
www.elsevier.com/locate/patrec

Pattern Recognition Letters 27 (2006) 1370–1382
A closed-form nonparametric Bayesian estimator in the wavelet
domain of images using an approximate a-stable prior

Larbi Boubchir *, Jalal M. Fadili

Image Processing Group, GREYC CNRS UMR 6072 - ENSICAEN, 6, Bd Maréchal Juin, 14050 Caen, France
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Abstract

In this paper, a nonparametric Bayesian estimator in the wavelet domains is presented. In this approach, we propose a prior statistical
model based on the a-stable densities adapted to capture the sparseness of the wavelet detail coefficients. An attempt to apply this model
in the context of wavelet denoising have been already proposed in (Achim, A., Bezerianos, A., Tsakalides, P., 2001. Novel Bayesian mul-
tiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imag. 20, 772–783). However, despite its efficacy in
modeling the heavy tail behavior of the empirical wavelet coefficients histograms, their denoiser proves very poor in practice especially at
low SNRs. It suffers from many drawbacks such as numerical instability because of the lack of a closed-form expression of the Bayesian
shrinkage rule, and the weakness of the estimator of the hyperparameters associated with the a-stable prior. Here, we propose to over-
come these limitations using the scale mixture of Gaussians theorem as an analytical approximation for a-stable densities, which is not
known in general, in order to obtain a closed-form expression of our Bayesian denoiser.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Wavelets; Bayesian denoiser; a-stable; Gaussian mixture model; Posterior conditional mean
1. Introduction

Nonparametric wavelet-based regression has been a fun-
damental tool in data analysis over the past two decades
and is still an expanding area of ongoing research. The goal
is to recover an unknown image, say g, based on sampled
data that are contaminated with noise. Only very general
assumptions about g are made such as that it belongs to
a certain class of functions (e.g. Besov space). Nonpara-
metric regression (or denoising) techniques provide a very
effective and simple way of finding structure in datasets
without imposing of a parametric regression model. During
the 1990s, the nonparametric regression literature was
arguably dominated by nonlinear wavelet shrinkage and
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wavelet thresholding estimators (Donoho and Johnstone,
1994, 1995). These estimators are a new subset of an old
class of nonparametric regression estimators, namely
orthogonal series methods. Moreover, these estimators
are easily implemented through fast algorithms so they
are very appealing in practical situations (Mallat, 1989).

Since the seminal papers by Donoho and Johnstone
(1994, 1995), the image processing literature have been
inundated by hundreds of papers applying or proposing
modifications of the original algorithm in estimation and/
or restoration problems. Various alternatives to wavelet
thresholding have been developed in (Vidakovic, 1999).
Authors in (Donoho and Johnstone, 1995) proposed the
SureShrink estimator. Nason (1996) considered estima-
tors based on the cross-validation principle in order to
determine the regularization parameter. In (Abramovich
and Benjamini, 1996; Ogden and Parzen, 1996), authors
considered thresholding as a multiple hypotheses testing
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1 Although the presentation here is focusing on the wavelet transform,
our methodology is readily applicable to any basis in which the image is
sparsely represented.
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procedure. In (Hall et al., 1997; Efromovich, 2000) sug-
gested that the wavelet coefficients could be thresholded
in blocks rather than term-by-term. The wavelet block
thresholding estimators have excellent mean squared error
performances relative to wavelet term-by-term threshold-
ing estimators in finite sample situation.

The sparseness of the wavelet expansion makes it rea-
sonable to assume that essentially only a few large detail
coefficients contain information about the underlying
image. It is then legitimate to impose a prior designated
to model the sparsity of the wavelet representation. Vari-
ous Bayesian approaches for nonlinear wavelet denoising
have been recently proposed. These estimators have been
shown to be effective and it is argued that they are less
ad hoc than the classical proposals discussed above. In
the Bayesian approach a prior distribution is imposed on
the wavelet coefficients. Then the image is estimated by
applying a suitable Bayesian rule to the resulting posterior
distribution of the wavelet coefficients. Different choices of
loss function lead to different Bayesian rules and hence to
different nonlinear wavelet shrinkage and wavelet thres-
holding rules. Such wavelet estimators have been discussed
in several papers, for example (Achim et al., 2001; Simon-
celli and Adelson, 1999; Abramovich et al., 1998; Chang
et al., 2000a). Moreover, it has been shown that Bayesian
wavelet estimators outperform the classical wavelet term-
by-term thresholding estimators in terms of mean squared
error (MSE) in finite sample situations.

