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Abstract

In this paper, we aim at recovering an unknown signal x0 from noisy mea-
surements y = Φx0 +w, where Φ is an ill-conditioned or singular linear operator
and w accounts for some noise. To regularize such an ill-posed inverse problem,
we impose an analysis sparsity prior. More precisely, the recovery is cast as a
convex optimization program where the objective is the sum of a quadratic data
fidelity term and a regularization term formed of the `1-norm of the correlations
between the sought after signal and atoms in a given (generally overcomplete)
dictionary. The `1-sparsity analysis prior is weighted by a regularization pa-
rameter λ > 0. In this paper, we prove that any minimizers of this problem is a
piecewise-affine function of the observations y and the regularization parameter
λ. As a byproduct, we exploit these properties to get an objectively guided
choice of λ. In particular, we develop an extension of the Generalized Stein
Unbiased Risk Estimator (GSURE) and show that it is an unbiased and reliable
estimator of an appropriately defined risk. The latter encompasses special cases
such as the prediction risk, the projection risk and the estimation risk. We apply
these risk estimators to the special case of `1-sparsity analysis regularization.
We also discuss implementation issues and propose fast algorithms to solve the
`1 analysis minimization problem and to compute the associated GSURE. We
finally illustrate the applicability of our framework to parameter(s) selection on

Email addresses: samuel.vaiter@ceremade.dauphine.fr (Samuel Vaiter),
deledalle@ceremade.dauphine.fr (Charles-Alban Deledalle),
gabriel.peyre@ceremade.dauphine.fr (Gabriel Peyré),
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several imaging problems.
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1. Introduction

1.1. Regularization of Linear Inverse Problems

In many applications, the goal is to recover an unknown signal x0 ∈ RN
from noisy and linearly degraded observations y ∈ RQ. The forward observation
model reads

y = Φx0 + w, (1)

where w ∈ RQ is the noise component and the mapping Φ : RN → RQ is a known
linear operator which generally models an acquisition process that entails loss
of information so that Q 6 N . Even when Q = N , Φ is typically ill-conditioned
or even rank-deficient. In image processing, typical applications covered by
the above degradation model are entry-wise masking (inpainting), convolution
(acquisition blur), Radon transform (tomography) or a random sensing matrix
(compressed sensing).

Solving for an accurate approximation of x0 from the system (1) is generally
ill-posed [1]. In order to regularize them and reduce the space of candidate
solutions, one has to incorporate some prior knowledge on the typical structure
of the original object x0. This prior information accounts for the smoothness
of the solution and can range from uniform smoothness assumption to more
complex geometrical priors.

Regularization is a popular way to impose such a prior, hence making the
search for solutions feasible. The general variational problem we consider can
be stated as

x?λ(y) ∈ Argmin
x∈RN

F (x, y) + λR(x), (2)

where F is the so-called data fidelity term, R is an appropriate regularization
term that encodes the prior on the sought after signal, and λ > 0 a regularization
parameter. This parameter balances between the amount of allowed noise and
the regularity dictated by R. In this paper, we consider a quadratic data fidelity
term taking the form

F (x, y) =
1

2
‖y − Φx‖22 . (3)

If it were to be interpreted in Bayesian language, this data fidelity would amount
to assuming that the noise is white Gaussian.

The popular Thikonov class of regularizations corresponds to quadratic
forms R(x) = 〈x, Kx〉, where K is a symmetric semidefinite positive kernel.
This typically induces some kind of uniform smoothness on the recovered vec-
tor. To capture the more intricate geometrical complexity of image structures,
non-quadratic priors are required, among which sparse regularization through
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the `1 norm has received a considerable interest in the recent years. This non-
smooth regularization is at the heart of this paper.

1.2. Sparse `1-Analysis Regularization

We call a dictionary D = (di)
P
i=1 a collection of P atoms di ∈ RN . The

dictionary may be redundant in RN , in which case P > N and Φ if surjective if
it has full row rank. D can also be viewed as a linear mapping from RP to RN
which is used to synthesize a signal x ∈ Span(D) ⊆ RN as x = Dα =

∑P
i=1 αidi,

where α is not uniquely defined if D is a redundant dictionary.

The `1 analysis regularization in a dictionaryD corresponds to using R = RA
in (2) where

RA(x) = ‖D∗x‖1 . (4)

This leads us to the following minimization problem which is the focus of this
paper

x?λ(y) ∈ Argmin
x∈RN

1

2
‖y − Φx‖22 + λ ‖D∗x‖1 . (Pλ(y))

Since the objective function in (Pλ(y)) is proper (i.e. not infinite everywhere),
continuous and convex, the set of (global) minimizers of (Pλ(y)) is nonempty
and compact if, and only if,

Ker Φ ∩KerD∗ = {0}, (H0)

All throughout this paper, we suppose that this condition holds.

The most popular `1-analysis sparsity-promoting regularization is the to-
tal variation, which was first introduced for denoising (in a continuous setting)
in [2]. In a discrete setting, it corresponds to taking D∗ as a finite difference dis-
cretization of the gradient operator. The corresponding prior RA favors piece-
wise constant signals and images. A comprehensive review of total variation
regularization can be found in [3].

The theoretical properties of total variation regularization have been previ-
ously investigated. A distinctive feature of this regularization is its tendency to
yield a staircasing effect, where discontinuities not present in the original data
might be artificially created by the regularization. This effect has been studied
by Nikolova in the discrete case in a series of papers, see e.g. [4], and by Ring
in [5] in the continuous setting. The stability of the discontinuity set of the
solution of the 2-D continuous total variation denoising is studied in [6].

When D is the standard basis, i.e. D = Id, the analysis sparsity regulariza-
tion RA specializes to the so-called synthesis regularization. The corresponding
variational problem (Pλ(y)) is referred to as the Lasso problem in the statistics
community [7] and Basis-Pursuit DeNoising (BPDN) in the signal processing
community [8]. Despite synthesis and analysis regularizations both minimize
objective functions involving the `1 norm, the properties of their respective min-
imizers may differ significantly. Some insights on the relation and distinction
between analysis and synthesis-based sparsity regularizations were first given in
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[9]. When D is orthogonal, and more generally when D is square and invertible,
analysis and synthesis regularizations are equivalent in the sense that the set of
minimizers of one problem can be retrieved from that of an equivalent form of
the other through a bijective change of variable. However, when D is redundant,
synthesis and analysis regularizations depart significantly.

While the theoretical guarantees of synthesis `1-regularization have been
extensively studied, the analysis case remains much less investigated [10, 11,
12, 13].

1.3. Geometrical Insights into `1-Analysis Regularization

In the synthesis prior, sparsity of a vector α ∈ RP is measured in terms of
its `0 pseudo-norm, or equivalently the cardinality of its support supp(α), i.e.

‖α‖0 = | supp(α)| = | {i ∈ {1, · · · , P} \ αi 6= 0} |.

In the analysis prior, the sparsity is measured on the correlation vector D∗x.
It then appears natural to keep track of the support of D∗x. To fix terminology,
we define this support and its complement.

Definition 1. The D-support I (resp. D-cosupport J) of a vector x ∈ RN is
defined as I = supp(D∗x) (resp. J = Ic = {1, . . . , P} \ I).

A vector x with a D-cosupport J is then such that the correlations between
this vector and the columns of DJ are zero. This is equivalent to saying that x
lives in a subspace GJ defined as follows.

Definition 2. Given J a subset of {1 · · ·P}, the cospace GJ is defined as

GJ = KerD∗J .

It was shown in [13] that the subspace GJ plays a pivotal role in robustness
and identifiability guarantees of (Pλ(y)).

In fact, the subspaces GJ carry all necessary information to characterize
signal models of sparse analysis type. More precisely, vectors of cosparsity
k = |J | live in an union of subspaces

Θk = {GJ \ J ⊆ {1 · · ·P} and dimGJ = k} ,

and the signal space RN can be decomposed as RN =
⋃
k∈{0,...,N}Θk. This

model has been introduced in [12] under the name cosparse model.
For synthesis sparsity, i.e. D = Id, Θk are nothing but the set of axis-

aligned subspaces of dimension k. For the 1-D total variation prior, where D
corresponds to finite forward differences, Θk is the set of piecewise constant
signals with k− 1 steps. A few other examples of subspaces Θk, including those
corresponding to translation invariant wavelets, are discussed in [12]. More
general union of subspaces models have been introduced in sampling theory to
model various types of non-linear signal ensembles, see e.g. [14].
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1.4. Local Behavior of Minimizers

Local variations and sensitivity/perturbation analysis of problems in the
form of (2) is an important topic in optimization and optimal control. Compre-
hensive monograph on the subject are [15, 16]. In this paper, we focus on the
variations with respect to the regularization parameter λ and the observations
y, i.e we study the set-valued mapping (λ, y) 7→ Mλ(y) whereMλ(y) is the set
of minimizers of (2).

