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Abstract. In this paper, we consider a class of Forward–Backward (FB) splitting methods that4
includes several variants (e.g. inertial schemes, FISTA) for minimizing the sum of two proper convex5
and lower semi-continuous functions, one of which has a Lipschitz continuous gradient, and the other6
is partly smooth relative to a smooth active manifold M. We propose a unified framework, under7
which we show that, this class of FB-type algorithms (i) correctly identifies the active manifold in a8
finite number of iterations (finite activity identification), and (ii) then enters a local linear convergence9
regime, which we characterize precisely in terms of the structure of the underlying active manifold.10
We also establish and explain why FISTA (with convergent sequences) locally oscillates and can11
be locally slower than FB. These results may have numerous applications including in signal/image12
processing, sparse recovery and machine learning. Indeed, the obtained results explain the typical13
behaviour that has been observed numerically for many problems in these fields such as the Lasso,14
the group Lasso, the fused Lasso and the nuclear norm minimization to name only a few.15
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1. Introduction.19

1.1. Non-smooth optimization. In various fields of science and engineering,20
such as signal/image processing, inverse problems and machine learning, many prob-21
lems can be cast as solving a structured composite non-smooth optimization problem22
of the sum of two functions, which usually reads23

(Popt) min
x∈Rn

Φ(x)
def
= F (x) +R(x),24

where25
(H.1) R ∈ Γ0(Rn), the set of proper convex and lower semi-continuous functions26

on Rn.27
(H.2) F ∈ C1,1(Rn), and the gradient ∇F is (1/β)-Lipschitz continuous.28
(H.3) Argmin(Φ) 6= ∅, i.e. the set of minimizers is non-empty.29

From now on, we suppose that assumptions (H.1)-(H.3) hold. Problem (Popt) is30
closely related to finding solutions of the monotone inclusion problem31

(Pinc) Find x ∈ Rn such that 0 ∈ A(x) +B(x),32

where33
(H.4) A : Rn ⇒ Rn is a set-valued maximal monotone operator (see (A.1)).34
(H.5) B : Rn → Rn is maximal monotone and β-cocoercive (see (A.2)).35
(H.6) zer(A+B) 6= ∅, i.e. the set of zeros of A+B is non-empty.36

For problem (Popt), given a global minimizer x? ∈ Argmin(Φ), then the corresponding37
first-order optimality condition reads38

0 ∈ ∂R(x?) +∇F (x?),39

where ∂R denotes the sub-differential of R at x?. Clearly, if we let A = ∂R and40
B = ∇F , then (Popt) is simply a special case of (Pinc).41
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In this paper, our main focus is the non-smooth optimization problem (Popt).42
Though some of our results are also valid for the monotone inclusion problem (Pinc),43
in particular Algorithm1 and its global convergence analysis, see Section 2.44

1.2. Forward–Backward-type splitting methods. The Forward–Backward45
(FB) splitting method [38] is a powerful tool for solving optimization problems (Popt)46
with the additively separable and “smooth + non-smooth” structure. The standard47
(non-relaxed) version of FB implements the iterative scheme48

(1.1) xk+1 = proxγkR
(
xk − γk∇F (xk)

)
, γk ∈ [ε, 2β − ε],49

where ε, ε > 0, and proxγR denotes the proximity operator of R which is defined as50

proxγR(·) def
= min

x∈Rn
1

2
||x− ·||2 + γR(x).51

Global convergence of the sequence (xk)k∈N generated by the FB method is52
well-established in the literature, based on the property that the composed opera-53
tor proxγR(Id− γ∇F ) is so-called averaged non-expansive [12]. Moreover, sub-linear54
O(1/k) convergence rate of the sequence of objective values of FB is also well-known,55
e.g. [45, 16, 14].56

Inertial schemes and FISTA. In the literature, different variants of FB method57
were studied, and a popular trend is the inertial schemes which aim at speeding up58
the convergence properties of FB. In [49], a two-step algorithm called the “heavy-ball59
with friction” method is studied for solving (Popt) with R = 0. It can be seen as an60
explicit discretization of a nonlinear second-order dynamical system (oscillator with61
viscous damping). This dynamical approach to iterative methods in optimization has62
motivated increasing attention in recent years. For instance, in real Hilbert spaces,63
it is used in [4] for solving (Popt) with F = 0 and [5] for solving (Pinc) with B = 064
yielding an inertial PPA method. The authors in [42, 8, 39] propose different inertial65
versions of the FB method for solving (Popt) and/or (Pinc).66

On the other hand, in the context of convex optimization, the accelerated FISTA67
method was proposed in [14], based on the seminal work [43], which achieves O(1/k2)68
convergence rate for the sequence of objective functions. However, while iterates69
generated by the FB are convergent, the convergence of FISTA iterates has been an70
open problem until recently. This question was first settled in [18], then followed by [9]71
in the continuous dynamical system case. More precisely, for γk ∈]0, β] and a sequence72
of inertial parameter that converges at an appropriate rate (i.e. in Algorithm1, set73
ak = bk = k−1

k+q , q > 2), these authors established (weak in infinite-dimensional Hilbert74

spaces) convergence of the iterates sequence while maintaining the O(1/k2) rate on75
the objective values. The rate is actually even o(1/k2) as proved in [7].76

Algorithm 1 A General Inertial Forward–Backward splitting
Initial: ā ≤ 1, b̄ ≤ 1, ε, ε > 0 such that ε ≤ 2β − ε. x0 ∈ Rn, x−1 = x0.
Let ak ∈ [0, ā], bk ∈ [0, b̄], γk ∈ [ε, 2β − ε]. Repeat

ya,k = xk + ak(xk − xk−1), yb,k = xk + bk(xk − xk−1),(1.2)

xk+1 = proxγkR
(
ya,k − γk∇F (yb,k)

)
.(1.3)

77

In this paper, we propose a general inertial Forward–Backward splitting method78
(iFB), see Algorithm1. Based on the choice of the inertial parameters ak and bk, the79
proposed method recovers the following special cases:80

• ak = 0, bk = 0: this is the original FB method [38];81
• ak ∈ [0, ā], bk = 0: this is the case studied in [42] for (Pinc). In the context82

of optimization with R = 0, one recovers the heavy ball method with friction83
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[49];84
• ak ∈ [0, ā], bk = ak: this corresponds to the work of [39] for solving (Pinc). If85

moreover restrict γk ∈]0, β] and let ak → 1, then Algorithm 1 specializes to86
FISTA-type methods [14, 18, 9, 7] developed for optimization.87

When ak, bk satisfy ak ∈ [0, ā], bk ∈]0, b̄], ak 6= bk, Algorithm 1 is new in the literature88
to the best of our knowledge.89

Remark 1. Though Algorithm 1 is stated for the optimization problem (Popt), it90
readily extends to the monotone inclusion problem (Pinc), for which step (1.3) reads91

(1.4) xk+1 = JγkA
(
ya,k − γkB(yb,k)

)
,92

where JγA
def
= (Id + γA)−1 denotes the resolvent of γA.93

For the rest of the paper, we use the terminology FB-type methods for any scheme94
in the form of Algorithm1 such that the sequence (xk)k∈N converges. This will encom-95
pass the inertial schemes (denoted iFB) that we propose, and the sequence convergent96
FISTA method [18, 9] that corresponds to the specific choice of intertial sequences97
ak = bk = k−1

k+q , q > 2. It should be noted, however, that our global convergence98
analysis to be presented in Section 2 does not cover the case of FISTA, which requires99
a specific proof strategy as developed in [18, 9].100

1.3. Contributions. The study of (local) linear convergence of FB-type meth-101
ods in the absence of strong convexity has attracted increasing interest in recent years,102
see the related work below for details. In general, most of the existing work focuses103
on some special cases (e.g. R = || · ||1 in (Popt)), and the proofs of the results heavily104
rely on the specific structure of the function R, which makes them rather difficult to105
extend to other cases. Therefore, it is important to present a unified analysis frame-106
work, and possibly with stronger claims. This is one of the main motivations of this107
work. To be more precise, this paper delivers the following contributions:108

A general class of inertial algorithms. We present a unified iFB splitting class109
of algorithms for solving (Popt). It can be viewed as a versatile explicit-implicit110
discretization of a nonlinear second-order dynamical system with viscous damping,111
and thus covers existing methods as special cases. We establish global convergence of112
the iterates, and also stability to errors.113

Finite activity identification. Under the additional assumption that function R114
is partly smooth at x? ∈ Argmin(Φ) relative to a C2-smooth manifold Mx? (see115
Definition 5) and a non-degeneracy condition at x?, we show that any FB-type method116
to solve (Popt) has the finite time activity identification property. Meaning that, after117
a finite number of iterations, sayK, the iterates xk → x? built by the FB-type method118
belong toMx? for all k ≥ K.119

Local linear convergence. Exploiting this identification property, we then show120
that the FB-type methods, locally along the manifold Mx? , exhibit a linear conver-121
gence regime. We characterize this regime and the corresponding rates precisely de-122
pending on the structure of the active manifoldMx? . For instance, we provide sharp123
estimates for the convergence rate. For the sequence convergent FISTA method, we124
draw two major conclusions:125

• Locally, FISTA can be slower than the FB method (e.g. see Figure 1).126
• We provide an explanation of the local oscillatory behaviour of FISTA and127

provide the exact oscillation period (e.g. see Figure 2).128
This gives an enlightening explanation of the usefulness of the so-called restarting129
method to locally accelerate the convergence of FISTA used by many authors, for130
instance in sparse recovery [25, 46, 24]: the algorithm is restarted after a certain131
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number of iterations (set more or less empirically), where the inertial sequence ak = bk132
is reset to 0.133

We also discuss some practical acceleration procedures. Indeed, once finite iden-134
tification happens, the globally non-smooth convex problem (Popt) becomes (locally)135
equivalent to a C2-smooth one along the (possibly non-convex) active manifoldMx? .136
In turn, this opens the door to acceleration, especially using higher order methods137
such as Newton or non-linear conjugate gradient, see Section 4.5 and Figure 2.138

1.4. Related work. Finite support identification and local linear convergence139
of FB for solving a special instance of (Popt) where R is the `1-norm is established140
in [16, 26]. The same question has been recently addressed for FISTA under some141
constraints on the inertial parameter in [54, 32]. [3] proved local linear convergence142
of FB to solve (Popt) for R being a so-called convex decomposable regularizer. Local143
linear convergence of FB is studied in [31] for R the nuclear norm and F locally144
strongly convex. All these previous functions are subclass of partly smooth functions,145
and their results are thus covered by ours under weaker assumptions. The proposed146
work is also a deeper and sharper extension of our previous results on FB [37]. Finite147
identification of active manifolds associated to partly smooth functions has been shown148
in [28, 29, 27] for the (sub)gradient projection method, Newton-like methods, the149
proximal point algorithm and the algorithm in [55]. Their work extends that of e.g.150
[58] on identifiable surfaces (see references therein for related work of Dunn, and Burke151
and Moré). However, in all these works, the local linear convergence behaviour was152
not addressed.153

1.5. Notations. Throughout the paper, Id denotes the identity operator on Rn.154
For a nonempty convex set Ω ⊂ Rn, ri(Ω) and rbd(Ω) denote its relative interior155
and boundary respectively, aff(Ω) is its affine hull, and par(Ω) = R(Ω − Ω) is the156
subspace parallel to it. Denote ιΩ the indicator function of Ω, σΩ its support function157
and PΩ the orthogonal projector onto Ω. For a matrix M , ker(M) is its null-space.158
The subdifferential of a function R ∈ Γ0(Rn) is the set-valued operator ∂R : Rn ⇒159
Rn, x 7→ {u ∈ Rn|R(z) ≥ R(x) + 〈u, z − x〉, ∀z ∈ Rn}.160

Paper organization. The rest of the paper is organized as follows. Global con-161
vergence of the proposed iFB method is presented in Section 2. Then in Section 3,162
we introduce the concept of partial smoothness, and prove the finite activity identi-163
fication property of the FB-type methods. We then turn to local linear convergence164
analysis in Section 4. Some numerical results are reported in Section 5.165