A popular prior for each wavelet coefficient is a scale
mixture of two normal distributions (Chipman et al.,
1997) or one normal distribution and a point mass at zero
(Abramovich et al., 1998). In (Vidakovic and Ruggeri,
2000), authors considered a double exponential prior with
a point mass at zero to derive an adaptive multiresolution
smoother. Huang et al. proposed two Bayesian approaches
based on deterministic/stochastic decomposition (Huang
and Cressie, 2000) and on nonparametric mixed-effects
model (Huang and Lu, 2000). Since the work of (Mallat,
1989), the Generalized Gaussian Distribution (GGD) has
been commonly used as a prior for the wavelet coefficients
in the image processing community (see e.g. Chang et al.,
2000a,b). Simoncelli (1999) also used a local mixture of
Gaussians prior to derive the corresponding Bayesian
shrinker. However, the GGD prior suffers from a lack of
capturing the heavy tail behavior of the observed wavelet
coefficients densities. Based upon this observation, authors
in (Achim et al., 2001) used a-stable distributions (Nikias
and Shao, 1995), a family of heavy tailed densities, as a
prior to capture the sparseness of the wavelet coefficients
at each scale. However, in both the GGD and the a-stable
priors, the derived Bayesian estimator has no closed analyt-
ical form in general situation. This involves intensive
numerical integration which is numerically unstable since
the integration limits are infinite. Recently, in (Fadili and
Boubchir, 2005), the Bessel K forms (BKF) family has been
successfully proposed in wavelet-based Bayesian denoising.
In that work, a closed-form expression of the L2-loss
Bayesian shrinkage rule associated with the BKF prior
was proposed.

In our approach, we propose a prior statistical model
based on the a-stable densities adapted to capture the
sparseness of the wavelet detail coefficients.1 An attempt
to apply this model in the context of wavelet denoising
have been already proposed in (Achim et al., 2001). These
authors showed the superiority of the a-stable distributions
in fitting the mode and the heavy tail behavior of the
wavelet coefficients distributions. However, their hyper-
parameters estimator is very poor in the presence of
contaminating noise and remains an important issue
yielding very bad performance of their wavelet denoiser
especially at low SNRs. Moreover, explicit forms of the
probability density functions (PDF) are not known in gen-
eral. Therefore, the Bayesian denoiser derived by Achim
et al. (2001) suffered from other drawbacks such as numer-
ical instability because of the lack of a closed-form expres-
sion of the Bayesian shrinkage rule, and the weakness of
the estimator of the hyperparameters associated with the
a-stable prior.

In general, with the a-stable prior (which is part of the
scale mixture of Gaussians family (Andrews and Mallows,
1974)), the most preoccupying issue is not only that the
a-stable distribution does not always possess a closed-form
expression, but also that the Bayesian modeling and esti-
mation associated to this prior is complicated. Clearly,
even if the prior distribution is analytically known, the inte-
grals involved in the Bayesian analysis and estimation (e.g.
posterior distribution, posterior mode, posterior mean), are
highly complex to manipulate. One can then circumvent
these difficulties using either approximations (e.g. Laplace,
finite mixtures), numerical or Monte-Carlo integration
methods. Towards this goal, in the present paper, we pro-
pose to overcome these difficulties using the finite mixture
of Gaussians as a fast and numerically stable analytical
approximation for a-stable densities in order to obtain a
closed-form expressions for our Bayesian denoiser. We
show the effectiveness and the stability of this approxi-
mation. Additionally, we propose an approximate maxi-
mum likelihood estimator for the hyperparameters of our
closed-form expressions. When applied to discrete wavelet
transforms of real images, the approximate a-stable model
demonstrates a high degree of match between observed and
estimated prior densities. Exploiting this prior, we design a
Bayesian L2-loss nonlinear denoiser and we derive a closed-
form for its expression.

This paper is organized as follows: In Section 2 we define
the wavelet-based nonparametric regression problem. Some
necessary preliminaries on the a-stable model are given in
Section 3. The approximation by the Gaussian scale-
mixture model is proposed in Section 4. Using this approx-
imate a-stable prior, Section 5 is devoted to expose our
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nonparametric Bayesian estimator. Section 6 compares the
performance of the designed algorithm with previously pub-
lished denoisers on a digitized database of images. Finally,
conclusions and directions of future work are drawn.

