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ACTIVITY IDENTIFICATION AND LOCAL LINEAR
CONVERGENCE OF FORWARD-BACKWARD-TYPE METHODS*

JINGWEI LIANG', JALAL FADILI", AND GABRIEL PEYRE?

Abstract. In this paper, we consider a class of Forward—Backward (FB) splitting methods that
includes several variants (e.g. inertial schemes, FISTA) for minimizing the sum of two proper convex
and lower semi-continuous functions, one of which has a Lipschitz continuous gradient, and the other
is partly smooth relative to a smooth active manifold M. We propose a unified framework, under
which we show that, this class of FB-type algorithms (i) correctly identifies the active manifold in a
finite number of iterations (finite activity identification), and (ii) then enters a local linear convergence
regime, which we characterize precisely in terms of the structure of the underlying active manifold.
We also establish and explain why FISTA (with convergent sequences) locally oscillates and can
be locally slower than FB. These results may have numerous applications including in signal/image
processing, sparse recovery and machine learning. Indeed, the obtained results explain the typical
behaviour that has been observed numerically for many problems in these fields such as the Lasso,
the group Lasso, the fused Lasso and the nuclear norm minimization to name only a few.

Key words. Forward-Backward, Inertial Methods, ISTA /FISTA, Partial Smoothness, Local
Linear Convergence.

AMS subject classifications. 49J52, 65K05, 65K10, 90C25, 90C31.

1. Introduction.

1.1. Non-smooth optimization. In various fields of science and engineering,
such as signal /image processing, inverse problems and machine learning, many prob-
lems can be cast as solving a structured composite non-smooth optimization problem
of the sum of two functions, which usually reads

(Popt) min & (z) = F(x) + R(x),
where
(H.1) R € T'o(R"), the set of proper convex and lower semi-continuous functions
on R™.

(H.2) F € CY1(R"), and the gradient VF is (1/3)-Lipschitz continuous.

(H.3) Argmin(®) # 0, i.e. the set of minimizers is non-empty.
From now on, we suppose that assumptions (H.1)-(H.3) hold. Problem (P,) is
closely related to finding solutions of the monotone inclusion problem

(Pinc) Find z € R" suchthat 0 € A(z) + B(x),
where

(H.4) A:R™ = R" is a set-valued maximal monotone operator (see (A.1)).

(H.5) B:R"™ — R" is maximal monotone and S-cocoercive (see (A.2)).

(H.6) zer(A+ B) # 0, i.e. the set of zeros of A + B is non-empty.
For problem (P, ), given a global minimizer * € Argmin(®), then the corresponding
first-order optimality condition reads

0 € OR(z*) + VF(a*),

where OR denotes the sub-differential of R at z*. Clearly, if we let A = OR and
B = VF, then (P,p) is simply a special case of (Pinc).
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2 JINGWEI LIANG, JALAL FADILI, GABRIEL PEYRE

In this paper, our main focus is the non-smooth optimization problem (P ).
Though some of our results are also valid for the monotone inclusion problem (Pi,.),
in particular Algorithm 1 and its global convergence analysis, see Section 2.

1.2. Forward—Backward-type splitting methods. The Forward—Backward
(FB) splitting method [38] is a powerful tool for solving optimization problems (Pgpy)
with the additively separable and “smooth + non-smooth” structure. The standard
(non-relaxed) version of FB implements the iterative scheme

(1.1) Trt1 = prox,, g(zr — wVF (1)), W € 6,26 — €,
where €,€ > 0, and prox, p denotes the prozimity operator of R which is defined as
def .1y 2
proxyg(-) = min gz " + yR(z).

Global convergence of the sequence (zp)reny generated by the FB method is
well-established in the literature, based on the property that the composed opera-
tor prox, z(Id — yVF) is so-called averaged non-expansive [12]. Moreover, sub-linear
O(1/k) convergence rate of the sequence of objective values of FB is also well-known,
e.g. [45, 16, 14].

Inertial schemes and FISTA. In the literature, different variants of FB method
were studied, and a popular trend is the inertial schemes which aim at speeding up
the convergence properties of FB. In [49], a two-step algorithm called the “heavy-ball
with friction” method is studied for solving (Popt) with R = 0. It can be seen as an
explicit discretization of a nonlinear second-order dynamical system (oscillator with
viscous damping). This dynamical approach to iterative methods in optimization has
motivated increasing attention in recent years. For instance, in real Hilbert spaces,
it is used in [4] for solving (Pop¢) with F' = 0 and [5] for solving (Pi,.) with B = 0
yielding an inertial PPA method. The authors in [42, 8, 39] propose different inertial
versions of the FB method for solving (Popt) and/or (Pinc).

On the other hand, in the context of convex optimization, the accelerated FISTA
method was proposed in [14], based on the seminal work [43], which achieves O(1/k?)
convergence rate for the sequence of objective functions. However, while iterates
generated by the FB are convergent, the convergence of FISTA iterates has been an
open problem until recently. This question was first settled in [18], then followed by [9]
in the continuous dynamical system case. More precisely, for v, €]0, 5] and a sequence
of inertial parameter that converges at an appropriate rate (i.e. in Algorithm 1, set
ap = by = Zf;, q > 2), these authors established (weak in infinite-dimensional Hilbert
spaces) convergence of the iterates sequence while maintaining the O(1/k?) rate on
the objective values. The rate is actually even o(1/k?) as proved in [7].

Algorithm 1 A General Inertial Forward-Backward splitting

Initial: a <1, b < 1, €€> 0 such that e <28 — € xp € R", x_1 = xy.
Let ay, € [0,a], by € [0,b], v € [€,25 — €]. Repeat

(1.2) Yako = Tk + ap(Tk — Th—1), Yo = T + bi(Tk — Th—1),
(1.3) Tyl = proxWR(ya,k — 'kaF(bec)).

In this paper, we propose a general inertial Forward—Backward splitting method
(iFB), see Algorithm 1. Based on the choice of the inertial parameters ay and by, the
proposed method recovers the following special cases:

e a; =0, b, = 0: this is the original FB method [38];
e aj € [0,a],br = 0: this is the case studied in [42] for (Pi,.). In the context
of optimization with R = 0, one recovers the heavy ball method with friction

This manuscript is for review purposes only.



84
85
86
87
88
89

90

LOCAL LINEAR CONVERGENCE OF FB-TYPE METHODS 3

[49];

e a; € [0,al, by = ay: this corresponds to the work of [39] for solving (Pinc). If
moreover restrict v, €]0, 5] and let ay — 1, then Algorithm 1 specializes to
FISTA-type methods [14, 18, 9, 7] developed for optimization.

When ay, by, satisfy ax, € [0,a], by, €]0,b], ar # by, Algorithm 1 is new in the literature
to the best of our knowledge.

REMARK 1. Though Algorithm 1 is stated for the optimization problem (Popt), it
readily extends to the monotone inclusion problem (Pinc), for which step (1.3) reads

(1.4) Tr1 = Jypa (Yao — VB Wo,k))
where Jya = (Id + yA)~! denotes the resolvent of yA.

For the rest of the paper, we use the terminology FB-type methods for any scheme
in the form of Algorithm 1 such that the sequence (x)gen converges. This will encom-
pass the inertial schemes (denoted iFB) that we propose, and the sequence convergent
FISTA method [18, 9] that corresponds to the specific choice of intertial sequences
ar = b, = %’ q > 2. It should be noted, however, that our global convergence
analysis to be presented in Section 2 does not cover the case of FISTA, which requires

a specific proof strategy as developed in [18, 9].

1.3. Contributions. The study of (local) linear convergence of FB-type meth-
ods in the absence of strong convexity has attracted increasing interest in recent years,
see the related work below for details. In general, most of the existing work focuses
on some special cases (e.g. R=-|; in (Popt)), and the proofs of the results heavily
rely on the specific structure of the function R, which makes them rather difficult to
extend to other cases. Therefore, it is important to present a unified analysis frame-
work, and possibly with stronger claims. This is one of the main motivations of this
work. To be more precise, this paper delivers the following contributions:

A general class of inertial algorithms. We present a unified iFB splitting class
of algorithms for solving (Popi). It can be viewed as a versatile explicit-implicit
discretization of a nonlinear second-order dynamical system with viscous damping,
and thus covers existing methods as special cases. We establish global convergence of
the iterates, and also stability to errors.

Finite activity identification. Under the additional assumption that function R
is partly smooth at z* € Argmin(®) relative to a C2-smooth manifold M, (see
Definition 5) and a non-degeneracy condition at z*, we show that any FB-type method
to solve (P,p) has the finite time activity identification property. Meaning that, after
a finite number of iterations, say K, the iterates z; — x* built by the FB-type method
belong to M« for all k > K.

Local linear convergence. Exploiting this identification property, we then show
that the FB-type methods, locally along the manifold M, exhibit a linear conver-
gence regime. We characterize this regime and the corresponding rates precisely de-
pending on the structure of the active manifold M. For instance, we provide sharp
estimates for the convergence rate. For the sequence convergent FISTA method, we
draw two major conclusions:

e Locally, FISTA can be slower than the FB method (e.g. see Figure 1).
e We provide an explanation of the local oscillatory behaviour of FISTA and
provide the exact oscillation period (e.g. see Figure 2).
This gives an enlightening explanation of the usefulness of the so-called restarting
method to locally accelerate the convergence of FISTA used by many authors, for
instance in sparse recovery [25, 46, 24]: the algorithm is restarted after a certain
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4 JINGWEI LIANG, JALAL FADILI, GABRIEL PEYRE

number of iterations (set more or less empirically), where the inertial sequence ay = by,
is reset to 0.

We also discuss some practical acceleration procedures. Indeed, once finite iden-
tification happens, the globally non-smooth convex problem (P,,t) becomes (locally)
equivalent to a C2-smooth one along the (possibly non-convex) active manifold M.
In turn, this opens the door to acceleration, especially using higher order methods
such as Newton or non-linear conjugate gradient, see Section 4.5 and Figure 2.

1.4. Related work. Finite support identification and local linear convergence
of FB for solving a special instance of (P,,i) where R is the ¢1-norm is established
in [16, 26]. The same question has been recently addressed for FISTA under some
constraints on the inertial parameter in [54, 32]. [3] proved local linear convergence
of FB to solve (Popt) for R being a so-called convex decomposable regularizer. Local
linear convergence of FB is studied in [31] for R the nuclear norm and F locally
strongly convex. All these previous functions are subclass of partly smooth functions,
and their results are thus covered by ours under weaker assumptions. The proposed
work is also a deeper and sharper extension of our previous results on FB [37]. Finite
identification of active manifolds associated to partly smooth functions has been shown
in [28, 29, 27| for the (sub)gradient projection method, Newton-like methods, the
proximal point algorithm and the algorithm in [55]. Their work extends that of e.g.
[58] on identifiable surfaces (see references therein for related work of Dunn, and Burke
and Moré¢). However, in all these works, the local linear convergence behaviour was
not addressed.