2. Global convergence of the inertial Forward–Backward. In this section,166
we establish the global convergence of the iterates provided by the iFB method with167
possible errors. We will state our results (Theorem3 and 4) for the finite dimensional168
optimization problem (Popt). In fact, our global convergence results can handle the169
more general monotone inclusion problem (Pinc) in an infinite dimensional real Hilbert170
space, where weak convergence of the iterates sequence can be obtained. The proofs171
given in SectionA are written for this general setting.172

We consider the case where ∂R(x) and ∇F (x) are computed approximately. To-173
ward this goal, we recall the notion of ε-enlargement.174

Definition 2 (ε-enlargement). Let A : Rn ⇒ Rn be a set-valued maximal mono-175
tone operator, ε ≥ 0. Then the ε-enlargement of A is defined as,176

Aε(x)
def
= {v ∈ Rn, 〈u− v, y − x〉 ≥ −ε, ∀y ∈ Rn, u ∈ A(y)}.177

Denote ∂εR the ε-enlargement of ∂R. We now consider an inexact form of the178
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iFB algorithm where step (1.3) is replaced by finding xk+1 such that179

(2.1) ya,k − γk(∇F (yb,k) + ξk)− xk+1 ∈ γk∂εkR(xk+1),180

where ξk ∈ Rn is the error in the evaluation of the gradient operator ∇F . Observe181
that since the ε-approximate subdifferential of a proper closed convex function is182
contained in the ε-enlargement of its sub-differential [17], our setting also handles the183
case of approximate sub-differentials.184

Theorem 3 (Conditional convergence). Consider Algorithm1 with the inexact it-185
eration (2.1). Suppose that ā < 1,

∑
k∈N εk < +∞ and

∑
k∈N ||ξk|| < +∞. Then the186

generated sequence (xk)k∈N is bounded. If moreover (ak)k∈N and (bk)k∈N are such that187

(2.2)
∑

k∈N max
{
ak, bk

}
||xk − xk−1||2 < +∞,188

then, there exists x? ∈ Argmin(Φ) such that the sequence (xk)k∈N converges to x?.189

The proof of Theorem 3 is given in SectionA. This result generalizes that of [42] who190
considered the case bk ≡ 0 and ξk ≡ 0. In [10] the inexact sequence convergent FISTA191
with the same errors as ours was studied, i.e. γk ∈]0, β], ak = bk = k−1

k+q , q > 2.192
The terminology “conditional convergence” used in Theorem 3 refers to the fact193

that for the convergence to occur, the sequences (ak)k∈N and (bk)k∈N can be chosen194
depending (conditionally) on (xk)k∈N in such a way that (2.2) holds. This can be195
enforced easily by a simple online updating rule such as, given a ∈ [0, 1], b ∈ [0, 1],196

(2.3) ak = min
{
a, ca,k

}
, bk = min

{
b, cb,k

}
,197

where ca,k, cb,k > 0, and max{ca,k, cb,k}||xk − xk−1||2 is summable. For instance, one198
can choose ca,k = ca

k1+δ||xk−xk−1||2
, ca > 0, δ > 0 and similarly for cb,k.199

One can also devise choices of (ak)k∈N and (bk)k∈N that are independent of200
(xk)k∈N, and still guarantee global convergence. We dub this unconditional con-201
vergence. The following result generalizes those in [5, 42, 39].202

Theorem 4 (Unconditional convergence). Consider Algorithm1 with the inexact203
iteration (2.1). Assume that there exists a constant τ > 0 such that one of the204
following holds,205

(2.4)

 (1 + ak)− γk
2β

(1 + bk)2 > τ : ak <
γk
2β
bk,

(1− 3ak)− γk
2β

(1− bk)2 > τ : bk ≤ ak or γk
2β
bk ≤ ak < bk,

206

and, moreover
∑
k∈N εk < +∞ and

∑
k∈N ||ξk|| < +∞. Then

∑
k∈N ||xk − xk−1||2 <207

+∞, and there exists x? ∈ Argmin(Φ) such that the sequence (xk)k∈N converges tox?.208

See SectionA for the proof.209

3. Partial smoothness and finite time activity identification.210

3.1. Partial smoothness. From now on, besides assumption (H.1), we assume211
that R in (Popt) is moreover partly smooth relative to a smooth manifold. The notion212
of partial smoothness is first introduced in [35]. This concept, as well as that of identi-213
fiable surfaces [58], captures the essential features of the geometry of non-smoothness214
which are along the so-called active/identifiable manifold. For convex functions, a215
closely related idea is developed in [34]. Loosely speaking, a partly smooth function216
behaves smoothly as we move on the identifiable submanifold, and sharply if we move217
normal to the manifold. In fact, the behaviour of the function and of its minimiz-218
ers depend essentially on its restriction to this manifold, hence offering a powerful219
framework for algorithmic and sensitivity analysis theory.220
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Let Mx be a C2-smooth embedded submanifold of Rn around a point x. To221
lighten terminology, henceforth we shall state C2-manifold instead of C2-smooth em-222
bedded submanifold of Rn. The natural embedding of a submanifold Mx into Rn223
permits to define a Riemannian structure on Mx, and we simply say Mx is a Rie-224
mannian manifold. TMx(x′) denotes the tangent space toMx at any point x′ near x225
inMx. More materials on manifolds are given in SectionB.1.226

We are now ready to state formally the class of partly smooth functions through227
its regularity properties.228

Definition 5 (Partly smooth function). Let R ∈ Γ0(Rn), R is said to be partly229
smooth at x relative to a setMx containing x if ∂R(x) 6= ∅, and moreover230

(i) Smoothness: Mx is a C2-manifold around x, R restricted toMx is C2 near x;231

(ii) Sharpness: The tangent space TMx
(x) coincides with Tx

def
= par(∂R(x))⊥;232

(iii) Continuity: The set-valued mapping ∂R is continuous at x relative toMx.233

The class of partly smooth functions at x relative toMx is denoted as PSFx(Mx).234
One can easily show that a function in Γ0(Rn) which is locally polyhedral around235

x is partly smooth at x relative to x + Tx. Polyhedrality also implies that the sub-236
differential is locally constant around x along x + Tx. Capitalizing on the results237
of [35], it can be shown that under mild transversality conditions, the set of proper238
lsc convex and partly smooth functions is closed under addition and pre-composition239
by a linear operator. Moreover, absolutely permutation-invariant convex and partly240
smooth functions of the singular values of a real matrix, i.e. spectral functions, are241
convex and partly smooth spectral functions of the matrix [22]. Many examples of242
partly smooth functions that are popular in signal processing, machine learning and243
statistics can be found in [57], see also Section 5.244

[35, Proposition 2.10] allows to prove the following fact.245

Fact 6 (Local normal sharpness). If R ∈ PSFx(Mx), then all x′ ∈ Mx near x246
satisfy TMx(x′) = Tx′ . In particular, whenMx is affine or linear, then Tx′ = Tx.247

We now give expressions of the Riemannian gradient and Hessian (see SectionB.1248
for definitions) for the case of partly smooth functions relative to a C2 submanifold.249
This is summarized in the following fact which follows by combining (B.2), (B.3),250
Definition 5, Fact 6 and [23, Proposition 17] (or [40, Lemma2.4]).251

Fact 7. If R ∈ PSFx(Mx), then for any x′ ∈Mx near x252

∇Mx
R(x′) = PTx′ (∂R(x′)),253

and this does not depend on the smooth representation of R on Mx. In turn, for all254
h ∈ Tx′255

∇2
Mx

G(x′)h = PTx′∇
2R̃(x′)h+ Wx′

(
h,PT⊥

x′
∇R̃(x′)

)
,256

where R̃ is a smooth extension (representative) of R onMx, and Wx(·, ·) : Tx×T⊥x →257
Tx is the Weingarten map ofMx at x (see SectionB.1 for definitions).258

3.2. Finite time activity identification. In this section, we state our result259
establishing that FB-type methods have the finite activity identification property.260

Theorem 8 (Finite activity identification). Suppose that an FB-type method is261
used to create a sequence (xk)k∈N that converges to x? ∈ Argmin(Φ) such that R ∈262
PSFx?(Mx?), and moreover the non-degeneracy condition263

(ND) −∇F (x?) ∈ ri
(
∂R(x?)

)
,264

holds. Then, there exists a large enough K > 0 such that for all k ≥ K, xk ∈Mx? .265
If moreover,266
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(i) Mx? is an affine subspace, thenMx? = x? + Tx? and ya,k, yb,k ∈Mx? ,∀k > K;267
(ii) R is locally polyhedral around x?, then ya,k, yb,k ∈Mx? = x?+Tx? for all k > K,268
∇Mx?

R(xk) = ∇Mx?
R(x?), and ∇2

Mx?
R(xk) = 0, ∀k ≥ K.269

Remark 9.270
(i) If F is also locally C2 around x?, the smooth perturbation rule of partly smooth271

functions [35, Corollary 4.7], ensures that Φ ∈ PSFx?(Mx?).272
(ii) The iFB is convergent under the assumptions of Theorem3 or Theorem4.273

The FISTA method is sequence convergent for ak = bk = k−1
k+q , q > 2, and274

γk ≡ γ ∈]0, β] [18, 9]. Thus, Theorem 8 holds true for all these instances.275
(iii) The non-degeneracy condition (ND) can be viewed as a geometric general-276

ization of the strict complementarity of non-linear programming. Building277
on the arguments of [29], it is almost a necessary condition for the finite278
identification ofMx? . Relaxing it in general is a challenging problem.279

(iv) When R is locally polyhedral around x?, in addition with the finite identifi-280
cation of Mx? = x? + Tx? , we also have ∇Mx?

Φ(xk) = ∇Mx?
Φ(x?), hence281

∇2
Mx?

Φ(xk) = 0, for k large enough.282

Proof. By assumption, the sequence (xk)k∈N created by any FB-type method283
converges to some x? ∈ Argmin(Φ), and the latter is non-empty by assumption (H.3).284
Now (1.3) is equivalent to285

ya,k − γk∇F (yb,k)− xk+1 ∈ γk∂R(xk+1).286

By (H.2), we get287

dist
(
−∇F (x?), ∂R(xk+1)

)
≤ || 1

γk

(
ya,k − xk+1

)
−∇F (yb,k) +∇F (x?)||

≤ 1

γk

(
ak||xk − xk−1||+ ||xk+1 − xk||

)
+ ||∇F (yb,k)−∇F (x?)||

≤
( 1

γk
+

1

β

)
||xk − xk−1||+

1

γk
||xk+1 − xk||+

1

β
||xk − x?||.

288

Since lim inf γk = ε > 0 and xk converges to x?, we obtain dist(−∇F (x?), ∂R(xk))→289
0. Owing to assumption (H.1), R is subdifferentially continuous at every point in290
its domain, and in particular at x? for −∇F (x?), which in turn entails R(xk) →291
R(x?). Altogether, this shows that the conditions of [28, Theorem5.3] are fulfilled on292
〈∇F (x?), ·〉+R, and the result follows.293
(i) When the active manifoldMx? is an affine subspace, thenMx? = x?+Tx? owing294

to the normal sharpness property and the claim follows immediately;295
(ii) When R is locally polyhedral around x?, thenMx? is an affine subspace and the296

identification of ya,k, yb,k follows from (i). For the rest, it is sufficient to observe297
that by polyhedrality, for any x ∈ Mx? near x?, ∂R(x) = ∂R(x?). Therefore,298
combining Fact 6 and Fact 7, we get the second conclusion.299

A bound on the identification iteration. In Theorem8, we have not provided an300
estimateK ≥ 0 beyond which finite identification occurs. There is of course a situation301
where the answer is trivial, i.e. R is the indicator function of an affine subspace.302
However, knowing K has practical interest, for instance, if one wants to switch to303
higher order acceleration (see Section 4.5). It is then legitimate to wonder whether304
such an estimate of K can be given. In the following, we shall give a bound in some305
important cases. For the sake of simplicity, we state the result for the case of FB (i.e.306
ak = bk ≡ 0 in Algorithm1). A similar reasoning can be easily generalized to the case307
of any converging FB-type method.308
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Proposition 10. Suppose that the assumptions of Theorem8 hold. Then the309
following holds.310
(i) If the iterates are such that ∂R(xk) ⊂ rbd(∂R(x?)) whenever xk /∈ Mx? , then311

xk ∈Mx? for all k ≥ ||x0 − x?||2

ε2dist
(
−∇F (x?), rbd(∂R(x?))