2. Nonparametric regression with bases

Suppose we have noisy data at regularly sampled pixels:

ymn ¼ gmn þ �mn ð1Þ
where �mn are iid normal random variables with mean zero
and variance r2

� independent of gmn. The goal is to recover
the underlying function g from the observed noisy data
ymn, without assuming any particular parametric structure
for g. Let y, g and � denote the matrix representation of
the corresponding samples. Let D ¼Wy, S ¼Wg and
V ¼W�, where W is the two-dimensional dyadic ortho-
normal wavelet transform (DWT) operator (Mallat,
1999). In a two-dimensional setting, the subbands HHj,
HLj and LHj, j = Jc, . . . ,J � 1 correspond to the detail
coefficients in diagonal, horizontal and vertical orienta-
tions, and the subband LLJ c is the approximation or the
smooth component. Jc is the coarsest scale of the decompo-
sition. Let soj

mn be the detail coefficient of the true image g at
location (m,n), scale j and orientation o, and similarly for
doj

mn and voj
mn. Due to the orthogonality of the basis, voj

mn,
the DWT of white noise are also independent normal vari-
ables with the same variance. It follows from Eq. (1) that

cmn ¼ amn þ �mn

doj
mn ¼ soj

mn þ �mn; j ¼ J c; . . . ; J � 1; m; n ¼ 0; . . . ; 2j � 1

ð2Þ

where amn (resp. cmn) is the approximation coefficient of the
true image g (resp. y) at location (m,n).

The sparseness of the wavelet expansion makes it rea-
sonable to assume that essentially only a few large detail
coefficients in D contain information about the underlying
image g, while small values can be attributed to the noise
which uniformly contaminates all wavelet coefficients. It
is also advisable to keep the approximation coefficients
intact because they represent low-frequency terms that usu-
ally contain important features about the image g. A wide
class of nonparametric wavelet estimators can be written as
minimizers of the penalized least-squares problem:

v2ðsoj
mnÞ ¼

1

2r2
kD� Sk2

2 þ
X

o;j;m;n

pkðjsoj
mnjÞ ð3Þ

The regularizing penalty function pk(j Æ j) is nondecreasing,
nonnegative and not necessarily convex on Rþ, and irregu-
lar at point zero to produce sparse solutions (Antoniadis
and Fan, 1999). It depends on a hyperparameter vector
k. The minimization of this high-dimensional problem re-
duces to component-wise minimization problem where a
unique solution can be easily found under suitable condi-
tions (Antoniadis and Fan, 1999). Antoniadis and Fan
(1999) showed that most of classical estimators reviewed
in Section 1 have objective criteria which are special cases
of Eq. (3) corresponding to specific choices of p(j Æ j), e.g.
soft shrinkage corresponds to the L1-norm penalty.

In the Bayesian approach a prior distribution is imposed
on the wavelet coefficients in order to capture the sparse-
ness of the wavelet expansion. The following section is
intended to provide a brief introduction to a-stable distri-
butions family suitable to characterize the wavelet subband
coefficients densities which have been already observed to
be sharply peaked and heavily tailed.
3. a-Stable distribution
Definition 1 (Characteristic function). Let X a random
variable (RV). X is said a-stable (X � Sa(b,l,c)) if there
exist 0 < a 6 2, c P 0, �1 6 b 6 1 and l 2 R such that the
associated characteristic function is given by (Zolotarev
formulation):

wX ðtÞ ¼ expðilt � cajtjað1� ib signðtÞW ða; tÞÞÞ; t 2 R

ð4Þ
where

W ða; tÞ ¼
tan

pa
2

� �
if a 6¼ 1

� 2

p
log jtj if a ¼ 1

8><>:
Therefore, the four parameters a, b, l and c uniquely and
completely define the a-stable distribution. a is the charac-
teristic exponent. It controls the heaviness of the tails of the
PDF. b is the symmetry index. It determines the skewness
of the distribution. When b = 0, X is symmetric a-stable
(SaS) RV. l is the location parameter. If 1 < a 6 2, this
parameter is equal to the mean and the median when
0 < a 6 1. The scale parameter c = ra. It is a measure of
the spread of the samples from a distribution around its
mean. If a = 2 (Gaussian distribution), the standard devia-
tion of the distribution is equal to

ffiffiffi
2
p

r. It should be also
noted that an a-stable RV have infinite variance for a < 2
and that E(jXjq) <1 if q 6 a. The latter remark has a fun-
damental consequence on the integrals involved in the
Bayesian shrinkage rules to be properly defined (Mathieu,
2002).

The wavelet detail coefficients densities have been
already observed to be symmetric sharply peaked and
heavily tailed (Mallat, 1989; Simoncelli and Adelson,
1999; Chang et al., 2000a,b; Achim et al., 2001; Fadili
and Boubchir, 2005; Portilla et al., 2003). This is exactly
the property which is captured by an SaS distribution
where b = 0 and l = 0, i.e. Soj

m;n � Sað0; 0; cÞ.

