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ABSTRACT

This paper proposes a theoretical and statistical study to
characterize the dependencies of the curvelet coefficients
of images across position, scale and orientation. Our
study was based on estimated histograms of the marginal
and joint distributions to study the statistical properties
of curvelet coefficients, and on the mutual information
to measure the level of dependence between these coef-
ficients. Finally, a novel multivariate statistical model,
namely the anisotropic multivariate generalized gaussian
(AMGGD), was proposed to characterize these dependen-
cies.

1. INTRODUCTION

During the last ten years, wavelets had an immense suc-
cess in image processing, and were used for many prob-
lems such as image restoration and compression [1].
These problems often involve parcimonious image repre-
sentation through modern adaptive sparse representations
borrowed from harmonic analysis (e.g wavelets and be-
yond).

However, wavelets are not optimal for detecting
anisotropic objects in image (e.g. lines, contours), but are
efficient for detecting isotropic objects at different scales.
Recently, new X-let multiscale transforms have been de-
veloped -such as the curvelets, contourlets and bandlets-
which integrate the concept of directionality and detect
objects in an optimal way. Their effectiveness in image
processing still remains to confirm.

In this paper, we present a statistical analysis of the
coefficients’ dependencies of the images across posi-
tion, scale and orientation (directions) in the curvelet do-
main [2, 3]. To characterize these dependencies, we
study the marginal and joint statistics of the curvelet co-
efficients and assess the dependency levels via mutual
information[4]. In order to capture these dependencies,
we have proposed a novel analytical multivariate model,
namely the anisotropic multivariate generalized gaussian
(AMGGD).

2. BACKGROUND

2.1. Curvelets

Curvelets as proposed by E. Candès and D. Donoho [2],
constitute a relatively new family of frames that are de-
signed to represent edges and other singularities along
curves much more efficiently than the traditional wavelet-
based transforms. For example, as shown in Fig.1(a), it
would take many wavelet coefficients to accurately repre-
sent such a curve. Compared with wavelets, curvelets can
represent a smooth contour with much fewer coefficients
for the same precision (Fig.1(b)).

The curvelet transform is a multiscale transform with
frame elements indexed by location, scale and orientation
parameters, and have time-frequency localization proper-
ties of wavelets but also shows a very high degree of di-
rectionality and anisotropy. More precisely, we here use
a new tight frame of curvelets recently developed in [5].
Further details about curvelets can be found in [2, 5].

Fig.2(a) shows a typical set of curvelet coefficients of
the image ”Boat” divided into three scales and six orien-
tations using the Digital Curvelet Transform (DCT) of [6].
Fig.2(b) shows the corresponding spectral partitioning of
the curvelet transform [5, 3, 6]. A curvelet is shown in
Fig.2(c).

Wavelet Curvelet

(a) (b)

Wavelet representation Curvelet representation

Fig. 1. Comparison of non-linear approximation perfor-
mance for curvelets and wavelets.

2.2. Coefficients Relationships

For each curvelet coefficient X , we define its neighbors
(NX) in the same orientation as its eight adjacent coef-
ficients. Next, the coefficient in the same spatial location
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Fig. 2. (a) An example of digital curvelet transform of the image ”Boat”. Only three scales and six orientations are shown
(j: is the scale, o: is the orientation). (b) Curvelet partitioning of the spectral plane. (c) A curvelet.

in the immediately coarser scale corresponds to its parent
(PX), and the coefficients in the same scale and same spa-
tial location but at different orientation are referred to as
cousins (CX) of each other. There are more orientations
in the curvelet representation compared to the wavelet rep-
resentation where there are only three cardinal directions.
Fig.3 graphically depicts these some important curvelet
coefficient relationships.

Parent
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orientation 1 orientation 2
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Neighbors

Fig. 3. Curvelet coefficient relationships.

3. CURVELET STATISTICS

Here, we present a statistical study to characterize the
inter- and intra-scale dependencies of the curvelet coef-
ficients of images.

3.1. Marginal statistics

We first study the marginal statistics of the curvelet coef-
ficients of images. Fig.4(a) shows the histograms of two
orientations at two successive scales of the image ”Boat”
(coarser and next-to-coarser scale). The distributions are
characterized by a very sharp peak at zero amplitude and
extended tails to both sides of the peak (leptokurtic). This
leptokurtic behavior is observed on all histograms of all
orientations and scales of all images in our test set. This
implies that the curvelet transform is very sparse, as the
majority of coefficients have amplitudes close to zero.
The kurtosis of these distributions are measured and are
higher than the gaussian value of 3. Thus, the marginal
distributions of images in curvelet domain are highly non-
gaussian.

3.2. Joint Statistics

Next, we study the joint statistics of curvelet coefficients
at different positions, scales and orientation. In Fig.2(a), it
can be seen that large coefficients tend to cluster spatially
around the edges of objects in the image ”Boat”, and also
persist to other scales and other orientations.
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Fig. 4. (a) Marginal distributions of two orientations at two successive scales of the image ”Boat”. (b) Joint distributions
of curvelet coefficients of the image ”Boat” in the bivariate and trivariate case, P (X, .) and P (X, ., .), where (.) refers to
the parent PX , neighbors V X and cousin CX .