)2 ;312

(ii) If R is separable, i.e. R(x) =
∑m
i=1 σCi(xbi), where ∀1 ≤ i ≤ m, bi ⊂ {1, . . . , n},313 ⋃m

i=1 bi = {1, . . . , n}, and bi ∩ bj = ∅, ∀i 6= j, and dim(Ci) = |bi|, then identifica-314

tion of Mx? occurs for some k larger than ||x0 − x?||2

ε2
∑

i∈Ic
x?

dist
(
−∇F (x?)bi , rbd(Ci)

)2 ,315

where Ix
def
=
{
i : xbi 6= 0

}
.316

Proof. (i) By firm non-expansiveness of proxγk−1R
, and non-expansiveness of317

Id− γk−1∇F , we have318

||xk − x?||2 ≤ ||(Id− γk−1∇F )(xk−1)− (Id− γk−1∇F )(x?)||2

− ||xk−1 − γk−1∇F (xk−1)− xk + γk−1∇F (x?)||2

≤ ||xk−1 − x?||2 − ε2||uk −∇F (x?)||2,

319

where we denoted uk
def
= (xk−1 − xk)/γk−1 − ∇F (xk−1). By definition, we have320

uk ∈ ∂R(xk). Suppose that identification has not occurred at k, i.e. that xk /∈321
Mx? , and hence uk ∈ ∂R(xk) ⊂ rbd(∂R(x?)). Therefore, continuing the above322
inequality, we get323

||xk − x?||2 ≤ ||xk−1 − x?||2 − ε2dist
(
−∇F (x?), ∂R(xk)

)2
324

≤ ||xk−1 − x?||2 − ε2dist
(
−∇F (x?), rbd(∂R(x?))

)2
325

≤ ||x0 − x?||2 − kε2dist
(
−∇F (x?), rbd(∂R(x?))

)2
,326327

and dist(−∇F (x?), rbd(∂R(x?))) > 0 owing to (ND). Taking k as the largest328
integer such that the right hand is positive, we deduce that the number of iter-329
ations where identification has not occurred, does not exceed the given bound,330
whence our conclusion follows.331

(ii) We have ∂σCi(x?bi) = Ci,∀i ∈ Icx? . In turn, by separability, R is partly smooth332

at x? relative toMx? =×m

i=1Mx?bi
, whereMx?bi

= 0 if i ∈ Icx? andMx?bi
6= 0333

otherwise. Suppose that at iteration k, Icx? ∩ Ixk 6= ∅. Denote hk−1 = xk−1 −334
γk−1∇F (xk−1), and h? = x? − γk−1∇F (x?). Thus for any i ∈ Icx? ∩ Ixk , we have335

xk,bi − x?bi = hk−1,bi − Pγk−1Ci(hk−1,bi)336

= (hk−1,bi − h?bi)− (Pγk−1Ci(hk−1,bi)− Pγk−1Ci(h
?
bi))337338

where we used Moreau identity in the first equality. Since i ∈ Ixk ∩ Icx? , we339
have hk−1,bi /∈ γk−1Ci and h?bi ∈ γk−1Ci, or equivalently, that Pγk−1Ci(hk−1,bi) ∈340
γk−1rbd(Ci) = γk−1rbd(∂σCi(x

?
bi

)) and Pγk−1Ci(h
?
bi

) = h?bi . Combining this with341
the fact that the orthogonal projector on γk−1Ci is firmly non-expansive, we get342

||xk,bi − x?bi ||
2 ≤ ||hk−1,bi − h?bi ||

2 − ||Pγk−1Ci(hk−1,bi)− h?bi ||
2343

= ||hk−1,bi − h?bi ||
2 − ||Pγk−1Ci(hk−1,bi) + γk−1∇F (x?)bi ||

2344

≤ ||hk−1,bi − h?bi ||
2 − γ2

k−1dist
(
−∇F (x?)bi , rbd(Ci)

)2
345

≤ ||hk−1,bi − h?bi ||
2 − ε2dist

(
−∇F (x?)bi , rbd(Ci)

)2
.346347
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This bound together with non-expansiveness of proxγk−1Ci
and Id−γk−1∇F yield348

||xk − x?||2 =
∑

i∈Ic
x?
||xk,bi − x?bi ||

2
+
∑

j∈Ix?
||xk,bj − x?bj ||

2349

≤ ||hk−1 − h?||2 − ε2
∑

i∈Ic
x?

dist
(
−∇F (x?)bi , rbd(Ci)

)2
350

≤ ||xk−1 − x?||2 − ε2
∑

i∈Ic
x?

dist
(
−∇F (x?)bi , rbd(Ci)

)2
351

≤ ||x0 − x?||2 − kε2
∑

i∈Ic
x?

dist
(
−∇F (x?)bi , rbd(Ci)

)2
,352

353
where the last term in the right hand side is strictly positive by (ND). Taking354
k as the largest integer such that the right hand side is positive, we deduce that355
the number of iterations where Icx? ∩ Ixk 6= ∅ does not exceed the given bound.356
We then conclude that beyond this bound, there is no i such that Mxk,bi

6= 0357
whileMx?bi

= 0. The proof is complete.358

Note that, as intuitively expected, this bound increases as the non-degeneracy con-359
dition (ND) becomes more stringent. However, as it depends on x?, it is only of theo-360
retical interest. In the separable case, observe that

∑
i∈Ic

x?
dist(−∇F (x?)bi , rbd(Ci))

2 =361

dist(−∇F (x?), ∂R(x?))2 when σCi is differentiable at x?bi for all i ∈ Ix? . The case of362
the `1-norm considered in [26] is recovered in the second situation of Proposition 10363
with Ci ≡ [−λ, λ] for some λ > 0.364

3.3. Stability to errors. Consider the inexact version (2.1) with εk ≡ 0. As-365
sume that (ξk)k∈N is such that (xk)k∈N converges to some x? ∈ Argmin(Φ) (see366
typically the summability conditions in Theorem3(i)-(ii)). Then, since ξk → 0, it can367
be easily seen from the proof of Theorem8 that the activity identification property368
holds true for the above inexact iteration.369

However, one cannot afford in general having non-zero errors εk in the implicit370
step as in (2.1), even summable. The deep reason behind this is that in the exact371
case, under condition (ND), the proximal mappings of R and R+ ιMx?

locally agree372
nearby x?. This property is clearly violated if approximate proximal mappings are373
involved. Here is a simple example.374

Example 11. Let F : x ∈ R 7→ 1
2 |δ − x|

2, with δ ∈]− 1, 1[, and R : x ∈ R 7→ |x|.375
Φ ∈ Γ0(R) and has a unique minimizer x? = prox|·|(δ) = 0. Moreover, Φ is partly376

smooth at x? relative toMx? = {0}, and δ−x? = δ ∈ ri
(
∂R(x?)

)
=]−1, 1[. Consider377

the inexact version of the FB algorithm378

(3.1) xk+1 ∈ (Id + ∂εk | · |)−1(δ),379

where we set γk ≡ 1, since ∇F is 1-Lipschitz. From [17, Example 5.2.5], we have380

∂ε| · |(x) =


[1− ε/x, 1] if x > ε/2

[−1, 1] if |x| ≤ ε/2
[−1,−1− ε/x] if x < −ε/2,

381

whence the graph of (Id+∂ε| · |)−1, a set-valued operator, can be easily deduced. Thus,382
depending on εk and the choice made in the inclusion (3.1), xk may never vanish,383
i.e.xk /∈Mx? , for any finite k.384

4. Local linear convergence of FB-type methods. We are now in position385
to present the local linear convergence result for FB-type methods, and all the proofs386
in this section are collected in Section B. Throughout this section, x? is a global387
minimizer of problem (Popt) to which the sequence (xk)k∈N provided by the FB-type388
method converges. Mx? is the partial smoothness manifold of R at x?, and Tx? the389
corresponding tangent space.390
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Restricted injectivity. In addition to (H.2), in the rest of the paper, we also391
assume that F is locally C2 around x?, and its Hessian fulfills the following restricted392
injectivity condition,393

(RI) ker
(
∇2F (x?)

)
∩ Tx? = {0}.394

Local continuity of the Hessian of F then implies that there exist α ≥ 0 and ε > 0,395
such that ∀h ∈ Tx? ,396

(4.1) 〈h, ∇2F (x)h〉 > α||h||2,∀x ∈ Bε(x?)
def
= {x ∈ Rn : ||x− x?|| ≤ ε}.397

It turns out that under conditions (ND) and (RI), one can show that problem398
(Popt) admits a unique minimizer, and local quadratic growth of Φ if R is moreover399
partly smooth. Recall that a function Φ grows quadratically locally around x? if400
∃c > 0 such that Φ(x) ≥ Φ(x?) + c||x− x?||2, ∀x near x?.401

Proposition 12 (Uniqueness of the minimizer). Under the assumptions (H.1)-402
(H.3), let x? ∈ Argmin(Φ) be a global minimizer of (Popt) such that F is locally C2403
around x?. If conditions (ND) and (RI) are also fulfilled, then404

(i) x? is the unique minimizer of (Popt).405
(ii) If moreover R∈PSFx?(Mx?), then Φ has at least a quadratic growth near x?.406

4.1. Locally linearized iteration. Define the following matrices which are all407
symmetric,408

(4.2) H
def
= γPTx?∇

2F (x?)PTx? , G
def
= Id−H, U def

= γ∇2
Mx?

Φ(x?)PTx? −H,409

where ∇2
Mx?

Φ is the Riemannian Hessian of Φ on the manifoldMx? (see Fact 7).410

Lemma 13. For problem (Popt), let (H.1)-(H.3) hold and x? ∈ Argmin(Φ) such411
that R ∈ PSFx?(Mx?) and F is locally C2 around x?. Then U is symmetric positive412
semi-definite under either of the following circumstances:413

(i) (ND) holds.414
(ii) Mx? is an affine subspace.415

In turn, Id +U is invertible, and W def
= (Id +U)−1 is symmetric positive definite with416

eigenvalues in ]0, 1].417

The following simple lemma gathers important properties of the matrices in (4.2).418

Lemma 14. For the matrices in (4.2) and W ,419
(i) Under (H.2) and (RI),420

(a) H is symmetric positive definite with eigenvalues in ]γα, γβ ].421

(b) For γ ∈ [ε, 2β − ε], ε and ε > 0, G has eigenvalues in [−1 + ε
β
, 1− αε[⊂422

]− 1, 1[.423
(c) For γ ∈ [ε, β], G is also symmetric positive semi-definite with eigenvalues424

in [0, 1− αε[⊂ [0, 1[.425
(ii) If both the assumptions of Lemma 13 and (i) hold, then WG has real eigen-426

values lying in ]−1, 1[. If moreover γ ∈ [ε, β], then WG has eigenvalues lying427
in [0, 1[.428

Let a ∈ [0, ā], b ∈ [0, b̄], γ ∈ [ε, 2β − ε], define rk
def
= xk − x?, dk

def
=
( rk
rk−1

)
, and matrix429

(4.3) M
def
=

[
(a− b)W + (1 + b)WG −(a− b)W − bWG

Id 0

]
.430

Our interest in the vector dk is inspired by the convergence rate analysis of the heavy431
ball method [50, Section 3.2]. We now show that once the active manifold is identified,432
FB-type iteration locally linearizes.433
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Proposition 15 (Locally linearized iteration). Let (H.1)-(H.3) hold, and sup-434
pose that an FB-type method is used to create a sequence (xk)k∈N that converges to435
x? ∈ Argmin(Φ) such that (ND) and (RI) hold. If moreover,436