In the synthesis case (D = Id) with Q > N , the work of [17, 18] showed
that, for a fixed y, the mapping λ 7→ x?λ(y) is piecewise affine, i.e. the solution
path is polygonal. Further, they characterized changes in the solution x?λ(y) at
vertices of this path. Based on these observations, they presented the homotopy
algorithm, which follows the solution path by jumping from vertex to vertex
of this polygonal path. This idea was extended to the underdetermined case
in [19, 20]. A homotopy-type scheme was proposed in [21] for sparse `1-analysis
regularization in the overdetermined case (Q > N). We will discuss the latter
work in more detail in Section 4.

1.5. Risk Estimation and Parameter Selection

This paper also addresses unbiased estimation of the `2-risk when recovering
a vector x0 ∈ RN from the measurements y in (1), e.g. by solving (2), under the
assumption that w is white Gaussian noise. A central concept for risk estimation
is that of the degrees of freedom (DOF). Let x̂θ(y) be an estimator of x0 from
(1), parameterized by some parameters θ. The DOF of such an estimator was
defined by Efron [22] as

dfθ =

Q∑
i=1

covw(yi, (Φx̂θ(y))i)

σ2
.

The DOF is generally used to quantify the complexity of a statistical modeling
procedure. It plays a central role in many model validation and selection criteria,
e.g. Mallows’ Cp (Mallows [23]), AIC (Akaike information criterion [24]), BIC
(Bayesian information criterion [25]), GCV (generalized cross-validation [26])
or SURE (Stein Unbiased Risk Estimator [27]). In the spirit of the SURE
theory, a good unbiased estimator of the DOF is sufficient to provide an un-
biased estimate of the `2 risk in reconstructing Φx0, i.e. the prediction risk
Ew(‖Φx̂θ(y)− Φx0‖22). For instance, the SURE is given by

SURE(x̂θ(y))=‖y − Φx̂θ(y)‖22−Qσ
2+2σ2d̂fθ(y) (5)

with

d̂fθ(y)=tr

(
∂Φx̂θ(y)

∂y

)
,

where Ew(d̂fθ(y)) = dfθ,
∂Φx̂θ(y)
∂y is the Jacobian matrix of the vector function

y 7→ Φx̂θ(y) and tr is the trace operator.
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The SURE depends solely on y, without prior knowledge of x0. This can
prove very useful as a basis to automatically choose the parameters θ of the
estimator, e.g. θ = λ when solving (2), or the smoothing parameters in families
of linear estimates [28] such as for ridge regression or smoothing splines. In
some settings, it has been shown that it offers better accuracy than GCV and
related non-parametric selection techniques [29]. However, compared to GCV,
the SURE requires the knowledge of the noise variance σ2.

The SURE has been widely used in the statistics and signal processing com-
munities as a principled and efficient way for parameter selection with a vari-
ety of non-linear estimators. For instance, it was used for wavelet denoising
[30, 31, 32], wavelet shrinkage for a class of linear inverse problems [33] and
non-local filtering [34, 35, 36].

For general linear inverse problems, the estimator of the prediction risk and
the parameter(s) minimizing it can depart substantially from those correspond-

ing to the estimation risk Ew(‖x̂θ(y)− x0‖22) [37]. To circumvent this difficulty,
in [38], the authors attempted to approximate the estimation risk by relying on
a regularized version of the inverse of Φ. However, in general, either Φ should
have a trivial kernel or, otherwise, x0 should live outside to ker(Φ) to guarantee
the existence of an unbiased estimator of the estimation risk [39].

In [40], a generalized SURE (GSURE) has been developed for noise models
within the multivariate canonical exponential family. This allows one to derive
an unbiased estimator of the risk on a projected version of x̂θ(y), which in
turn covers the case where Φ has a non-trivial kernel and a part of x0 is in it.
Indeed, in the latter scenario, the GSURE can at best estimate the projection
risk Ew(‖Πx̂θ(y)−Πx0)‖22) where Π is the orthogonal projector on ker(Φ)⊥.

1.6. Contributions

This paper describes the following contributions:

(i) Local affine parameterization: we show that any solution x?λ(y) of
(Pλ(y)) is a piecewise affine function of (y, λ). Furthermore, for fixed λ,
and for y outside a set of Lebesgue measure zero, the prediction µ?λ(y)
locally varies along a constant subspace. This is a distinctly novel contri-
bution which generalizes previously known results (see Section 4.1 for a
detailed discussion). It also forms the cornerstone of unbiased estimation
of the DOF.

(ii) GSURE: we derive a unifying framework to compute unbiased estimates
of several risks in `2 sense, for estimators of x0 from y as observed in
(1) when w is a white Gaussian noise. This framework encompasses for
instance the prediction, the projection and the estimation risks (see Sec-
tion 4.3 for a discussion to related work).

(iii) `1-Analysis Unbiased Risk Estimation: combining the results from
the previous two contributions, we derive a closed-form expression of an
unbiased estimator of the DOF for (Pλ(y)), whence we deduce GSURE
estimates of the different risks.
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(iv) Numerical Computation of GSURE: we also address in detail numer-
ical issues that rise when implementing our DOF estimator and GSURE
for (Pλ(y)). We show that the additional computational effort to compute
the DOF estimator (hence the GSURE) from its closed-form is invested
in solving simple linear systems. This turns out to be much faster than
iterative approaches existing in the literature which are computationally
demanding (see Section 4.4 for a detailed discussion).

1.7. Organization of the Paper

The rest of the paper is organized as follows. Section 2 and 3 describe each
of our main contributions. Section 4 draws some connections with relevant
previous works. Section 5 illustrates our results on some numerical examples.
The proofs are deferred to Appendix A awaiting inspection by the interested
reader.

1.8. Notation

We first summarize the main notations used throughout the paper. We focus
on real vector spaces. The sign vector sign(α) of α ∈ RP is

∀i ∈ {1, . . . , P}, sign(α)i =


+1 if αi > 0,

0 if αi = 0,

−1 if αi < 0.

Its support is
supp(α) = {i ∈ {1, . . . , P} \ αi 6= 0} .

For a subset I ⊂ E, |I| will denote its cardinality, and Ic = E\I its complement.
The matrix MJ for J a subset of {1, . . . , P} is the submatrix whose columns

are indexed by J . Similarly, the vector sJ is the restriction of s to the entries
of s indexed by J .

tr and div are respectively the trace and divergence operators. The matrix
Id is the identity matrix, where the underlying space will be clear from the
context. For any matrix M , M+ is its Moore–Penrose pseudoinverse and M∗ is
its adjoint.

2. Perturbation Theory of `1-Analysis Regularization

Throughout this section, it is important to point out that we only require
that the noise vector w ∈ RQ to be bounded. The fact that it could be deter-
ministic or random is irrelevant here.
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2.1. Local Affine Parameterization

Our first contribution derives a local affine parameterization of minimizers of
(Pλ(y)) as functions of (y, λ) ∈ RQ×R+. To develop our theory, the invertibility
of Φ on GJ will play a vital role. For this, we need to assume that

Ker Φ ∩ GJ = {0}. (HJ)

To intuitively understand the importance of this assumption, think of the ideal
case where one wants to estimate a D-sparse signal x0 from y = Φx0 +w, whose
D-cosupport J is assumed to be known. This can be achieved by solving a
least-squares problem. The latter has a unique solution if (HJ) holds.

Of course, J is not known in general, and one may legitimately ask whether
(HJ) is fulfilled for some solution of (Pλ(y)). We will provide an affirmative
answer to this question in Theorem 2(ii), i.e. there always exists a solution of
(Pλ(y)) such that (HJ) holds.

With assumption (HJ) at hand, we now define the following matrix whose
role will be clarified shortly.

Definition 3. Let J be a D-cosupport. Suppose that (HJ) holds. We define
the matrix Γ[J] as

Γ[J] = U (U∗Φ∗ΦU)
−1
U∗. (6)

where U is a matrix whose columns form a basis of GJ .

