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Analytical Form for a Bayesian Wavelet Estimator
of Images Using the Bessel K Form Densities

Jalal M. Fadili and Larbi Boubchir

Abstract—A novel Bayesian nonparametric estimator in the
wavelet domain is presented. In this approach, a prior model
is imposed on the wavelet coefficients designed to capture the
sparseness of the wavelet expansion. Seeking probability models
for the marginal densities of the wavelet coefficients, the new
family of Bessel K forms (BKF) densities are shown to fit very well
to the observed histograms. Exploiting this prior, we designed a
Bayesian nonlinear denoiser and we derived a closed form for its
expression. We then compared it to other priors that have been
introduced in the literature, such as the generalized Gaussian
density (GGD) or the -stable models, where no analytical form
is available for the corresponding Bayesian denoisers. Specifically,
the BKF model turns out to be a good compromise between these
two extreme cases (hyperbolic tails for the -stable and exponen-
tial tails for the GGD). Moreover, we demonstrate a high degree of
match between observed and estimated prior densities using the
BKF model. Finally, a comparative study is carried out to show
the effectiveness of our denoiser which clearly outperforms the
classical shrinkage or thresholding wavelet-based techniques.

Index Terms—Bayesian denoiser, Bessel K forms (BKF), poste-
rior conditional mean, wavelets.

I. INTRODUCTION

NONPARAMETRIC wavelet-based regression has been
a fundamental tool in data analysis over the past two

decades and is still an expanding area of ongoing research.
The goal is to recover an unknown image, say , based on
sampled data that are contaminated with noise. Only very
general assumptions about are made such as that it belongs to
a certain class of functions (e.g., Besov space). Nonparametric
regression (or denoising) techniques provide a very effective
and simple way of finding structure in data sets without the
imposition of a parametric regression model. During the 1990s,
the nonparametric regression literature was arguably domi-
nated by nonlinear wavelet shrinkage and wavelet thresholding
estimators [1]–[3]. These estimators are a new subset of an
old class of nonparametric regression estimators, namely or-
thogonal series methods. Moreover, these estimators are easily
implemented through fast algorithms so they are very appealing
in practical situations [4].

Since the seminal papers by Donoho and Johnstone [1], the
image processing literature have been inundated by hundreds
of papers applying or proposing modifications of the original
algorithm in image processing problems. Various data adaptive
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wavelet thresholding estimators have been developed (see, for
example, the extensive reviews in [5], [6], and the references
therein).

Various Bayesian approaches for nonlinear wavelet thresh-
olding and nonlinear wavelet shrinkage estimators have also
been recently proposed. These estimators have been shown to
be effective and it is argued that they are less ad hoc than the
classical proposals discussed above. In the Bayesian approach,
a prior distribution is imposed on the wavelet coefficients. The
prior model is designed to capture the sparseness of wavelet
expansions. Then, the image is estimated by applying a suitable
Bayesian rule to the resulting posterior distribution of the
wavelet coefficients. Different choices of loss function lead
to different Bayesian rules and hence to different nonlinear
wavelet shrinkage and wavelet thresholding rules. Such wavelet
estimators have been discussed in several papers, for example
[7]–[18]. Moreover, it has been shown that Bayesian wavelet
estimators outperform the classical wavelet term-by-term
thresholding estimators in terms of mean-squared error (MSE)
in finite sample situations. A detailed study involving recent
classical and Bayesian wavelet methods was carried out in
[19] in the development toward high-performance wavelet
estimators and their finite sample properties.