(4.4) ak → a ∈ [0, 1], bk → b ∈ [0, 1], γk → γ ∈ [ε, 2β − ε],437

then for k large enough, we have438

(4.5) dk+1 = Mdk + o(||dk||).439

The o(·) term disappears when R is locally polyhedral around x? and (γk, ak, bk) are440
chosen constant.441

Remark 16.442
(i) Condition (4.4) asserts that both the inertial parameters (ak, bk) and the step-443

size γk should converge to some limit points, and cannot be relaxed in general.444
(ii) For the FB method (i.e. ak = bk ≡ 0), (4.3) can be further simplified, and445

the corresponding linearized iteration can be given in terms of rk directly,446

(4.6) rk+1 = WGrk + o(||rk||).447

(iii) Proposition 15 also covers the sequence convergent FISTA method [18, 9],448
i.e. ak = bk = k−1

k+q , q > 2 and γk ∈]0, β]. In this case, we have indeed449
ak → a = b = 1.450

4.2. Spectral properties of M . Our aim now is to establish local linear con-451
vergence of FB-type schemes. For this, given the structure of the locally linearized452
iteration (4.5), it is sufficient to strictly upper-bound by 1 the spectral radius of M ,453
and conclude using standard arguments. This is what we are about to do.454

The rationale is to start by relating explicitly the eigenvalues of M to those of G455
or WG, and then use Lemma14 to upper-bound the spectral radius of M . However,456
given the structure of M , this is a challenging linear algebra problem, and can only457
be done for some cases: a and b possibly different but the the function R is locally458
polyhedral, or R is a general partly smooth function but a = b. These situations are459
not restrictive at all and cover all interesting applications we have in mind.460

Let η and σ be an eigenvalue of WG and M respectively. We denote η, η the461
smallest and largest (signed) eigenvalues of WG, and ρ(M) the spectral radius of M .462

Locally polyhedral case. When R is locally polyhedral around x?, U vanishes and463
W = Id, and M in (4.3) simplifies.464

Proposition 17. Suppose that R is locally polyhedral around x?. If
( r1
r2

)
is an465

eigenvector of M corresponding to an eigenvalue σ, then it must satisfy r1 = σr2.466
Moreover, we have467

(i) r2 is an eigenvector of G associated to an eigenvalue η, where η and σ satisfy468
the relation469

(4.7) σ2 −
(
(a− b) + (1 + b)η

)
σ + (a− b) + bη = 0.470

(ii) Given any (a, b) ∈ [0, 1[2, then ρ(M) < 1 if, and only if,471

(4.8)
(
2(b− a)− 1

)
/(1 + 2b) < η.472

Remark 18. It can be shown that, given a and b, ρ(M) is determined only by η473
and η. These extreme eigenvalues lie in ]−1, 1[ (γ ∈]0, 2β[) or even in [0, 1[ (γ ∈]0, β])474
by Lemma14(i)(b)-(c).475

General partly smooth case. When R is a general partly smooth function, then476
U is nontrivial, and the spectral analysis of (4.3) becomes a generalized eigenvalue477
problem which is much more complex. Therefore, we assume b = a. We have the478
following corollary of Proposition 17.479
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Corollary 19. Let b = a. If
( r1
r2

)
be an eigenvector of M corresponding to an480

eigenvalue σ, then it must satisfy r1 = σr2. Moreover r2 is an eigenvector of G related481
to eigenvalue η, where η and σ satisfy the relation482

(4.9) σ2 − (1 + a)ησ + aη = 0,483

and ρ(M) < 1 if, and only if,484

(4.10) −1/(1 + 2a) < η.485

Remark 20. Condition (4.10) holds naturally for γ ∈]0, β], since by Lemma14(ii),486
for such γ, η ≥ 0.487

4.3. Local linear convergence of FB-type methods. We start with the case488
where R is locally polyhedral around x?.489

Theorem 21. Suppose (H.1)-(H.3) hold, and an FB-type method generates a490
sequence xk → x? ∈ Argmin(Φ) such that R is locally polyhedral around x?, F is C2491
near x?, and conditions (ND), (RI) are satisfied. If moreover (4.4) and (4.8) hold,492
then (xk)k∈N converges locally linearly to x?. More precisely, given any ρ ∈ [ρ(M), 1[,493
there exists K > 0 and a constant C > 0, such that for all k ≥ K, there holds494

||xk − x?|| ≤ Cρk−K ||xK − x?||.495

Proof. Combining Proposition 15, Proposition 17 and [50, Section 2.1.2, Theo-496
rem1], leads to the claimed result.497

Remark 22. ρ(M) is the optimal rate. Indeed, when ak ≡ a, bk ≡ b and γk ≡ γ,498
the o(·) term vanishes in (4.5) and thus, ρ = ρ(M).499

Let’s turn to the case R is a general partly smooth function, but b = a ∈ [0, ā].500

Theorem 23. Suppose assumptions (H.1)-(H.3) hold, and the FB-type methods501
generate a sequence xk → x? ∈ Argmin(Φ) such that R ∈ PSFx?(Mx?), F is C2 near502
x?, and conditions (ND), (RI) are satisfied. If moreover (4.4) holds with b = a, and503
(4.10) is satisfied, then (xk)k∈N converges locally linearly to x?. More precisely, given504
any ρ ∈ [ρ(M), 1[, there exists K > 0 and a constant C > 0, such that for all k ≥ K,505
there holds506

||xk − x?|| ≤ Cρk−K ||xK − x?||.507

Proof. This follows by combining Proposition 15, Corollary 19 and [50, Section508
2.1.2, Theorem 1].509

Remark 24.510
(i) The limit b = a in (4.4) does not mean that we should set bk = ak,∀k ∈ N511

along the iterations.512
(ii) In contrast to our previous work [37], which addresses the case of FB method,513

the rate estimates that we provide here are much sharper in general, and514
both estimates only coincide when R is locally polyhedral (see the numerical515
experiments for more details). The main reasons underlying this is that, here,516
our rate estimate relies on the locally linearized iteration in Proposition 15 and517
the spectral properties of M , which takes intro account the geometry of the518
identified submanifold (its curvature for instance). This is not the case in our519
former work.520

(iii) The obtained results can be readily extended to the variable metric FB split-521
ting method [21], where a rate under an appropriate metric can be obtained.522
However for the sake of brevity, we do not pursue this further.523
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(iv) In our proof of local linear convergence, convexity does play a crucial role.524
For instance, it was only needed to show that the matrix U is positive semi-525
definite. This suggests that our local linear convergence claims can be extended526
to the non-convex case, provided that the Riemannian Hessian of R is assumed527
positive semi-definite at x?. In addition, to guarantee finite identification in528
the non-convex setting, we need global convergence of iFB to a critical point,529
which can be ensured if for instance Φ satisfies the (non-smooth) Kurdyka-530
Łojasiewicz inequality [15]. This will be left to a forthcoming paper.531

The restricted injectivity condition (RI) plays an important role in our local532
convergence rate analysis and in general cannot be relaxed. However, for some special533
cases, such as when R is locally polyhedral, it can be removed, at the price of less534
sharp rate estimation. This is formalized in the following statement.535

Theorem 25. Suppose that (H.1)-(H.3) hold, and an FB-type method creates a536
sequence xk → x? ∈ Argmin(Φ) such that R is locally polyhedral around x?, F is C2537
near x?, and condition (ND) holds. If moreover there exists ε > 0 and a subspace V538
such that539

ker(PTx∇2F (x)PTx) = V, ∀x ∈ Bε(x?) ∩ (x? + Tx?).540

Then (xk)k∈N converges locally linearly to x?.541

The expression of the local rate can be found by inspecting the proof.542

4.4. Discussion. We here summarize some main conclusions on the local linear543
convergence behaviour of FB-types methods. Recall that α from (4.1) and 1/β is the544
Lipschitz constant of ∇F .545

FB is locally faster than FISTA. For the sake of brevity (the same conclusions546
hold true in the general case), we consider bk = ak ≡ a ∈ [0, 1] and γk ≡ γ ∈]0, β]547
is fixed, in which case η ≥ η ≥ 0 (see Lemma14(ii)), and thus condition (4.10) is in548
force. Moreover η is also the local convergence rate of the FB method, and ρ(M)549
depends solely on η and the value of a. Recall that ρ(M) is the best local linear550
convergence rate (seeTheorem23 and 21).551

Figure 1 shows ρ(M) as a function of a for fixed η. One can make the the following552
observations:553

(i) When a ∈ [0, η], we have ρ(M) ≤ η. This entails that if iFB is used with such554
a choice of inertial parameter, it will converge locally lineally faster than FB.555
For a ∈ [η, 1], the situation reverses as ρ(M) ≥ η, and iFB becomes slower556
than FB.557

(ii) In particular, as a = 1 for FISTA, we have ρ(M) =
√
η > η. In plain words,558

though FISTA is known to be globally faster (in terms of the objective)559
than FB, attaining the optimal O(1/k2) rate, locally, the situation radically560
changes as FISTA will always ends up being locally slower than FB. A similar561
observation is made in [54] for the special case of FISTA used to solve the562
LASSO problem. This explains in particular why many authors [25, 46] re-563
sort to restarting to accelerate local convergence of FISTA, which consists in564
resetting periodically the scheme to a = 0 which is more favorable to FISTA.565
Our predictions in Figure 1 gives clues on when to restart (i.e. detect the566
point in red on the rate curve).567

(iii) ρ(M) attains its minimal value at a = (1−
√

1−η)2

η , and this is the best con-568
vergence rate that can be achieved locally for FB-type methods.569

Oscillation of the FISTA method. A typical feature of the FISTA method is that570
it is not monotone and locally oscillates [13], which makes the local convergence even571
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Fig. 1: Let b = a, and assume η, η are known and also close enough such that the
spectral radius ρ(M) is only affected by η, then ρ(M) is a function of a.

slower, see Figure 2 and [54] for a FISTA applied to the LASSO problem. In fact,572
the iFB scheme shares this property as well when the inertial parameters are large.573
Such oscillatory behaviour is due to the fact that, for those inertial parameters, the574
eigenvalue σmax such that |σmax| = ρ(M) is complex. It can then be shown that the575
oscillation period of ||xk − x?|| is exactly π

θ , where θ is the argument of σmax.576
For the parameter settings used in Figure 1, i.e. b = a and γ ∈]0, β], we have577 {

a ∈
[
0,
(
(1−

√
1− η)2

)
/η
]

: σmax is real,

a ∈
](

(1−
√

1− η)2
)
/η, 1

]
: σmax is complex,

578

then as long as a > (1−
√

1− η)2/η, the iFB method locally oscillates.579

4.5. Acceleration. The finite time activity identification property (Theorem 8)580
implies that, the globally convex but non-smooth problem eventually becomes locally581
C2-smooth, but possibly non-convex, constrained on the activity manifold. This opens582
the door to acceleration, and even finite termination, exploiting the structure of the583
objective and that of the identified manifold. There are several ways to achieve this584
goal as we explain hereafter.585

Optimal first-order method. In this case, the idea is to keep the scheme imple-586
mented in Algorithm1, and to refine the parameters to minimize the local convergence587
rate established in Section 4. Indeed, as shown in Figure 1 and the discussion that588
follows, there is a proper choice of the inertial parameters a and b that minimizes589
ρ(M). More precisely, choose γ ∈]0, β], then η = 1−αγ ≥ η ≥ 1−γ/β ≥ 0, and ρ(M)590
depends only on η, a and b. Then with fixed γ (hence η), ρ(M) attains its minimal591
value for a and b satisfying592

(4.11)

{
b = a : a =

(
(1−

√
1− η)2

)
/η = (1−√αγ)/(1 +

√
αγ),

b 6= a : a = (1−
√

1− η)2 + b(1− η) = (1−√αγ)2 + bαγ,
593

and the optimal value ρ? of ρ(M) reads594

(4.12) ρ? = 1−
√

1− η = 1−√γα,595

where the second equality comes from (4.2) and Lemma14. This is a decreasing596
function of γ, and ρ? = 1 −