Observe that the action of Γ[J] could be rewritten as an optimization problem

Γ[J]u = argmin
D∗Jx=0

1

2
‖Φx‖2 − 〈x, u〉.

Let us now turn to sensitivity of the minimizers x?λ(y) of (Pλ(y)) to per-
turbations of (y, λ). More precisely, our aim is to study properties, including
continuity and differentiability, of x?λ(y) and Φx?λ(y) as functions of y and λ.
Toward this end, we will exploit the fact that x?λ(y) obeys an implicit equation
given in Lemma 2 (see Appendix A.2). But as optimal solutions turns out to be
not everywhere differentiable (change of the D-support and thus of the cospace),
we will concentrate on a local analysis where (y, λ) vary in a small neighborhood
that typically avoids non-differentiability to occur. This is exactly the reason
why we introduce the transition space H defined below. It corresponds to the
set of observation vectors y and regularization parameters λ where the cospace
GJ of any solution of (Pλ(y)) is not stable with respect to small perturbations
of (y, λ).

Definition 4. The transition space H is defined as

H =
⋃

J⊂{1,··· ,P}
(HJ ) holds

⋃
K⊂J

Im Π̃[J] 6⊆ImDJ\K

⋃
sJc∈{−1,1}|Jc|

⋃
σK∈{−1,1}|K|

HJ,K,sJc ,σK ,
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where

HJ,K,sJc ,σK =
{

(y, λ) ∈ RQ × R+ \ PGJ\K Π̃[J]y = PGJ\Kλ(Ω̃[J]sJc −DKσK)
}
,

with Π̃[J] = Φ∗(ΦΓ[J]Φ∗ − Id), Ω̃[J] = (Φ∗ΦΓ[J] − Id)DJc and PGJ\K is the
orthogonal projector on GJ\K .

The following theorem summarizes our first sensitivity analysis result on the
optimal solutions of (Pλ(y)).

Theorem 1. Let (y, λ) 6∈ H and let x?λ(y) be a solution of (Pλ(y)). Let I and
J be the D-support and D-cosupport of x?λ(y) and s = sign(D∗x?λ(y)). Suppose
that (HJ) holds. For any ȳ ∈ RQ and λ̄ ∈ R+, define

x?λ̄(ȳ) = Γ[J]Φ∗ȳ − λ̄Γ[J]DIsI .

There exists an open neighborhood B ⊂ RQ × R+ of (y, λ) such that for every
(ȳ, λ̄) ∈ B, x?

λ̄
(ȳ) is a solution of (Pλ̄(ȳ)).

An immediate consequence of this theorem is that, for a fixed y ∈ RQ, if
(Pλ(y)) admits a unique solution x?λ(y) for each λ, then {x?λ(y) : λ ∈ R+}
identifies a polygonal solution path. As we move along the solution path, the
cospace is piecewise constant as a function of λ, changing only at critical values
corresponding to the vertices on the polygonal path.

2.2. Local Variations of the Prediction

We now turn to quantifying explicitly the local variations of the prediction
µ?λ(y) = Φx?λ(y) with respect to the observation y. First, it is not difficult to
see that even if (Pλ(y)) admits several solutions, all of them share the same
image under Φ; see Lemma 4 for a formal proof of this assertion. This allows
to denote without ambiguity µ?λ(y) as a single-valued mapping. Before stating
our second sensitivity analysis result, we need to define the restriction to RQ of
the transition space H.

Definition 5. Let λ ∈ R∗+. The λ-restricted transition space is

H·,λ =
{
y ∈ RQ \ (y, λ) ∈ H

}
.

Theorem 2. Fix λ ∈ R∗+. Then,

(i) The λ-restricted transition space H·,λ is of Lebesgue measure zero.

(ii) For y 6∈ H·,λ, there exists x?λ(y) a solution of (Pλ(y)) with a D-cosupport
J that obeys (HJ).

(iii) The mapping y 7→ µ?λ(y) is of class C∞ on RQ\H·,λ (a set of full Lebesgue
measure), and

∂µ?λ(y)

∂y
= ΦΓ[J]Φ∗ , (7)

where J is such that (HJ) holds.
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3. Generalized Stein Unbiased Risk Estimator

Throughout this section, for our statements to be statistically meaningful,
the noise is assumed to be white Gaussian, w ∼ N (0, σ2IdQ) of bounded variance
σ2.

3.1. GSURE for an Arbitrary Estimator

We first consider an arbitrary estimator x̂θ(y) with parameters θ such that
µ̂θ(y) = Φx̂θ(y) is a single-valued mapping. We similarly write µ0 = Φx0. Of
course the results described shortly will apply when the estimator is taken as
any minimizer of (Pλ(y)), in which case θ = λ.

We here develop an extended version of GSURE that unbiasedly estimates
the risk of reconstructing Aµ0 with an arbitrary matrix A ∈ RM×Q. This allows
us to cover in a unified framework unbiased estimation of several classical risks
including the prediction risk (with A = Id), the projection risk when Φ is rank
deficient (with A = Φ∗(ΦΦ∗)+), and the estimation risk when Φ has full rank
(with A = Φ+ = (Φ∗Φ)−1Φ∗). A quantity that will enter into play in the risk
of estimating Aµ0 is the degrees of freedom defined as

dfAθ =

Q∑
i=1

covw((Ay)i, (Aµ̂θ(y))i)

σ2
.

Definition 6. Let A ∈ RM×Q. We define the Generalized Stein Unbiased Risk
Estimate (GSURE) associated to A as

GSUREA(x̂θ(y)) = ‖A(y − µ̂θ(y))‖22 − σ
2 tr(A∗A) + 2σ2d̂f

A

θ (y) ,

where

d̂f
A

θ (y) = tr

(
A
∂µ̂θ(y)

∂y
A∗
)
.

Unbiasedness of the GSURE. The next result shows that GSUREA(x̂θ(y)) is

an unbiased estimator of an appropriate `2 risk, and d̂f
A

θ (y) is an unbiased
estimator of dfAθ

Theorem 3. Let A ∈ RM×Q. Suppose that y 7→ µ̂θ(y) is weakly differentiable,
so that its divergence is well-defined in the weak sense. If y = Φx0 + w with
w ∼ N (0, σ2IdQ), then

EwGSUREA(x̂θ(y)) = Ew
(
‖Aµ0 −Aµ̂θ(y)‖22

)
and Ewd̂f

A

θ (y) = dfAθ .

Remark 1. Theorem 3 can be straightforwardly adapted to deal with any white
Gaussian noise with a non-singular covariance matrix Σ. It is sufficient to
consider the change of variable y 7→ Σ−1/2y and Φ 7→ Σ−1/2Φ. This is in the
same vein as [40].
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All estimators of the form GSUREB with B such that BΦ =AΦ share the
same expectation given by Theorem 3. Hence, there are several ways to estimate
the risk in reconstructing Aµ0. For the estimation of the prediction, projection
and estimation risks, we now give the corresponding expressions and associated
estimators (with subscript notations) as direct consequences of Theorem 3:

• A = Id: in which case GSUREId becomes

GSUREΦ(x̂θ(y)) = ‖y − µ̂θ(y)‖22 −Qσ
2 + 2σ2 tr

(
∂µ̂θ(y)

∂y

)
which provides an unbiased estimate of the prediction risk

RiskΦ(x0) = Ew ‖Φx̂θ(y)− Φx0‖22 .

This coincides with the classical SURE defined in (5).

• A = Φ∗(ΦΦ∗)+: when Φ is rank deficient, Π = Φ∗(ΦΦ∗)+Φ is the orthog-
onal projector on ker(Φ)⊥ = Im(Φ∗). Denoting xML(y) = Φ∗(ΦΦ∗)+y the

maximum likelihood estimator (MLE), GSUREΦ∗(ΦΦ∗)+ becomes

GSUREΠ(x̂θ(y))=‖xML(y)−Πx̂θ(y)‖22−σ
2 tr
(
(ΦΦ∗)+

)
+2σ2 tr

(
(ΦΦ∗)+ ∂µ̂θ(y)

∂y

)
.

It provides an unbiased estimate of the projection risk

RiskΠ(x0) = Ew ‖Πx̂θ(y)−Πx0‖22 .

If Φ is the synthesis operator of a Parseval tight frame, i.e. ΦΦ∗ = Id, the
projection risk coincides with the prediction risk and so do the corresponding
GSURE estimates

RiskΠ(x0) = RiskΦ(x0) and GSUREΠ(x̂θ(y)) = GSUREΦ(x̂θ(y)) .