Fig.4(b) plots the joint distributions of curvelet coeffi-
cients of the image ”Boat” in the bivariate and trivariate
case, P (X, .) and P (X, ., .), where (.) refers to the par-
ent, neighbor or cousin.

3.3. Mutual Information

Here, we propose a quantitative study of the joint statistics
of curvelet coefficients to numerically assess the depen-
dencies between coefficients. The mutual information [4]
is used as a quantitative measure of dependencies [7, 8].

Table 1 shows the average mutual information estimate
over a database of 100 test images [9]. It can be observed
that the position dependency is the most prominent, fol-
lowed by the scale and orientation coefficients dependen-
cies. This confirms our expectations from Fig.4(b). Fur-
thermore, The inter-orientation dependencies are less im-
portant because of the curvelet partitioning illustrated in
Fig.1(a). However, the curvelets system don’t form an or-
thogonal base but a frame. Therefore, dependencies be-
tween orientations still subsist.

Table 1. The average mutual information estimate over a
database of 100 test images.

Coarser scale Next-to-coarser scale

MI(X; PX) 0.164 0.194
MI(X; V X) 0.374 0.555
MI(X;CX) 0.142 0.151

4. MULTIVARIATE STATISTICAL MODEL

Here, we introduce a class of joint PDFs which are able
to model the non-gaussian heavy tailed behavior and the
dependencies in a multivariate setting.

4.1. Proposed model

Definition 1
Let X = (X1, X2, . . . , Xd)

T a vector of random vari-
ables defines in Rd. If X is distributed according to
an anisotropic multivariate generalized gaussian, then its
PDF can be written as follows:

pX(x; α, Σ) =
det Σ−1/2

(Z(α)A(α))
d
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(
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α is the shape parameter and Σ is a symmetric positive
definite matrix. ‖x‖α =

∑d
i=1 |xi|α stands for the lα

norm of vector x.

This definition includes the particular case d = 1
(one random variable) and multivariate normal distribu-
tion case (α = 2). This PDF model enjoys several inter-
esting properties that we have established.

4.2. Hyperparameters estimation

We here propose estimators (moments and maximum like-
lihood) of the hyperparameters associated to: α and Σ.

An attractive property of parameterization Eq. 1 is that

cov(X) = Σ (4)

Therefore, cov(X) can be easily estimated using the
moments estimator. Plugging this in the likelihood equa-
tions, we can obtain α using the maximum likelihood es-
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timator (ML). The ML estimator of α given Σ can be de-
rived as being:

α̂ML = arg min
α>0

LL(α) = arg min
α>0

−
n

∑

i=1

log pX(xi; α, Σ)

(5)
and α̂ML is then the solution of the following equation:

f(α) =
α∂LL(α)
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=
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(6)

j represents the jth component of vector yi where yi =
Σ−1/2xi, xi,{i=1,...,n} are the realizations of X, and Ψ is

the Digamma function (reminder, Ψ(z) = d ln(Γ(z))
dz ).

The following result establishes existence of the ML es-
timator of α.

Proposition 1
(i) f(α) has at least one root in R+∗, then there exists

at least one no-unique solution α̂ML as the ML esti-
mator of α given Σ.

(ii) if M = max
i,j∈N

|yi,j | ≤
√

3, then will always be

strictly upper-bonded by nd log(3)
2 at the global min-

imum α̂G of LL(α).

The goal of this result (Prop.1-(ii)) is that we can reject
adaptatively some local minima of LL(α) (those above
nd log(3)

2 ).

According to Eq. 4 and proposition 1, we suggest the
following hyperparameters estimation algorithm:

Algorithm 1 Hyperparameters estimation
1: Estime Σ

Σ̂ =
1

n

∑

i

xixT
i (7)

2: Estime α
To obtain α̂ we can solve numerically Eq. 6 using
a descent method (e.g, gradient) taking advantage of
Prop.1-(ii) in order to avoid local minima.

4.3. Application to AMGGD

In Fig.4(b), the PDF model was fitted (dotted) to the ob-
served joint PDF (solid) in the bivariate case. One can ap-
preciate the adequacy of this model to the observed statis-
tics. This procedure has been applied successfully to 100
images database [9]. The proposed PDF model with it es-
timator behaved very stably

5. CONCLUSION

We have studied the properties of the curvelet coefficients
of images. We have also shown that large coefficients tend
to cluster spatially around the edges of objects in the im-
age, and persist to other scales and other orientations. This
implies that the curvelet coefficients are highly dependent
on their parents and neighbors, as well as cousins in dif-
ferent scales and orientations. These dependencies can
be quantitatively verified using mutual information, which
shows that curvelet coefficients exhibits level of depen-
dence on their neighbors, followed by parents, and then
cousins. Based on the above properties, we have proposed
an analytical multivariate model of PDF AMGGD in order
to capture the dependencies between curvelet coefficients.
Our future work is now focused on the application of this
PDF model to Bayesian image restoration.
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