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ABSTRACT
In this paper, we propose to combine formally noise and shape
priors in region-based active contours. On the one hand, we
use the general framework of exponential family as a prior
model for noise. On the other hand, translation and scale in-
variant Legendre moments are considered to incorporate the
shape prior (e.g. fidelity to a reference shape). The combi-
nation of the two prior terms in the active contour functional
yields the final evolution equation whose evolution speed is
rigorously derived using shape derivative tools. Experimental
results on both synthetic images and real life cardiac echog-
raphy data clearly demonstrate the robustness to initialization
and noise, flexibility and large potential applicability of our
segmentation algorithm.

Index Terms— Image segmentation

1. INTRODUCTION

The current work is devoted to the segmentation of regions
of a priori known shape in noisy images using region-based
active contours [1, 2, 3]. This method allows the use of pho-
tometric image properties, such as texture and noise, as well
as geometric properties such as the shape of the object to be
segmented. The shape prior can prove very useful in cases
where the object is occluded or partially missing. Further-
more, by including an a priori on the shape, sensitivity of the
active contour model to initialization will also be alleviated.

On the one hand, attempts to incorporate shape priors
have been proposed by some authors using various methods,
such as diffusion snakes [1] or distance function [2, 3, 4].
On the other hand, there are only few proposals in the lit-
erature that tried to take benefit of a noise prior [5, 6, 7]
within region-based active contours. In these works, image
features (e.g. intensity) are considered as random variables
whose distribution belongs to some parametric family which
is chosen according to the physical acquisition model of the
considered images. However, to the best of our knowledge,
shape and noise priors have never been combined, at least
formally, in active contour models. This would enable to per-
form the segmentation of poor noisy images, beyond the sim-
ple classical white Gaussian noise model, with a strong shape
constraint. Example of such data is encountered in echocar-
diographic images. For instance, in echographic data, it is
notably well known that under appropriate conditions (large

number of randomly located scatters), the Rayleigh distribu-
tion is well suited to model the noise [8].

The main contribution of this paper is to combine formally
noise and shape priors in region-based active contours for seg-
mentation purposes. In order to fix ideas, let us consider a
region of interest Ω in the image. We propose to find the
partition of the image that minimizes the following generic
criterion which is able to handle both noise and shape priors:

J(Ω) =

∫
Ω

fn(x,Ω)dx + α d(Ω,Ωref )

where Ωref represents the reference region shape, and x =
[x, y]T stands for the location of the pixel.

The first term corresponds to the noise prior term. This
term takes benefit of statistical properties of the image inten-
sity. It is based on functions of parametric probability density
functions (pdf) belonging to the exponential family. Proba-
bility models with these common features include Normal,
Bernoulli, Binomial, Poisson, Gamma, Beta, Rayleigh, etc.
These models are the most commonly encountered in imag-
ing acquisition systems. This term is detailed in Section 3.
The second term d(Ω,Ωref ) corresponds to the shape prior.
Shapes are here described using scale and translation invari-
ant Legendre moments as in [9]. With such a shape descrip-
tor, the registration step is avoided. This term is discussed in
Section 4.

The evolution equation of the deformable curve is de-
duced from the functional to minimize using shape derivative
tools [10] and the framework set in [11, 12].

This paper is organized as follows: we briefly remind the
shape derivation tools in Section 2. The noise model term is
presented in Section 3. In Section 4, we introduce the shape
prior model and the invariances that were added. The seg-
mentation algorithm is presented in Section 5. Experimental
results are discussed in Section 6. We finally conclude and
give some perspectives.

2. SHAPE DERIVATIVE TOOLS

In order to be comprehensive, we here give a brief summary
of the shape derivation theory. The interested reader may refer
to [10, 11, 12] for further details.

Let U be a class of domains (open, regular bounded sets,
i.e. C2) of R

n, and Ω an element of U . The boundary ∂Ω of



Ω is sometimes denoted by Γ.
The region-based term is expressed as a domain integral

of a function f named descriptor of the region :

Jr(Ω) =

∫
Ω

f(x,Ω)dx (1)

In the general case, this descriptor may depend on the do-
main such as the descriptors introduced thereafter for noise
and shape priors. The derivation of this term is performed us-
ing domain derivation tools. We apply a fundamental theorem
[10] which establishes a relation between the Eulerian deriva-
tive of Jr(Ω) in the direction V, and the domain derivative of
f denoted fs(x,Ω,V):

< J ′
r(Ω),V > =

∫
Ω

fs(x,Ω,V)dx

−

∫
∂Ω

f(x,Ω) (V · N)da(x) (2)

where N is the unit inward normal to ∂Ω, da its area element.
The first integral comes from the dependence of the descriptor
f(x,Ω) upon the region while the second term comes from
the evolution of the region itself.

From the shape derivative, we can deduce the evolution
equation that will drive the active contour towards a minimum
of the criterion.

