× {t1, . . . , tNT } ∪ Ω̃× {0} and Mη > 0 for
η small enough, we deduce that (ū, t̄) ∈ (Ω̃ \ Γ̃)× {t1, . . . , tNT }. At the maximum point, we have

f ε(ū, t̄)− gε(ū, t̄)− ηt̄ ≥ f ε(ū, t̄−∆t)− gε(ū, t̄−∆t)− η(t̄−∆t)

and
f ε(ū, t̄)− gε(ū, t̄)− ηt̄ ≥ f ε(y, t̄−∆t)− gε(y, t̄−∆t)− η(t̄−∆t)

Moreover, using that f ε, gε are respectively sub- and super-solution of (PFD
ε ) and remarking that (50) implies

in particular that ∆t ≤ min
y∈Ω̃

1

Jε(ū, y)
, we get

0 ≥ f ε(ū, t̄)− f ε(ū, t̄−∆t)

∆t
+ max

y∈Ω̃
Jε(ū, y)(f ε(ū, t̄−∆t)− f ε(y, t̄−∆t))− P̃ (ū)

i.e.
0 ≥ f ε(ū, t̄) + max

y∈Ω̃
(−f ε(ū, t̄−∆t) + ∆tJε(ū, y)(f ε(ū, t̄−∆t)− f ε(y, t̄−∆t)))−∆tP̃ (ū)

= f ε(ū, t̄) + max
y∈Ω̃

(−(1−∆tJε(ū, y))f ε(ū, t̄−∆t)−∆tJε(ū, y)f ε(y, t̄−∆t))−∆tP̃ (ū)

≥ f ε(ū, t̄) + max
y∈Ω̃

(
(1−∆tJε(ū, y))

(
gε(ū, t̄)− gε(ū, t̄−∆t) + η∆t− f ε(ū, t̄)

)
+ ∆tJε(ū, y)

(
gε(ū, t̄)− gε(y, t̄−∆t) + η∆t− f ε(ū, t̄)

))
−∆tP̃ (ū)

= η∆t+ ∆t

(
gε(ū, t̄)− gε(ū, t̄−∆t)

∆t
+ max

y∈Ω̃
Jε(ū, y)(gε(ū, t̄−∆t)− gε(y, t̄−∆t))− P̃ (ū)

)
≥ η∆t+ 0 > 0,

which is a contradiction. �
28



We now establish the existence and the regularity properties of a discrete solution.

Lemma B.3 (Existence and Lipschitz regularity properties in time and space for the scheme (PFD
ε )). Assume

that assumptions (H.1)–(H.4), (H.6)–(H.8) and (H.11)–(H.12) hold. Then there exists a discrete solution f ε
of (PFD

ε ) and for all (u, v) ∈ Ω̃2 and t ∈ {t1, . . . , tNT }, the following holds

|f ε(u, t)− f ε(u, t−∆t)| ≤ L∆t,(63)
|f ε(u, t)− f ε(v, t)| ≤ K (|u− v|+ ε) ,(64)

where L = Lψ̃ + ‖P̃‖L∞(Ω̃\Γ̃) and K = 2c−1
g Cg

(
L+ ‖P̃‖L∞(Ω̃\Γ̃)

)
m3/2.

Proof. The existence of a solution is trivial. Moreover, since ψ̃b and f̄ ε are respectively sub- and super-
solution of (PFD

ε ) and satisfy the boundary conditions, we get, by Lemma B.2, that ψ̃b ≤ f ε ≤ f̄ ε.
For the Lipschitz regularity, we begin by showing that for any 0 < t ∈ {t1, . . . , tNT } , u ∈ Ω̃,

|f ε(u, t)− f ε(u, 0)| ≤ Lt.

To do this, we define
f ε1 (u, t) = ψ̃(u)− Lt and f ε2 (u, t) = ψ̃(u) + Lt.

In particular, f ε1 , fε2 are respectively sub- and super-solution of (PFD
ε ). Indeed, on the one hand, we have

f ε1 (u, t)− f ε1 (u, t−∆t)

∆t
=
ψ̃(u)− Lt− ψ̃(u) + L(t−∆t)

∆t
= −L.(65)

On the other hand, we have

(66)

−max
v∈Ω̃

Jε(u, v)(f ε1 (u, t−∆t)− f ε1 (v, t−∆t)) + P̃ (u)

= −max
v∈Ω̃

g
(
|u−v|
ε

)
εCg

(ψ̃(u)− ψ̃(v)) + P̃ (u)