1.5. Notations. Throughout the paper, Id denotes the identity operator on R™.
For a nonempty convex set  C R™, ri(?) and rbd(f2) denote its relative interior
and boundary respectively, aff(€2) is its affine hull, and par(2) = R(Q — ) is the
subspace parallel to it. Denote 1 the indicator function of €2, oq its support function
and Pg the orthogonal projector onto 2. For a matrix M, ker(M) is its null-space.
The subdifferential of a function R € T'o(R™) is the set-valued operator OR : R" =
R™ z — {u € R"|R(2) > R(z) + (u, z — x), Vz € R"}.

Paper organization. The rest of the paper is organized as follows. Global con-
vergence of the proposed iFB method is presented in Section 2. Then in Section 3,
we introduce the concept of partial smoothness, and prove the finite activity identi-
fication property of the FB-type methods. We then turn to local linear convergence
analysis in Section 4. Some numerical results are reported in Section 5.

2. Global convergence of the inertial Forward—Backward. In this section,
we establish the global convergence of the iterates provided by the iFB method with
possible errors. We will state our results (Theorem 3 and 4) for the finite dimensional
optimization problem (P,p). In fact, our global convergence results can handle the
more general monotone inclusion problem (P;,.) in an infinite dimensional real Hilbert
space, where weak convergence of the iterates sequence can be obtained. The proofs
given in Section A are written for this general setting.

We consider the case where OR(x) and VF(z) are computed approximately. To-
ward this goal, we recall the notion of e-enlargement.

DEFINITION 2 (e-enlargement). Let A : R™ = R" be a set-valued mazimal mono-
tone operator, € > 0. Then the e-enlargement of A is defined as,

A(z) Z{veR™, (u—v, y—z)>—¢, Yy e R", ue Aly)}.

Denote 0°R the e-enlargement of 0R. We now consider an inexact form of the
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LOCAL LINEAR CONVERGENCE OF FB-TYPE METHODS 5

iFB algorithm where step (1.3) is replaced by finding x;41 such that
(2.1) Ya ko — (VE(Yok) + k) — Trr1 € 107 R(wh41),

where &, € R” is the error in the evaluation of the gradient operator VF. Observe
that since the e-approximate subdifferential of a proper closed convex function is
contained in the e-enlargement of its sub-differential [17], our setting also handles the
case of approximate sub-differentials.

THEOREM 3 (Conditional convergence). Consider Algorithm 1 with the inexact it-J|]
eration (2.1). Suppose that a < 1, Y, cner < +oo and Y, oy €kl < +o00. Then the
generated sequence (xy)ren is bounded. If moreover (ay)ren and (bg)ren are such that

(2.2) EkeN max{ak, bk}ka - xk,1\|2 < +00,
then, there exists x* € Argmin(®) such that the sequence (zx)ken converges to x*.

The proof of Theorem 3 is given in Section A. This result generalizes that of [42] who
considered the case by = 0 and & = 0. In [10] the inexact sequence convergent FISTA
with the same errors as ours was studied, i.e. vy €]0, ], ax = by, = k—jr;, q > 2.

The terminology “conditional convergence” used in Theorem 3 refers to the fact
that for the convergence to occur, the sequences (ay)ren and (bg)ren can be chosen
depending (conditionally) on (zj)ken in such a way that (2.2) holds. This can be

enforced easily by a simple online updating rule such as, given a € [0,1],b € [0, 1],
(2.3) ajp = min {a,cmk}, br, = min {b, chg},

2. .
where cq 1, cpr > 0, and max{cq k, cpk }| Tk — xx—1|" is summable. For instance, one
can choose ¢, = Wi‘lz”% Cq > 0,0 > 0 and similarly for ¢ 4.
’ k—Tk—1 ’

One can also devise choices of (ay)ren and (bg)ren that are independent of
(zk)ren, and still guarantee global convergence. We dub this unconditional con-

vergence. The following result generalizes those in [5, 42, 39].

THEOREM 4 (Unconditional convergence). Consider Algorithm 1 with the inexact
iteration (2.1). Assume that there exists a constant T > 0 such that one of the
following holds,

(1—|—ak) ’yk(1+bk)2>7':ak<l€bk,

28 28
(2.4) o ) -
(173ak)7%(1fbk) >71:b <ap or %bkgak<bk,

and, moreover Y, cner < +o0o and Y,y €kl < +oo. Then Y, oy llzk — |’ <
+00, and there exists x* € Argmin(®) such that the sequence (xk)ken converges tox*.

See Section A for the proof.
3. Partial smoothness and finite time activity identification.

3.1. Partial smoothness. From now on, besides assumption (H.1), we assume
that R in (P,p) is moreover partly smooth relative to a smooth manifold. The notion
of partial smoothness is first introduced in [35]. This concept, as well as that of identi-
fiable surfaces [58], captures the essential features of the geometry of non-smoothness
which are along the so-called active/identifiable manifold. For convex functions, a
closely related idea is developed in [34]. Loosely speaking, a partly smooth function
behaves smoothly as we move on the identifiable submanifold, and sharply if we move
normal to the manifold. In fact, the behaviour of the function and of its minimiz-
ers depend essentially on its restriction to this manifold, hence offering a powerful
framework for algorithmic and sensitivity analysis theory.
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221 Let M, be a C?-smooth embedded submanifold of R" around a point . To
222 lighten terminology, henceforth we shall state C2-manifold instead of C2-smooth em-
223  bedded submanifold of R™. The natural embedding of a submanifold M, into R™
224 permits to define a Riemannian structure on M,, and we simply say M, is a Rie-
225 mannian manifold. Ty, (z') denotes the tangent space to M, at any point ' near x
226 in M,. More materials on manifolds are given in Section B.1.

227 We are now ready to state formally the class of partly smooth functions through
228 its regularity properties.

229 DEFINITION 5 (Partly smooth function). Let R € T'o(R™), R is said to be partly
230 smooth at x relative to a set M, containing z if OR(z) # 0, and moreover

231 (1) Smoothness: M, is a C*-manifold around x, R restricted to M, is C? near x;
232 (ii) Sharpness: The tangent space T, (x) coincides with T, = par(dR(z))*;

233(1i1) Continuity: The set-valued mapping OR is continuous at x relative to M.

234 The class of partly smooth functions at x relative to M, is denoted as PSF;(M).
235 One can easily show that a function in I'g(R™) which is locally polyhedral around
236 x is partly smooth at x relative to x 4+ T,.. Polyhedrality also implies that the sub-
237  differential is locally constant around x along = + T,. Capitalizing on the results
238 of [35], it can be shown that under mild transversality conditions, the set of proper
239 Isc convex and partly smooth functions is closed under addition and pre-composition
240 by a linear operator. Moreover, absolutely permutation-invariant convex and partly
241 smooth functions of the singular values of a real matrix, i.e. spectral functions, are
242 convex and partly smooth spectral functions of the matrix [22]. Many examples of
243  partly smooth functions that are popular in signal processing, machine learning and
244  statistics can be found in [57], see also Section 5.

245 [35, Proposition 2.10] allows to prove the following fact.

246 FAcT 6 (Local normal sharpness). If R € PSF, (M), then all ' € M, near x
247 satisfy Ty, (') = Tpr. In particular, when M, is affine or linear, then T, = T,.

248 We now give expressions of the Riemannian gradient and Hessian (see Section B.1
249 for definitions) for the case of partly smooth functions relative to a C? submanifold.
250 This is summarized in the following fact which follows by combining (B.2), (B.3),
251 Definition 5, Fact 6 and [23, Proposition 17] (or [40, Lemma 2.4]).

252 Fact 7. If R € PSF,(M,), then for any x' € M, near x
253 Vm,R(@') =Pr, (OR(x")),

54 and this does not depend on the smooth representation of R on M. In turn, for all
255 h € Ty B _
256 Vi, G )h =P, V?R(z)h + W, (h, P VR(z")),
257 where R is a smooth extension (representative) of R on My, and W, (-,-) : Ty x T —
258 T, is the Weingarten map of M, at x (see Section B.1 for definitions).

259 3.2. Finite time activity identification. In this section, we state our result
260 establishing that FB-type methods have the finite activity identification property.

261 THEOREM 8 (Finite activity identification). Suppose that an FB-type method is
262 used to create a sequence (x)ren that converges to x* € Argmin(®) such that R €
263 PSFz«(My+), and moreover the non-degeneracy condition

264 (ND) — VF(z*) € ri(0R(z")),
265 holds. Then, there exists a large enough K > 0 such that for all k > K, x, € My«.
266 If moreover,
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LOCAL LINEAR CONVERGENCE OF FB-TYPE METHODS 7

(i) Mg« is an affine subspace, then My« = x* + Ty and Yo i, Yo € Mg+, Yk > K;
(ii) R s locally polyhedral around x*, then Yo i, Yo e € Mye = &*+ Ty for allk > K,
VM, R(zy) = VM, R(z*), and \Y& o R(zy)=0,Vk > K.

REMARK 9.

(i) If F is also locally C? around x*, the smooth perturbation rule of partly smooth
functions [35, Corollary 4.7], ensures that ® € PSF .« (My+).

(ii) The iFB is convergent under the assumptions of Theorem 3 or Theorem 4.
The FISTA method is sequence convergent for ar = by = %, q > 2, and
Yk = €]0,8] [18, 9]. Thus, Theorem 8 holds true for all these instances.

(iii) The non-degeneracy condition (ND) can be viewed as a geometric general-
ization of the strict complementarity of non-linear programming. Building
on the arguments of [29], it is almost a necessary condition for the finite
identification of My«. Relaxing it in general is a challenging problem.

(iv) When R is locally polyhedral around x*, in addition with the finite identifi-
cation of Mg+ = x* + T+, we also have Vg, P(zr) = V. B(x*), hence
V?\AT*@(Ik) =0, for k large enough.