A popular prior for each wavelet coefficient is a scale mix-
ture of two normal distributions [8] or one normal distribution
and a point mass at zero [9], [20]. In [21], authors considered a
double exponential prior with a point mass at zero to derive an
adaptive multiresolution smoother. Huang et al. proposed two
Bayesian approaches based on deterministic/stochastic decom-
position [22] and on nonparametric mixed-effects model [16].
Since the work of Mallat [4], the generalized Gaussian distribu-
tion (GGD) has been commonly used as a prior for the wavelet
coefficients in the image processing community (see, e.g., [7],
[17], and [23]). Simoncelli [24] also used a local mixture of
gaussians prior to derive the corresponding Bayesian shrinker.
However, the GGD prior suffers from a lack of capturing the
heavy tail behavior of the observed wavelet coefficients densi-
ties. Based upon this observation, authors in [18] used -stable
distributions [25], a family of heavy-tailed densities, as a prior to
capture the sparseness of the wavelet coefficients at each scale.
These authors showed the superiority of the -stable distribu-
tions in fitting the mode and the tail behavior of the wavelet
coefficients distributions. However, their hyperparameters esti-
mator is very poor in the presence of contaminating noise and
remains an important issue. Furthermore, in both the GGD and
the -stable priors, the derived Bayesian estimator has no closed
analytical form in general situation and involves intensive nu-
merical integration.
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Using a physical model for image formation (the so-called
transported generator model), a family of two-parameter prob-
ability densities, called Bessel K forms (BKFs), have been pro-
posed in [26] and [27] to model the distribution of arbitrary
images that have been filtered by a variety of band-pass filters
(e.g., derivative, Gabor, interpolation, steerable filters, etc). It
is obvious that wavelet decompositions of an image are mem-
bers of such class of filters. Therefore, the BKF is a suitable
model provided that the resulting wavelet coefficients marginals
are: unimodal, symmetric around the mode, and leptokurtic.
The first two conditions are widely adopted in the literature and
are common to other priors such as the -stable or the GGD
models. The last condition simply means that the prior is a
sharply peaked distribution with tails that are heavier as com-
pared to normal density of the same variance. The BKF is then
adapted to capture the heavy tail behavior of wavelet coefficients
densities. Exploiting this prior in a Bayesian framework, we de-
signed a posterior conditional mean (PCM) estimator. We de-
rived a closed-form for its expression as a main result of our
paper.

This paper is organized as follows. In Section II, we define
the nonparametric regression problem and introduce some no-
tational aspects. Some necessary preliminaries on the Bessel K
forms are provided in Section III. We then apply the BKF to
model the prior densities of the wavelet coefficients on a data-
base of test images. A comparison to other priors is also carried
out. Section IV establishes the expression of the marginal poste-
rior density of the wavelet coefficients under the BKF prior. We
also propose a cumulants-based estimator of the hyperparame-
ters involved in nonparametric regression problems, namely ,
, and . Finally, a closed-form expression of the Bayesian de-

noiser based on an -loss criterion is stated. Proofs of the main
results are deferred to the Appendix. Section V compares the
performance of the designed algorithm with classical denoisers
on a digitized database of images. Finally, conclusions and di-
rections of future work are drawn.

II. NONPARAMETRIC WAVELET-BASED REGRESSION

Let , , equally-spaced samples of a
real-valued image. is considered as a power of 2 .
Consider the standard nonparametric regression setting

(1)

where are iid normal random variables with mean zero and
variance independent of . The goal is to recover the un-
derlying function from the observed noisy data , without
assuming any particular parametric structure for . Let , , and

denote the matrix representation of the corresponding sam-
ples. Let , , and , where is the
two-dimensional dyadic orthonormal wavelet transform (DWT)
operator [28]. In a two-dimensional setting, the subbands ,

, and , correspond to the detail coef-
ficients in diagonal, horizontal, and vertical orientations, and the
subband is the approximation or the smooth component.

is the coarsest scale of the decomposition. Let be the
detail coefficient of the true image at location , scale ,

and orientation , and similarly for and . Due to the or-
thogonality of the basis, , the DWT of white noise are also
independent normal variables with the same variance. It follows
from (1) that

(2)
The sparseness of the wavelet expansion makes it reason-

able to assume that essentially only a few large detail coeffi-
cients in contain information about the underlying image ,
while small values can be attributed to the noise which uni-
formly contaminates all wavelet coefficients. It is also advisable
to keep the approximation coefficients intact because they repre-
sent low-frequency terms that usually contain important features
about the image . By thresholding or shrinking the detail coef-
ficients and inverting the DWT, one can obtain an estimate of the
underlying image . So, the resulting three-step wavelet-based
estimation procedure can be summarized by the following dia-
gram:

where is a nonlinear (shrinkage or thresholding) operator. Ex-
amples of such an operator are the hard and soft thresholding
introduced by Donoho et al. [1]. Following their work, there are
a variety of methods in the literature to choose the threshold
level and the thresholding rule (see [19] for a review and small
sample performance of these methods).