4. Analytical approximation of SaS PDFs

The PDF of an a-stable RV exists and is continuous.
But there is no explicit expression for this PDF except
for a few special cases. By taking the inverse Fourier trans-
form of the characteristic function wX(t) given in Eq. (4),



L. Boubchir, J.M. Fadili / Pattern Recognition Letters 27 (2006) 1370–1382 1373
one can obtain an integral representation of the PDF where
the integration limits are infinite (Nolan, 1997). This inte-
gral can be evaluated analytically only for a = 2 in which
case the distribution is Gaussian, for a = 1 in which case
the distribution is Cauchy and finally for a ¼ 1

2
in which

case the distribution is Lévy (Pearson). In (Nolan, 1997),
the author proved the existence of an equivalent exact inte-
gral representation where the limits of integration are
finite. This exact approach is numerically stable but is very
time-consuming. Moreover, it cannot offer an explicit
expression for the Bayesian denoiser. Nonetheless, we will
use this exact method throughout this paper as a reference
when assessing the accuracy of our a-stable PDF approxi-
mation. Hereafter, we present a fast and numerically stable
method, based on the scale mixture of Gaussians to obtain
an approximate analytical expression of the a-stable PDF
with arbitrary parameters.

4.1. The scale mixture of Gaussians

The concept of mixture is based on a corollary of the
mixture theorem of a-stable RVs. This result states that
any SaS RV can be represented as the product of a Gaus-
sian RV and a positive a-stable RV (Samorodnitsky and
Taqqu, 1994; Andrews and Mallows, 1974):

Proposition 1 (Scale mixture of Gaussians). Let X �
Nð0; 2cxÞ, that is, let X be distributed with Gaussian

distribution (ax = 2). Let Y be a positive stable random

variable, Y � Saz
2
ð�1; 0; ðcosðpaz

4 ÞÞ
2
azÞ and independent form X.

Then,

Z ¼ Y
1
2X � Sazð0; 0; cxÞ ð5Þ

If we define V ¼ Y
1
2 P 0 and fV(v) = h(v) then the PDF of

Z is deduced by using the marginalization property of
probabilities:

fZðzÞ ¼
Z þ1

0

fZjV ðzjvÞfV ðvÞdv

¼ 1ffiffiffiffiffiffiffiffiffi
4pcx

p Z þ1

0

exp � z2

4cxv2

� �
hðvÞv�1 dv ð6Þ

Sampling fZ(z) at N points allows to obtain a finite mixture
approximation to any SaS PDF:

pa;0;l;cðzÞ �

XN

j¼1
v�1

j exp �ðz� lÞ2

4cxv
2
j

 !
hðvjÞffiffiffiffiffiffiffiffiffi

4pcx

p PN
j¼1hðvjÞ

ð7Þ

It should be noted that this analytical expression for the
SaS PDF is only an approximation, since the continuous
integral was approximated by a finite sum. Therefore, Eq.
(6) should be sampled at a large number of points for the
approximation to be excellent. However, to reduce the
complexity of the model in Eq. (7) and get fast but good
enough approximation, one might prefer to use only a
small number of components and to sample Eq. (6) at a
few points only. In this case the approximation is coarse
and we suggest using the ‘‘Expectation–Maximization’’
(EM) algorithm to fine-tune the components to obtain a
better approximation. For instance, as we will show in Sec-
tion 4.3, only a few mixture components (typically 4–8) are
necessary to negotiate a good compromise between the
approximation quality, the model complexity and the cal-
culation time.

4.2. The SaS PDF approximation algorithm

Here we describe an algorithm that fits a SaS PDF to
observed samples {zm}m=1,. . .,M using the scale mixture of
Gaussians approximation to SaS PDFs. This algorithm
follows the next steps:

• Step 1: Given the parameters (a,b = 0,l = 0,c) of the
desired SaS, generate the characteristic function (Eq.
(4)) of the mixing PDF which is positive stable distrib-
uted with parameters: ða

2
; b ¼ �1; l ¼ 0; c ¼ ðcosðpa

4
ÞÞ

2
aÞ.

• Step 2: Evaluate the positive stable PDF fY at N equally
spaced points taking the inverse FFT of the characteris-
tic function given in Eq. (4), where N is the pre-specified
number of components in the mixture.