≥ −max
v∈Ω̃

g
(
|u−v|
ε

)
εCg

Lψ̃|u− v| − ‖P̃‖L∞(Ω̃\Γ̃)

= −L

Therefore, from (65) and (66) we get the conclusion. The proof for f ε2 is similar and we skip it.
Moreover, for any (u, t) ∈ Γ̃× {t1, . . . , tNT } ∪ Ω̃× {0} we have

f ε1 (u, t) ≤ f ε(u, t) = ψ̃(u) ≤ f ε2 (u, t).(67)

Hence, by the comparison principle in Lemma B.2, we get that for any u ∈ Ω̃, t ≥ 0,

f ε(u, 0)− Lt ≤ f ε(u, t) ≤ f ε(u, 0) + Lt.

We now apply this estimate to get (63). Let u ∈ Ω̃\ Γ̃, t ∈ {t1, . . . tNT } (the result being trivial if u ∈ Γ̃) and
set s = t−∆t. We have that f ε(u, s) is a solution of (PFD

ε ) with initial condition f ε(u, 0) and f ε(u, s+∆t)
is also a solution of (PFD

ε ) with initial condition f ε(u,∆t). Then by comparison principle Lemma B.2 and
(67), we obtain for any u ∈ Ω̃, t > 0,

|f ε(u, t)− f ε(u, t−∆t)| = |f ε(u, s+ ∆t)− f ε(u, s)|
≤ |f ε(u,∆t)− f ε(u, 0)|
≤ L∆t.

The proof of the space regularity estimate is the same as that of (34). �
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Appendix C. Well-posedness and regularity properties of (PBD
ε )

For the reader’s convenience, we establish the existence of a discrete solution for (PBD
ε ).

Lemma C.1 (Existence of discrete solution of (PBD
ε )). Assume that assumptions (H.1)–(H.4), (H.6)–(H.8)

and (H.11) hold. Then there exists a discrete solution f ε of (PBD
ε ).

Proof. The proof is very close to the one of Proposition 2.12 (and we recall all the notations there), and we
therefore give here only a sketch of the proof. First, it is easy to check that ψ̃b and f̄ ε are respectively sub-
and super-solution of (PBD

ε ) and satisfy the boundary conditions.
We assume that there exists a solution fn at step n and we will construct a solution fn+1 at step n + 1.

Let us define

fn+1 = sup
{
w sub-solution at step n+ 1 s.t w ≤ f̄ ε

}
.

In particular, this set is nonempty since ψ̃b belongs to it. Moreover, we remark, by monotonicity, that if(
fn+1,i

)
i∈N is a family of discrete sub-solutions at step n+1, then fn+1 = supi f

n+1,i is still a sub-solution.
Hence fn+1 is a discrete sub-solution. Let us prove that fn+1 is a super-solution. By contradiction, assume
that there exists ū ∈ (Ω̃ \ Γn)× {t1, . . . , tNT } such that (with the notation fn(u) = f(u, tn))

fn+1(ū)− fn(ū)

∆t
< −

∣∣∇−Jεfn(ū)
∣∣
∞ + P̃ (ū).

This implies in particular that fn+1(ū) < f̄ ε(ū, tn+1). Now, let us consider the solution wū of

wū − fn(ū)

∆t
= −max

v∈Ω̃
Jε(ū, v)(wū − fn+1(v)) + P̃ (ū).

The existence of such a solution comes from the fact that the left hand-side is increasing in wū while the
right-hand side is non-increasing. Then, using the monotonicity of the scheme, it is easy to prove that wū >
fn+1(ū) and w defined by

w(u) =

{
wū if u = ū
fn+1(u) otherwise

is a discrete sub-solution of (PBD
ε ) at step n + 1. This contradicts the definition of fn+1. The proof is

completed. �

Appendix D. Proof of Lemma 4.2

We will use again compactness of Ω and a covering argument with a finite δ-net consisting of N(Ω, δ)
points, and conclude by the union bound, after using a standard estimate of N(Ω, δ) (called the covering
number of Ω). We denote for short [N ] = {1, . . . , N} for any N ∈ N∗.

Let Sδ =
{
x1, x2, . . . , xN(Ω,δ)

}
be a δ-net Ω in the Euclidian distance, i.e., Ω ⊆

⋃
x∈Sδ Bδ(x). We then

have

max
x∈Ω

d(x, Vn) ≤ max
j∈[N(Ω,δ)]

max
x∈Bδ(xj)

d(x, Vn).