√
αβ is then the minimal rate attained for γ = β. This597

rate is in agreement with that [44, Theorem2.2.2]. If one can afford γ ≥ β as in our598
iFB schemes, owing to the result of [50, Section 3.2.1], the best local linear rate is599
actually600

ρ? =
1−
√
αβ

1 +
√
αβ

for γ =
4β

(1 +
√
αβ)2

, a =
(

1−
√
αβ

1 +
√
αβ

)2

and b = 0.601
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This is known to be the optimal rate that matches the lower complexity bounds for602
first-order methods to solve the class of problems (Popt) if F were also α-strongly603
convex [44, Theorem2.1.13]. In comparison, for the FB method (i.e. a = b = 0), the604
optimal rate is ρ? = η? = 1−αβ

1+αβ attained for γ = 2β
1+αβ .605

High-order acceleration: Newton method. Once the activity manifold has been606
identified, one can switch to Newton-type methods for locally minimizing Φ. This607
can be done either using local parameterizations obtained from U-Lagrangian theory608
or from Riemannian geometry [34, 40, 52]. One can also use the Riemannian version609
of the non-linear conjugate gradient method [52]. For these schemes, one can also610
show respectively quadratic and superlinear convergence since ∇2

Mx?
Φ(x?) is positive611

definite by Proposition 12(ii).612

5. Numerical experiments. In this section, we illustrate the obtained results613
by some popular examples originating from linear inverse problems in signal processing614
and machine learning. We consider the linear model y = Lxob + w, where y ∈ Rm,615
L : Rn → Rm is some linear operator, and w ∈ Rm stands for noise. Solving such a616
linear inverse problem can be cast as the optimization problem617

(Pλ) min
x∈Rn

1

2
||y − Lx||2 + λR(x),618

where λ > 0 is the tradeoff parameter, R ∈ Γ0(Rn) promotes objects similar to xob.619

We use three functions R: the `1-norm (R(x) = ||x||1
def
=
∑n
i=1 |xi|), the `1,2-norm620

(R(x) = ||x||1,2
def
=
∑
b∈B ||xb||, for a uniform disjoint partition of {1, . . . , n} in blocks621

B), and the nuclear norm (R(x) = ||x||∗
def
= ||σ(x)||1, where σ(x) ∈ (R+ \ {0})r is the622

vector of singular values of the rank-r matrix x ∈ Rn1×n2). Both the `1 and `1,2-norms623
are partly smooth relative to subspaces [57] (`1 is polyhedral), and the nuclear norm624
is partly smooth relative to the constant rank-r manifold [22].625

In all tests, the entries of L are independent copies of a mean-zero and standard626
Gaussian random variable. We consider the following settings of xob:627

`1-norm: (m,n) = (48, 128), ||xob||0 = 8;628
`1,2-norm: (m,n) = (60, 128), xob has 3 non-zero blocks of size 4;629
Nuclear norm: (m,n) = (1425, 2500), xob ∈ R50×50 and rank(xob) = 5.630

One can show that with the number of measurements m in the above cases, if631
λ and ||w|| are set properly, then with high probability on L, (Pλ) admits a unique632
solution x? withMx? =Mxob

, and x? satisfies both (ND) and (RI).633
Parameter settings. We choose γk ≡ β for FISTA. For FB/iFB methods, two634

choices of γk are considered: γk ≡ β and γk ≡ 1.5β. The inertial parameter of iFB635
and FISTA are:636

• FISTA: ak = bk = (k − 1)/(k + q), with q = 2 and q = 50;637
• iFB γk ≡ β: ak = bk ≡

√
5− 2− 10−3 such that Theorem 4 applies;638

• iFB γk ≡ 1.5β: ak, bk are chosen according to (2.3) such that Theorem 3 applies.639
The convergence profiles of ||xk −x?|| are shown in Figure 2. As demonstrated by640

all the plots, identification and local linear convergence occurs after finite time. The641
solid lines (denoted as “P”) represent the observed profiles, while dashed ones (denoted642
as “T”) stand for the theoretically predicted ones. The positions of the green points643
(or the starting points of the dashed lines) stand for the iteration at whichMx? has644
been identified.645

Tightness of predicted rates. For the `1-norm, our predicted rates coincide exactly646
with the observed ones (same slopes for the dashed and solid lines). This is due to647
the fact that they are all polyhedral and F is quadratic. Note that for FISTA, which648
is non-monotone, the prediction coincides with the envelope of the oscillations. For649
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Fig. 2: Local linear convergence and comparison of the FB-type methods (FB, iFB
and FISTA) in terms of ||xk − x?||. See text for description.

the `1,2-norm, though it is not polyhedral, our predicted rates still are very tight, due650
to the fact that the Riemannian Hessian is taken into account. For the nuclear norm,651
whose active manifold is not anymore a subspace, our estimation becomes slightly652
less sharp compared to the other examples, though barely visible on the plots. Our653
predicted rates for FB are much sharper than in our previous work [37].654

Comparison of the methods. From the numerical results, we can infer the following655
observations.656

(i) Comparison of FB/iFB and FISTA under γk ≡ β:657
• Globally, FISTA q = 50 is the fastest while q = 2 is the slowest. FB and658

iFB are in between them with iFB being faster.659
• For the finite identification, however, FISTA q = 2 in general shows the660

fastest identification, and FB is the slowest.661
• Locally, similar to the global convergence, FISTA q = 50 has the fastest662

rate and q = 2 is the slowest. Again, FB and iFB are between them with663
iFB being faster than FB.664

(ii) γk ≡ β vs γk ≡ 1.5β:665
• For FB, larger γk leads to faster global convergence and activity identifi-666

cation. However this does not mean that the bigger the better locally. As667
we discussed in Section 4.5, the best choice to get the optimal local linear668
rate is 2β/(1 + αβ).669
• iFB is faster than FB under the same choice of γk. FISTA q = 50 is no670

longer the fastest one, while it is outperformed by iFB γk ≡ 1.5β for the671
first 2 examples.672

It can be concluded from the above remarks that, in practice, FISTA with q = 2673
is not a wise choice if high accuracy solutions are needed. Indeed, under this choice,674
ak converges to 1 too fast, and this hampers its local behaviour as the discussions we675
anticipated in Section 4.4 (see Figure 1). In fact, such behaviour of ak can be avoided676
by choosing relatively bigger q, and this is exactly what the difference between q = 2677
and q = 50 implies. In our tests, q ∈ [50, 100] seems to a good trade-off, even bigger678
q is not recommended since it may lead to a much slower activity identification.679

However, it should be pointed out that the local rate of FISTA q = 50 being680
faster than FB does not contradict with our claim in Section 4.4 that FB is faster681
than FISTA locally. The reason is that we are limited by machine accuracy, and682
bigger value of q delays the speed at which ak approaches to 1 which actually makes683
FISTA behaviour similar to the iFB method.684

Acceleration. For the `1-norm which is polyhedral, we applied the first-order ac-685
celeration described in (4.11) for γk ≡ β and γk ≡ 1.5β respectively (Figure 2(a)).686
In fact, acceleration is not even needed in this case and one can access a closed-form687
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solution of x? once identification occurs. This can be easily achieved by projection the688
first-order minimality condition onMx? = x? + Tx? , which boils down to solving an689
overdetermined linear system which has a unique solution under the restricted injec-690
tivity condition (RI). For the `1,2-norm, we applied the Riemannian Newton method691
which converges quadratically, leading to a dramatic acceleration as can be seen in692
Figure 2(b). For the nuclear norm, a non-linear conjugate gradient method is ap-693
plied, leading again to a much faster (super-linear) local convergence. To summarize,694
in practice, the inertial+higher-order method hybrid strategy is an ideal choice for695
solving (Popt).696

Acknowledgements. This work has been partly supported by the European697
Research Council (ERC project SIGMA-Vision). JF is partly supported by Institut698
Universitaire de France.699

Appendix A. Proofs of Section 2.700
Throughout this section, H denotes a real Hilbert space. Let A : H ⇒ H be a701

set-valued operator. The graph of A is the set gphA = {(x, y) ∈ H × H|y ∈ A(x)},702
and its zeros set is zerA = {x ∈ H|0 ∈ A(x)}. Recall that a set-valued operator703
A : H⇒ H is monotone if704

(A.1) (∀(x, v) ∈ gphA), (∀(y, u) ∈ gphA), 〈x− y, v − u〉 ≥ 0.705

It is moreover maximal monotone if gphA can not be contained in the graph of any706
other monotone operator. Let β ∈]0,+∞[, B : H → H, then B is β-cocoercive if707

(A.2) (∀x, y ∈ H), β||Bx−By||2 ≤ 〈Bx−By, x− y〉.708

Proof (Theorem3). Define the following quantities709

(A.3) ϕk = 1
2
||xk − x?||2,∆k = 1

2
||xk − xk−1||2, Eb,k = 1

2
||yb,k − xk+1||2.710

Let x? ∈ zer(A+B), i.e. a solution (Pinc), which exists thanks to (H.6). Recall from711
(1.4) and (2.1) that712

−B(x?) ∈ A(x?) and ya,k − γkB(yb,k)− γkξk − xk+1 ∈ γkAεk(xk+1).713

Thus, we get714

〈ya,k − xk+1 − γk(B(yb,k)−B(x?))− γkξk, xk+1 − x?〉 ≥ −γkεk.715

Combining this with the definition of ya,k, we obtain716

(A.4)

ϕk − ϕk+1 = 1
2
〈xk − x? + xk+1 − x?, xk − xk+1〉

= ∆k+1 + 〈ya,k − xk+1, xk+1 − x?〉 − ak〈xk − xk−1, xk+1 − x?〉
≥ ∆k+1 + γk〈B(yb,k)−B(x?) + ξk, xk+1 − x?〉
− ak〈xk − xk−1, xk+1 − x?〉 − γkεk.

717

For 〈xk − xk−1, xk+1 − x?〉, we have718

(A.5) 〈xk − xk−1, xk+1 − x?〉 = 〈xk − xk−1, xk+1 − xk〉+ (∆k + ϕk − ϕk−1),719

where we applied the usual Pythagoras relation to 〈xk−xk−1, xk−x?〉. Putting (A.5)720
back into (A.4) yields721
(A.6)

ϕk+1 − ϕk − ak(ϕk − ϕk−1) ≤−∆k+1 − γk〈B(yb,k)−B(x?) + ξk, xk+1 − x?〉
+ ak〈xk − xk−1, xk+1 − xk〉+ ak∆k + γkεk.

722

Since B is β-cocoercive, Young’s inequality yields723

(A.7)
〈B(yb,k)−B(x?), xk+1 − x?〉

≥ β||B(yb,k)−B(x?)||2 + 〈B(yb,k)−B(x?), xk+1 − yb,k〉 = − 1
2β
Eb,k.

724
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Denote µk = 1− γk
2β ∈ [ ε2β , 1−

ε
2β ], νk = ak− γkbk

2β
and vk = xk+1−xk− νk

µk
(xk−xk−1).725

Substituting (A.7) back into (A.6), and since Eb,k = ∆k+1 +b2k∆k+bk〈xk−xk+1, xk−726
xk−1〉, we get727
(A.8)

ϕk+1 − ϕk − ak(ϕk − ϕk−1)

≤ −∆k+1 + γk
2β
Eb,k + ak〈xk − xk−1, xk+1 − xk〉+ ak∆k + γkεk − γk〈ξk, xk+1 − x?〉

= −µk
2
||vk||2 +

(
ak +

ν2k
µk

+
γkb

2
k

2β

)
∆k + γk

(
εk +

√
2||ξk||

√
ϕk+1

)
≤ −µk

2
||vk||2 +

(2ak
µk

+ γkbk
2β

)
∆k + γk

(
εk +

√
2||ξk||

√
ϕk+1

)
≤ −µk

2
||vk||2 +

(4β
ε
ak + (1− ε

2β
)bk
)
∆k + γ

(
εk +

√
2||ξk||

√
ϕk+1

)
.