• Step 3: The mixing function is the PDF of the random
variable V ¼ Y

1
2, which is obtained by

hðviÞ ¼ 2vifY ðv2
i Þ ð8Þ

• Step 4: Substitute the mixing function samples calcu-
lated in the third step in Eq. (7) allows to obtain the ana-
lytical approximation for the SaS PDF:

pa;0;0;cðzmÞ ¼

XN

j¼1
/ðzm; 0; 2cv2

j ÞvjfY ðv2
j ÞXN

j¼1
vjfY ðv2

j Þ
ð9Þ

where /(z;l,d2) is the Gaussian PDF with mean l and
variance d2.

• Step 5: Use the EM algorithm (McLachlan and Peel,
2000) to refine the approximation using the observed
samples zm. In the case of the mixture of Gaussians
model we seek to get Maximum Likelihood (ML) esti-
mates such that

pa;0;0;cðzmÞ ¼
XN

j¼1

P ðzmjjÞP j ð10Þ

where Pj (mixing proportions) initial values of
hðvjÞPN

j¼0
hðvjÞand PðzmjjÞ ¼ /ðzm; 0; r2

j Þ with r2
j ¼ 2cv2

j .

4.3. Assessing the approximation quality

Here, we first assess the visual quality of the approxima-
tion as the SaS distribution gets far from Gaussian (heavier
tails). Only the influence of a is considered because it is the
parameter that characterizes the shape of the PDF (heavi-
ness of the tails). It is also obvious that c (or equivalently
rx) being the scale parameter, it has no impact on the
choice of N and therefore, its influence is not relevant in
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Fig. 1. Comparison on log–log scale between SaS PDFs obtained using the exact integral representation of (Nolan, 1997) (—), and the approximate PDF
with a mixture of eight Gaussians (- - -) for various values of the parameter a. The KL divergence between the exact and the approximate PDFs is reported
at the top of each plot.
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our discussion here. The results depicted in Fig. 1 show
that the Gaussian scale-mixture PDF, with a mixture of
eight Gaussians, is very close to the exact PDF whatever
the value of the tail-heaviness exponent a. The visual qual-
ity is also confirmed by small values of the Kullback–Lei-
bler (KL) divergence calculated between the two PDFs.

As we mentioned before, for the approximation to be
sufficiently accurate and numerically stable and fast, one
has to define properly the number of components in the
mixture N. Model complexity measures, e.g. the minimum
description length (MDL) or some popular information
criteria such as the BIC or the AIC, are commonly adopted
to objectively choosing the number of components in a
mixture model (Figueiredo et al., 1999; McLachlan and
Peel, 2000). These measures attempt to provide a data-
driven estimate of N.

The estimation of the optimal number of Gaussians N

is defined as the one minimizing the cost function CMDL

(Figueiredo et al., 1999). We can show that its expression
is given by

CMDLðNÞ ¼ �
XM

m¼1

log
XN

j¼1

P ðzmjjÞP j þ
2N � 1

2
logðMÞ

ð11Þ
where M is the number of available samples.

Fig. 2(a) shows the evolution of the MDL criterion as a
function of N for different values of the characteristic expo-
nent a. Except the Gaussian case (a = 2) where only one
component is necessary, results in Fig. 2(a) clearly demon-
strate that the optimal number of Gaussians N is located in
the interval [4,8]. This objective choice ensures a trade-off
between the approximation quality (in likelihood sense)
and the model complexity. This was also confirmed by
the KL divergence calculated between the exact and the
approximate PDFs. As illustrated in Fig. 2(b), the KL
divergence decreases very rapidly and converges to 0 for
N P 8 for all values of a except for the Gaussian case
where N = 1.

From these results, we can legitimately conclude that the
value N = 8 is sufficient to get a very accurate approxima-
tion while keeping the calculation time reasonable.

5. Bayesian denoiser

5.1. Marginal PDF of the observed wavelet coefficients

As stated above, in the Bayesian approach, a prior is
imposed on the wavelet coefficients designed to describe
their distribution. It is also assumed in the prior model that
the wavelet coefficients soj

mn of the true image at each scale
and orientation are mutually independent RVs and inde-
pendent of the noise process �oj

mn. Throughout the rest of
the paper and for readability, the superscript oj and sub-
script mn (orientation o at scale j and location (m,n)) will
be dropped out. The detail coefficients s at each scale and
each orientation are SaS distributed

s � Sað0; 0; c ¼ raÞ ð12Þ

and the probabilistic model associated with d conditionally
on s is Gaussian

djs �Nð0;r2
� Þ ð13Þ
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Using the Bayes rule, the marginal PDF of d can be written

pðdjh1; h2Þ ¼
Z þ1

�1
pðdjs; h2Þpðsjh1Þds

¼
Z þ1

�1
/ðd � s; h2Þpðsjh1Þds ð14Þ

p(sjh1) is the approximate SaS PDF with the hyperpara-
meters set h1 = {P(j),rj}, and /(d;h2) is the normal noise
PDF with variance h2 ¼ r2

