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Abstract

In the last decade, the study of cosmic microwave background (CMB) data has become one of
the most powerful tools to study and understand the Universe. More precisely, measuring the
CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless,
accessing such precious physical information requires extracting several different astrophysical
components from the data. Recovering those astrophysical sources (CMB, Sunyaev-Zel’dovich
clusters, galactic dust) thus amounts to a component separation problem which has already led to
an intense activity in the field of CMB studies. In this paper, we introduce a new sparsity-based
component separation method coined Generalized Morphological Component Analysis (GMCA).
The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework.
Numerical results show that this new source recovery technique performs well compared to
state-of-the-art component separation methods already applied to CMB data.

Key words: Blind component separation, Sparse overcomplete representations, Sparsity, Cosmic
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Introduction

Investigating Cosmic Microwave Background (CMB) data is of huge scientific impor-
tance as it improves our knowledge of the Universe [8]. Indeed, most cosmological param-
eters can be derived from the study of CMB data. In the last decade several experiments
(Archeops, Boomerang, Maxima, WMAP - [1]) have already provided amounts of data
and astrophysical information. The forthcoming Planck ESA mission will provide new
accurate data requiring effective data analysis tools. More precisely, recovering useful
scientific information requires disentangling in the CMB data the contribution of several
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astrophysical components namely CMB itself, Galactic emissions from dust and syn-
chrotron, Sunyaev-Zel’dovich (SZ) clusters [12] to name a few. In the frequency range
used for CMB observations [3], the observed data combines contributions from distinct
astrophysical components the recovery of which falls in the frame of component separa-
tion.
Following a standard practice in the field of component or source separation, which has
physical grounds here, the observed sky is modeled as a linear mixture of statistically
independent components. The observation with detector i is then a noisy linear mixture
of n independent sources {sj}j=1,··· ,n : xi =

∑n
j=1 aijsj + ni. The coefficient aij reflects

the emission law of source sj in the frequency band of the i-th sensor; ni models instru-
mental noise. When m sensors provide observations at different frequencies, this linear
mixture model can be rewritten in a more convenient matrix formulation :

X = AS + N (1)

where X is the m× t data matrix the rows of which are the observed data maps in each
channel, A is the m×n mixing matrix, S is the n× t source matrix the rows of which are
the sources sj , and N is the m× t noise matrix. In practice, both the sources S and their
emission laws reflected A may be unknown or only partly known. A component separa-
tion technique then aims at estimating both S and A from the data X. This problem
refers to Blind Source Separation (BSS).
Amongst all the physical components mixed in the observed data, each one raises sci-
entific interest. Thus it would be worthwhile to devise a separation technique able to
differentiate effectively between most physical components. Up to now, several source
separation techniques have already been used in the field of CMB data studies. In this
paper, we concentrate on two particular components: the CMB and the SZ components.
For such processes, state-of-the-art blind separation methods used on CMB data are:
– JADE which is a classical Independent Component Analysis technique based on fourth

order statistics. Its effectiveness at extracting non-Gaussian components such as the
SZ map was shown in [10].

– Spectral Matching ICA (SMICA) (see [5] and [9]) has been devised to accurately
separate the CMB component. SMICA assumes the case of mixed stationary Gaussian
components in a noisy environment. It is based on second order statistics. In the Fourier
representation, colored stationary Gaussian components are discernible based on the
diversity of their power spectra. SMICA is then well adapted to Gaussian components
such as CMB.
Neither of the aforementioned techniques are able to effectively extract both the SZ

and CMB maps. In this paper we propose a novel sparsity-based component separation
technique coined Generalized Morphological Component Analysis (GMCA) which turns
out to be well suited to the recovery of CMB and SZ components. Section 1 describes
the GMCA model and the algorithm proposed to solve the corresponding optimization
problem. Numerical experiments are given which illustrate the astounding performances
of GMCA for CMB and SZ extraction in Section 2. Finally, we show in Section 2.2 that
GMCA is versatile enough to account for physical priors.
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1. Generalized Morphological Component Analysis

1.1. The GMCA model

In the previous section, we introduced the linear mixture model in Equation 1. We fur-
ther assume that all the protagonists of the model in Equation 1 are random components
(variables or vectors). More particularly, the entries of the noise matrix N are assumed to
be independently distributed according to a zero mean Gaussian distribution with vari-
ance σ2

i depending on the detector. From physical considerations, N models instrumental
noise the level of which varies independently from one detector to another. N is thus a
random Gaussian variable with zero mean and covariance matrix ΓN = diag(σ2

1 , · · · , σ2
m).