In the Bayesian approach, a prior distribution is imposed on
the wavelet coefficients in order to capture the sparseness of the
wavelet expansion. The following section is intended to provide
an introduction to Bessel K forms distributions family suitable
to characterize the wavelet subband coefficients densities which
have been already observed to be sharply peaked and heavily
tailed.

III. BESSEL K FORMS MODEL

A. Definition

Let be a filtered version on an image by the bandpass
filter . Using the transported generator model, the density
function of has been shown to be [26] for ,

(3)
where is the modified Bessel function defined as [29], [30]

(4)

and are respectively the shape and scale parameters. The
associated characteristic function is

(5)
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This probability density function (pdf) is flexible enough to ac-
count for a mode not centered at zero. Nonetheless, we restrict
ourselves to only two-parameter BKF densities throughout this
paper. For , simply reduces to the double exponential
pdf. More generally, is the th convolution power of double
exponential pdfs. If , we get closer to the Gaussian case
(especially when , which is intuitively acceptable using
a central limit theorem argument). If , the pdf becomes
more sharply peaked and the tails are heavier.

B. Properties

The BKF family has many properties, as follows.

1) The pdf is unimodal, symmetric around the mode.
2) It can be easily shown from the log-characteristic function

that the cumulants of a BKF variable are of the form

(6)

All odd cumulants are null and even ones are nonzero. Par-
ticularly, the variance and the kurtosis of a BKF random
variable are

(7)

This result is similar to the one established in [26]. Then,
the pdf is always leptokurtic with tails heavier than the
normal pdf.

3) A BKF is a specific kind of normal variance-mean mix-
ture when the mixing variable is Gamma distributed with
parameters and [26], [27]. Henceforth, to simulate a
BKF variable, one can generate normal samples whose
variances are randomly generated from a Gamma distri-
bution with parameters and . The more general family
of distributions, namely the generalized hyperbolic distri-
bution described by [31], could be used if more parame-
ters are needed to describe the pdf (e.g., skewness).

4) If the random variable is BKF distributed with parame-
ters and , then is BKF distributed with parameters

and .

From (7), the parameters and can be easily estimated using
the second- and fourth-order moments of according to

There are a few subtleties which should be considered when
working with these statistics and we will bear them in mind
throughout the paper. First, care must be taken when estimating
these quantities from a limited sample. The sample kurtosis and
variance can be estimated using the classical formulas. How-
ever, it turns out that these estimators are biased at small sam-
ples. In the case where one has large number of samples , this
is not a problem. On the other hand, for small samples, one can
construct unbiased centered estimators of the cumulants using

statistics [32]. This is an important issue when dealing with
samples in the wavelet domain at coarse levels. In addition, the
variance of the statistics estimator is minimum compared to

Fig. 1. Estimated and observed densities of the wavelet detail coefficients
of three classical images (Lena, Roof textured image, and Boat image). The
observed histogram (� � �) was fitted using the BKF (solid), �-stable
(dashed), and GGD (dotted) models. Only two detail levels are shown for each
image (first and second row each time). The three columns correspond to the
HH, HL, and LH orientations.

all other unbiased estimators. Therefore, statistics unbiased
cumulants estimators were used

(8)
where is the th sample central moment.

We now illustrate some prior estimation results for a variety
of images taken form a digitized database [33]. Depicted in
the first column of Fig. 1 are some images taken from this
database (Lena, textured image Roof, and the famous Boat
image). Shown are the estimated and the observed densities of
the wavelet detail coefficients of each image on log scale. The
observed histogram was fitted using the BKF (solid),

-stable (dashed), and GGD (dotted) models. Only two detail
levels are shown for each image (first and second row each
time). The three columns correspond to the , , and
orientations. The -stable prior tends to exaggerate the tails
of the distribution in some cases (e.g., for textured images),
while the GGD prior suffers from a lack of capturing the heavy
tails behavior. The BKF model is a good compromise between
these two extreme cases (hyperbolic tails for the -stable and
exponential tails for the GGD).
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TABLE I
MEAN (AND STANDARD DEVIATION IN PARENTHESES) OF THE KL DIVERGENCE