Proof. By assumption, the sequence (x)gen created by any FB-type method
converges to some z* € Argmin(®P), and the latter is non-empty by assumption (H.3).
Now (1.3) is equivalent to

Yok — VEVE (Ybk) — Tha1 € VROR(Tk41).
By (H.2), we get
dist(—=VF(z*), 0R(xj41))

1

< II%(ya,k — 2p41) — VF(yor) + VF (™)
1

< Tk(akﬂxk — zp1| + lzrs1 — zill) + [VF(yoe) — VF(2¥)]
1 1 1 1

< (=4 2)zr — xp—1|| + = |zrr1 — 2kl + =26 — 2.

< (w ﬂ)” k— Tg—1]| %H k+1 — Tk B” K [

Since liminf vy, = € > 0 and z; converges to x*, we obtain dist(—V F(x*), 0R(xy)) —

0. Owing to assumption (H.1), R is subdifferentially continuous at every point in

its domain, and in particular at a* for —VF(2*), which in turn entails R(zy) —

R(z*). Altogether, this shows that the conditions of [28, Theorem 5.3] are fulfilled on

(VF(x*), -} + R, and the result follows.

(i) When the active manifold M« is an affine subspace, then M« = 2*+T,» owing
to the normal sharpness property and the claim follows immediately;

(ii) When R is locally polyhedral around a*, then M« is an affine subspace and the
identification of yq i, Ys ik follows from (i). For the rest, it is sufficient to observe
that by polyhedrality, for any @ € M+ near 2*, OR(z) = OR(x*). Therefore,
combining Fact 6 and Fact 7, we get the second conclusion. 0

A bound on the identification iteration. In Theorem 8, we have not provided an
estimate K > 0 beyond which finite identification occurs. There is of course a situation
where the answer is trivial, 7.e. R is the indicator function of an affine subspace.
However, knowing K has practical interest, for instance, if one wants to switch to
higher order acceleration (see Section4.5). It is then legitimate to wonder whether
such an estimate of K can be given. In the following, we shall give a bound in some
important cases. For the sake of simplicity, we state the result for the case of FB (i.e.
ar = by, = 0 in Algorithm 1). A similar reasoning can be easily generalized to the case
of any converging FB-type method.
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ProprosITION 10. Suppose that the assumptions of Theorem 8 hold. Then the

following holds.
(1) If the iterates are such that OR(xy) C rbd(OR(z*)) whenever xy ¢ My«, then

* 12
2 € My for all k > o — 27|
e dist(—VF(z*),rbd(0R(z")))

35

(ii) If R is separable, i.e. R(z) => """, oc,(xp,), where V1 <i<m,b; C {1,...,n},

Uik, b ={1,....n}, and b;Nb; =0, Vi # j, and dim(C;) = |b;|, then identifica-
o — *|?
& Ziag* dist (= VF(2*)y;,tbd(C1))*

tion of My« occurs for some k larger than

)

where I, = {z D xp, F O}.

Proof. (i) By firm non-expansiveness of prox
Id — v, 1 VF, we have

~_1R» and non-expansiveness of
e — 2 < | (1d = 31 VF) (2g 1) — (Id = 31 VF) (@) |
—[lzk—1 = V-1 VE (@r—1) — Tk + 1 VF (2)|
< k-1 — 2 = Eur — VF@)|,
where we denoted uj & (xg—1 — @) /-1 — VF(xk_1). By definition, we have
ug € OR(xg). Suppose that identification has not occurred at k, i.e. that xy ¢
M+, and hence uy, € OR(xy) C rbd(0R(z*)). Therefore, continuing the above
inequality, we get
|2k — 2*]° < ey — 2*|]° — §2dist(—VF(x*),8R(xk))2

< wper — 2| — e dist(—VF(z*), rbd(aR(x*)))2

< wo — z*| — ke*dist(—V F(z*), rbd(@R(x*)))Q,
and dist(—VF(z*),rbd(0R(z*))) > 0 owing to (ND). Taking k as the largest
integer such that the right hand is positive, we deduce that the number of iter-
ations where identification has not occurred, does not exceed the given bound,
whence our conclusion follows.
We have doc,(z5) = C;, Vi € I.. In turn, by separability, R is partly smooth
at z* relative to M« = X i=1Ma; , where MI;_ =0ifie IS and Mg;;_ #0

otherwise. Suppose that at iteration k, IS, N ka_b# @. Denote hy_1 = Tp—1 —

V-1 VF(xg_1), and h* = 2* —v,_1VF (2*). Thus for any i € IS, N I,,, we have

Tip, — T, = hi—1,6, — Py 0 (hi—1,0,)
= (hkfl,bi - h;;l) - (P’Yk—lci(hk*Lbi) - P'Yk—lci(hzi))

where we used Moreau identity in the first equality. Since ¢ € I, N IS, we

have hy_1p, ¢ Y—1Ci and hy, € 4,10}, or equivalently, that P, _, ¢, (hk—1,) €
Yk-1tbd(C;) = yr—11bd(doc, (x},)) and P,, ¢, (hy,) = hj . Combining this with
the fact that the orthogonal projector on v;_1C; is firmly non-expansive, we get
* (|12 2 2
|k, — 2,17 < k1,6, = b, 7 = [Pyi_yos (hi—1p,) — il
= v = 5, I = Py, (ramr ) + 3ma VE ("),
. N 2
< a1 = B3, P = oy dist (= VF(2*)s, , tbd(C5))
< Nh—r, — B3 |* = Edist (= VF(a*)s,, tbd(C;))*.

2
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348 This bound together with non-expansiveness of prox.,, ¢, and Id—v,_1 VF yield
2 2 2

349 ||$k — a';*” — ZieI;* ||a:k,b1. — 33* + Z el ||-73k7b,- — .’L‘Z ||

2 2
350 < |hpey — B*|)° = €2 ZZE[F dist (= VF(z*)s,, tbd(C;))

2

351 <agor — 2P =€, e, dist(—VF(2*)p,, rtbd(C;))
e 2 2
352 < o — a*||* — ke Ziel;* dist (—=VF(2*),,,rbd(C})) ",
354 where the last term in the right hand side is strictly positive by (ND). Taking
355 k as the largest integer such that the right hand side is positive, we deduce that
356 the number of iterations where IS, NI, # 0 does not exceed the given bound.
357 We then conclude that beyond this bound, there is no ¢ such that My, , # 0
358 while M+ = 0. The proof is complete. O
359 Note that, as intuitively expected, this bound increases as the non-degeneracy con-

360 dition (ND) becomes more stringent. However, as it depends on z*, it is only of theo—
361 retical interest. In the separable case, observe that Zielc* dist(—=VF (z*),, rbd(C —I

362 dist(=VF(2*),0R(2*))* when o¢, is differentiable at x} for all i € I,». The case of
363 the ¢1-norm considered in [26] is recovered in the second situation of Proposition 10
364 with C; = [-A, A] for some A > 0.

365 3.3. Stability to errors. Consider the inexact version (2.1) with e, = 0. As-
366 sume that (£x)ken is such that (xp)reny converges to some z* € Argmin(®) (see
367 typically the summability conditions in Theorem 3(i)-(ii)). Then, since & — 0, it can
368 be easily seen from the proof of Theorem 8 that the activity identification property
369 holds true for the above inexact iteration.

370 However, one cannot afford in general having non-zero errors ¢, in the implicit
371 step as in (2.1), even summable. The deep reason behind this is that in the exact
372 case, under condition (ND), the proximal mappings of R and R+ ¢, locally agree
373 mnearby x*. This property is clearly violated if approximate proximal mappings are
374 involved. Here is a simple example.

75 EXAMPLE 11. Let F:z € R+ 3|6 — z?, with 6 €] — 1,1, and R: x € R — |x].
76 ® € I'g(R) and has a unique minimizer x* = prox.(6) = 0. Moreover, ® is partly
377 smooth at z* relative to My« = {0}, and § —a* = § € 1i(0R(2*)) =] —1,1[. Consider
378  the inexact version of the FB algorithm

379 (3.1) T € (Id 4+ 0% - )71(6),

380  where we set vy, = 1, since VF is 1-Lipschitz. From [17, Example 5.2.5], we have
1—¢/z,1] ifx>¢e/2

381 |- |(z) =< [-1,1] if |z| < e/2

[—1,-1—¢/z] ifz<—¢/2,
382 whence the graph of (Id+0°|-|)~1, a set-valued operator, can be easily deduced. Thus,
383  depending on €k and the choice made in the inclusion (3.1), xx may never vanish,
384 d.e.xp & My, for any finite k.

385 4. Local linear convergence of FB-type methods. We are now in position
386 to present the local linear convergence result for FB-type methods, and all the proofs
387 in this section are collected in Section B. Throughout this section, z* is a global
388 minimizer of problem (P,) to which the sequence (z)ren provided by the FB-type
389  method converges. M, is the partial smoothness manifold of R at z*, and T« the
390 corresponding tangent space.

This manuscript is for review purposes only.
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Restricted injectivity. In addition to (H.2), in the rest of the paper, we also
assume that F is locally C? around z*, and its Hessian fulfills the following restricted
injectivity condition,

(RI) ker(V2F(z*)) N T, = {0}.

Local continuity of the Hessian of F' then implies that there exist a > 0 and € > 0,

such that Vh € T},

(4.1) (h, V2F(x)h) > o||h|*,Vz € B(a*) % {z € R" : ||z — 2*| < €}
It turns out that under conditions (ND) and (RI), one can show that problem
(Popt) admits a unique minimizer, and local quadratic growth of @ if R is moreover

partly smooth. Recall that a function ® grows quadratically locally around x* if
Je > 0 such that ®(x) > ®(z*) + ¢l|lz — 2*|*, Va near z*.

PROPOSITION 12 (Uniqueness of the minimizer). Under the assumptions (H.1)-
(H.3), let * € Argmin(®) be a global minimizer of (Popt) such that F is locally C*
around x*. If conditions (ND) and (RI) are also fulfilled, then

(i) a* is the unique minimizer of (Popt).

(ii) If moreover R€PSF 4« (Mg ), then ® has at least a quadratic growth near x*.

4.1. Locally linearized iteration. Define the following matrices which are all
symmetric,

(42)  H =P V°F(2*)Pr,., G=1d—H, U=4V3, , ®(")Pr,. — H,
where Vf\,tx* ® is the Riemannian Hessian of ® on the manifold M« (see Fact 7).

LEMMA 13. For problem (Popy), let (H.1)-(H.3) hold and x* € Argmin(®) such
that R € PSF+« (M) and F is locally C? around x*. Then U is symmetric positive
semi-definite under either of the following circumstances:

(i) (ND) holds.