In practice, as the detectors are assumed to be accurately calibrated, ΓN is known with
high precision. The log-likelihood function is then the following one :

log P (X
∣

∣A,S, ΓN) = −
1

2
‖X− AS‖2

2,ΓN
+ C (2)

where C is a constant. The notation ‖.‖2
2,ΓN

stands for the Frobenius norm of Y in

the noise covariance metric : ‖Y ‖2
2,ΓN

= Trace
(

YT ΓN
−1Y

)

. From a Bayesian point of
view, adding physical priors should help the separation task. We first assume no particu-
lar knowledge about the emission laws of the components modeled by A. For simplicity,
we consider that each entry of the mixing matrix A is i.i.d. 1 from a uniform zero mean
distribution. Note that it would be possible to add some physical constraint on the emis-
sion laws reflected in A.
In the general case, source separation is merely a question of diversity and contrast be-
tween the sources (see [4]). For instance, on the one hand JADE relies on non-gaussianity
to distinguish between the sources. On the other, SMICA takes advantage of the di-
versity of the mixed components’ power spectra to achieve the separation task. “Non-
gaussianity” and “power spectra diversity” are contrasts between the sources. A combi-
nation of both characteristics, “Non-gaussianity” and “power spectra diversity”, was also
proposed to separate CMB from kinetic SZ signal which are otherwise undistinguishable
[7]. Recent work has already emphasized on sparsity as a source of diversity to improve
component separation (see [14] and [2]). In that setting, each source {sj}j=1,··· ,n is as-
sumed to be sparse in a representation (potentially overcomplete) D. Formally, D is a
fixed dictionary of signal waveforms written as a T × t matrix. We define the set of pro-
jection coefficients αj such that : ∀j ∈ {1, · · · , n}, sj = αjD. Any source sj is said to be
sparse in D if most of the entries of αj are nearly zero and only a few have “significant”
amplitudes. When D is overcomplete (T > t), D is called a dictionary. Overcomplete
representations attractiveness in image processing theory leans on their potential to gen-
erate very sparse representations of data based on their morphological content (see e.g.
[6] and references therein).
In the field of basic source separation we showed in [2] that morphological diversity
and sparsity are key properties leading to better separation. We noticed that the gist of
sparsity-based source separation methods leans on the rationale : “independent sources

are distinctly sparse in a dictionary D”. In that study, we considered the simple case

1 Independently and identically distributed.
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of morphologically different sources : components were assumed to be sparsely repre-
sented in different sub-dictionaries. We illustrated that such sparsity prior provides a
very effective way to distinguish between sources. In the present paper, we focus on a
more general setting : the sources can have similar morphologies (i.e. all the sources are
sparsely represented over the whole D). When the overcomplete dictionary D is made of
the union of D orthonormal bases (i.e. D = [Φ1, · · · , ΦD]) then each source is modeled
as the linear combination of D so-called morphological components (see [11] for details
on Morphological Component Analysis) - each morphological component being sparse in
a different orthonormal basis {Φ1, · · · , ΦD}:

∀j ∈ {1, · · · , n}, sj =

D
∑

k=1

ϕjk =

D
∑

k=1

αjkΦk (3)

From a statistical viewpoint, we assume that the entries of αjk = ϕjkΦT
k are i.i.d from

a Laplacian probability distribution with scale parameter 1/µ:

P (ϕjk) ∝ exp
(

−µ‖ϕjkΦT
k ‖1

)

(4)

where the `1-norm ‖.‖1 stands for ‖x‖1 =
∑t

p=1 |x[p]| in which x[p] is the p-th entry of x.
In practice, the Laplacian prior is well adapted to model leptokurtic sparse signals. We
classically assume that the morphological components are statistically mutually indepen-
dent : P (S) =