� . The analytical approximation
of the marginal PDF of d is given by

pðdjh1; h2Þ ¼
1ffiffiffiffiffiffi
2p
p

X
j

P jðr2
j þ r2

� Þ
�1

2 exp � d2

2ðr2
j þ r2

� Þ

 !
ð15Þ
(1) Use the quantile method (McCulloch, 1986) to get
â and ĉ, and the MAD estimator to get r̂� (Donoho
and Johnstone, 1994).

(2) Apply steps 1–4 of the algorithm in Section 4.2
using â and ĉ, and get r̂2

j and bP j.

(3) Define r̂0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2

j þ r̂2
�

q
.

(4) Use the EM algorithm to fine-tune r̂0j and bP j

according to the mixture model (Eq. (15)).
5.2. The hyperparameters estimation

In the image denoising context, one must elicit the hyper-
parameters (h) estimation problem, which in turn will lead
to a data-driven denoising procedure that is adaptive to
each subband. To implement the formula in Eq. (15), one
has to estimate h = {Pj,rj,r�}, which amounts to estimating
{a,c = ra,r�}. However, the hyperparameters estimation
step is a difficult task for SaS RVs especially in the presence
of contaminating noise. In addition, this step is very crucial
and must be treated very carefully as it will irrevocably
influence the performance of the denoising algorithm. As
noted by authors in (Fadili and Boubchir, 2005), the weak-
ness of the hyperparameters estimator was a major reason
for the poor performance shown by the version of a-stable
prior implemented by Achim et al. (2001).

In our scale mixture of Gaussians approximation, the
estimation of Pj and rj parameter amounts to first estimat-
ing the original parameters a and r, and then fine-tuning
using the EM algorithm. However, this task becomes more
complicated in the presence of contaminating noise.

In our model, the estimation of a and c is only useful for
initialization, and final estimates are given by the EM step
in Algorithm 4.2. Therefore, we have chosen the quantile-
based estimator of (McCulloch, 1986) assuming that for
reasonable SNRs, the tails of the marginal distribution
p(djh1,h2) are not very sensitive to the presence of noise.
The McCulloch method provides an initial and fast esti-
mation for the parameters a and c under the restriction
0.6 6 a 6 2. This is not a limitation since our images are
supposed at least integrable in L1 sense, involving that
a P 1. As far as the level noise r� is concerned, it is esti-
mated from the HH orientation at the finer scale using
the popular robust estimator (Donoho and Johnstone,
1994):

r̂� ¼
MADðdHH1

mn Þ
0:6745

ð16Þ

where MAD is the median absolute deviation. Then, using
these initial values of a, r and r�, we apply the algorithm
described in Section 4.2 to fine-tune the hyperparameters
and get an accurate and stable approximation to the mar-
ginal PDF of the observed wavelet coefficients. This can be
summarized as follows:
We now illustrate some prior estimation results for a
variety of images taken form a digitized database (http://
sipi.usc.edu/services/database/database.html). Depicted in
the first column of Fig. 3 are some images (Lena, Barbara
and textured image Roof). Shown are the estimated and the

http://sipi.usc.edu/services/database/database.html
http://sipi.usc.edu/services/database/database.html
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Fig. 3. Estimated and observed marginal densities of the observed wavelet detail coefficients of two classical images (Lena, Barbara and Roof textured
image). The observed histogram (-d-) was fitted using the scale-mixture a-stable (—), original a-stable (–�–), BKF (- - -) and GGD (� � �) models. Only two
detail levels are shown for each image (first and second row each time). The three columns correspond to the HH, HL and LH orientations.
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Fig. 4. Bayesian rule input–output curves (sPCM(d) as a function of d). (a) Influence of the ratio r
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on the Bayesian estimator curves for constant a 2 [0.6,2].
(b) Influence of parameter a on the Bayesian estimator curves for constant r

r�
2 ½0:1; 5�.