For each j ∈ [N(Ω, δ)], let Zj be the number of random variables (ui)
n
i=1 falling into Bδ(xj). Obvi-

ously, Zj is a Binomial random variable with parameters (n, pj), where pj = µ(Bδ(xj)) ≥ cvol(Bδ(0)) =
cδmvol(B(0)), where c = infΩ ρ > 0 by (H.13), and we used the shorthand notation B(0) for the unit

30



Euclidian ball. Thus, using the union bound, we get

Pr

(
max
x∈Ω

d(x, Vn) > 2δ

)
≤ Pr

(
max

j∈[N(Ω,δ)]
max

x∈Bδ(xj)
d(x, Vn) > 2δ

)
≤

∑
j∈[N(Ω,δ)]

Pr

(
max

x∈Bδ(xj)
d(x, Vn) > 2δ

)
≤

∑
j∈[N(Ω,δ)]

Pr (Zj = 0)

=
∑

j∈[N(Ω,δ)]

(1− pj)n

≤ N(Ω, δ) (1− cδmvol(B(0)))n .

Since Ω is compact, there exists r > 0 such that Ω ⊆ rB(0). It then follows from standard estimates, see
[39, Lemma 4.10] that

N(Ω, δ) = N(Ω/r, δ/r) ≤
(

1 +
2r

δ

)m
.

We therefore arrive at the bound

Pr

(
max
x∈Ω

d(x, Vn) > 2δ

)
≤
(

1 +
2r

δ

)m
(1− cδmvol(B(0)))n

≤ e−ncδmvol(B(0))+m log(1+ 2r
δ ).

Take δm = (1+τ)
cvol(B(0)

logn
n , for any τ > 0. Thus, for n large enough, one has δ ≤ r, and in turn the above

bound becomes

Pr

(
max
x∈Ω

d(x, Vn) > 2δ

)
≤ c(3r)mvol(B(0))e−(1+τ) logn−log(1+τ)−log logn+logn

≤ c(3r)mvol(B(0))e−τ logn = c(3r)mvol(B(0))n−τ .

By the Stirling formula, we have

vol(B(0)) =
2πm/2

mΓ(m/2)
=

1√
mπ

(
2πe

m

)m/2
eθ(m/2)/(6m)

with θ(m/2) ∈ [0, 1]. Thus, taking

ε1+ν
n = 8a−1

√
2πe4/3

(
(1 + τ)√
πmc

)1/m( log n

n

)1/m

,

we have aε1+ν
n /(4

√
m) ≥ δ, and thus (H.12) holds with probability at least 1−K2n

−τ .
Let us turn to the estimating the probability of the event{

dH(Γ,Γn) ≤ aε1+ν
n /(2

√
m)
}
.

First, with the construction of Definition 4.1, one can assert that Γn 6= ∅ with probability larger than
1− c(3r)mvol(B(0))n−τ . To show this, we argue by contradiction, assuming that ∀u ∈ Vn, d(u,Γ) > 2δ,
which entails that

|u− x| > 2δ, ∀(u, x) ∈ Vn × Γ.

Let j ∈ [N(Ω, δ)] such that Γ∩Bδ(xj) 6= ∅ (which exists by definition of the δ-net). We have shown above
that with probability at least 1− c(3r)mvol(B(0))n−τ , each ball Bδ(xj) contains at least one point u ∈ Vn,
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and thus, for such a point, |u−x| ≤ 2δ for all x ∈ Γ∩Bδ(xj), leading to a contradiction. In turn, we deduce
that with the same probability, we have

max
u∈Γn

d(x,Γ) ≤ 2δ ≤ aε1+ν
n /(2

√
m).

To conclude, it remains to show that

max
x∈Γ

d(x,Γn) ≤ 2δ,

with the same probability. For this, let {xj ∈ Sδ : Γ ∩Bδ(xj) 6= ∅}. This is a subcover of Ω which is a
δ-net of Γ. Thus Arguing as we did above to bound maxx∈Ω d(x, Vn), we get the claimed bound. Finally,
the bound on dH(Γ,Γn) follows from above using the union bound. The latter also yields that the event En
holds with the given probability. �

Acknowledgement. This work was supported by the Normandy Region grant MoNomads, and partly by the
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 777826 (NoMADS). We would like also to thank A. El Moataz for fruitful discussions.

References
[1] Y. Achdou, F. Camilli, A. Cutri, and N. Tchou. Hamilton–Jacobi equations constrained on networks. Nonlinear Differential

Equations and Applications, 20:413–445., 2013.
[2] L. Ambrosio and H. Mete Soner. Level set approach to mean curvature flow in arbitrary codimension. Journal of Differential

Geometry, 43(4):693 – 737, 1996.
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