BETWEEN THE OBSERVED AND THE FITTED DENSITIES OF THE WAVELET

DETAIL COEFFICIENTS AT THREE DECOMPOSITION SCALES FOR EACH

ORIENTATION. THREE PRIORS ARE COMPARED, THE BKF, THE �-STABLE, AND

THE GGD MODELS. THE KL DIVERGENCE WAS AVERAGED AT EACH SCALE

ORIENTATION OVER 100 IMAGES TAKEN FROM A DIGITIZED DATABASE

To quantify the performance of each prior in modeling-ob-
served histograms, many quantities can be used, such as the
norm between pdfs, the Kolmogorov–Smirnov (KS) distance, or
the Kullback–Leibler (KL) divergence. It turns out that the BKF
pdf is not square integrable for . The KS statistic is not
easily accessible since it uses the distribution function which
is not known in closed form for these prior models. A numer-
ical version could be used instead. Here, we prefer to use the
KL divergence between two pdfs discretized at the histogram
bins. We have computed this quantity for each fitted prior model
over a 100 image database. The KL divergence between the ob-
served and the fitted densities of the wavelet detail coefficients
were calculated at three decomposition scales for each orien-
tation. Shown in Table I is the average KL measure for each
prior model, scale, and orientation over the 100 images. Stan-
dard deviations are also reported in parentheses. This table un-
derscores a high degree of match between the observed and the
estimated density using the BKF model. The BKF prior clearly
outperforms the -stable prior. This is mainly due to the fact
that the -stable model exaggerates the tails of the fitted density.
While the mean value of the BKF prior KL divergence is usually
smaller than that of the GGD, the standard deviation associated
with the BKF is sometimes higher than that of the GGD. We
can then legitimately claim that the BKF density fits the data at
least as well as the GGD. The BKF can prove better than the
GGD model in capturing the heavy tails of the observed his-
togram. Furthermore, a closed-form expression of the Bayesian
shrinkage rule associated with the BKF prior can be readily ob-
tained, as we will show in the next section.

IV. BAYESIAN DENOISING

A. Marginal Density of the Wavelet Coefficients

As stated above, in the Bayesian approach, a prior is imposed
on the wavelet coefficients designed to describe their distribu-

tion. It is also assumed in the the prior model that the wavelet
coefficients of the true image are mutually independent
random variables (and independent of the noise process ).
Throughout the rest of the paper and for readability, the super-
script and subscript (orientation at scale and location

) will be dropped out. As clearly demonstrated in the pre-
vious section, the wavelet detail coefficients at each scale and
orientation are BKF distributed

(9)

Once the data are observed, the observed wavelet coefficients
are determined and we seek the posterior distribution of .

Under the white Gaussian noise model considered here, the
are independent and Gaussian conditionally on

(10)

Therefore, the marginal pdf of given , , and

(11)
where is the normal pdf with mean and variance

and is the BKF pdf given in (3). Although the pro-
posed BKF prior models the histograms very well, its exact ana-
lytic form is not easy to work with. Approximating the modified
Bessel function using the expansion in [30], also used by
authors in [27], we can state the following lemma.

Lemma 1: For and , then the marginal pdf
can be well approximated by

(12)

where .
stands for the parabolic cylinder function of fractional

order [29], [30]. is an even function whose mode is at zero.
See the Appendix for the proof.

The parabolic cylinder function involved in (12) is defined
in the Appendix. From a practical point of view, there is an ex-
tended literature on numerical algorithms for computing the par-
abolic cylinder function. In [34], authors give Fortran programs
for computing with real orders and real arguments. The
methods are based on recursions, MacLaurin series and asymp-
totic expansions. The numerical computation of based on
this method is fast and stable. Here, we implemented Matlab and
C codes which are translations of the Fortran program given in
[34]. A Fortran toolbox with numerous routines for computing
special functions, including , can be retrieved from the
web site [35]. The C and Matlab codes for computing
can be obtained upon request from the author.

Remark: As pointed out by Grenander et al. [26], [27], most
of filtered natural images have a value of , then our condi-
tion in Lemma 1 is not restrictive and the approximation is very
good.