Fig. 5. Visual comparison of various denoising methods on test image Lena. This image is corrupted by Gaussian noise with an input SNRin = 15 dB.
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observed densities of the wavelet detail coefficients of each
image on log scale. The observed histogram (-d-) was fitted
using the scale-mixture a-stable algorithm with eight Gaus-
sians as we described above (solid). For comparison pur-
poses, we also depict the fit given by the original a-stable
as proposed by Achim et al. (2001) (dash-dotted), the
BKF (dashed) and the GGD (dotted) models. Only two
detail levels are shown for each image (first and second
row each time). The three columns correspond to the
HH, HL and LH orientations. The original version of the
a-stable prior tends to exaggerate the tails of the distribu-
tion in some cases (e.g. for textured images). From these
results, we can legitimately claim that the Gaussian
scale-mixture SaS density fits the observed wavelet detail
coefficients very well. It generally outperforms the GGD
and the BKF models. Furthermore, a closed-form expres-
sion of the L2-loss Bayesian shrinkage rule associated with
our prior can be readily obtained as we will show in the
next section.
Fig. 6. Visual comparison of various denoising methods on test image Barbara
The Barbara image was zoomed on a textured area of the trousers.
5.3. Bayesian term-by-term denoising

Different choices of loss function lead to different Bayes-
ian rules and hence to different nonlinear wavelet shrinkage
and wavelet thresholding rules. For example, it is well
known that the L1-loss function corresponds to the maxi-
mum a posteriori (MAP) estimator. However, except some
special cases of SaS distributions (e.g. a = 2), it is not easy
to derive a general analytical form of the corresponding
Bayesian shrinkage rule even with the scale-mixture approx-
imation. Alternatively, we use the L2-based Bayes rules
which correspond to posterior conditional means (PCM)
estimates. We here derive a general expression, using the
approximate prior PDF, of the PCM estimates of the wave-
let coefficients s (conditionally on the hyperparameters):

sPCMðdjhÞ ¼

X
j
P j

dr2
j

r2
j þ r2

�

/ðd; r2
j þ r2

� ÞX
j
P j/ðd; r2

j þ r2
� Þ

ð17Þ
. This image is corrupted by Gaussian noise with an input SNRin = 15 dB.



Fig. 7. Visual comparison of various denoising methods on test image Mandrill. This image is corrupted by Gaussian noise with an input SNRin = 15 dB.
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This equation shows that the SaS PCM estimate can be
seen as a weighted average of Gaussian PCM estimates,
where the weights are given by the mixing proportions
and the Gaussian PDFs.

Fig. 4 depicts the Bayesian rule input–output curves
obtained using Eq. (17). The plots in (a) (resp. (b)) show
the influence of the ratio r

r�
(resp. characteristic exponent

a) on the Bayesian estimator curves for constant expo-
nent a 2 [0.6,2] (resp. ratio r

r�
). The ratio r

r�
can be seen as

a measure of SNR.2 As demonstrated by these plots, the
proposed Bayesian rule shrinks small observed wavelet
coefficients heavily and large ones only slightly, approach-
ing the identity line when jdj is very large. As far as the
influence of r

r�
is concerned, the amount of shrinkage

decreases as r
r�

increases. This can be intuitively understood
2 We here note that this ratio is not rigorously a SNR. The a-stable prior
assumes that the qth order moment is finite only for q 6 a < 2. Thus,
strictly speaking, the class of images considered do not have finite
variance.
from the fact that the contribution of the true signal
becomes salient as the ratio r

r�
increases, yielding less

shrinkage amount. The amount of shrinkage also decreases
as a decreases. The explanation of this behavior is that as a
decreases, the heavier the tails and the higher the probabil-
ity that smaller values are due to the true image g. These
observations are consistent with others’ work (Achim
et al., 2001; Fadili and Boubchir, 2005).

6. Experimental results

We now assess the performance of our Bayesian deno-
iser with the scale-mixture approximation to the a-stable
prior, called ‘‘a-stable mixture’’, and we compare it to
other previously published denoising methods. For the
comparison to be fair, we only chose denoising methods
using the same transforms, namely, the DWT. Extension
to overcomplete representations which are translation
and rotation invariant are the subject of our ongoing
research. Six other denoising algorithms are considered:
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the universal threshold Hard and Soft thresholding (Don-
oho and Johnstone, 1994), the Stein Unbiased Risk Esti-
mator (SURE) (Donoho and Johnstone, 1995), the
Oracle threshold estimator (Oracle), the Bessel K forms
(BKF) Bayesian denoiser (Fadili and Boubchir, 2005)
and the original version of the a-stable Bayesian denoiser
(Achim et al., 2001). In the latter, no closed-form is avail-
able for the PCM Bayesian denoiser. We here used an
equivalent form involving Fourier integrals as proven in
(Mathieu, 2002). The numerically Fourier integrals were
implemented using FFT-based methods.