It is also worth noting that if x̂θ(y) never lies in ker(Φ), then RiskΠ(x0)

coincides with the estimation risk up to the additive constant ‖(Id−Π)x0‖22.

• A = (Φ∗Φ)−1Φ∗: in this case Φ has full rank, and the mapping y 7→ x̂θ(y) is
single-valued and weakly differentiable. The maximum likelihood estimator

is now xML(y) = (Φ∗Φ)−1Φ∗y , and GSURE(Φ∗Φ)−1Φ∗ takes the form

GSUREId(x̂θ(y)) = ‖xML(y)− x̂θ(y)‖22 − σ
2 tr
(
(Φ∗Φ)−1

)
+2σ2 tr

(
Φ(Φ∗Φ)−1 ∂x̂θ(y)

∂y

)
.

This is an unbiased estimator of the estimation risk given by

RiskId(x0) = Ew ‖x̂θ(y)− x0‖22 .
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Reliability of the GSURE. We now assess the reliability of the GSURE by
computing the expected squared-error between GSUREA(x̂θ(y)) and the true
squared-error on Aµ0

SEA(x̂θ(y)) = ‖Aµ0 −Aµ̂θ(y)‖22 .

Theorem 4. Under the assumptions of Theorem 3, we have

Ew
[(

GSUREA(x̂θ(y))− SEA(x̂θ(y))
)2]

=

2σ4 tr
[
(A∗A)2

]
+ 4σ2Ew ‖A∗A(µ0 − µ̂θ(y))‖22

− 4σ4Ew
(

tr

[
A
∂µ̂θ(y)

∂y
A∗A

(
2Id− ∂µ̂θ(y)

∂y

)
A∗
])

.

3.2. GSURE for `1-Analysis Regularization
We now specialize the previous results to the case where the estimator x̂θ(y)

is a solution of (Pλ(y)); i.e. x̂θ(y) = x?λ(y) and µ̂θ(y) = µ?λ(y). For notational
clarity and to highlight the dependency of dim(GJ) on y, for y 6∈ H·,λ, we write
d(y) = dim(GJ) where J is the D-cosupport of any solution x?λ(y) such that (HJ)
holds. We then obtain the following corollary as a consequence of Theorems 2
and 3.

Corollary 1. Let y = Φx0 + w with w ∼ N (0, σ2IdQ). Then µ?λ(y) is weakly
differentiable and

GSUREΦ(x?λ(y)) = ‖y − µ?λ(y)‖22 −Qσ
2 + 2σ2d(y),

GSUREΠ(x?λ(y)) = ‖xML(y)−Πx?λ(y)‖22 − σ
2 tr((ΦΦ∗)+) + 2σ2 tr(ΠΓ[J]),

GSUREId(x?λ(y)) = ‖xML(y)− x?λ(y)‖22 − σ
2 tr((Φ∗Φ)−1) + 2σ2 tr(Γ[J]) .

Moreover, d(y) is an unbiased estimator of the DOF of (Pλ(y)), i.e.

dfλ = df Id
λ = Ewd(y).

In particular, this result states that dim(GJ) is an unbiased estimator of the
DOF of (Pλ(y)) response without requiring any assumption to ensure unique-
ness of x?λ(y). This DOF estimator formula is valid everywhere except on a set
of (Lebesgue) measure zero.

Building upon Theorems 2 and 4, we derive the relative reliability of the
GSURE for (Pλ(y)), and show that it decays with the number of measurements
at the rate O(1/Q).

Corollary 2. Let A ∈ RM×Q and y = Φx0 + w with w ∼ N (0, σ2IdQ). Then

Ew

(GSUREA(x?λ(y))− SEA(x?λ(y))

Qσ2

)2
 = O

(
‖A‖4

Q

)
.

where ‖A‖ is the spectral norm of A. In particular, if ‖A‖ is independent of Q,
the decay rate of the relative reliability is O(1/Q).
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3.3. Numerical Considerations

The remaining obstacle faced when implementing the GSURE formulae of
Corollary 1 is to compute the divergence term, i.e. the last trace term as given by

d̂f
A

λ (y) = tr
(
AΦΓ[J]Φ∗A∗

)
(see Definition 6). However, for large scale-data as in

image and signal processing, the computational storage required for the matrix
in the argument of the trace would be prohibitive. Additionally, computing Γ[J]

can only be reasonably afforded for small data size. Fortunately, the structure

of d̂f
A

λ (y) and the definition of Γ[J] allows to derive an efficient and principled
way to compute the trace term. This is formalized in the next result.

Proposition 1. One has

d̂f
A

λ (y) = EZ(〈ν(Z), Φ∗A∗AZ〉) (8)

where Z ∼ N (0, IdP ), and where for any z ∈ RP , ν = ν(z) solves the following
linear system (

Φ∗Φ DJ

D∗J 0

)(
ν
ν̃

)
=

(
Φ∗z

0

)
. (9)

In practice, the empirical mean estimator is replaced for the expectation in
(8), hence giving

1

k

k∑
i=1

〈ν(zi), Φ∗A∗Azi〉
WLLN−→ d̂f

A

λ (y) , (10)

for k realizations zi of Z, where WLNN stands for the Weak Law of Large
Numbers. Consequently, the computational bulk of computing an estimate of

d̂f
A

λ (y) is invested in solving for each ν(zi) the symmetric linear system (9) using
e.g. a conjugate gradient solver.

4. Relation to Other Works

4.1. Local variations

The local behavior of x?λ(y) as a function of λ is already known in the `1-
synthesis case, both for the case where Φ is full rank [17, 18], and Q < N [20].
Our local affine parameterization in Theorem 1 generalizes these results to the
analysis case regardless of the number of measurements. Our result also goes
beyond the work of [21] which investigates the overdetermined case with an
`1-analysis regularization and develops a homotopy algorithm.

4.2. Degrees of freedom

In the synthesis overdetermined case with full rank Φ, [41] showed that
the number of nonzero coefficients is an unbiased estimate for the degrees of
freedom of (Pλ(y)). This was generalized to an arbitrary Φ in [42]. Corollary 1
encompasses these results as special cases by taking D = Id.
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For the `1-analysis regularization with full rank Φ, Tibshirani and Taylor
[21] showed that dfλ = Ew dim(GJ), where J is the D-cosupport of the unique
solution to (Pλ(y)). This is exactly the assertion of Corollary 1, since (HJ) is
in force when rank(Φ) = N .

While a first version of this paper was submitted, it came to our attention
that Tibshirani and Taylor [43, Theorem 3] recently and independently devel-
oped an unbiased estimator of the DOF for (Pλ(y)) that covers the case where
Q < N . More precisely, they showed that dim(Φ(GJ)) is an unbiased estimator
of df(λ), where J is the D-cosupport of any solution to (Pλ(y)). This coincides
with Corollary 1 when J satisfies (HJ). Their proof however differs from ours,
and in particular, its does not study directly the local behavior of x?λ(y) as a
function of y or λ (Theorem 1).

4.3. Generalized Stein Unbiased Risk Estimator

In [40], the author derived expressions equivalent to GSUREΠ and GSUREId

up to a constant which does not depend on the estimator. However, her expres-
sions were developed separately, whereas we have shown that these GSURE
estimates originate from a general result stated in Theorem 3. Another distinc-
tion between our work and [40] lies in the assumptions imposed. The author [40]
supposes x̂θ(y) to be a weakly differentiable function of Φ∗y/σ2. In contrast,
we just require that the prediction y 7→ µ̂θ(y) (a single-valued map) is weakly
differentiable, as classically assumed in the SURE theory.

Indeed, let u = Φ∗y/σ2, and define x̂θ(y) = z?θ (u). Assume that u 7→ z?θ (u)
is weakly differentiable (and a fortiori a single-valued mapping).

When Φ is rank deficient, [40] proves unbiasedness of the following estimator
of the projection risk

GSURE
(Eldar)
Π (z?θ (u)) = ‖Πx0‖22 + ‖Πz?θ (u)‖22 − 2〈z?θ (u), xML(y)〉

+ 2 tr

(
Π
∂z?θ (u)

∂u

)
.

Since by assumption
∂Φz?θ (u)
∂u = Φ

∂z?θ (u)
∂u , and using the chain rule, the following

holds

σ2 tr

(
(ΦΦ∗)+ ∂µ̂θ(y)

∂y

)
= σ2 tr

(
(ΦΦ∗)+ ∂Φz?θ (u)

∂u

∂u

∂y

)
= tr

(
Π
∂z?θ (u)

∂u

)
whence it follows that

GSUREΠ(x̂θ(y))−GSURE
(Eldar)
Π (x̂θ(y)) = ‖xML(y)‖22 − ‖Πx0‖22

− σ2 tr
(
(ΦΦ∗)+

)
.