(ii) My« is an affine subspace.

def

In turn, Id + U is invertible, and W =
eigenvalues in 10, 1].

(Id+U)~! is symmetric positive definite with

The following simple lemma gathers important properties of the matrices in (4.2).

LEMMA 14. For the matrices in (4.2) and W,
(i) Under (H.2) and (RI),
(a) H is symmetric positive definite with eigenvalues in |ya, %]
(b) For~y € [e,28 — €, € and € > 0, G has eigenvalues in [—1 +
]—1,1].
(¢) Fory € [e, 8], G is also symmetric positive semi-definite with eigenvalues
in [0,1 — ae[C [0, 1].
(ii) If both the assumptions of Lemma 13 and (i) hold, then WG has real eigen-
values lying in | — 1, 1[. If moreover v € [e, 8], then WG has eigenvalues lying
in [0,1].

€

B,l—ag[c

Let a € [0,a],b € [0,0],7 € [¢,28 — €, define ry = 3, — 2*,dj, = (r:kl)’ and matrix
W+ (14+b)WG —(a—bW —bWG

1d 0 ’
Our interest in the vector dy, is inspired by the convergence rate analysis of the heavy
ball method [50, Section 3.2]. We now show that once the active manifold is identified,
FB-type iteration locally linearizes.

(4.3) M |(e-

This manuscript is for review purposes only.
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LOCAL LINEAR CONVERGENCE OF FB-TYPE METHODS 11

PROPOSITION 15 (Locally linearized iteration). Let (H.1)-(H.3) hold, and sup-
pose that an FB-type method is used to create a sequence (xy)ren that converges to
x* € Argmin(®) such that (ND) and (RI) hold. If moreover,

(4.4) ar = a €[0,1], by = b€ [0,1], vk = v € [¢,28 — &,
then for k large enough, we have
(4.5) d+1 = Mdk + o([|dk]).

The o(-) term disappears when R is locally polyhedral around x* and (v, a,br) are
chosen constant.

REMARK 16.

(i) Condition (4.4) asserts that both the inertial parameters (ax, by) and the step-

size v should converge to some limit points, and cannot be relaxed in general.

(ii) For the FB method (i.e. ap = by, = 0), (4.3) can be further simplified, and
the corresponding linearized iteration can be given in terms of ry directly,
(4.6) i1 = WGTE + of[[7xl]).

(iii) Proposition 15 also covers the sequence convergent FISTA method [18, 9],
ie. ap = by = ’]z—;}],q > 2 and v €]0,8]. In this case, we have indeed
ar —>a=b=1.

4.2. Spectral properties of M. Our aim now is to establish local linear con-
vergence of FB-type schemes. For this, given the structure of the locally linearized
iteration (4.5), it is sufficient to strictly upper-bound by 1 the spectral radius of M,
and conclude using standard arguments. This is what we are about to do.

The rationale is to start by relating explicitly the eigenvalues of M to those of G
or WG, and then use Lemma 14 to upper-bound the spectral radius of M. However,
given the structure of M, this is a challenging linear algebra problem, and can only
be done for some cases: a and b possibly different but the the function R is locally
polyhedral, or R is a general partly smooth function but a = b. These situations are
not restrictive at all and cover all interesting applications we have in mind.

Let n and o be an eigenvalue of WG and M respectively. We denote 7,7 the
smallest and largest (signed) eigenvalues of WG, and p(M) the spectral radius of M.

Locally polyhedral case. When R is locally polyhedral around x*, U vanishes and
W =1d, and M in (4.3) simplifies.

PROPOSITION 17. Suppose that R is locally polyhedral around x*. If (:;) s an
eigenvector of M corresponding to an eigenvalue o, then it must satisfy ry = ors.
Moreover, we have

(i) 7o is an eigenvector of G associated to an eigenvalue n, where n and o satisfy

the relation

(4.7) o= ((a=b)+ (L+b)n)o+ (a—b)+by=0.
(ii) Given any (a,b) € [0,1[%, then p(M) < 1 if, and only if,
(4.8) (2(b—a) —1)/(1+2b) <.

REMARK 18. It can be shown that, given a and b, p(M) is determined only by n
andT. These extreme eigenvalues lie in | —1,1[ (v €]0,28[) or even in [0, 1] (v €]0,5])
by Lemma 14(i)(b)-(c).

General partly smooth case. When R is a general partly smooth function, then
U is nontrivial, and the spectral analysis of (4.3) becomes a generalized eigenvalue
problem which is much more complex. Therefore, we assume b = a. We have the
following corollary of Proposition 17.

This manuscript is for review purposes only.
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COROLLARY 19. Let b = a. If (g) be an eigenvector of M corresponding to an
eigenvalue o, then it must satisfy r1 = ory. Moreover rq is an eigenvector of G related
to eigenvalue m, where n and o satisfy the relation

(4.9) o? — (14 a)no +an =0,
and p(M) < 1 if, and only if,
(4.10) —1/(142a) <.
REMARK 20. Condition (4.10) holds naturally for v €]0, 8], since by Lemma 14 (i)}
for such v, n > 0.

4.3. Local linear convergence of FB-type methods. We start with the case
where R is locally polyhedral around x*.

THEOREM 21. Suppose (H.1)-(H.3) hold, and an FB-type method generates a
sequence Ty — x* € Argmin(®) such that R is locally polyhedral around x*, F is C?
near x*, and conditions (ND), (RI) are satisfied. If moreover (4.4) and (4.8) hold,
then (xg)ren converges locally linearly to x*. More precisely, given any p € [p(M), 1],
there exists K > 0 and a constant C' > 0, such that for all k > K, there holds

lax = a*| < Cp*~Fak — ™.

Proof. Combining Proposition 15, Proposition 17 and [50, Section2.1.2, Theo-
rem 1], leads to the claimed result. O

REMARK 22. p(M) is the optimal rate. Indeed, when ap = a,by = b and v, = 7,
the o(-) term vanishes in (4.5) and thus, p = p(M).

Let’s turn to the case R is a general partly smooth function, but b = a € [0, a.

THEOREM 23. Suppose assumptions (H.1)-(H.3) hold, and the FB-type methods
generate a sequence xp — x* € Argmin(®) such that R € PSF« (M), F is C? near
x*, and conditions (ND), (RI) are satisfied. If moreover (4.4) holds with b = a, and
(4.10) is satisfied, then (zk)ren converges locally linearly to x*. More precisely, given
any p € [p(M), 1], there exists K > 0 and a constant C' > 0, such that for all k > K,
there holds

lzx —a*|| < CP* Kok —a*|.

Proof. This follows by combining Proposition 15, Corollary 19 and [50, Section
2.1.2, Theorem 1]. 0

REMARK 24.

(i) The limit b = a in (4.4) does not mean that we should set by, = a,Vk € N
along the iterations.

(ii) In contrast to our previous work [37], which addresses the case of FB method,
the rate estimates that we provide here are much sharper in general, and
both estimates only coincide when R is locally polyhedral (see the numerical
experiments for more details). The main reasons underlying this is that, here,
our rate estimate relies on the locally linearized iteration in Proposition 15 and
the spectral properties of M, which takes intro account the geometry of the
identified submanifold (its curvature for instance). This is not the case in our
former work.

(iii) The obtained results can be readily extended to the variable metric FB split-
ting method [21], where a rate under an appropriate metric can be obtained.
However for the sake of brevity, we do not pursue this further.

This manuscript is for review purposes only.
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LOCAL LINEAR CONVERGENCE OF FB-TYPE METHODS 13

(iv) In our proof of local linear convergence, converxity does play a crucial role.
For instance, it was only needed to show that the matriz U is positive semi-
definite. This suggests that our local linear convergence claims can be extended
to the non-convex case, provided that the Riemannian Hessian of R is assumed
positive semi-definite at x*. In addition, to guarantee finite identification in
the non-convex setting, we need global convergence of iFB to a critical point,
which can be ensured if for instance O satisfies the (non-smooth) Kurdyka-
Lojasiewicz inequality [15]. This will be left to a forthcoming paper.

The restricted injectivity condition (RI) plays an important role in our local
convergence rate analysis and in general cannot be relaxed. However, for some special
cases, such as when R is locally polyhedral, it can be removed, at the price of less
sharp rate estimation. This is formalized in the following statement.

THEOREM 25. Suppose that (H.1)-(H.3) hold, and an FB-type method creates a
sequence xy, — r* € Argmin(®) such that R is locally polyhedral around x*, F is C?
near x*, and condition (ND) holds. If moreover there exists € > 0 and a subspace V
such that

ker(Pr, V2F(z)Pr,) =V, Va € B.(2*) N (2* + Ty+).

Then (xk)gen converges locally linearly to x*.
The expression of the local rate can be found by inspecting the proof.

4.4. Discussion. We here summarize some main conclusions on the local linear
convergence behaviour of FB-types methods. Recall that « from (4.1) and 1/ is the
Lipschitz constant of VF'.

FB is locally faster than FISTA. For the sake of brevity (the same conclusions
hold true in the general case), we consider by, = ap = a € [0,1] and v, = v €0, 3]
is fixed, in which case 77 > 1 > 0 (see Lemma 14(ii)), and thus condition (4.10) is in
force. Moreover 7 is also the local convergence rate of the FB method, and p(M)
depends solely on 77 and the value of a. Recall that p(M) is the best local linear
convergence rate (see Theorem 23 and 21).

Figure 1 shows p(M) as a function of a for fixed 77. One can make the the following
observations:

(i) When a € [0,7], we have p(M) < 7. This entails that if iFB is used with such
a choice of inertial parameter, it will converge locally lineally faster than FB.
For a € [7, 1], the situation reverses as p(M) > 7, and iFB becomes slower
than FB.

(ii) In particular, as a = 1 for FISTA, we have p(M) = /7 > 7. In plain words,
though FISTA is known to be globally faster (in terms of the objective)
than FB, attaining the optimal O(1/k?) rate, locally, the situation radically
changes as FISTA will always ends up being locally slower than FB. A similar
observation is made in [54] for the special case of FISTA used to solve the
LASSO problem. This explains in particular why many authors [25, 46] re-
sort to restarting to accelerate local convergence of FISTA, which consists in
resetting periodically the scheme to a = 0 which is more favorable to FISTA.
Our predictions in Figure 1l gives clues on when to restart (i.e. detect the
point in red on the rate curve).

.. .. _ (1=v/1I=7)? -

(iii) p(M) attains its minimal value at @ = *=—-—"-_ and this is the best con-
vergence rate that can be achieved locally for FB-type methods.