728

where γ = (2β − ε). Denote θk = ϕk − ϕk−1 and δk =
(

4β
ε ak + (1− ε

2β )bk
)
∆k. We729

then arrive at the following key estimate730

(A.9)

θk+1 ≤ −µk2 ||vk||
2

+ akθk + δk + γεk +
√

2γ||ξk||
√
ϕk+1

≤
k∏
j=1

ajθ1 +
∑k

j=1

( k∏
l=j

al−j
)(
δj + γεj +

√
2γ||ξj ||

√
ϕj+1

)
≤ ākϕ1 +

∑k

j=1
āk−j

(
δj + γεj +

√
2γ||ξj ||

√
ϕj+1

)
.

731

(i) ak ∈]0, ā]: summing up the last inequality, we get732 ∑k

m=1
θm+1 = ϕk+1 − ϕ1733

≤ 1
1− āϕ1 +

∑k

m=1

∑m

j=1
āk−j

(
δj + γεj +

√
2γ||ξj ||

√
ϕj+1

)
734

≤ 1
1− āϕ1 +

∑k

m=1

(∑k−m
j=1

āj
)(
δm + γεm +

√
2γ||ξm||

√
ϕm+1

)
735

≤ 1
1− ā

(
ϕ1 +

∑k

m=1

(
δm + γεm +

√
2γ||ξm||

√
ϕm+1

))
,736

737
which entails738

ϕk+1 ≤ c+
√

2γ
∑k

m=1
||ξm||

√
ϕm+1 ≤ c+

√
2γ
∑k+1

m=1
||ξm−1||

√
ϕm,

(A.10)

739740
where c = ϕ1 + 1

1−ā (ϕ1 +
∑
m∈N δm + γ

∑
m∈N εm) ≥ 0. By assumption741

on the sequences (εm)m∈N and (δm)m∈N, c is bounded. Using the fact that742
(||ξm||)m∈N is summable, it can be easily shown, e.g. [6, LemmaA.9], that743
since (ϕk)k∈N satisfies (A.10), it also obeys ϕk ≤

√
c +

∑
j∈N ||ξj || < +∞.744

Denote t =
√
c+

∑
j∈N ||ξj ||. Then, (A.9) becomes745

θk+1 ≤ −µk2 ||vk||
2

+ āθk + δk + γεk +
√

2tγ||ξk||746

≤ −µk
2
||vk||2 + ak[θk]+ + δk + γεk +

√
2tγ||ξk||(A.11)747748

where [θ]+ = max
{
θ, 0
}
. As a result, we have749

[θk+1]+ ≤ ā[θk]+ + ek,750

where ek = δk + γεk +
√

2γ
√
t||ξk|| is a summable sequence by assumption.751

Therefore, using that ā < 1 and applying [20, Lemma3.1(iv)], it follows that752
[θk]+ is summable. In turn,753

ϕk+1 −
∑k+1

j=1
[θj ]+ ≤ ϕk+1 − θk+1 −

∑k

j=1
[θj ]+ = ϕk −

∑k

j=1
[θj ]+.754

It then follows that the sequence (ϕk −
∑k
j=1[θj ]+)k∈N is decreasing and755

bounded from below, hence convergent, whence we deduce that ϕk is also756
convergent.757
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(ii) ak ≡ 0: in this case, (A.9) reduces to758

ϕk+1 ≤ ϕk + δk + γεk +
√

2γ||ξk||
√
ϕk

≤ ϕ1 +
∑

j∈Nδj + γ
∑

j∈N εj +
√

2γ
∑k

j=1
||ξj ||
√
ϕj+1.

759

Again, by virtue of [6, LemmaA.9] and the summability of the sequences760

(δj)k∈N, (εj)k∈N and (||ξj ||)k∈N, we have ϕk ≤ t =
√
ϕ1 +

∑
j∈N(δj + γεj + ||ξj ||) <761

+∞. Consequently, we have762

ϕk+1 ≤ ϕk + δk + γεk +
√

2tγ||ξk||.763

We then conclude that the sequence (xk)k∈N is quasi-Fejér monotone (of type764
III) relative to zer(A + B) [20, Definition 1.1(3)], and thus ϕk is convergent765
[20, Proposition 3.6].766

In summary, for ak ∈ [0, ā], limk→+∞ ||xk − x?|| exists for any x? ∈ zer(A + B),767
and (xk)k∈N is bounded.768

By assumption (2.2), ak(xk − xk−1)→ 0 and bk(xk − xk−1)→ 0, and thus769

(A.12) νk
µk

(xk − xk−1)→ 0,770

since µk ≥ ε
2β > 0. Moreover, from (A.11), we obtain771 ∑

k∈N||vk||
2 ≤ 4β

ε

(
āϕ0 +

∑
k∈N(ā[θk]+ + ek)

)
< +∞.772

Consequently, vk → 0. Combining this with (A.12), we get that xk+1 − xk → 0. In773
turn, ya,k − xk+1 → 0 and yb,k − xk+1 → 0. Let x̄ be a weak cluster point of (xk)k∈N,774

and let us fix a subsequence, say xkj ⇀ x̄. Denote ukj
def
=

ya,kj − xkj+1

γkj
−B(yb,kj )−ξkj .775

Since B is cocoercive and yb,kj ⇀ x̄, we have B(yb,kj ) → B(x̄). In turn, ukj →776
−B(x̄) since γk ≥ ε > 0 and ξk → 0. Since (xkj+1, ukj ) ∈ gphAεkj , and the graph777
of the enlargement of A is weakly-strongly sequentially closed in R+ × H × H [53,778
Proposition 3.4(b)], we get that −B(x̄) ∈ A(x̄), i.e. x̄ is a solution of (Pinc). Opial’s779
theorem [47] concludes the proof.780

Proof (Theorem 4). In view of the imposed assumptions, we deduce from Theo-781
rem3 that (xk)k∈N is bounded, and thus c = supk∈N ||xk − x?|| < +∞. From (A.8),782
we apply Young’s inequality to get783

ϕk+1 − ϕk − ak(ϕk − ϕk−1)

≤
( γk

2β
− 1
)
∆k+1 + |ak − γkbk

2β
|(∆k+1 + ∆k) +

( γk
2β
b2k + ak

)
∆k + γk

(
εk + c||ξk||

)
= sk∆k+1 + tk∆k + γ

(
εk + c||ξk||

)
,

784

where sk = γk
2β − 1 + |ak − γkbk

2β |, tk = γk
2β b

2
k + ak + |ak − γkbk

2β |. Suppose that ak, bk785
and γk are non-decreasing so that sk, tk are also non-decreasing. Denote φk = ϕk −786
akϕk−1 + tk∆k and δk = γ

(
εk + c||ξk||

)
,787

(A.13)
φk+1 − φk ≤ (ϕk+1 − ϕk)− ak(ϕk − ϕk−1) + tk+1∆k+1 − tk∆k

≤ sk∆k+1 + tk∆k + tk+1∆k+1 − tk∆k + δk

= (sk + tk+1)∆k+1 + δk.

788

(i) ak ∈ [0, ā], bk ∈ [0, b̄], bk ≤ ak. We have γk
2β bk < ak, then from (A.13), and789

under the second condition in (2.4),790

(A.14)
φk+1 − φk ≤ (sk+1 + tk+1)∆k+1

=
(
(3ak+1 − 1) +

γk+1

2β
(1− bk+1)2

)
∆k+1 + δk ≤ −τ∆k+1 + δk.

791
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(ii) ak ∈ [0, ā], bk ∈]0, b̄], ak < bk. Since sk, tk are non-decreasing, then from792
(A.13) we have,793

φk+1 − φk ≤ (sk+1 + tk+1)∆k+1 + δk

≤
(γk+1

2β
− 1 + 2|ak+1 −

γk+1

2β
bk+1|+

γk+1

2β
b2k+1 + ak+1

)
∆k+1 + δk.

794

Next we discuss the relationship between ak+1 and γk+1

2β bk+1, which splits795
into two subcases.796
(a) If γk+1

2β bk+1 ≤ ak+1, k ∈ N, then from the second condition in (2.4),797

(A.15)
φk+1 − φk ≤

(
(3ak+1 − 1) +

γk+1

2β
(1− bk+1)2

)
∆k+1 + δk ≤ −τ∆k+1 + δk.798

(b) If ak+1 <
γk+1

2β bk+1, k ∈ N, then from the first condition of (2.4),799

(A.16)
φk+1 − φk ≤

(
−(1 + ak+1) +

γk+1

2β
(1 + bk+1)2

)
∆k+1 + δk ≤ −τ∆k+1 + δk.800

Under the assumptions of (i), we have from (A.14) (resp. (A.15) or (A.16)) that801 ∑k

j=1
∆j+1 ≤ 1

τ
(φ1 − φk+1) +

∑k

j=1
δj ≤ 1

τ
(φ1 + āϕk) +

∑k

j=1
δj < +∞.802

If the errors vanish, (A.14) (resp. (A.15) or (A.16)) indicate that φk is non-increasing.803
Thus804 ∑k

j=1
∆j+1 ≤ 1

τ
(φ1 − φk+1) ≤ 1

τ
(φ1 + āϕk) ≤ 1

τ

(
ākϕ1 + φ1

1− ā
)
< +∞.805

In summary, the summability condition in (2.2) is satisfied. The claim follows from806
Theorem3.807

Appendix B. Proofs of Section 4.808

B.1. Riemannian Geometry. LetM be a C2-smooth embedded submanifold809
of Rn around a point x. With some abuse of terminology, we shall state C2-manifold810
instead of C2-smooth embedded submanifold of Rn. The natural embedding of a811
submanifold M into Rn permits to define a Riemannian structure and to introduce812
geodesics onM, and we simply sayM is a Riemannian manifold. Denote respectively813
TM(x) and NM(x) the tangent and normal space ofM at point near x inM.814

Exponential map. Geodesics generalize the concept of straight lines in Rn, pre-815
serving the zero acceleration characteristic, to manifolds. Roughly speaking, a geodesic816
is locally the shortest path between two points on M. We denote by g(t;x, h)817
the value at t ∈ R of the geodesic starting at g(0;x, h) = x ∈ M with velocity818

ġ(t;x, h) = dg
dt

(t;x, h) = h ∈ TM(x) (which is uniquely defined). For every h ∈ TM(x),819

there exists an interval I around 0 and a unique geodesic g(t;x, h) : I →M such that820
g(0;x, h) = x and ġ(0;x, h) = h. The mapping821

Expx : TM(x)→M, h 7→ Expx(h) = g(1;x, h),822

is called Exponential map. Given x, z ∈M, the direction h ∈ TM(x) we are interested823
in is such that824

Expx(h) = z = g(1;x, h).825

Parallel translation. Given two points x, z ∈ M, let TM(x), TM(z) be their cor-826
responding tangent spaces. Define827

τ : TM(x)→ TM(z),828

the parallel translation along the unique geodesic joining x to z, which is isomorphism829
and isometry w.r.t. the Riemannian metric.830
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Riemannian gradient and Hessian. For a vector v ∈ NM(x), the Weingarten map831
ofM at x is the operator Wx(·, v) : TM(x)→ TM(x) defined by832

Wx(·, v) = −PTM(x)dV [h],833

where V is any local extension of v to a normal vector field onM. The definition is834
independent of the choice of the extension V , and Wx(·, v) is a symmetric linear oper-835
ator which is closely tied to the second fundamental form ofM, see [19, Proposition836
II.2.1].837

Let G be a real-valued function which is C2 along theM around x. The covariant838
gradient of G at z ∈M is the vector ∇MG(z) ∈ TM(z) defined by839

〈∇MG(z), h〉 = d
dt
G
(
PM(z + th)

)∣∣
t=0

, ∀h ∈ TM(z),840

where PM is the projection operator ontoM. The covariant Hessian of G at z is the841
symmetric linear mapping ∇2