Let us suppose that the shape derivative of the region Ω
may be written as follows:

< J ′
r(Ω),V >= −

∫
∂Ω

v(x,Ω)(V(x) · N(x))da(x) (3)

We can then deduce the following evolution equation:
∂Γ(p, τ)

∂τ
= v(x,Ω)N(x)

with Γ(τ = 0) = Γ0, x = Γ(p, τ).

3. THE NOISE MODEL

In this section we focus our attention on the noise model. The
chosen descriptor for this part is:

fn(x,Ω) = Φ(p(y(x),η) (4)

where p is the pdf of some image features y(x) ∈ R
d whose

associated parameters are denoted by η, and Φ is at least C1.
In our study, we consider that p belongs to the exponen-

tial family. This family is comprehensive enough to cover
noise models in most image acquisition systems encountered
in practice, e.g. Gaussian, Exponential, Poisson, Rayleigh to
cite a few. The multi-parameter exponential families are natu-
rally indexed by a k-dimensional real natural parameter vec-
tor η = (η1, . . . , ηk)T and a k-dimensional natural sufficient
statistic vector T = (T1, . . . , Tk)T . A simple example is the
normal family when both the location and the scale parame-
ters are unknown (k = 2). Formally, the pdf of a vector of

random variables Y belonging to the k-parameter canonical
exponential family is:

p(y,η) = h(y) exp[〈η,T(y)〉 − A(η)] (5)

where 〈η,T〉 denotes the scalar product.
This statistical criterion is now derived according to the

domain in order to deduce the evolution equation of the ac-
tive contour. For the sake of simplicity, we denote η for the
natural parameter of a pdf of the exponential family and its fi-
nite sample estimate over the domain (without a slight abuse
of notation, this should be η̂).

Theorem 1 The Gâteaux derivative, in the direction of V,
of the functional Jn(Ω) =

∫
Ω

Φ(p(y(x),η(Ω)))da(x) where
p(.) belongs to the multi-parameter exponential family with
natural hyperparameter vector η, is:

< J ′
n(Ω),V >= −

∫
∂Ω

Φ(p(y))(V · N)da(x)

+

∫
Ω

p(y)Φ′(p(y))〈∇Vη,T(y) −∇A(η)〉dx (6)

with ∇Vη the Gâteaux derivative of η in the direction of V,
and 〈x,y〉 the scalar product of vectors x and y.

In a finite sample setting, when using the ML estimator,
we can replace ∇A(η) by T(Y) (the 1st order sample mo-
ment of T(Y)). Thus, when using the -log-likelihood func-
tion, the second term becomes equal to

∫
Ω
〈∇Vη,T(y) −

T(Y))〉dx, and hence vanishes. The following corollary fol-
lows:

Corollary 1 The Gâteaux derivative, in the direction of V,
of the functional Jn(Ω) = −

∫
Ω

log(p(y(x),η
ML

(Ω))da(x)
when η̂ML is the ML estimate, is the following:

< J ′
n(Ω),V >=

∫
∂Ω

(log (p(y(x),η
ML

(Ω)))(V · N)da(x)

These general results can be easily specialized to some
pdf of interest (e.g. Gaussian, Rayleigh, etc). We let the
reader refer to [6] for more details.

4. THE SHAPE PRIOR MODEL

The shape prior is used as an additional fidelity term (e.g.
to a reference shape), designed to make the behaviour of the
segmentation algorithm more robust to occlusion and missing
data and to alleviate initialization issues. Here, orthogonal
Legendre moments with scale and translation invariance were
used as shape descriptors [9]. Indeed, moments [13] give a
region-based compact representation of shapes through the
projection of their characteristic functions on an orthogonal
basis such as Legendre polynomials.

The shape prior is then defined as the Euclidean distance
between the moments of the evolving region and ones of the
reference shape,



d(Ω,Ωref ) = ‖λ(Ω) − λ(Ωref )‖2
2 (7)

where λ(Ω) are the moments of the region Ω. In practice,
infinite moment expansion is generally limited to a sufficient
finite number resulting in a good approximation of the origi-
nal shape. The criterion then reduces to:

d(Ω,Ωref ) =

p+q≤N∑
p,q

(λpq(Ω) − λpq(Ωref ))2 (8)

where the λpq are defined as follows, using the geometric mo-
ments Mpq and the coefficients apq of the Legendre polyno-
mials [13]:

λpq = Cpq

p∑
u=0

q∑
v=0

apuaqvMuv (9)

where Cpq = (2p+1)(2q+1)
4 , Mpq(Ω) =

∫
Ω

xpyqdxdy, and
the Legendre polynomials are defined as :

Pp(x) =

p∑
k=0

apkxk =
1

2pp!

dp

dxp
(x2 − 1)p.

In general, the reference shape can have different orien-
tation and size compared to the shape to be segmented. This
will then necessitate an explicit registration step in order to re-
align the two shapes. In order to avoid this generally problem-
atic registration step, we here use scale and translation invari-
ant Legendre moments as in [9]. In the geometric moments
definition, the scale invariance is embodied as a normaliza-
tion term: 1

Ω(p+q+2)/2 . As far as translation invariance is con-
cerned, we replace x and y in the geometric moments Mpq by
x − x̄ and y − ȳ, (x̄, ȳ) are the shape barycenter coordinates.