Oscillation of the FISTA method. A typical feature of the FISTA method is that

it is not monotone and locally oscillates [13], which makes the local convergence even

This manuscript is for review purposes only.
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p(M)

0.75

I
|
|
I
I
I
I
I
l
0 0.2 (-vI=q) 0.7 7

Fig.1: Let b = a, and assume 7,7 are known and also close enough such that the
spectral radius p(M) is only affected by 7, then p(M) is a function of a.

slower, see Figure2 and [54] for a FISTA applied to the LASSO problem. In fact,
the iFB scheme shares this property as well when the inertial parameters are large.
Such oscillatory behaviour is due to the fact that, for those inertial parameters, the
eigenvalue op,,x such that |opax| = p(M) is complex. It can then be shown that the
oscillation period of ||z} — x*| is exactly %, where 6 is the argument of opay.

For the parameter settings used in Figure 1, i.e. b = a and v €]0, 5], we have

a € [0, ((1 —+/1 —ﬁ)z)/ﬁ] : Omax 1S real,
a € ] ((1 — /1 - ﬁ)2)/ﬁ, 1] : Omax 1S complex,
then as long as a > (1 — /T —7)?/7, the iFB method locally oscillates.

4.5. Acceleration. The finite time activity identification property (Theorem 8)
implies that, the globally convex but non-smooth problem eventually becomes locally
C2-smooth, but possibly non-convex, constrained on the activity manifold. This opens
the door to acceleration, and even finite termination, exploiting the structure of the
objective and that of the identified manifold. There are several ways to achieve this
goal as we explain hereafter.

Optimal first-order method. In this case, the idea is to keep the scheme imple-
mented in Algorithm 1, and to refine the parameters to minimize the local convergence
rate established in Section4. Indeed, as shown in Figurel and the discussion that
follows, there is a proper choice of the inertial parameters a and b that minimizes
p(M). More precisely, choose v €]0, 8], then7=1—ay >n>1—+/8 > 0, and p(M)
depends only on 7, a and b. Then with fixed v (hence 77), p(M) attains its minimal
value for a and b satisfying

b=a:a=((1—vI=)2)/7= (- va@)/(1+ &),
b#a:a=(1-/1-70)°+b1-7) =(1-a7)’+bay,
and the optimal value p* of p(M) reads

(4.12) p=1-T-7=1- /Aa,

where the second equality comes from (4.2) and Lemma14. This is a decreasing
function of «y, and p* = 1 — /a3 is then the minimal rate attained for v = 3. This
rate is in agreement with that [44, Theorem 2.2.2]. If one can afford v > 8 as in our
iFB schemes, owing to the result of [50, Section 3.2.1], the best local linear rate is
actually

(4.11)

«_ 1-VopB for 48 = 1_\/@)2 and b =0.

L =1 VaB T 0y vaepy? <1+\/oTB

This manuscript is for review purposes only.
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This is known to be the optimal rate that matches the lower complexity bounds for
first-order methods to solve the class of problems (Pop) if F' were also a-strongly
convex [44, Theorem 2.1.13]. In comparison, for the FB method (i.e. a = b = 0), the
optimal rate is p* =7* = };zg attained for v = %

High-order acceleration: Newton method. Once the activity manifold has been
identified, one can switch to Newton-type methods for locally minimizing ®. This
can be done either using local parameterizations obtained from U-Lagrangian theory
or from Riemannian geometry [34, 40, 52]. One can also use the Riemannian version
of the non-linear conjugate gradient method [52]. For these schemes, one can also
show respectively quadratic and superlinear convergence since Vf\,lz* O (z*) is positive

definite by Proposition 12(ii).

5. Numerical experiments. In this section, we illustrate the obtained results
by some popular examples originating from linear inverse problems in signal processing
and machine learning. We consider the linear model y = Lz, + w, where y € R™,
L : R®™ — R™ is some linear operator, and w € R™ stands for noise. Solving such a
linear inverse problem can be cast as the optimization problem

.1 2
(Px) min 2y — L] + AR(z),

where A > 0 is the tradeoff parameter, R € T'o(R™) promotes objects similar to zop.

We use three functions R: the ¢;-norm (R(z) = |z||, = i, |:]), the £1 o-norm

(R(z) = |zl 5 = S e |z, for a uniform disjoint partition of {1,...,n} in blocks

def

B), and the nuclear norm (R(z) = ||z||, = [o(z)|,, where o(z) € (R4 \ {0})" is the
vector of singular values of the rank-r matrix € R"*"2). Both the ¢; and ¢ 2-norms
are partly smooth relative to subspaces [57] ({1 is polyhedral), and the nuclear norm
is partly smooth relative to the constant rank-r manifold [22].

In all tests, the entries of L are independent copies of a mean-zero and standard
Gaussian random variable. We consider the following settings of xp:

¢1-norm: (m,n) = (48,128), ||zoblly = 8;
01 2-norm: (m,n) = (60,128), zop, has 3 non-zero blocks of size 4;
Nuclear norm: (m,n) = (1425,2500), zop, € R59%59 and rank(zp,) = 5.

One can show that with the number of measurements m in the above cases, if
A and |w| are set properly, then with high probability on L, (P,) admits a unique
solution z* with My« = M,_,, and z* satisfies both (ND) and (RI).

Parameter settings. We choose v, = ( for FISTA. For FB/iFB methods, two
choices of ~; are considered: vy, = 8 and v = 1.58. The inertial parameter of iFB
and FISTA are:

e FISTA: ar = br, = (k—1)/(k+ ¢q), with ¢ = 2 and g = 50;
e iFB v, = 8: ar = by = /5 — 2 — 1073 such that Theorem 4 applies;
e iFB 7, = 1.56: ag, by are chosen according to (2.3) such that Theorem 3 applies.

The convergence profiles of ||z — 2*|| are shown in Figure 2. As demonstrated by
all the plots, identification and local linear convergence occurs after finite time. The
solid lines (denoted as “P”) represent the observed profiles, while dashed ones (denoted
as “T”) stand for the theoretically predicted ones. The positions of the green points
(or the starting points of the dashed lines) stand for the iteration at which M« has
been identified.

Tightness of predicted rates. For the £1-norm, our predicted rates coincide exactly
with the observed ones (same slopes for the dashed and solid lines). This is due to
the fact that they are all polyhedral and F' is quadratic. Note that for FISTA, which
is non-monotone, the prediction coincides with the envelope of the oscillations. For
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W0 w0 sn a0 0 60 70 80 50
i
(a) £1-norm (b) £1,2-norm (¢) Nuclear norm

Fig.2: Local linear convergence and comparison of the FB-type methods (FB, iFB
and FISTA) in terms of ||z — z*|. See text for description.

the £ o-norm, though it is not polyhedral, our predicted rates still are very tight, due
to the fact that the Riemannian Hessian is taken into account. For the nuclear norm,
whose active manifold is not anymore a subspace, our estimation becomes slightly
less sharp compared to the other examples, though barely visible on the plots. Our
predicted rates for FB are much sharper than in our previous work [37].

Comparison of the methods. From the numerical results, we can infer the following
observations.

(i) Comparison of FB/iFB and FISTA under v, = 5:

e Globally, FISTA g = 50 is the fastest while ¢ = 2 is the slowest. FB and
iFB are in between them with iFB being faster.

e For the finite identification, however, FISTA ¢ = 2 in general shows the
fastest identification, and FB is the slowest.

e Locally, similar to the global convergence, FISTA ¢ = 50 has the fastest
rate and g = 2 is the slowest. Again, FB and iFB are between them with
iFB being faster than FB.

(ii) v =B vs 1 = 1.56:

e For FB, larger 7, leads to faster global convergence and activity identifi-
cation. However this does not mean that the bigger the better locally. As
we discussed in Section 4.5, the best choice to get the optimal local linear
rate is 26/(1 + af).

e iFB is faster than FB under the same choice of ;. FISTA ¢ = 50 is no
longer the fastest one, while it is outperformed by iFB v, = 1.54 for the
first 2 examples.

It can be concluded from the above remarks that, in practice, FISTA with ¢ = 2
is not a wise choice if high accuracy solutions are needed. Indeed, under this choice,
ay, converges to 1 too fast, and this hampers its local behaviour as the discussions we
anticipated in Section4.4 (see Figure 1). In fact, such behaviour of a; can be avoided
by choosing relatively bigger ¢, and this is exactly what the difference between ¢ = 2
and ¢ = 50 implies. In our tests, ¢ € [50,100] seems to a good trade-off, even bigger
q is not recommended since it may lead to a much slower activity identification.

However, it should be pointed out that the local rate of FISTA ¢ = 50 being
faster than FB does not contradict with our claim in Section4.4 that FB is faster
than FISTA locally. The reason is that we are limited by machine accuracy, and
bigger value of ¢ delays the speed at which a; approaches to 1 which actually makes
FISTA behaviour similar to the iFB method.

Acceleration. For the ¢1-norm which is polyhedral, we applied the first-order ac-
celeration described in (4.11) for v, = 8 and ~, = 1.58 respectively (Figure 2(a)).
In fact, acceleration is not even needed in this case and one can access a closed-form
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solution of 2* once identification occurs. This can be easily achieved by projection the
first-order minimality condition on M« = x* + Ty, which boils down to solving an
overdetermined linear system which has a unique solution under the restricted injec-
tivity condition (RI). For the ¢ o-norm, we applied the Riemannian Newton method
which converges quadratically, leading to a dramatic acceleration as can be seen in
Figure2(b). For the nuclear norm, a non-linear conjugate gradient method is ap-
plied, leading again to a much faster (super-linear) local convergence. To summarize,
in practice, the inertial+higher-order method hybrid strategy is an ideal choice for
solving (Popt)-

Acknowledgements. This work has been partly supported by the European
Research Council (ERC project SIGMA-Vision). JF is partly supported by Institut
Universitaire de France.

Appendix A. Proofs of Section 2.

Throughout this section, H denotes a real Hilbert space. Let A : H = H be a
set-valued operator. The graph of A is the set gph A = {(x,y) € H x H|y € A(x)},
and its zeros set is zerA = {x € H|0 € A(x)}. Recall that a set-valued operator
A :H = H is monotone if

(A1) (V(z,v) € gph A), (V(y,u) € gph A), (x —y, v —u) > 0.