A similar reasoning when Φ has full rank leads to

GSUREId(x̂θ(y))−GSURE
(Eldar)
Id (x̂θ(y)) = ‖xML(y)‖22 − ‖x0‖22

− σ2 tr
(
(Φ∗Φ)−1

)
.
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Both our estimators and those of [40] are unbiased, but they do not have
necessarily the same variance. Given that they only differ by terms that do
not depend on x̂θ(y), and in particular on the parameter (here θ), selecting the
latter by minimizing our GSURE expressions or those of [40] is expected to lead
to the same results.

Let us finally mention that in the context of deconvolution, GSUREΠ boils
down to the unbiased estimator of the projection risk obtained in [44].

4.4. Numerical computation of the GSURE

In least-squares regression regularized by a sufficiently smooth penalty term,
the DOF can be estimated in closed-form [45]. However even in such simple
cases, the computational load and/or storage can be prohibitive for large-scale
data.

To overcome the analytical difficult for general non-linear estimators, when
no closed-form expression is available, first attempts developed bootstrap-based
(asymptotically) unbiased estimators of the DOF [29]. Ye [46] and Shen and
Ye [47] proposed a data perturbation technique to approximate the DOF (and
the SURE) when its closed-form expression is not available or numerically ex-
pensive to compute. For denoising, a similar Monte-Carlo approach has been
used in [48] where it was applied to total-variation denoising, wavelet soft-
thresholding, and Wiener filtering/smoothing splines.

Alternatively, an estimate can be obtained by recursively differentiating the
sequence of iterates that converges to a solution of the original minimization
problem. Initially, it has been proposed by [38], and then refined in [49], to
compute the GSURE of sparse synthesis regularization by differentiating the se-
quence of iterates of the forward-backward splitting algorithm. We have recently
proposed a generalization of this methodology to any proximal splitting algo-
rithm, and exemplified it on `1-analysis regularization including the isotropic
total-variation regularization, and `1 − `2 synthesis regularization which pro-
motes block sparsity [50].

In our case, we have shown that the computation of a good estimator of the
DOF, and therefore of GSUREA for various risks, boils down to solving linear
systems. This is much more efficient than the previous general-purpose iterative
methods that are computationally expensive.

5. Numerical Experiments

In this section, we exemplify the usefulness of our GSURE estimator which
can serve as a basis for automatically tuning the value of λ. This is achieved by
computing, from a single realization of the noise w ∼ N (0, σ2Id), the parameter
λ that minimizes the value of GSURE when solving (Pλ(y)) from y = Φx0 +w
for various scenarios on Φ and x0.
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Figure 1: Illustration of the selection of λ by minimizing GSUREΠ in a super-resolution
problem (Q/N = 0.5) with anisotropic total variation regularization. (a) The observed image
y. (b) A solution x?λ(y) of (Pλ(y)) at the optimal λ (the one minimizing GSUREΠ). (c) The
underlying true image x0. (d) Projection risk RiskΠ and its GSUREΠ estimate obtained from
(10) using k = 1 random realization.

5.1. Computing Minimizers

Denoising. Although it is convex, solving problem (Pλ(y)) is rather challenging
given its non-smoothness. In the case where Φ = Id, the objective functional
of (Pλ(y)) is strictly convex, and one can compute its unique solution x?λ(y) by
solving an equivalent equivalent Fenchel-Rockafellar dual problem [51]

x?λ(y) = y +Dα?λ(y) where α?λ(y) ∈ Argmin
‖α‖∞6λ

‖y +Dα‖22 .

This dual problem can be solved using e.g. projected gradient descent or a
multi-step accelerated version.

General Case. The proximity operator of x 7→ ‖D∗x‖1 is not computable in
closed-form for an arbitrary dictionary D. This precludes the use of popular
iterative soft-thresholding (actually the forward-backward proximal splitting)
without sub-iterating. We therefore appeal to a more elaborate primal-dual
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Figure 2: Illustration of the selection of λ by minimizing GSUREΠ in a compressed sens-
ing problem (Q/N = 0.5) by an `1-analysis regularization in a shift-invariant Haar wavelet
dictionary. (a) The MLE xML. (b) A solution x?λ(y) of (Pλ(y)) at the optimal λ (the one
minimizing GSUREΠ). (c) The underlying true image x0. (d) Projection risk RiskΠ and its
GSUREΠ estimate obtained from (10) using k = 1 random realization.

splitting algorithm. We use in our numerical experiments the relaxed Arrow-
Hurwicz algorithm as revitalized recently in [52]. This algorithm achieves full
splitting where all operators are applied separately: the proximity operators of
g 7→ 1

2 ‖y − g‖
2
2 and u 7→ λ ‖u‖1 (which are known in closed-form), and the linear

operators Φ and D and their adjoints. To cast (Pλ(y)) in the form required to
apply this scheme, we can rewrite it as

min
x∈RN

F (K(x)) where

{
F (g, u) = 1

2 ‖y − g‖
2
2 + λ ‖u‖1

K(x) = (Φx,D∗x).

Note that other algorithms could be equally applied to solve (Pλ(y)), e.g. [53,
54, 55].

5.2. Parameter Selection using the GSURE

Super-Resolution with Total Variation Regularization. In this example, Φ is a
vertical sub-sampling operator of factor two (hence Q/N = 0.5). The noise
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level has been set such that the observed image y has a peak signal-to-noise
ratio (PSNR) of 27.78 dB. We used an anisotropic total variation regularization;
i.e. the sum of the `1-norms of the partial derivatives in the first and second
direction (not to be confused with the isotropic total variation). Fig. 1.d depicts
the projection risk and its GSUREΠ estimate obtained from (10) with k = 1
as a function of λ. The curves appear unimodal and coincide even with k = 1
and a single noise realization. Consequently, GSUREΠ provides a high-quality
selection of λ minimizing the projection risk. Close-up views of the central parts
of the degraded, restored (using the optimal λ), and true images are shown in
Fig. 1(a)-(c) for visual inspection of the restoration quality.

Compressed Sensing with Wavelet Analysis Regularization. We consider in this
example a compressed sensing scenario where Φ is a random partial DCT mea-
surement matrix with an under-sampling ratio Q/N = 0.5. The noise is such
that input image y has a PSNR set to 27.50 dB. We took D as the shift-invariant
Haar wavelet dictionary with 3 scales. Again, we estimate GSUREΠ with k = 1
in (10). The results observed on the super-resolution example are confirmed
in this compressed sensing experiment both visually and qualitatively, see Fig. 2.

6. Conclusion

In this paper, we studied the local behavior of solutions to `1-analysis reg-
ularized inverse problems of the form (Pλ(y)). We proved that any minimizer
x?λ(y) of (Pλ(y)) is a piecewise affine function of the observations y and the
regularization parameter λ. This local affine parameterization is completely
characterized by the D-support I of x?λ(y), i.e. the set of indices of atoms in D
with non-zero correlations with x?λ(y). As a byproduct, for y outside a set of
zero Lebesgue measure, the first-order variations of Φx?λ(y) with respect to y
are obtained in closed-form.

We capitalized on these results to derive a closed-form expression of an un-
biased estimator of the degrees of freedom of (Pλ(y)), and to objectively and
automatically choose the regularization parameter λ when the noise contami-
nating the observations is additive-white Gaussian. Toward this goal, a unified
framework to unbiasedly estimate several risk measures is proposed through
the GSURE methodology. This encompasses several special cases such as the
prediction, the projection and the estimation risk. A computationally efficient
algorithm is designed to compute the GSURE in the context of `1-analysis re-
construction. Illustrations on different imaging inverse problems exemplify the
potential applicability of our theoretical findings.

A. Proofs

Throughout, we use the shorthand notation Ly,λ for the objective function
in (Pλ(y))

Ly,λ(x) =
1

2
‖y − Φx‖22 + λ ‖D∗x‖1 .
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We remind the reader that condition (H0) is supposed to hold true in all our
statements.

A.1. Preparatory lemmata

The following key lemma will be central in our proofs. It gives the first
order necessary and sufficient optimality conditions for the analysis variational
problem (Pλ(y)).