B. Hyperparameters Estimation

To implement the formula in (12) or (17) in practice, one must
elicit the hyperparameters estimation problem, which, in turn,
will lead to a data-driven denoising procedure that is adaptive
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to each subband. For example, one may apply a maximum like-
lihood (ML) approach. However, given the parametric form of
(12), there is no known closed form expression of the ML esti-
mates and intensive numerical methods must be used. The ap-
proach we propose in the present paper is based on higher order
statistics, i.e., cumulants. It is obvious to show that adding a
Gaussian process to a BKF process will only modify its vari-
ance but not the other cumulants. Therefore, we can write the
cumulants of as

and for (13)

Again, only even cumulants are nonzero. To estimate the three
unknown hyperparameters, namely , , and , it is enough to
estimate the cumulants up to order six. Using the fourth (kur-
tosis) and sixth-order cumulants, one can easily derive the ana-
lytical expression of . Then, substituting in the kurtosis for-
mula, an estimate of can be deduced. The estimate of
is finally obtained from the second-order cumulant (variance).
However, using the sixth-order cumulant (even with the sta-
tistics estimator) can yield to very poor performance since the
variance of any cumulant estimate increases dramatically with
its order [36, p. 212]. Furthermore, in the presence of noise, the
estimate quality is more deteriorated because the cumulant es-
timator variance is an increasing power function of the noise
variance [36].

Based upon these arguments, we here suggest an alternative
estimation strategy. If one is able to measure , then this esti-
mate could be used. If such is not the case, is estimated from
the orientation at the finer scale using the popular robust
estimator [1]

(14)

where MAD is the median absolute deviation. Using this esti-
mate, one can easily derive the following estimates of and at
each subband from the noisy observations using their second-
and fourth-order cumulants

(15)

In fact, the zero argument in (15) must be replaced by any pos-
itive real very small to keep or nonzero. and are the
sample second- and fourth-order cumulants obtained from (8).
In practice, if (or ) is zero, then the prior pdf is simply a
point mass at zero and the posterior conditional mean estimator

presented in the next section is zero for all .
Shown in Fig. 2 are the estimated (solid) and observed

(dashed) marginal densities of the wavelet detail coeffi-
cients for the same images as in Fig. 1. These images were
corrupted by a zero-mean Gaussian noise [signal-to-noise
ratio (SNR) 15 dB]. The observed histogram was fitted using
(12). The hyperparameters were estimated for each scale and
orientation using (14) and (15). Two detail levels are shown for
each image. The estimated parameters and are shown at the

Fig. 2. Estimated (solid) and observed (dashed) marginal densities (in log
scale) of the wavelet detail coefficients for the same images as in Fig. 1 corrupted
by a zero-mean Gaussian noise (SNR=15 dB). The observed histogram was
fitted using (12). Only two detail levels are shown for each image. Again, the
three columns correspond to the HH, HL, and LH orientations.

top of each plot. These estimates are in very good agreement
with those obtained from the noise free images, depicted at the
top of each plot in Fig. 1. We can also observe a high degree of
match between the observed histograms of noisy detail wavelet
coefficients and the fitted marginal density given by (12).

Remark: As one can notice, the first decomposition level is
dominated by noise and the marginal density tends to normal. At
finer scales, the signal-to-noise ratio increases and the observed
marginal has heavier tails (BKF-like behavior). Furthermore,
the estimates of and at these fine scales are closer to those
of the noise free image.

C. Bayesian Term-by-Term Denoising

1) Posterior Conditional Mean Estimator: Let us now
turn to the Bayesian framework to obtain wavelet shrinkage
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estimates of the unknown image . Different losses will lead
to different Bayesian rules and, therefore, to different wavelet
estimates for the unknown image [19]. It is well known that

-based Bayes rules correspond to posterior conditional
means (PCM) estimates of wavelet coefficients (conditionally
on the hyperparameters , , and ), given by

(16)

This expression corresponds to a level-dependent Bayesian
coring rule (following terminology in [7]). The denominator in
this equation has been established in Lemma 1. The following
theorem gives the closed analytical form of the PCM estimator
of the wavelet coefficients under the observation model in
(2), given , , and .

Theorem 1: For , and strictly positive. Under the
observation model given in (2), the posterior conditional mean
estimator is given by (17), shown at bottom of the next page,
which is a nonlinear odd function (see Appendix for the proof).