It is moreover maximal monotone if gph A can not be contained in the graph of any
other monotone operator. Let § €]0, 400, B : H — H, then B is -cocoercive if

(A2) (Vz,y € H), Bl Ba — Byl|" < (Bx — By, « — y).
Proof (Theorem 3). Define the following quantities
(A3) e = Lan -2 Ak = Hak — -1l Boe = Ly — wesal”
Let a* € zer(A+ B), i.e. asolution (Piyc), which exists thanks to (H.6). Recall from
(1.4) and (2.1) that
—B(2*) € A(2") and yar — W BWok) — Wbk — Thor1 € AT (Tp41)-
Thus, we get
(Yae — Trr1 — We(Bok) — B(@")) — Wi, Tht1 — ) = —Ypep.
Combining this with the definition of y, , we obtain
Ok — Pht1 = %(xk — "+ Tpp1 — T, Tk — The1)
(A.4) = Apt1 4+ Wak — Tht1, Thp1 — ) — ap(Tp — Tp—1, Tpy1 — T7)
> A1+ (Bysk) — B(z™) + &k, Trg1 — &)
— ap(Th — Tp—1, Tp+1 — ) — Vil
For (xy — xk_1, xp+1 — z*), we have
(A5) (o — o1, Tpy1 — ) = (T — Tp—1, Thr1 — Tx) + (Ag + @k — Pr—1),
where we applied the usual Pythagoras relation to (xy —xr_1, xx —z*). Putting (A.5)
back into (A.4) yields
(A.6)
Ort1 — Pk — @ — Pr—1) < — Apg1 — V(B(yp,k) — B(@™) + &ky Tpg1 — )
+ap(rr — Tr_1, Thyp1 — Tp) + apAg + YrEp
Since B is -cocoercive, Young’s inequality yields
(B(yv,r) — B(z"), Tpy1 — ™)

(A7) > B1Bs) — B + (Blyns) — B), wier — o) = — o By

26
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Denote pp = 1— 2,6 c [2[3,1 2[3] Uk —ak—”é“gk and vy = g1 —x k——(a:k—xk 1)

Substituting (A.7) back into (A.6), and since Ep = Ag1+b7 Ak +b;€<xk —Tka1, Thp—
Tk—1), we get
(A.8)

Pk+1 — Pk — ak(sOk — Pk— 1)

< —Appr + 25Eb b+ ar{Tr — Ti_1, The1 — Th) + Dk + Veer — Ve {€ky Tht1 — )

R (T S SV RN ORI N W ezery
< |+ (2 +%bk)Ak+vk(sk+ﬂ“€k”W)
e gy 2 4 (

E o |2 + ?ﬁ ko ( 2B)bk)Ak+w(ak+fugknwkﬂ)

where 7 = (28 —€). Denote 0 = ¢ — pr—1 and o = ( ap + (1 — %)bk)Ak. We
then arrive at the following key estimate

Orir < —E& okl + arbh + 0k + Fer + V2Tl v/Pra

k
(A.9) H abr+> Haz ) (65 + 75 + V2165 E )

<aor + ijldk*j (5j +73¢; + V271¢1lv/@51) -

(i) ax €]0,a]: summing up the last inequality, we get

k
Zm:19m+1 = Pk+1 — ¥1

<1 e Do @I (8 + 7 + V2T B
k kE—m .
S 1 i &Qpl + Zm:l (Zj:l El]) (67" + ng + \/§7||§m|| V (pm+1)

IN

L (o1 + 0 (O + Tem + VIl Bmr1)).

which entails
(A.10)
k+1

prr1 < e+ V2T 20y Wemll/Bort < e+ V2T 20 [€moi B,
where ¢ = @1 + 7=(p1 + X nen Om + T Domen Em) = 0. By assumption
on the sequences (€,)men and (0 )men, ¢ is bounded. Using the fact that
(lémI)men is summable, it can be easily shown, e.g.[6, Lemma A.9]|, that
since (x)ken satisfies (A.10), it also obeys ¢ < e+ >y lI&] < +oo.
Denote t = \/c+ 3~y [§;]- Then, (A.9) becomes

Ory1 < —%’“H%HQ + bk + Ok + Fer + V207|&k |

(A.11) < — - llog]|* + ak[Ok]+ + Sk + Fex + V267
where [f]; = max {6,0}. As a result, we have
[Ok+1]+ < albkl+ + ek,
where e, = 0i, + Fer, + V27V1E||&k| is a summable sequence by assumption.

Therefore, using that @ < 1 and applying [20, Lemma 3.1(iv)], it follows that

[0k]+ is summable. In turn,

k

k+1 k

Pk+1 — Zj 1 [9 ] < Qpt1 — 9k+1 Zj:l[ej]Jr =Pk — Zj:l[ej]+'

It then follows that the sequence (¢ — Z?Zl[ﬁj]Jr)keN is decreasing and
bounded from below, hence convergent, whence we deduce that ¢y is also

convergent.
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758 (ii) ar = 0: in this case, (A.9) reduces to
Pri1 < Ok + Ok + Ver + VTEklVPr
_ K
St Zj€N6j +7 ZjeN €+ \/5’7 ijl ”5]'”\/ Pj+1-

760 Again, by virtue of [6, Lemma A.9] and the summability of the sequences

759

761 (6;)ken, (€5)ken and ([[&;])ker, we have o <t = \/sﬁl + 2 en(0; + 785 + 1&1) <I
762 +00. Consequently, we have

763 Pre1 < @k + O + Ver + V20|

764 We then conclude that the sequence (zx)ren is quasi-Fejér monotone (of type

765 III) relative to zer(A + B) [20, Definition 1.1(3)], and thus ¢, is convergent
766 [20, Proposition 3.6].

767 In summary, for a; € [0,a], limg_ 40 ||z — *| exists for any a* € zer(A + B),
768 and (zg)ken is bounded.
769 By assumption (2.2), ax(zx — zx—1) — 0 and b (xx — xx—1) — 0, and thus
770 (A.12) Z—’“(:pk —xp—1) =0,
k

771 since p = 55 > 0. Moreover, from (A.11), we obtain

772 D ienlloel® < 2 apo + 37, (@lbel+ + ) < +oc.

73 Consequently, v — 0. Comblnlng this with (A.12), we get that 2541 — zx — 0. In
74 turn, Yok — Tr+1 — 0 and yp k — zr41 — 0. Let T be a weak cluster point of (zx)ken,

def Ya,k; — Thi+1
e, B(ybk;) —E&k; -

775 and let us fix a subsequence, say xj, — Z. Denote uy,
76 Since B is cocoercive and ypx;, — Z, we have B(ypx;) — B(Z). In turn, ug, —
77 —B(Z) since 4, > € > 0 and & — 0. Since (zx,41,ux,) € gph A, and the graph
78 of the enlargement of A is weakly-strongly sequentially closed in Ry x H x H [53,
79 Proposition 3.4(b)], we get that —B(Z) € A(Z), i.e. T is a solution of (Pi,.). Opial’s
780 theorem [47] concludes the proof. d
781 Proof (Theorem 4). In view of the imposed assumptions, we deduce from Theo-
782 rem3 that (zx)ren is bounded, and thus ¢ = supycy ||zr — 2*| < +00. From (A.8),
783  we apply Young’s inequality to get
Pr+1 — Pk — ak(Pr — Pr—1)

784 < (%’é —1)Aps1 + |ar — T|(Ak+1 + Ag) + (£ /Bbk + ar) Ak + i (e + cl|&kll)

= Sk Aky1 + tuAi + V(Ek + CHEkH),

785 where s, = gg 1+ |ax — 7kbk| t = 2Eb% + ay + |ag — 7kb’“| Suppose that ay, by
786 and 1 are non-decreasing so that Sk, t are also non—decreasmg Denote ¢, = ¢p —

787 ApPr—1 + tr A and 6 = (5k + Cka”)
Drt1 — Ok < (o1 — k) — ar(Pr — Pr—1) + ter1Bpgr — ey,

788 (A.13) < SpApy1 HEAg 1 Arrr — t Ay + Ok
= (8 +trr1)Dpy1 + O
789 (i) ax € [0,a], by € [0,b], bx < ap. We have g—gbk < ay, then from (A.13), and

790 under the second condition in (2.4),

Gkt — Pk < (Sk1 + trg1) Drgr

= ((3ak+1 —-1)+ ’Ykgl (1- bk+1)2)Ak+1 + 0 < —TAks1 + Ok

791 (A.14)
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792 (i) ax € [0,al, by €]0,b], ax < by. Since si,t; are non-decreasing, then from
793 (A.13) we have,
D1 — G < (Skt1 + tig1) Apgr + Ok

< (WSF = 14 2fap41 — 7;; bria| + %kuﬂ + aky1) A + O

795 Next we discuss the relationship between ary; and k+lbk+1, which splits
796 into two subcases.

797 (a) If 7"“ bit1 < agt1, k € N, then from the second condition in (2.4),
(A. 15)

798 Prr1 — ok < ((Bags1 — 1) + ngl (1= brt1)?) Apgr + 0k < —TApi1 + 6.

799 (b) If apt1 < 155 bi+1, k € N, then from the first condition of (2.4),
(A.16)

800 Orr1 — ok < (—(1 4 ars1) + %21( + bt1)?) Akt + 0 < —TApg1 + 6.

801 Under the assumptions of (i), we have from (A.14) (resp. (A.15) or (A.16)) that

802 Zj 1A < (¢1 Prt1) + ZJ 105 < (¢1 + apr) + Zj 105 < o0.

803  If the errors vanish, (A.14) (resp. (A.15) or (A.lb)) indicate that ¢y is non-increasing.
804 Thus

805 Z] WAVINIES (¢>1 Prt1) < (¢1 + apy) < (a P14 7 L =) < +o0.

806 In summary, the summability condition in (2.2) is satisfied. The claim follows from
807 Theorem 3. O
808 Appendix B. Proofs of Section 4.

809 B.1. Riemannian Geometry. Let M be a C?-smooth embedded submanifold

310 of R™ around a point z. With some abuse of terminology, we shall state C?-manifold
311 instead of C?-smooth embedded submanifold of R®. The natural embedding of a
812 submanifold M into R™ permits to define a Riemannian structure and to introduce
813 geodesics on M, and we simply say M is a Riemannian manifold. Denote respectively
814 Ta(z) and NMaq(x) the tangent and normal space of M at point near x in M.