MG(z) from TM(z) to itself which is defined as842

(B.1) 〈∇2
MG(z)h, h〉 = d2

dt2
G
(
PM(z + th)

)∣∣
t=0

, ∀h ∈ TM(z).843

This definition agrees with the usual definition using geodesics or connections [40].844
Now assume that M is a Riemannian embedded submanifold of Rn, and that a845
function G has a C2-smooth restriction on M. This can be characterized by the846
existence of a C2-smooth extension (representative) of G, i.e. a C2-smooth function847

G̃ on Rn such that G̃ agrees with G onM. Thus, the Riemannian gradient ∇MG(z)848
is also given by849

(B.2) ∇MG(z) = PTM(z)∇G̃(z),850

and ∀h ∈ TM(z), the Riemannian Hessian reads851

(B.3)
∇2
MG(z)h = PTM(z)d(∇MG)(z)[h] = PTM(z)d

(
z 7→ PTM(z)∇MG̃

)
[h]

= PTM(z)∇2G̃(z)h+ Wz

(
h,PNM(z)∇G̃(z)

)
,

852

where the last equality comes from [2, Theorem1]. When M is an affine or linear853

subspace of Rn, then obviously M = x + TM(x), and Wz(h,PNM(z)∇G̃(z)) = 0,854
hence (B.3) reduces to855

∇2
MG(z) = PTM(z)∇2G̃(z)PTM(z).856

See [33, 19] for more materials on differential and Riemannian manifolds.857
The following lemmas summarize two key properties that we will need throughout.858

Lemma 26. Let x ∈ M, and xk a sequence converging to x in M. Denote τk :859
TM(x) → TM(xk) be the parallel translation along the unique geodesic joining x to860
xk. Then, for any bounded vector u ∈ Rn, we have861

(τ−1
k PTM(xk) − PTM(x))u = o(||u||).862

Proof. From [1, Chapter 5], we deduce that for k sufficiently large,863

τ−1
k = PTM(x) + o(||xk − x||).864

In addition, locally near x alongM, the operator x 7→ PTM(x) is C1, hence,865

lim
k→∞

||(τ−1
k PTM(xk)

− PTM(x))u||
||u|| ≤ lim

k→∞

||PTM(x)(PTM(xk)
− PTM(x))||||u||

||u|| + o(||xk − x||)

≤ lim
k→∞

||PTM(xk) − PTM(x)||+ o(||xk − x||) = 0.866

Lemma 27. Let x, z be two close points in M, denote τ : TM(x) → TM(z) the867
parallel translation along the unique geodesic joining x to z. The Riemannian Taylor868
expansion of Φ ∈ C2(M) around x reads,869

τ−1∇MΦ(z) = ∇MΦ(x) +∇2
MΦ(x)PTM(x)(z − x) + o(||z − x||).870
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Proof. Since x, z ∈M are close, we have z = Expx(h) for some h ∈ TM(x) small871
enough, and thus, the Taylor expansion [52, Remark 4.2] of ∇MΦ around x reads872

(B.4) τ−1∇MΦ(z) = ∇MΦ(x) +∇2
MΦ(x)h+ o(||h||).873

Moreover, form the proof of [40, Theorem4.9], one can show that874

PTM(x)(z) = PTM(x)(Expx(h)) = PTM(x)(x) + h+ o(||h||2).875

Substituting back into (B.4) we get the claimed result.876

B.2. Proofs.877

Proof (Proposition 12).878
(i) Since F is locally C2 around x?, there exists ε > 0 sufficiently small such that879

for any δ ∈ Bε(0), we have for some t ∈]0, 1[,880

Φ(x? + δ)− Φ(x?) = 1
2
〈δ, ∇2F (x? + tδ)δ〉+R(x? + δ)−R(x?) + 〈∇F (x?), δ〉.881

Let xt = x? + tδ ∈ Bε(x?). We then distinguish two cases.882
(a) δ /∈ ker(∇2F (xt)). Since F and R are convex with −∇F (x?) ∈ ∂R(x?),883

Φ(x? + δ)− Φ(x?) ≥ 1
2
〈δ, ∇2F (xt)δ〉 > 0.884

(b) δ ∈ ker(∇2F (xt))\{0}. As R ∈ Γ0(Rn), it is sub-differentially regular at885
x?. Moreover ∂R(x?) 6= ∅ (−∇F (x?) is in it), and thus the directional886
derivative R′(x?, ·) is proper and closed, and it is the support of ∂R(x?)887
[51, Theorem8.30]. It then follows from the separation theorem [30,888
TheoremV.2.2.3] that889

−∇F (x?) ∈ ri(∂R(x?))

⇔R′(x?, δ) > −〈∇F (x?), δ〉, ∀δ s.t. R′(x?; δ) +R′(x?;−δ) > 0.
890

Since (RI) holds and ∇2F (x) depends continuously on x ∈ Bε(x?), (4.1)891
holds for any such x, and in particular at xt. Combining with the fact892
that ker(R′(x?; ·)) = Tx? [56, Proposition 3(iii) and Lemma10], we get893

−∇F (x?) ∈ ri(∂R(x?))⇔ R′(x?; δ) > −〈∇F (x?), δ〉,∀δ /∈ Tx?

⇒ R′(x?; δ) > −〈∇F (x?), δ〉,∀δ ∈ ker(∇2F (xt))\{0}.
894

Thus, classical properties of the directional derivative of a convex func-895
tion yield896

Φ(x? + δ)− Φ(x?)

= R(x? + δ)−R(x?) + 〈∇F (x?), δ〉 ≥ R′(x?; δ) + 〈∇F (x?), δ〉 > 0.
897

(ii) Let Ψ as defined in the proof of Lemma13. If R ∈ PSFx?(Mx?), the Rie-898
mannian Hessian of Φ reads899

∇2
Mx?

Φ(x?) = PTx?∇F (x?)PTx? +∇2
Mx?

Ψ(x?).900

In view of Lemma13(i), ∇2
Mx?

Ψ(x?) is positive semi-definite on Tx? . On the901
other hand, hypothesis (RI) entails positive definiteness of PTx?∇F (x?)PTx? .902
Altogether, this shows that ∇2

Mx?
Φ(x?) is positive definite on Tx?\{0}. Local903

quadratic growth of Φ near x? then follows by combining [35, Definition 5.4],904
[40, Theorem3.4] and [28, Theorem6.2].905

Proof (Lemma 13). By definition of U , Uh = 0 for any h ∈ T⊥x? . Thus, in the906
following we only examine the case h ∈ Tx? .907

(i) Let Ψ(x)
def
= R(x)+〈x, ∇F (x?)〉. From the smooth perturbation rule of partial908

smoothness [35, Corollary 4.7], Ψ ∈ PSFx?(Mx?). Moreover, from Fact 7 and909
normal sharpness, the Riemannian Hessian of Ψ at x? is such that, ∀h ∈ Tx? ,910

γ∇2
Mx?

Ψ(x?)h = γPTx?∇
2R̃(x?)h+ γWx?

(
h,PT⊥

x?
∇Φ̃(x?)

)
= γ∇2

Mx?
Φ(x?)PTx?h−Hh = Uh,

911
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Since −∇F (x?) ∈ ri
(
∂R(x?)

)
, we have from [36, Corollary 5.4] that912

∂2R
(
x?| − ∇F (x?)

)
h =

{
∇2
Mx?

Ψ(x?)h+ T⊥x? , h ∈ Tx? ,
∅, h /∈ Tx? ,

913

where ∂2R(x?| − ∇F (x?)) denotes the Mordukhovich generalized Hessian914
mapping of function R at (x?,−∇F (x?)) ∈ gph (∂R) [41]. As R ∈ Γ0(Rn),915
∂R is a maximal monotone operator, and in view of [48, Theorem 2.1] we916
have that the mapping ∂2R(x?| − ∇F (x?)) is positive semi-definite, whence917
we conclude that ∀h ∈ Tx? ,918

0 ≤ γ〈∂2R
(
x?| − ∇F (x?)

)
h, h〉 = γ〈∇2

Mx?
Ψ(x?)h, h〉 = 〈Uh, h〉.919

(ii) In this case, U = γPTx?∇2R̃(x?)PTx? . Let xt = x? + th, t > 0, for any scalar920
t and h ∈ Tx? . Obviously, xt ∈ x? + Tx? =Mx? , and for t sufficiently small,921
by Fact 6, Txt = Tx? . Thus, ∀u ∈ ∂R(x?) and ∀v ∈ ∂R(xt)922

0 ≤ t−2〈v − u, xt − x?〉 = t−1〈PTxt v − PTx?u, h〉
(by Fact 7) = 〈t−1(∇Mx?

R(xt)−∇Mx?
R(x?)), h〉

(by (B.2)) = 〈t−1PTx? (∇R̃(x? + tPTx?h)−∇R̃(x?)), h〉.

923

Since R̃ is C2, passing to the limit as t→ 0 leads to the desired result.924

Proof (Lemma 14).925
(i) (a) is proved using the assumptions and Rademacher theorem. (b) and (c)926

follow from simple linear algebra arguments.927
(ii) From Lemma13, we haveWG = W 1/2W 1/2GW 1/2W−1/2, meaning thatWG928

is similar to W 1/2GW 1/2. The latter is symmetric and obeys929

||W 1/2GW 1/2|| ≤ ||W 1/2||||G||||W 1/2|| < 1,930

where we used (i)-(b) to get the last inequality. Thus W 1/2GW 1/2 has real931
eigenvalues in ] − 1, 1[, and so does WG by similarity. The last statement932
follows using (i)-(c).933

We define the iteration-dependent versions of the matrices in (4.2), i.e.934
(B.5)
Hk = γkPTx?∇

2F (x?)PTx? , Gk = Id−Hk, Uk = γk∇2
Mx?

Φ(x?)PTx? −Hk,
Mk,1 =

[
(1 + b)W (Gk −G),−bW (Gk −G)

]
,

Mk,2 =
[
((ak − bk)− (a− b))W + (bk − b)WGk,−((ak − bk)− (a− b))W − (bk − b)WGk

]
.

935

After identification, we have xk ∈ Mx? for xk close enough to x?. Let Txk be their936
corresponding tangent spaces, and define τk : Tx? → Txk the parallel translation along937
the unique geodesic joining from xk to x?.938

Before proving Proposition 15, we first establish the following useful estimates.939

Proposition 28. Under the assumptions of Proposition 15, we have940

(B.6)
||ya,k − x?|| = O(||dk||), ||yb,k − x?|| = O(||dk||), ||rk+1|| = O(||dk||),

(τ−1
k+1PTxk+1

− PTx? )(∇F (yb,k)−∇F (xk+1)) = o(||dk||).
941

942

(B.7) ||W (Uk − U)rk+1|| = o(||dk||), ||Mk,1dk|| = o(||dk||) and ||Mk,2dk|| = o(||dk||).943

Proof. We have944

(B.8)
||ya,k − x?|| = ||(1 + ak)rk − akrk−1|| ≤ (1 + ak)||rk||+ ak||rk−1||

≤ (1 + ak)(||rk||+ ||rk−1||) ≤
√

2(1 + ak)||dk||,
945
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whence we get the first and second estimates. In turn, we obtain946

(B.9)

||rk+1|| = ||proxγkR(ya,k − γk∇F (yb,k))− proxγkR(x? − γk∇F (x?))||
≤ ||(ya,k − x?)− γk(∇F (yb,k)−∇F (x?))||

≤ (1 + ak)||rk||+ ak||rk−1||+ (1 + bk)γk
β
||rk||+ bkγk

β
||rk−1||

≤
(
(1 + ak) + (1 + bk)γk

β

)√
2||dk||,

947

where we used non-expansiveness of the proximity operator and assumption (H.2).948
This yields the third estimate. Combining Lemma 26, assumption (H.2), (B.8) and949
(B.9), we get950

(τ−1
k+1PTxk+1

− PTx? )
(
∇F (yb,k)−∇F (xk+1)

)
= o(||∇F (yb,k)−∇F (xk+1)||)

= o(||yb,k − x?||) + o(||rk+1||) = o(||dk||).
951

For (B.7), recall the function Ψ in the proof of Lemma13(i). First, we have952

lim
k→∞

||W (Uk − U)rk+1||/||rk+1|| = lim
k→∞

||W (γk − γ)∇2
Mx?