Depicted in Fig. 3 are the Bayesian rule input-output curves
obtained using the result of Theorem 1. The first (respectively,
last) two rows show the influence of the shape parameter
(respectively, the ratio ) on the Bayesian estimator curves
for constant ratio (respectively, shape parameter ).
As demonstrated by these plots, the proposed Bayesian rule
shrinks small observed wavelet coefficients heavily and large
ones only slightly, approaching the identity line when is
very large. This asymptotic behavior can be proved using the
asymptotic expansion of for large [29]. In the con-
text of image denoising, this is accomplished in a data-driven
adaptative manner since the hyperparameters are estimated
from the data at each orientation and each scale. As far as the
influence of is concerned, the amount of shrinkage decreases
as increases. This can be intuitively understood from the
fact that as increases, the heavier the tails and the higher the
probability that smaller values are due to the true function .
Similar observation was made for the -stable prior in [18].
Another explanation of this behavior is that as increases,
the SNR increases (SNR ), yielding less shrinkage
amount. The same behavior is also observed in Fig. 3(b) with
increasing values of the ratio , which can be interpreted
in a similar way. The designed denoiser of (17) is only valid for

which is not restrictive as most of filtered natural images
have a value of . Nevertheless, in practice, if happens to

be large, i.e., the signal pdf tends to a Gaussian, the well-known
linear PCM estimator can be used.

V. EXPERIMENTAL RESULTS

We now assess the performance of the Bayesian denoiser
with the BKF prior by comparing it to various denoising
methods. We again use the test images of the digitized data-
base [33]. Five other denoising algorithms are considered:
Bayesian PCM denoiser using -stable prior [18], [37], uni-
versal threshold hard and soft thresholding [1], and the Stein
unbiased risk estimator (SURE) [2]. The best possible uniform
thresholding technique with a threshold that minimizes the
MSE between the corrupted and the uncontaminated image
was also computed. We refer to this as the oracle threshold
[23]. With the -stable prior, no closed form is available for
its PCM Bayesian denoiser. Direct numerical integrations are
too time consuming and numerically unstable. In the work of
[37], we proposed a method using the characteristic functions
corresponding to the true image coefficients and the noise.
The Fourier integrals involved in its PCM estimator expres-
sion were computed using the fast Fourier transform, which
turned out to be numerically efficient and stable [38]. The
DWT employs Daubechies compactly-supported wavelet with
regularity 4. The coarsest level of decomposition was chosen to
be from asymptotic considerations [19].

Beside visual quality, we calculated the signal to MSE ratio
(SMR) in order to quantify the achieved performance improve-
ment. This is defined in decibels, as follows:

(18)

where the denominator is the estimated MSE between the orig-
inal and the denoised images.

Fig. 4 shows the resulting images for each denoising method
for the Lena image with an input SNR 15 dB ( 20). One can
see that the visual quality of the Bayesian BKF prior-based de-
noiser is superior to the other methods. The mean and standard
deviation (over ten runs) of SMRs given by the various methods
for the Lena image are compared in Fig. 5. The SMRs were
computed for each run and each value of input SNR in the
range [5, 20] dB. Again, one can notice that the BKF denoiser
outperforms the other methods. It compares favorably with the
oracle thresholding but is much better that the SURE, especially
at low SNRs. The universal hard thresholding method gives a
poorer result although better than soft thresholding which gives
an oversmooth estimate. The -stable prior Bayesian denoiser
is underperforming at low-input SNR . The main reason is

(17)
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Fig. 3. Bayesian rule input-output curves (s as a function of d). (a)
Influence of the BKF prior shape parameter p on the Bayesian estimator
curves for constant ratio

p
c=�. As shown in the legend, p varies from small

(corresponding to strongly heavy-tailed signal, solid line) to large values
(slightly heavy-tailed signal, line with + marker). (b) Influence of the ratiop
c=� on the Bayesian estimator curves for constant p:

p
c=� =1 (solid) top

c=� =3.16 (dotted).

the weakness of the hyperparameters estimator which remains
an important issue. Surprisingly, this has not been pointed out
by authors in [18]. This general behavior is also observed on
the Roof and the Boat images. For the Roof textured image,
where the prior distribution is expected to be sharply-peaked and
heavily-tailed, the advantages of the BKF Bayesian denoiser are
most salient at low SNR . In Fig. 6, the average SMRs over the
ten runs and the whole database (100 images) for each denoising
method, as a function of SNR , are depicted. The general be-
havior described before is confirmed by this plot. This suggests
that the BKF prior is a suitable model adapted to capture the
sparseness behavior of the wavelet coefficients for a large class
of images.