Beside visual quality, we also calculated the signal-to-
MSE ratio, commonly called the SNR, in order to quantify
the achieved performance improvement. this is defined in
decibels as follows:

SNR ðdBÞ ¼ 10log10

kgk2
2

kĝ � gk2
2

ð18Þ

where the denominator is the estimation risk between the
true and the denoised images.
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Fig. 8. For each SNRin, mean and standard deviation (over 50 runs) of SNR gi
The overall performance was quantified on a digitized
database of 100 test images (http://sipi.usc.edu/services/
database/database.html). The DWT employs Daubechies
compactly supported wavelet with regularity 4. The coars-
est level of decomposition was chosen to be log2 logN + 1,
where N is the size of the image.

Fig. 5 shows the estimated images for each denoising
methods for the Lena image with an input
SNRin = 15 dB. One can clearly see that the visual quality
of the ‘‘a-stable mixture’’ Bayesian denoiser is superior to
the other methods but remains comparable to the BKF
Bayesian denoiser. This general behavior is also observed
on Barbara and Mandrill test images (Figs. 6 and 7). The
zoom on a textured area of Barbara proves that our
denoiser ensures a good compromise between the noise
rejection and the conservation of fine details in the image
(e.g. the stripes of the trousers). Owing to its hyperparam-
eter estimation method, our denoiser overcomes the
limitations of the original ‘‘exact’’ a-stable Bayesian deno-
iser as used in (Mathieu, 2002; Achim et al., 2001).
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Table 1
Average SNR over 50 runs and 100 image database for each denoising
method, as a function of SNRin

Method SNRin

5 10 15 20

a-stable mixture 17.23 19.54 22.17 25.03
BKF 17.15 19.29 21.8 24.52
a-stable 10.75 15.1 19.4 23.56
Hard universal 15.31 17.03 19.1 21.37
Soft universal 14.08 15.45 17.1 18.96
SURE 14.27 16.64 19.34 22.57
Oracle 15.7 17.87 20.43 23.36
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Furthermore, our denoiser is faster and very stable numeri-
cally.

To confirm this first experiment, we also carried out a
simulation study where we calculated the mean and the
standard deviation of the SNR (over 50 runs) for each
denoising method on the Lena image. Results are shown
in Fig. 8. The SNRin was in the range [5,20] dB.

In Fig. 8, one can notice that the ‘‘a-stable mixture’’
denoiser outperforms most of the methods, but is still com-
parable to the BKF approach. It compares favorably with
the oracle thresholding but is much better that the SURE
especially at low SNRs. The original version of the a-stable
denoiser is underperforming at low input SNRin. The main
reason is the weakness of the hyperparameters estimator
which remains an important issue. In Table 1, we have
reported the average SNR over the 50 runs and the whole
database (100 images) for each denoising method, as a
function of SNRin. The general behavior described before
is confirmed by this table. This suggests that the scale-mix-
ture approximation to the ‘‘a-stable’’ prior is an accurate
model adapted to capture the sparseness behavior of the
wavelet coefficients for a large class of images.

7. Discussion and conclusion

In this paper, a nonlinear nonparametric Bayesian esti-
mator in the orthogonal wavelet domain was presented.
An approximation to SaS based on scale mixture of Gaus-
sians was proposed. This approximation has proven accu-
rate and very stable numerically. The EM algorithm was
used to refine a first estimation step which serves as a good
starting point for the EM algorithm. The number of mix-
ture components problem was solved objectively using
the MDL criterion, and we concluded that Gaussians are
enough to provide a fast and accurate approximation.

Using this approximate analytical expression for the
prior, we also derived the expressions of the posterior
marginal distribution as well as the PCM estimator.
Experimental results on a large database have shown the
superiority of our Bayesian denoiser compared to other
denoising approaches.

Despite his good performance, there are still some
aspects in this method that have to be investigated and
improved. First, we can point out the lack of translation
and rotation invariance which yields a ringing effect,
although this effect is somewhat negligible in the Bayesian
denoised images. This problem can be solved either by
cycle spinning or using translation invariant transforms
such as the nonorthogonal undecimated (redundant) wave-
let transform. The former is simple to implement but is too
time-consuming. In the latter, the transform is highly
redundant and the noise becomes correlated. Furthermore,
the intra- and inter-scale independence property used in
our context is no longer valid. Another important issue
toward the goal of refining our method is to take into
account the geometrical information in images. This can
be done using specific geometry-adapted transforms such
as Curvelets (Starck et al., 2002). Our investigations are
now focusing on these aspects.
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