Lemma 1. A vector x?λ(y) is a solution of (Pλ(y)) if, and only if, there exists
σ ∈ R|J|, where J is the D-cosupport of x?λ(y), such that

σ ∈ Σy,λ(x?λ(y)) (11)

with

Σy,λ(x?λ(y)) =
{
σ ∈ R|J| \ Φ∗(Φx?λ(y)− y) + λDIsI + λDJσ = 0

and ‖σ‖∞ 6 1
}
, (12)

where I = Jc is the D-support of x?λ(y) and s = sign(D∗x?λ(y)).

Proof. The subdifferential of a real-valued proper convex function F : RN →
R ∪ {∞} is denoted ∂F . From standard convex analysis, we recall of ∂F at a
point x in the domain of F

∂F (x) =
{
g ∈ RN \∀z ∈ RN, F (z)>F (x)+〈g, z − x〉

}
.

It is clear from this definition that x?λ(y) is a (global) minimizer of F if, and
only if, 0 ∈ ∂F (x). By classical subdifferential calculus, the subdifferential of
Ly,λ at x is the non-empty convex compact set

∂Ly,λ(x) =
{

Φ∗(Φx− y) + λDu \ u ∈ RN : uI =sign(D∗x)I and ‖uJ‖∞ 6 1
}
.

Therefore 0 ∈ ∂Ly,λ(x?λ(y)) is equivalent to the existence of u ∈ RN such that
uI = sign(D∗x?λ(y))I and ‖uJ‖∞ 6 1 satisfying

Φ∗(Φx?λ(y)− y) + λDu = 0.

Taking σ = uJ , this is equivalent to σ ∈ Σy,λ(x?λ(y)).

The following lemma gives an implicit equation satisfied by any (non neces-
sarily unique) minimizer x?λ(y) of (Pλ(y)).

Lemma 2. Let x?λ(y) be a solution of (Pλ(y)). Let I be the D-support and J
the D-cosupport of x?λ(y) and s = sign(D∗x?λ(y)). We suppose that (HJ) holds.
Then, x?λ(y) satisfies

x?λ(y) = Γ[J]Φ∗y − λΓ[J]DIsI . (13)
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Proof. Owing to the first order necessary and sufficient optimality condition
(Lemma 1), there exists σ ∈ Σy,λ(x?λ(y)) satisfying

Φ∗(Φx?λ(y)− y) + λDIsI + λDJσ = 0. (14)

By definition, x?λ(y) ∈ GJ = (ImDJ)⊥. We can then write x?λ(y) = Uα for some
α ∈ Rdim(GJ ). Since U∗DJ = 0, multiplying both sides of (14) on the left by
U∗, we get

U∗Φ∗(ΦUα− y) + λU∗DIsI = 0.

Since U∗Φ∗ΦU is invertible, the implicit equation of x?λ(y) follows immediately.

Suppose now that a vector satisfies the above implicit equation. The next
lemma derives two equivalent necessary and sufficient conditions to guarantee
that this vector is actually a solution to (Pλ(y)).

Lemma 3. Let y ∈ RQ, let J a D-cosupport such that (HJ) holds and let
I = Jc. Suppose that x?λ(y) satisfies

x?λ(y) = Γ[J]Φ∗y − λΓ[J]DIsI .

where s = sign(D∗x?λ(y)). Then, x?λ(y) is a solution of (Pλ(y)) if, and only if,
there exists σ ∈ R|J| satisfying one of the following equivalent conditions

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ and ‖σ‖∞ 6 1, (15)

or
Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ‖σ‖∞ 6 1, (16)

where Ω̃[J] = (Φ∗ΦΓ[J] − Id)DI , Π̃[J] = Φ∗(ΦΓ[J]Φ∗ − Id), Ω[J] = D+
J Ω̃[J] and

Π[J] = D+
J Π̃[J].

Proof. First, we observe that x?λ(y) ∈ GJ . According to Lemma 1, x?λ(y) is a
solution of (Pλ(y)) if, and only if, there exists σ ∈ Σy,λ(x?λ(y)). Since (HJ)
holds, Γ[J] is properly defined. We can then plug the assumed implicit equation
in (12) to get

Φ∗(ΦΓ[J]Φ∗y − λΦΓ[J]DIsI − y) + λDIsI + λDJσ = 0.

Rearranging the terms multiplying y and sI , we arrive at

Φ∗(ΦΓ[J]Φ∗ − Id)y − λ(Φ∗ΦΓ[J] − Id)DIsI + λDJσ = 0.

This shows that x?λ(y) is a minimizer of (Pλ(y)) if, and only if

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ‖σ‖∞ 6 1.

To prove the equivalence with (16), we first note that U∗Ω̃[J] = 0 im-
plying that Im(Ω̃[J]) ⊆ Im(DJ). Since DJD

+
J is the orthogonal projector on
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Im(DJ), we get Ω̃[J] = DJD
+
J Ω̃[J] = DJΩ[J]. With a similar argument, we get

Π̃[J] = DJΠ[J]. Hence, the existence of σ ∈ Σy,λ(x?λ(y)) such that ‖σ‖∞ 6 1 is
equivalent to

DJσ = DJΩ[J]sI −
1

λ
DJΠ[J]y where ‖σ‖∞ 6 1,

which in turn is equivalent to

σ − Ω[J]sI +
1

λ
Π[J]y ∈ KerDJ where ‖σ‖∞ 6 1.

We now show that even if (Pλ(y)) admits several solutions x?λ(y), all of
them share the same image under Φ, which in turn implies that y 7→ µ?λ(y) is a
single-valued mapping.

Lemma 4. If x1 and x2 are two minimizers of (Pλ(y)), then Φx1 = Φx2.

Proof. Let x1, x2 be two minimizers of Pλ(y). Suppose that Φx1 6= Φx2. Take

x3 = ρx1 + (1− ρ)x2, ρ ∈ (0, 1). Strict convexity of u 7→ ‖y − u‖22 implies that

1

2
‖y − Φx3‖22 <

ρ

2
‖y − Φx1‖22 +

1− ρ
2
‖y − Φx2‖22 .

Jensen’s inequality again applied to the `1 norm gives

‖D∗x3‖1 6 ρ ‖D∗x1‖1 + (1− ρ) ‖D∗x2‖1 .

Together, these two inequalities yield Ly,λ(x3) < Ly,λ(x1), which contradicts
our initial assumption that x1 is a minimizer of (Pλ(y)).

A.2. Proof of Theorem 1

Proof. Let (y, λ) 6∈ H. By construction, the vector x?
λ̄
(ȳ) obeys D∗Jx

?
λ̄
(ȳ) = 0.

Accordingly, for (ȳ, λ̄) sufficiently close to (y, λ), one has

sign(D∗x?λ̄(ȳ)) = sign(D∗x?λ(y)).

Since x?λ is a solution of (Pλ(y)), using Lemmas 2 and 3, there exists σ such
that

Π̃[J]y − λΩ̃[J]sI + λDJσ = 0 and ‖σ‖∞ 6 1. (17)

Let us split J = K ∪L, K ∩L = ∅ such that ‖σK‖∞ = 1 and ‖σL‖∞ < 1. Note
that σK ∈ {−1, 1}|K|.

We first suppose that Im Π̃[J] ⊆ ImDL. To prove that x?
λ̄
(ȳ) is solution to

(Pλ̄(ȳ)), we show that there exists σ̄ such that ‖σ̄‖∞ 6 1 and

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DK σ̄K + λ̄DLσ̄L = 0.
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We impose that σ̄K = σK and take σ̄L as

σ̄L = σL −
1

λ
D+
L Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
.

Hence,

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DJ σ̄

= Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DKσK + λ̄DLσL

−DLD
+
L

λ̄

λ
Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
= Π̃[J]y − λΩ̃[J]sI + λDKσK + λDLσL︸ ︷︷ ︸

=0

−Π̃[J](y − ȳ) + (λ− λ̄)Ω̃[J]sI − (λ− λ̄)DKσK − (λ− λ̄)DLσL

−DLD
+
L

λ̄

λ
Π̃[J]

(
λ− λ̄
λ̄

y +
λ

λ̄
(ȳ − y)

)
.

Since Im Π̃[J] ⊆ ImDL and DLD
+
L is the orthogonal projector on Im(DL), we

have Π̃[J] = DLD
+
L Π̃[J]. It follows that,

Π̃[J]ȳ − λ̄Ω̃[J]sI + λ̄DJ σ̄

=
λ̄− λ
λ

[
Π̃[J]y − λΩ̃[J]sI + λDKσK + λDLσL

]
= 0.