Ψ(x?)PTx? rk+1||/||rk+1||

≤ lim
k→∞

|γk − γ|||W ||||∇2
Mx?

Ψ(x?)PTx? || = 0,
953

which entails ||W (Uk − U)rk+1|| = o(||rk+1||) = o(||dk||). Again, since γk → γ,954

lim
k→∞

||Mk,1dk||/||dk|| ≤ lim
k→∞

(1 + b)||W ||||Gk −G||(||rk||+ ||rk−1||)/||dk||

≤ lim
k→∞

(1 + b)||W |||γk − γ|||PTx?∇
2F (x?)PTx? ||

√
2||dk||/||dk|| = 0.

955

Similarly, for Mk,2, since ak → a, bk → b,956

lim
k→∞

||Mk,2dk||/||dk|| ≤ lim
k→∞

(|ak − a|+ |bk − b|)||Wk(Id +Gk)||
√

2||dk||/||dk|| = 0,957

where Wk, Gk are bounded.958

Proof (Proposition 15). (1.3) and the first-order optimality condition for problem959
(Popt) are respectively equivalent to960

ya,k − xk+1 − γk
(
∇F (yb,k)−∇F (xk+1)

)
∈ γk∂Φ(xk+1) and 0 ∈ γk∂Φ(x?).961

Projecting into Txk+1
and Tx? , respectively, and using Fact 7, leads to962

γkτ
−1
k+1∇Mx?

Φ(xk+1) = τ−1
k+1PTxk+1

(
ya,k − xk+1 − γk

(
∇F (yb,k)−∇F (xk+1)

))
γk∇Mx?

Φ(x?) = 0.
963

Adding both identities, and subtracting τ−1
k+1PTxk+1

x? on both sides, we arrive at964

(B.10)
τ−1
k+1PTxk+1

rk+1 + γk
(
τ−1
k+1∇Mx?

Φ(xk+1)−∇Mx?
Φ(x?)

)
= τ−1

k+1PTxk+1
(ya,k − x?)− γkτ−1

k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
.

965

In view of Lemma26, we get966

τ−1
k+1PTxk+1

rk+1 = PTx? rk+1 + (τ−1
k+1PTxk+1

− PTx? )rk+1 = PTx? rk+1 + o(||rk+1||).967

Using [37, Lemma5.1], we have968

(B.11)
rk+1 = PTx? rk+1 + o(||rk+1||)

⇒ τ−1
k+1PTxk+1

rk+1 = rk+1 + o(||rk+1||) = rk+1 + o(||dk||),
969

where we also used (B.6). Similarly970

(B.12)

τ−1
k+1PTxk+1

(ya,k − x?) = PTx? (ya,k − x?) + (τ−1
k+1PTxk+1

− PTx? )(ya,k − x?)

= PTx? (ya,k − x?) + o(||ya,k − x?||)
= PTx? (ya,k − x?) + o(||dk||)
= (1 + ak)PTx? rk − akPTx? rk−1 + o(||dk||)
= (1 + ak)rk − akrk−1 + o(||rk||) + o(||rk−1||) + o(||dk||)
= (ya,k − x?) + o(||dk||).

971
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Moreover owing to Lemma 27 and (B.6),972

(B.13)
τ−1∇Mx?

Φ(xk+1)−∇Mx?
Φ(x?) = ∇2

Mx?
Φ(x?)PTx? rk+1 + o(||rk+1||)

= ∇2
Mx?

Φ(x?)PTx? rk+1 + o(||dk||).
973

Therefore, inserting (B.11), (B.12) and (B.13) into (B.10), we obtain974

(B.14)
(Id + γk∇2

Mx?
Φ(x?)PTx? )rk+1

= (ya,k − x?)− γkτ−1
k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||).

975

Owing to (B.6) and local C2-smoothness of F , we have976

(B.15)

τ−1
k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
= PTx?

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||)

= PTx?
(
∇F (yb,k)−∇F (x?)

)
− PTx?

(
∇F (xk+1)−∇F (x?)

)
+ o(||dk||)

= PTx?∇
2F (x?)PTx? (yb,k − x?)− PTx?∇

2F (x?)PTx? (xk+1 − x?) + o(||dk||).

977

Injecting (B.15) into (B.14), we get978

(B.16)
(Id + γk∇2

Mx?
Φ(x?)PTx? − γkPTx?∇

2F (x?)PTx? )rk+1

= (Id + Uk)rk+1 = (ya,k − x?)−Hk(yb,k − x?) + o(||dk||),
979

which can be further written as,980

(Id + Uk)rk+1 = (Id + U)rk+1 + (Uk − U)rk+1 = (ya,k − x?)−Hk(yb,k − x?) + o(||dk||)
=
(
(1 + ak)rk − akrk−1

)
−Hk

(
(1 + bk)rk − bkrk−1

)
+ o(||dk||)

=
(
(1 + ak)rk − (1 + bk)Hkrk

)
−
(
akrk−1 − bkHkrk−1

)
+ o(||dk||)

=
(
(ak − bk)Id + (1 + bk)Gk

)
rk −

(
(ak − bk)Id + bkGk

)
rk−1 + o(||dk||)

=
[
(ak − bk)Id + (1 + bk)Gk −

(
(ak − bk)Id + bkGk

)]
dk + o(||dk||).

981

Inverting Id + U (which is possible thanks to Lemma13), we obtain982

rk+1 +W (Uk − U)rk+1

=
[
(ak − bk)W + (1 + bk)WGk −(ak − bk)W − bkWGk

]
dk + o(||dk||).

983

Using the estimates (B.7), we get984

dk+1 =

[
(ak − bk)W + (1 + bk)WGk −(ak − bk)W − bkWGk

Id 0

]
dk + o(||dk||)

=
(
M +

[
Mk,1

0

]
+

[
Mk,2

0

])
dk + o(||dk||) = Mdk + o(||dk||).

985

Proof (Proposition 17).986
(i) We have987

M

(
r1

r2

)
=

(
(a− b)r1 + (1 + b)Gr1−(a− b)r2 − bGr2

r1

)
= σ

(
r1

r2

)
,988

and thus r1 = σr2. Inserting this in the first identity, we obtain989

σ2r2 = (a− b)σr2 + (1 + b)σGr2−(a− b)r2 − bGr2

⇔ Gr2 =
((

(a− b)(1− σ) + σ2
)
/
(
(1 + b)σ − b

))
r2 = ηr2

⇒ 0 = σ2 −
(
(a− b) + (1 + b)η

)
σ + (a− b) + bη.

990

(ii) For this quadratic equation of σ, the two roots are991
(B.17)
σ1 =

(
(a− b) + (1 + b)η +

√
∆σ

)
/2, σ2 =

(
(a− b) + (1 + b)η −

√
∆σ

)
/2.992
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where ∆σ = ((a− b)+(1+ b)η)2−4((a− b)+ bη) is the discriminant, which is993
a quadratic polynomial of three variables. Consider the following three linear994
functions of a995
(B.18)

a1 = (1− η)b− η, a3 = (1− η)b− (1 + η)/2

a2 = (1− η)b+ (1−
√

1− η)2
{

∆σ ≤ 0:a ∈ [a2, (1− η)b+ (1 +
√

1− η)2],

∆σ ≥ 0:a ≤ a2.
996

Recall from Lemma14(i) that η ∈] − 1, 1[. Thus, a1 ≥ a2 when η ∈] − 1, 0],997
a1 ≤ a2 for η ∈ [0, 1[, and a3 is smaller than both a1, a2 independently of η.998

Case η ∈]− 1, 0]: We have a1 ≥ a2,999
Subcase a ∈ [a2, 1[: σ1,2 are complex, hence1000

(B.19) |σ|2 =
(
((a− b) + (1 + b)η)2 −∆σ

)
/4 = a− b+ bη.1001

As a2 ≤ 1⇔ b ≤ 1−(1−
√

1−η)2

1−η , then (1−
√

1− η)2 ≤ |σ|2 ≤ 1+(η−1)b < 1.1002

Subcase a ∈ [0, a2]: ∆σ ≥ 0 and σ2 has the bigger absolute value, then1003
(B.20)
|σ2| < 1⇔ −

(
(a− b) + (1 + b)η

)
+
√

∆σ < 2⇔ 2(b− a)− 1

1 + 2b
< η,1004

which means |σ2| ≤ 1 for a ∈ [a3, a2], and |σ2| ≥ 1 for a ∈ [0, a3]. Moreover,1005
a3 ≤ 0 for b ∈ [0, 1+η

2(1−η) ], meaning that if η ≥ 1
3 , |σ2| ≤ 1 for a ∈ [0, a2].1006

Case η ∈ [0, 1[: First we have a2 ≥ a1, and moreover1007

a1 = 0⇔ b =
η

1− η

{
≤ 1 : η ∈ [0, 0.5],

≥ 1 : η ∈ [0.5, 1[.
1008

Obviously, we have |σ| ≤ 1 holds for any a ∈ [0, a2] as long as η ∈ [0.5, 1],1009
though this situation is useless as b ∈ [0, 1]. In the subcases hereafter,1010
we only consider η ∈ [0, 0.5].1011

Subcase a ∈ [a2, 1[: same result as (B.19).1012
Subcase a ∈ [a1, a2]: σ1 ≥ |σ2|, hence1013

(B.21) σ1 < 1⇔
(
(a− b) + (1 + b)η

)
+
√

∆σ < 2⇔ 0 < 4(1− η).1014

Subcase a ∈ [0, a1]: we have |σ2| ≥ |σ1|, hence (B.20) applies and the1015
result follows.1016

Summarizing this discussion yields the claimed result.1017

Proof (Theorem25). Since R is locally polyhedral, we have ∇Mx?
Φ(xk) is locally1018

constant alongMx? = x?+Tx? around x? (see Remark 9(iii)). Thus, embarking from1019
(B.16) in the proof of Proposition 15, for k large enough, we get1020

xk+1 − x? = (ya,k − x?)− Ek(yb,k − x?),1021

where we used the mean-value theorem with Ek = γk
∫ 1

0
∇2F (x?+ t(yb,k−x?))dt � 0.1022

Using that Ek is symmetric and Im(Ek)⊥ = V , we have1023

PV (xk+1 − x?) = PV (ya,k − x?) = (1 + ak)PV (xk − x?)− ak(xk−1 − x?).1024

If ak = 0, then PV (xk+1 − x?) = PV (xk − x?). Thus, in the rest, without loss of1025
generality, we assume that ak > 0 for k large enough. The above iteration leads to1026 (

PV (xk+1 − x?)
PV (xk − x?)

)
=

[
(1 + ak)Id −akId

Id 0

](
PV (xk − x?)

PV (xk−1 − x?)

)
.1027

It is straightforward to check that Nk
def
=
[

(1 + ak)Id −akId
Id 0n

]
is invertible and admits1028

two eigenvalues ak > 0 and 1 respectively. Iterating the above argument, and owing1029
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to the fact that xk, ya,k, yb,k → x?, we get1030 (
0
0

)
=
(∏∞

j=kNj
)( PV (xk − x?)

PV (xk−1 − x?)

)
,1031

and
∏∞
j=kNj is invertible. Therefore, we obtain that xk − x? ∈ V ⊥, and in turn,1032

ya,k − x? ∈ V ⊥ and yb,k − x? ∈ V ⊥, for all large enough k. Observe that V ⊥ ⊂ Tx? ,1033
it then follows that1034

xk+1 − x? = ya,k − x? − PV ⊥EkPV ⊥(yb,k − x?).1035

By definition, PV ⊥EkPV ⊥ is symmetric positive definite. Thus, substituting this1036
matrix for Hk, and G andM accordingly in Lemma14 and Corollary 19, and applying1037
Theorem21, leads to the result.1038
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