VI. CONCLUSION

In this paper, a novel wavelet-based Bayesian denoiser has
been introduced. Specifically, a new class of prior pdfs, namely
the Bessel K forms, has been proposed. We have shown that

Fig. 4. Comparing various denoising methods for Lena image corrupted by
noise with an input SNR =15 dB (� =20). The Bayesian PCM denoiser with
the BKF prior is clearly superior to the other methods confirming the general
behavior observed on the test database used in this paper.

the BKF prior is very powerful in capturing the sparseness be-
havior of the wavelet coefficients over a large class of images.
The BKF model also demonstrated a high degree of match be-
tween observed and estimated prior densities. Specifically, the
BKF model turns out to be a good compromise between two ex-
treme cases: the -stable prior with exaggerated hyperbolic tails
and the GGD prior with exponential tails insufficient to describe
correctly the heavy-tailed behavior of the wavelet coefficients
distribution. Using this prior, analytical expressions for the pos-
terior marginal distribution as well as the posterior conditional
mean estimators have been derived. When compared to other
denoising approaches, the experimental results have shown the
superiority of the BKF Bayesian denoiser over a large database
of images.
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Fig. 5. For each SNR , mean and standard deviation (over ten runs) of SMRs
given by various denoising methods for three test images: Lena, Boat, and Roof.

Despite his good performances, there are still some aspects
in this method that have to be investigated. First, we can point
out the lack of translation invariance which yields a ringing
effect, even if this effect is quite negligible in the BKF denoised
images. This problem can be solved either by cycle spinning
using Coifman and Donoho algorithm [39] or using translation

Fig. 6. Average SMRs over the ten runs and the 100 image database for each
denoising method, as a function of the SNR .

invariant transforms, such as the nonorthogonal undecimated
(redundant) wavelet transform [40]. The former is simple to
implement but is two time consuming. In the latter, the trans-
form is highly redundant and the noise becomes correlated.
Furthermore, the interscale independence property used in our
context is no longer valid. Another important issue toward the
goal of refining our method is to take into account the geomet-
rical information in images. This can be done using specific
geometry-based transforms, e.g., curvelets [41] and bandlets
[42]. Another way would consist of combining contextual
spatial and Bayesian intensity information in an elegant and
powerful Markov random field model, in the same vein as in
[43] and [44]. Our investigations are now focusing on these
aspects.

APPENDIX I
PROOF OF LEMMA 1

Proof: First, we will use the following approximation re-
sult given in [29], [30]. When is fixed, for large

, the first-order asymptotic expansion of is

(19)

with a rest given by

for (20)

This means that for real and real and positive, this rest is
less than the absolute value of the first discarded term and is of
the same sign, provided that . Applying this
result to the BKF pdf, it follows that:

(21)

Obviously, for , the pdf in (21) is bimodal with modes at
and not at zero. Therefore, (21) is only valid
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for . Plugging this expression into (11) and decomposing
the integral for positive and negative , we can write

(22)

where . To es-
tablish the final result, we will need the integral formula in [30,
p. 337]

(23)

where is the parabolic cylinder function [30]. It has sev-
eral integral representations. In our case of interest, the argu-
ment is always strictly negative; therefore, we choose the fol-
lowing representation [30]:

for (24)

and are strictly positive by definition. Then,
combining the integral in (23) with (22) and after some algebraic
arrangements, the result in (12) follows.

APPENDIX II
PROOF OF THEOREM 1

Proof: First, let us recall the posterior conditional mean
estimator expression

(25)

The denominator expression has been established in Lemma 1.
To derive the numerator expression, we follow the same steps
as in Lemma 1. By decomposing the integral in the numerator
for positive and negative , we can show that

(26)
where . from the
integral formula in (23), its is straightforward to show that for

(27)

which is valid since . Finally, combining (12), (26), and
(27), the result in Theorem 1 follows. This completes the proof.
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