The derivation of the criterion (8) is relatively complex.
We here give the main formula.

< d′(Ω,Ωref ),V >=

u+v≤N∑
u,v

Auv (Huv + Luv)N

where

Auv = 2

p+q≤N
X

p,q

(λpq−λ
ref
pq )Cpqapuaqv Huv =

(x − x̄)u(y − ȳ)v

Ω(u+v+2)/2

Luv =
ux̄Mu−1,v

Ω3/2
(1−x)+

vȳMu,v−1

Ω3/2
(1−y)−

(u + v + 2)Mu,v

2Ω
The reader may refer to [9] for further details.

5. SEGMENTATION WITH JOINT NOISE AND
SHAPE PRIORS

The region-based active contour functional to be minimized
is finally written as:

J(Ωin, Ωout) =

Z

Ωin

fn(x, Ωin) dx + α d(Ωin, Ωref )

+

Z

Ωout

fn(x, Ωout) dx + β Eb(Γ) (10)

where we assign a specific noise model to the background
(outside) region, possibly different from the noise model of
the object (inside) region. The energy term Eb is a regular-
ization term balanced with a positive real parameter β. It can
be chosen as the curve length and classically derived using
calculus of variation or shape derivation tools.

To drive this functional towards its minimum, the geomet-
rical PDE corresponding to (10) is iteratively run without the
shape prior, then the shape prior term is updated, and the ac-
tive contour evolves again by running the PDE with the shape
prior. This procedure is repeated until convergence. This it-
erative optimization scheme has a flavour of coordinate re-
laxation. At this stage, it is worth pointing out some major
differences between our algorithm and the one developed in
[9]. The first one is that we here consider both photometric
(noise) and geometrical (shape) priors, while [9] focused on
the shape prior and did not considered noisy data. This dif-
ference has a clear impact on the evolution algorithm since
those authors propose to run the evolution equation only once
without the shape prior and then incorporate the shape prior
in the evolution. This is fundamentally different from our al-
ternating scheme.

Algorithm 1 Evolution algorithm of the active contour
1: repeat
2: Evolution using noise prior for n iterations
3: repeat
4: Evolution using shape prior for 1 iteration.
5: until Maximum shape speed < threshold
6: until Convergence

6. EXPERIMENTAL RESULTS

The above evolution scheme was applied on some synthetic
data with y(x) = I(x) the image intensity. Fig.1.(a) depicts
a shape corrupted by an additive white Gaussian noise with
SNR=1, with the initial curve. To bring to the fore the con-
tribution of the shape prior term, parts of the objects are de-
liberately missing. Fig.1.(b) (resp. (c)) shows the segmenta-
tion result with the noise model (Gaussian) but without (resp.
with) the shape prior. As expected, one can clearly see that:
(i) without a shape prior, the final curve sticks to the appar-
ent boundaries of object, (ii) owing to the shape prior, the
algorithm managed to recover properly the missing parts of
the object. Furthermore, in addition to its robustness to miss-
ing data, we have also observed that the shape prior allows to
mitigate initialization issues. As far as the noise prior is con-
cerned, choosing the appropriate model has a clear impact on
the quality of the results as it has been shown in [6].

We then tested our approach on real echocardiographic
images. As the Rayleigh distribution is well suited to model
the noise in these data [8], this noise model was used in Corol-
lary 1. The original image (Fig.2.(a)) is shown with the ini-



(a) (b) (c)

Fig. 1. a. Noisy image with initial contour, b. Final contour without
shape prior, c. Final contour with shape prior.
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Fig. 2. a. Echocardiographic image with initial contour, b. Contour
draw by an expert, c. Final contour without shape prior, d. Final
contour with shape prior, e. Final contour using AAMM method,
f. Hamming distance for one echocardiographic sequence of 14 im-
ages.

tial contour position. We compared the result of our method
(fig.2), with (d) and without (c) the shape prior, to an expert
manual segmentation (b), and a segmentation provided by the
Active Appearance and Motion Model (AAMM) method (e)
designed for echocardiography [14, 15]. Again, the saliency
of our method is obvious. Our method gives the closest seg-
mentation to the expert manual delineation. This is quanti-
tavely by the Hamming distance plots (f), showing that our
method outperformes AAMM.

7. CONCLUSION AND PERSPECTIVES

This paper concerns the incorporation of both noise and shape
priors in region-based active contours. The evolution of the
active contour is derived from a global criterion that combines
statistical image properties and geometrical information. Sta-
tistical image properties take benefit of a prespecified noise
model defined using parametric pdfs belonging to the expo-
nential family. The geometrical information consists in mini-

mizing the distance between Legendre moments of the shape
and those of a reference. The Legendre moments are designed
to be scale and translation invariant in order to avoid the reg-
istration step. The combination of these terms gives accurate
results on both synthetic noisy images and real echocardio-
graphic data. Our ongoing research is now directed towards
the integration of a complete shape learning step.
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