815 Exponential map. Geodesics generalize the concept of straight lines in R™, pre-
816 serving the zero acceleration characteristic, to manifolds. Roughly speaking, a geodesicll
817 is locally the shortest path between two points on M. We denote by g(t;z,h)
818 the value at t € R of the geodesic starting at g(0;z,h) = © € M with velocity
819 g(t;z,h) = (t x,h) = h € Tpm(x) (which is uniquely defined). For every h € Ty (),
820 there exists an interval I around 0 and a unique geodesic g(¢; z, h) : I — M such that
821 g(0;z,h) = z and §(0;x,h) = h. The mapping

822 Exp, : Tm(z) = M, h— Exp,(h) = g(1;2,h),

823 is called Ezponential map. Given x, z € M, the direction h € Tr(x) we are interested
824 in is such that

825 Exp,(h) = z = g(1; 2, h).

826 Parallel translation. Given two points x,z € M, let Ty (z), Tm(z) be their cor-
827 responding tangent spaces. Define

828 7 Tam(x) = Tum(2),

829 the parallel translation along the unique geodesic joining z to z, which is isomorphism
830 and isometry w.r.t. the Riemannian metric.
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Riemannian gradient and Hessian. For a vector v € N (), the Weingarten map

of M at x is the operator 2, (-, v) : Tam(x) = Tam(z) defined by
anc('av) = _PTM(w)dV[h]a

where V' is any local extension of v to a normal vector field on M. The definition is
independent of the choice of the extension V', and 20,.(-, v) is a symmetric linear oper-
ator which is closely tied to the second fundamental form of M, see [19, Proposition
I1.2.1].

Let G be a real-valued function which is C? along the M around z. The covariant
gradient of G at z € M is the vector VoG(z) € Tam(z) defined by

(VMG(2), h) = LG (P (2 +th))|,_y» Yh € Ta(2),

where P is the projection operator onto M. The covariant Hessian of G at z is the
symmetric linear mapping V4,G(z) from Ty (z) to itself which is defined as

(B.1) (V3G (2)h, h) = LGPz + th))],_,. Yh € Ta().

This definition agrees with the usual definition using geodesics or connections [40].
Now assume that M is a Riemannian embedded submanifold of R”, and that a
function G' has a C%-smooth restriction on M. This can be characterized by the
existence of a C2-smooth extension (representative) of G, i.e. a C2-smooth function
G on R™ such that G agrees with G on M. Thus, the Riemannian gradient V ,G(z)
is also given by
(B.2) VMG(Z) = PTM(Z)VG(Z),
and Vh € Ta(z), the Riemannian Hessian reads
VMG(2)h = Py () d(VMG) (2)[h] = Py ()d (2 = Py (2) VG [1]

= PTM(Z)VQG(ZVL + 2, (h, PNM(Z)VG(Z))7
where the last equality comes from [2, Theorem 1]. When M is an affine or linear
subspace of R", then obviously M = z + Ta(z), and 2. (h, Py, (-)VG(2)) = 0,
hence (B.3) reduces to

(B.3)

V.%MG(Z) = PTM(Z)VQG(Z)PTM(Z).
See [33, 19] for more materials on differential and Riemannian manifolds.
The following lemmas summarize two key properties that we will need throughout.

LEMMA 26. Let x € M, and zj, a sequence converging to x in M. Denote Ty, :
Tm(z) — Tam(xk) be the parallel translation along the unique geodesic joining x to
xk. Then, for any bounded vector u € R™, we have

(T "Pr(an) — Pra)u = o(|ul).
Proof. From [1, Chapter 5], we deduce that for k sufficiently large,
Tt = Py + ol — ).
In addition, locally near x along M, the operator x +— P, (4 is C', hence,

—1
lim 1T "Prai(en) = Pl < lim IP70(2) PTas (i) = Pl

Jim ol < Jim Tl +olfer —2l)
< klggo “PTM(%) - PTM(Z)H +oflzx — ) = 0. O

LEMMA 27. Let x,z be two close points in M, denote 7 : Tp(x) = Tam(z) the
parallel translation along the unique geodesic joining x to z. The Riemannian Taylor
expansion of ® € C?*(M) around x reads,

TIVM®(2) = Vm®(2) + V3 (@)Pry, (o) (2 — 2) + o]z — ).
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Proof. Since x,z € M are close, we have z = Exp, (h) for some h € Ty(x) small
enough, and thus, the Taylor expansion [52, Remark 4.2] of V (® around z reads
(B.4) TV M®P(2) = Va®(2) + V3, ®(2)h + o|[h]).

Moreover, form the proof of [40, Theorem4.9], one can show that
Pryi()(2) = Pri(a) (Bxp,(h)) = Py (@) + h + o(||R])?).
Substituting back into (B.4) we get the claimed result. d

B.2. Proofs.

Proof (Proposition 12).
(i) Since F is locally C? around z*, there exists ¢ > 0 sufficiently small such that
for any ¢ € B.(0), we have for some t €]0, 1],
B(a* +8) — B(a") = 3(6, VEF(a" + t6)3) + R(a” +8) — R(a") + (VF(z"), 8).
Let z; = «* + t0 € B.(z*). We then distinguish two cases.
(a) § ¢ ker(V2F(x)). Since F and R are convex with —VF(z*) € OR(z*),
®(z* + ) — D(a*) > 15, V2 F(x,)8) > 0.
(b) 6 € ker(V2F(z;))\{0}. As R € T'x(R"), it is sub-differentially regular at
z*. Moreover OR(z*) # 0 (—=VF(2*) is in it), and thus the directional
derivative R/(z*,-) is proper and closed, and it is the support of dR(x*)

[61, Theorem 8.30]. It then follows from the separation theorem [30,
Theorem V.2.2.3] that
— VF(z*) € ri(OR(x"))
< R'(z*,6) > —(VF(2*), §), V4 s.t. R'(2*;8) + R'(2*;—6) > 0.
Since (RI) holds and V?F(z) depends continuously on z € B.(z*), (4.1)
holds for any such x, and in particular at z;. Combining with the fact
that ker(R'(z*;-)) = Ty~ [56, Proposition 3(iii) and Lemma 10], we get
—VF(z*) € ri(0R(z™)) & R'(2*;0) > —(VF(z*), 6),V6 ¢ Tyr
= R'(z";8) > —(VF(z*), 6),¥s € ker(VQF(xt))\{O}.I
Thus, classical properties of the directional derivative of a convex func-
tion yield
O(2* 4+ 6) — d(a¥)
= R(z* +6) — R(z*) + (VF(z¥), §) > R (2*;8) + (VF(2*), §) > 0.
(ii) Let ¥ as defined in the proof of Lemma13. If R € PSF,«(M,+), the Rie-
mannian Hessian of ® reads
Vi, ®(@*) = Pr,. VF(@*)Pr,. + Vi, W(@").
In view of Lemma 13(i), V3, , ¥(z*) is positive semi-definite on T,-. On the
other hand, hypothesis (RI) entails positive definiteness of Py, VF(z*)Pr,, .
Altogether, this shows that V3, ®(z*) is positive definite on T,+\{0}. Local

quadratic growth of ® near z* then follows by combining [35, Definition 5.4],
[40, Theorem 3.4] and [28, Theorem 6.2]. d

Proof (Lemma 13). By definition of U, Uh = 0 for any h € T;:. Thus, in the
following we only examine the case h € T+.

(i) Let ¥(z) = R(x)+(zx, VF(z*)). From the smooth perturbation rule of partial

smoothness [35, Corollary 4.7], ¥ € PSF .+ (M+). Moreover, from Fact 7 and

normal sharpness, the Riemannian Hessian of ¥ at z* is such that, VA € T+,

YWV, U(z*)h = APr,. V2R(2z*)h + 12We (h, Pro VO(2))
=7Viu,. ®(=")Pr,.h — Hh = Uh,
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Since —VF(z*) € ri(aR(x*)), we have from [36, Corollary 5.4 that

Vi, U(a)h+ T, h € Ter,

0, h ¢ Tox,

where 0?R(z*| — VF(z*)) denotes the Mordukhovich generalized Hessian
mapping of function R at (z*,—VF(z*)) € gph (OR) [41]. As R € T'((R"),
OR is a maximal monotone operator, and in view of [48, Theorem 2.1] we
have that the mapping 92 R(z*| — VF(z*)) is positive semi-definite, whence
we conclude that Vh € T+,

0< 7(32R(m*| — VF(ac*))h, h) = W(V%Aw*\lf(x*)h, hy = (Uh, h).
In this case, U = vPr,, Vzﬁ(a:*)PTm*. Let xy = x* +th, t > 0, for any scalar

t and h € T,«. Obviously, x; € x* 4+ T« = M«, and for ¢ sufficiently small,
by Fact 6, T,,, = Ty,«. Thus, Yu € OR(z*) and Yv € OR(x)

0<t2(w—u,z —a*) = t_l(PTHv —Pr.u, h)
(by Fact7) = (" (V. R(zt) — V. R(2*)), h)
(by (B.2)) = (t 'Pr.. (VR(z* + tPr,. h) — VR(z*)), h).

O’R(z*| — VF(z*))h = {

Since R is C?, passing to the limit as t — 0 leads to the desired result. ]

Proof (Lemma 14).

(i)
(i)

(a) is proved using the assumptions and Rademacher theorem. (b) and (c)
follow from simple linear algebra arguments.
From Lemma 13, we have WG = WY/2W1/2GW1/2W~1/2 meaning that WG
is similar to W/2GW1/2. The latter is symmetric and obeys

[WHEGWHE < (WG < 1,
where we used (i)-(b) to get the last inequality. Thus W'/2GW1'/2 has real

eigenvalues in | — 1, 1], and so does WG by similarity. The last statement
follows using (i)-(c). |

We define the iteration-dependent versions of the matrices in (4.2), i.e.

(B.5)

Hi = wPr,, V?F(z")Pr,., Gp =1d — Hi, Uy = Vi, ®(¢*)Pr,. — Hy,
My = [(1+b)W(Gr — G), —bW (G — G)],
Mk’z = [((ak — bk) — ((1 — b))W + (bk - b)VVG‘k7 —((ak - bk) - ((1 - b))W — (bk - b)WGk} .

After identification, we have x € My« for x close enough to z*. Let T, be their
corresponding tangent spaces, and define 73, : Ty« — T}, the parallel translation along
the unique geodesic joining from xj to x*.

Before proving Proposition 15, we first establish the following useful estimates.