Now, for (ȳ, λ̄) close enough to (y, λ), we have

‖σ̄L‖∞ =

∥∥∥∥σL +
1

λ
D+
L Π̃[J]

(
λ̄− λ
λ̄

y +
λ

λ̄
(y − ȳ)

)∥∥∥∥
∞

6 1,

whence we deduce that x?
λ̄
(ȳ) is a solution of (Pλ̄(ȳ)).

In fact, for (y, λ) 6∈ H, we inevitably have Im Π̃[J] ⊆ ImDL. Indeed, pro-
jecting (17) on GL gives

0 = PGL

(
Π̃[J]y − λΩ̃[J]sI + λDJσ

)
= PGL

(
Π̃[J]y − λΩ̃[J]sI + λDKσK

)
.

or equivalently
PGLΠ̃[J]y = PGLλ(Ω̃[J]sI −DKσK).

If Im Π̃[J] 6⊆ ImDL, then (y, λ) ∈ HJ,K,sI ,σK , a contradiction. This concludes
the proof.

A.3. Proof of Theorem 2

Proof of (i). First it is easy to see that HJ,K,sJc ,σK in Definition 4 is a vector

subspace of RQ × R. Moreover HJ,K,sJc ,σK ⊆ ker PGJ\KB, where B = [Π̃[J] −
Ω̃[J]sJc +DKσK ].
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Now, fix λ. H·,λ is included in

H̃λ =
⋃

J⊂{1,··· ,P}
(HJ ) holds

⋃
K⊂J

Im Π̃[J] 6⊂ImDJ\K

⋃
sJc∈{−1,1}|Jc|

⋃
σK∈{−1,1}|K|

H̃J,K,sJc ,σK ,

where

H̃λJ,K,sJc ,σK =
{
y ∈ RQ \ PGJ\K Π̃[J]y = PGJ\Kλ(Ω̃[J]sJc +DKσK)

}
,

Since Im Π̃[J] 6⊆ Im(DJ\K), HλJ,K,sJc ,σK is an affine subspace of RQ with

dim(H̃λJ,K,sJc ,σK ) = dim(ker PGJ\K Π̃[J]) < Q, where the inequality follows from
the rank-nullity theorem and the fact that GJ\K is a (nonempty) strict subspace

of RQ. Given that H̃λ is a finite union of subspaces H̃λJ,K,sJc ,σK all strictly in-

cluded in RQ, H̃λ has a Lebesgue measure zero and so does H·,λ ⊆ H̃λ.
Note that with a similar reasoning, one can show that H is also of zero

Lebesgue measure using the fact that B 6⊆ ImDJ\K if Π̃[J] 6⊆ ImDJ\K since

Im Π̃[J] ⊆ ImB.

Proof of (ii). The proof of this statement is constructive. Denote byMλ(y) the
set of minimizers of (Pλ(y)). To lighten the notation, we drop the dependence
on y and λ from x?λ(y) ∈Mλ(y).

First step. We prove the following statement( (
x? ∈Mλ(y) ∧ ¬(Hsupp(D∗x?)c)

)
=⇒ ∃x??λ (y) ∈Mλ(y) ∧ supp(D∗x??) ( supp(D∗x?)

)
,

wher ∧ and ¬ are respectively the logical conjunction and negation symbols.
In plain words, let x? be a solution of (Pλ(y)). Suppose (HJ) does not hold
where J is the D-cosupport of x?. We prove that there exists a solution x??λ (y)
of D-support strictly included in I = Jc.

Since (HJ) does not hold, there exists z ∈ Ker Φ with z 6= 0 and D∗Jz = 0.
We define for every t ∈ R, the vector vt = x? + tz. Denote B the subset of R
defined by

B = {t ∈ R \ sign(D∗vt) = sign(D∗x?)} ,

B is a non-empty convex set and 0 ∈ B. Moreover for all t ∈ B, ∂Ly,λ(vt) =
∂Ly,λ(x?). It then follows from Lemma 1 that for all t ∈ B, vt is a solution of
(Pλ(y)). As a consequence, using Lemma 4, we get

∀t ∈ B, Φvt = Φx? and ‖D∗vt‖1 = ‖D∗x?‖1 .

Since lim
|t|→∞

‖D∗vt‖1 = +∞, the set B is bounded. It is also an open set as a

finite intersection of P open sets corresponding to the solutions to sign((D∗x?)i+
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tzi) = sign((D∗x?)i)). Hence, B is an open interval of R which contains 0, i.e.
there exist t1, t0 ∈ R such that

B =]t1, t0[ where −∞ < t1 < 0 and 0 < t0 < +∞.

Since t0 6∈ B, the D-support of vt0 is strictly included in I. Moreover by
continuity,

Φvt0 = Φx? and ‖D∗vt0‖1 = ‖D∗x?‖1 .

Hence, vt0 is a solution of (Pλ(y)) of D-support strictly included in I.

Second step. We now prove our claim, i.e.

∃x? ∈Mλ(y) such that (Hsupp(D∗x?)c) holds.

Consider (x?(1), . . . , x
?
(P+1)) ∈ (Mλ(y))P+1 such that for every i ∈ {1, . . . , P+1},

the condition (HJi) does not hold for Ji = supp(D∗x?(i))
c and J1 ) J2 ) · · · )

JP+1. Then, we have a strictly increasing sequence of P+1 subsets of {1, . . . , P}
which is impossible. Hence, according to the first step of our proof, there exists
i ∈ {1, . . . , P + 1} such that (HJi) holds.

Proof of (iii). By virtue of statement (ii), there exists a solution x?λ(y) of
(Pλ(y)) such that (HJ) holds. Let us consider this solution. Using Theorem 1
for ȳ close enough to y, we have

Φx?λ(ȳ) = ΦΓ[J]Φ∗ȳ − λΦΓ[J]DIsI .

where J is the D-cosupport of x?λ(y). Since I (hence J) and sI are locally
constant under the assumptions of the theorem, so is the vector λΦΓ[J]DIsI , it
follows that µ?λ(ȳ) = Φx?λ(ȳ) can be written as

µ?λ(ȳ) = µ?λ(y) + ΦΓ[J]Φ∗(ȳ − y) ,

whence we deduce
∂µ?λ(y)

∂y
= ΦΓ[J]Φ∗.

Moreover, owing to statement (i), this expression is valid on RQ \ H·,λ, a set of
full Lebesgue measure.

A.4. Proof of Theorem 3

We First recall Stein’s lemma whose proof can be found in [27].

Lemma 5 (Stein’s lemma). Let y = Φx0 + w with w ∼ N (0, σ2IdQ). As-
sume that g : y 7→ g(y) is weakly differentiable (and a fortiori a single-valued
mapping), then

Ew〈w, g(y)〉 = σ2Ew tr

[
∂g(y)

∂y

]
.
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Let us now turn to the proof of Theorem 3.

Proof. Since y 7→ µ̂θ(y) = Φx̂θ(y) is weakly differentiable, so is A∗Aµ̂θ(y) and
we have

∂A∗Aµ̂θ(y)

∂y
= A∗A

∂µ̂θ(y)

∂y
.

Then, using Lemma 5, we get

Ew〈w, A∗Aµ̂θ(y)〉 = σ2Ew tr

(
A∗A

∂µ̂θ(y)

∂y

)
= σ2Ewd̂f

A

θ (y) .

Using the decomposition Ay = AΦx0 +Aw, we obtain

Ew ‖Ay −Aµ̂θ(y)‖22 = Ew ‖AΦx0 +Aw‖22 − 2Ew〈AΦx0 +Aw, Aµ̂θ(y)〉

+ Ew ‖Aµ̂θ(y)‖22
= Ew ‖AΦx0‖22 + σ2 tr(A∗A)− 2Ew〈AΦx0, Aµ̂θ(y)〉

− 2Ew〈w, A∗Aµ̂θ(y)〉+ Ew ‖Aµ̂θ(y)‖22
= Ew ‖AΦx0 −Aµ̂θ(y)‖22

+ σ2 tr(A∗A)− 2σ2Ewd̂f
A

θ (y) .

Moreover,
∑
i covw((Ay)i, (Aµ̂θ(y))i) = Ew〈Aw, Aµ̂θ(y)〉, which shows that

d̂f
A

θ (y) is indeed an unbiased estimator of dfAθ .

A.5. Proof of Theorem 4

Proof. Denote by RA the reliability of the GSURE for the estimator x̂θ(y), i.e.