PROPOSITION 28. Under the assumptions of Proposition 15, we have

(B.6)

(B.7)

lya.r — "l = Oldxl); lyp.x — 2" = Oldkl); 42l = OC(lldxl),
(i1 Py, — P ) (VE(yok) — VE(2k41)) = ol di]))-

Tr41
W Uy = U)rigall = olldil), [ M1 di| = o(ldkll) and |[My.2dy.| = o(|dxl)-

Proof. We have

(B.8)

[Yar — %[ = |(1 + )i — axr—1ll < (1 + ap)l|re] + arlre—1]|
< (T4 ae) (el + Ire-1l) < V2(1 + ax)|dil,
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whence we get the first and second estimates. In turn, we obtain

[7x+1ll = prox,, g(Ya,k — ¥V F (yb,x)) — prox,, (" — v VF(z"))]|
SN (Wak — ") = W(VF(yp.r) — VF ("))
< (Ut ar)llrel + arllre—ll + (14 be) B il + b’“g’“ 71

<((1+ar)+ 1+ bk)%’“)\@\\dkll,

where we used non-expansiveness of the proximity operator and assumption (H.2).
This yields the third estimate. Combining Lemma 26, assumption (H.2), (B.8) and
(B.9), we get

(o1 Pty = P ) (VE (o) = VF(z141)) = o(|VF (yo,) = VF(rs1))

= o(llys.r — 2" [) + olIre+11) = o(lld)-
For (B.7), recall the function ¥ in the proof of Lemma 13(i). First, we have

(B.9)

Jim [W(Us = U)reqa |/l | = Hm W (v = 7) Vi, (@)Pr,. e/ sl
< Jim [y AWV, ¥(a")Pr... | =0,
which entails |W(Uy, — U)rg41| = o(|rk+1l)) = o(||dk|). Again, since v — 7,
Jim [ Myl /sl < Jim (14 B)WHIGE — G (sl + s )/l
< lim (L+0)[Wl = vl[Pr,. V2F (") Pr,. [ V2] dk||/[ldi]| = 0.

Similarly, for My, o, since ay, — a, b, — b,

Tim My g/l < Tim (Jax — af + b — B)[Wi(1d + Gi) [V 2 del /di | = 0,
where Wy, G are bounded. ad

Proof (Proposition 15). (1.3) and the first-order optimality condition for problem
(Popt) are respectively equivalent to

Ya,k — Thtl — Yk (VF(ybyk) — VF(ka)) € 10P(zk11) and 0 € v,0P(z").
Projecting into T, and T+, respectively, and using Fact 7, leads to

(Yak = Ths1 — W (VF(ypr) — VF(2141)))

k+1

’YkT];_:lva* (I)({Ek+1) = TI;—:lPTzk_'_l
Y%V m,. P(x*) = 0.

Adding both identities, and subtracting 7, +11PT,

Ikﬂa:* on both sides, we arrive at

(B.10) Tt P et + 70 (T Vi, @(@k41) = Vg, B(27))
= T;C_JrllPTxk+1 (Yoo — ) — VkT,;rllPkaH (VE(yx) — VE(x11)).

In view of Lemma 26, we get

Tht1 = P, Thy1 + (Tk_+11PT —Pr)res1 = Pr i1 + o4 l])-

-1
Tk+1PT'Ek+1 T4l

Using [37, Lemma5.1|, we have
i1 = Prripr + of|resal)
TP bt = st + ol l) = g + o(Jdel),
where we also used (B.6). Similarly

(B.11)

T Prey, War — ") = Pr (o — 2°) + (i Pry . — Pr) W — 2°)

(

=Pr,. War — ") + o([[Yar — 7))

=Pr,. Yak — ") + o[|dxl])

= (14 ax)Pr,. 1k — arPr . re—1 + o(||di|)

— (U4 aw)ri — axris + ol + ofllre—s ) + ol

= (Yax — ") + o(lldx])-

(B.12)
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Moreover owing to Lemma 27 and (B.6),

T VM, @(@r41) — Vo, @(2%) = Vi, ®(@*)Pr,. g1 + o rrsall)
= Vi, 2(@)Pr,. s + o([dl)-

Therefore, inserting (B.11), (B.12) and (B.13) into (B.10), we obtain

(Id + 1% Vi, ®(@*)Pr,. )reia

= Yo,k — *) = TPy,

(B.13)

(B.14) (VE(yor) = VF(zp41)) + ol|dil)-

Owing to (B.6) and local C?-smoothness of F, we have
Tk+1PT£,€+1 (VF(yb,k) - VF(JJk-H))
=Pr,. (VF(yo,r) = VF(zx11)) + o([ldi])
=Pr,. (VE(yx) = VF(z")) = Pr,. (VF(p41) — VEF(2*)) + o([|dk|)
— P, V2F(@")Pr,. (4 — ) = Pr. V2F(2)Pr, . (a1 — 2°) + ol ).
Injecting (B.15) into (B.14), we get
(Id + v, V3 L @@)Pr,. — %P, V2F (2*)Pr,. )rks1
= (Id + Uk)res1 = (Yoo — %) = Hie(yo,e — 27) + o([|di]]),
which can be further written as,
(d + Uk)resr = (Id + U)resr + (Us = U)resr = (Yar — ") — Hi(yo.e — 27) + o([di]))
(1 + ar)rk — axre—1) — He (1 + br)re — berie—1) + o([|dx]|)
( 1+ ak)rs — (1 + bk)Hkrk) — (akrkq — kakrkfl) + o(||dx])
( ar —bp)ld + (1 + bk)Gk)rk — ((ak — by)Id + kak)rkq + o(||ldx|)
[(ar — b)Id + (1 +b)Gr  —((ar — b)Id + bxGx)] di + o).
Inverting Id + U (which is possible thanks to Lemma 13), we obtain
rh+1 + W(Ug — U)rgs1
= [(ar — bW + (1 + bo)WGr  —(ax — b)W — byWGy] di + o(|lda ).
Using the estimates (B.7), we get
{(ak bW+ (1 +b)WGr  —(ar — be)W — by WGy

(B.15)

(B.16)

dry1 =

Id 0 ] di + o(|ldx])

- (M+ {MS‘} + {M(ﬂ)dk + o(|ldwll) = Mdx + o(||dxl]).

Proof (Proposition 17).
(i) We have

M (:;) _ ((a —b)ry + (1+ b)CZl—(a —b)ry — bGrg) . (:;) |

and thus 1 = ors. Inserting this in the first identity, we obtain
o?ry = (a — b)ory + (1 +b)oGra—(a — b)ry — bGry
& Gry = (((a —b)(1-0)+0%)/((1+b)o— b))r2 = 1nry
=0=0"—((a—b)+ (1 +b)n)o+ (a—b) + bn.

(ii) For this quadratic equation of o, the two roots are
(B.17)

o1=((a=b)+ 1 +0)n+vAs)/2, o2 = ((a=b)+ (1+b)n—+/A,)/2.
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where A, = ((a—b)+ (14b)n)? —4((a—b) +bn) is the discriminant, which is
a quadratic polynomial of three variables. Consider the following three linear
functions of a
(B.18)
a1 =1-mb—mn, az=(1-nb—(1+n)/2
ar=(1—mb+(1- mf{A" < 0 € foa, (Lt (VI
Ay > 0:a < as.
Recall from Lemma 14(i) that n €] — 1,1[. Thus, a; > as when n €] — 1,0],
a; < ag for n € [0,1], and a3 is smaller than both a;, as independently of 7.
Case n €] —1,0]: We have a; > as,
Subcase a € [ag, 1[: 01,2 are complex, hence

(B.19) o> = (((a—b) + (1 +b)n)? — Ay) /4 =a—b+bn.

Asay <1 b < UV —1° then (1—yT—=7)? < |o> < 14 (n—1)b < 1.
Subcase a € [0, ag]: A > 0 and o9 has the bigger absolute value, then
(B.20)

o2l <1 —((a—b)+ (1 +b)y) + VA, <2 1+%b1<77’

which means |o9| < 1 for a € [as, as], and |o2| > 1for a € [0, a3]. Moreover,

az <0 for b €0, 2(11"’_"")] meaning that if 7 > &, |o2| <1 for a € [0, as).
Case 7 € [0,1[: First we have ay > a1, and moreover
<1: .
4 =0 b= _1_JS n €[0,0.5],
1-n|>1:ne€]l0.5,1]

Obviously, we have |o| < 1 holds for any a € [0, as] as long as n € [0.5, 1],
though this situation is useless as b € [0,1]. In the subcases hereafter,
we only consider 1 € [0,0.5].

Subcase a € [ag, 1[: same result as (B.19).

Subcase a € [a1, as]: 01 > |02, hence

B2l) o1<1e ((a—b)+(1+bn)+VA;<2&0<4(1—-n).

Subcase a € [0,a1]: we have |o2| > |o1], hence (B.20) applies and the

result follows.

Summarizing this discussion yields the claimed result. ]

Proof (Theorem 25). Since R is locally polyhedral, we have V ., ®(xy) is locally
constant along M+ = «* + T+ around z* (see Remark 9(iii)). Thus, embarking from
(B.16) in the proof of Proposition 15, for k large enough, we get

Tpt1 — T = (Yoo — %) — Ex(yor — 27),
where we used the mean-value theorem with Ey = v fol V2F (z* +t(yp . —x*))dt = 0.
Using that Ej, is symmetric and Im(Ey)+ =V, we have
Py(zrt1 — %) =Py Yo —2°) = (1 + ap)Pv (g — 2*) — ap(vp—1 — =¥).
If ap = 0, then Py (zg41 — 2*) = Py(xx — 2*). Thus, in the rest, without loss of
generality, we assume that ag > 0 for k£ large enough. The above iteration leads to

Pv($k+1 — x*) - (1 + ak)Id —arld Pv(:L'k — ZE*)
Pv(xk - .’[*) B Id 0 Pv(mk,1 - {E*) ’
It is straightforward to check that Nj, & [(1 +Iz’“)ld 7‘6’:;1(1} is invertible and admits
two eigenvalues ar > 0 and 1 respectively. Iterating the above argument, and owing
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to the fact that i, Yok, Yo, — T*, we get

(6) = o) (et 7l

and H;’;k Nj; is invertible. Therefore, we obtain that x — 2* € VL, and in turn,

Yo — 2" € VL and ypp — 2* € V4, for all large enough k. Observe that V4 C T,
it then follows that

Th+1 — T* = Ya,k — * — PvLEkaL (bec - 1‘*).

By definition, Py 1 ExPy-1 is symmetric positive definite. Thus, substituting this
matrix for Hy, and G and M accordingly in Lemma 14 and Corollary 19, and applying
Theorem 21, leads to the result. 0
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