RA = Ew
(
GSUREA(x̂θ(y))− SEA(x̂θ(y))

)2
.

Let QA(x̂θ(y)) be the quantity defined as

QA(x̂θ(y)) = ‖Aµ0‖22 + ‖Aµ̂θ(y)‖22 − 2〈Ay, Aµ̂θ(y)〉+ 2σ2d̂f
A

θ (y).

We have GSUREA(x̂θ(y))−QA(x̂θ(y)) = ‖Ay‖22 − Ew ‖Ay‖22, where

Ew ‖Ay‖22 = ‖Aµ0‖22 + σ2 tr(A∗A),

and Vw ‖Ay‖22 = 2σ4

(
tr[(A∗A)2] + 2

‖A∗Aµ0‖22
σ2

)
.

It results that Ew
(
GSUREA(x̂θ(y))−QA(x̂θ(y))

)
= 0, and hence

Ew
(
QA(x̂θ(y))

)
= Ew

(
GSUREA(x̂θ(y))

)
= Ew

(
SEA

)
.
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Remark that QA(x̂θ(y))−SEA(x̂θ(y)) = 2
(
σ2d̂f

A

θ (y)− 〈Aw, Aµ̂θ(y)〉
)
. We can

now rewrite the reliability in the following form

RA =Ew
(
GSUREA(x̂θ(y))−QA(x̂θ(y)) +QA(x̂θ(y))− SEA(x̂θ(y))

)2
=Vw ‖Ay‖22+Ew

(
QA(x̂θ(y))−SEA(x̂θ(y))

)2
+

4Ew
(
‖Ay‖22 (σ2d̂f

A

θ (y)−〈Aw, Aµ̂θ(y)〉)
)

︸ ︷︷ ︸
=T

.

Lemma 5 gives Ew〈Aw, Aµ̂θ(y)〉 = σ2Ewd̂f
A

θ (y), and we get

T = 2Ew
(
〈Aw, Aµ0〉(σ2d̂f

A

θ (y)− 〈Aw, Aµ̂θ(y)〉)
)

︸ ︷︷ ︸
T1

+

Ew
(
‖Aw‖22 (σ2d̂f

A

θ (y)− 〈Aw, Aµ̂θ(y)〉)
)

︸ ︷︷ ︸
T2

.

Let µ?A(y) = A∗Aµ̂θ(y), µ0
A = A∗Aµ0 and wA = A∗Aw. Observe that d̂f

A

θ (y) =
divµ?A(y) and wi (µ?A(y))i is weakly differentiable. Then by integration by parts
(in the same vein as in the proof of Stein’s Lemma 5), we get

T1 = 2σ2
∑
i,j

Ew
(
wi(µ

0
A)i

∂µ?A(y)j
∂wj

)
− 2

∑
i,j

Ew
(
wi(µ

0
A)iwjµ

?
A(y)j

)
= −2σ2

∑
i,j

Ew
(

(µ0
A)i

∂wi
∂wj

µ?A(y)j

)
= −2σ2Ew〈µ0

A, µ
?
A(y)〉 ,

and

T2 = σ2
∑
i,j

Ew
(
wi(wA)i

∂µ?A(y)j
∂wj

)
−
∑
i,j

Ew (wi(wA)iwjµ
?
A(y)j)

= −σ2
∑
i,j

Ew
(
∂wi(wA)i
∂wj

µ?A(y)j

)

= −σ2
∑
j

Ew

(
µ?A(y)j

(∑
i

∂wi(wA)i
∂wj

))
.

In turn, ∑
i

∂wi(wA)i
∂wj

=
∂

∂wj
‖Aw‖22 = 2(A∗Aw)j = 2(wA)j .

Hence,

T2 = −2σ2
∑
j

Ew ((µ?A(y))j(wA)j) = −2σ2Ew〈wA, µ?A(y)〉

= −2σ2Ew〈A∗Aw, A∗Aµ?(y)〉 = −2σ4Ewd̂f
A∗A

θ (y) ,
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where the last equality is again a consequence of Lemma 5. It follows that

T = −2σ2

(
Ew〈µ0

A, µ
?
A(y)〉+ σ2Ewd̂f

A∗A

θ (y)

)
. Moreover using [56, Property 1]

we have

Ew
(
QA(x̂θ(y))− SEA(x̂θ(y))

)2
= 4Ew

(
σ2 divµ?A(y)− 〈w, µ?A(y)〉

)2
= 4σ2

(
Ew ‖µ?A(y)‖22 + σ2Ew tr

[(
∂µ?A(y)

∂y

)2
])

.

Therefore, the reliability is given by

RA = 2σ4 tr[(A∗A)2]+4σ2Ew
∥∥µ0

A − µ?A(y)
∥∥2

2

+ 4σ4Ew

(
tr

[(
∂µ?A(y)

∂y

)2
]
− 2d̂f

A∗A

θ (y)

)
.

Rearranging the last term above, we obtain the derived expression.

A.6. Proof of Corollary 1

Proof. Let λ ∈ R∗+. From Theorem 2(iii), y 7→ Φx?λ(y) is differentiable almost
everywhere and we can invoke Theorem 3 to derive the GSURE expressions.

We also observe that V = ΦΓ[J]Φ∗ is the orthogonal projector on ImV =
Φ(GJ), so that trV = dim(ImV ) = rank(ΦPGJ ). Since Φ is injective on GJ
under (HJ), it follows that trV = dim(GJ). Hence, using Theorem 3 with
A = Id, Theorem 2(ii) and (7), it follows that dim(GJ) is an unbiased estimator
of df(λ).

A.7. Proof of Corollary 2

Proof. As V = ΦΓ[J]Φ∗ is the orthogonal projector on Φ(GJ), we have

tr [AV A∗A(2Id− V )A∗] > 0 .

Moreover A∗A is Hermitian, hence tr
[
(A∗A)2

]
= ‖A∗A‖2F , we obtain (with the

notation of Section A.5) the following upper-bound of the reliability

RA 6 2σ4 ‖A∗A‖2F + 4σ2 ‖A‖4 E ‖µ0 − µ?λ(y)‖22

where ‖.‖F is the Frobenius norm and ‖.‖ the matrix spectral norm. Then, for
A ∈ RM×Q, using classical inequalities, we get

‖A∗A‖2F 6 rank(A) ‖A‖4 = min(M,Q) ‖A‖4 6 Q ‖A‖4 .

Since x?λ(y) is a solution of (Pλ(y)), we have

1
2 ‖y − µ

?
λ(y)‖22 6 Ly,λ(x?λ(y)) 6 Ly,λ(0) = 1

2 ‖y‖
2
2 .
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Thus, using Jensen’s inequality, we get

E ‖µ0 − µ?λ(y)‖22 6 2E(‖µ0 − y‖22 + ‖y − µ?λ(y)‖22)

6 2E(‖w‖22 + ‖y‖22) 6 2
(
‖µ0‖22 + 2Qσ2

)
.

Altogether, this yields the following upper bound

RA

σ4Q2
6 ‖A‖4

(
18

Q
+

8 ‖µ0‖22
σ2Q2

)
.

Since ‖µ0‖2 <∞, this concludes the proof.

A.8. Proof of Proposition 1

Proof. We have

tr
[
AΦΓ[J]Φ∗A∗

]
= tr

[
ΦΓ[J]Φ∗A∗A

]
.

Hence denoting ν(z) = Γ[J]Φ∗z, and using the fact that for any matrix U ,
trU = EZ〈Z, UZ〉, we arrive at (8).

We then use the fact that Γ[J]Φ∗, the inverse of Φ on GJ , is the mapping
that solves the following linearly constrained least-squares problem

Γ[J]Φ∗z = argmin
h∈GJ

‖Φh− z‖22 .

Writing the KKT conditions of this problem leads to (9), where ν̃ are the La-
grange multipliers.
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[53] H. Raguet, M. J. Fadili, G. Peyré, Generalized Forward-Backward Splitting,
Technical Report, Preprint Hal-00613637, 2011.

[54] N. Pustelnik, C. Chaux, J.-C. Pesquet, Parallel proXimal algorithm for
image restoration using hybrid regularization, IEEE Transactions on Image
Processing 20 (2011) 2450–2462.

[55] P. L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solv-
ing inclusions with mixtures of composite, Lipschitzian, and parallel-sum
monotone operators, Set-Valued and Variational Analysis 20 (2012) 307–
330.

[56] F. Luisier, The SURE-LET approach to image denoising, Ph.D. thesis,
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