∏

j,k P (ϕjk). Estimating the sources S is then equivalent to estimating
the set of morphological components {ϕjk}j=1,··· ,n;k=1,··· ,D. In this Bayesian context, we
propose to estimate those morphological components {ϕjk} and the mixing matrix A

from a maximum a posteriori (MAP) leading to the following optimization problem:
{

{ϕ̂jk}, Â
}

= arg max{ϕjk},AP (X|A, {ϕjk}, ΓN)
∏

j,k

P (ϕjk)P (A) (5)

where we further assumed that the morphological components {ϕjk} are independent of
A. Owing to Equations 2 and 4, the mixing matrix A and the morphological components
{ϕjk} are obtained by minimizing the following negative log a posteriori :

{

{ϕ̂jk}, Â
}

= arg min{ϕjk},A‖X− AS‖2
2,ΓN

+ 2µ

n
∑

j=1

D
∑

k=1

‖ϕjkΦT
k ‖1 (6)

where ∀j ∈ {1, · · · , n}, sj =
∑D

k=1 ϕjk. Equation 6 leads to the GMCA estimates of
the sources and the mixing matrix in a general sparse component separation context.
Interestingly, in the case of CMB data, the sources we look for (CMB, galactic dust and
SZ) are quite sparse in the same unique orthonormal wavelet basis. The dictionary D
then reduces to a single orthonormal basis Φ. In that case, since Φ is unitary, Equation 6
can be rewritten as follows :

{

α̂, Â
}

= arg min
α,A‖XΦT − Aα‖2

2,ΓN
+ 2µ‖α‖1

= arg min
α,Afµ(α,A) = arg min

α,Af0(A, α) + 2µf1(α) (7)

where α = SΦT . Note that the estimation is done in the sparse representation Φ requiring
a single transform of the data XΦT . To remain computationally efficient, GMCA relies on
practical transforms which generally involve fast implicit operators (typical complexity
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of O (t) or O (t log t)). In [14], the authors also used a unique orthonormal wavelet basis.
While a gradient descent is used in [14], we use a fast and efficient iterative thresholding
optimization scheme which we describe in the next section.

1.2. Solving the optimization problem

The maximum a posteriori estimates of the coefficients α and the mixing matrix in
Equation 7 lead to a non-convex minimization problem. Note that in Equation 7 the
functional to be minimized suffers from several invariances : any permutation or rescal-
ing of the sources and the mixing matrix leaves the product Aα unaltered. The scale
invariance is computationally alleviated by forcing the columns of A to have unit `2

norm : ∀i ∈ 1, · · · , n, aiT

ai = 1 where ai is the i-th column of A.
As solutions of problem (7) have no explicit formulation, we propose solving it by means
of a block-coordinate relaxation iterative algorithm such that each iteration (h) is de-
composed into two steps : (i) estimation of the sources S assuming the mixing matrix is
fixed to its current estimate Â(h−1) and (ii) estimation of the mixing matrix assuming
the sources are fixed to their current estimates Ŝ(h). It is not difficult to see that the
objective MAP functional in (7) is continuous on its effective domain and has compact
level sets. Moreover, this objective function is convex in the source coefficient vectors
(α1, . . . , αn), and f0 has an open domain, is continuous and Gâteaux differentiable. Thus
by [13, Theorem 4.1], the iterates generated by our alternating algorithm are defined and
bounded, and each accumulation point is a stationary point of the MAP functional. In
other words, our iterative algorithm will converge. Hence, at iteration (h), the sources
are estimated from a maximum a posteriori assuming A = Â(h−1). By classical ideas
in convex analysis, a necessary condition for α to be a minimizer is that the zero is an
element of the subdifferential of the objective at α. We calculate 2 :

∂αfµ(α,A) = −2AT ΓN
−1(XΦT − Aα) + 2µ∂α‖α‖1 (8)

where ∂α‖α‖1 is defined as (owing to the separability of the prior):

∂α‖α‖1 =







U ∈ R
n×t

∣

∣

∣

∣

∣

Uj, k = sign(αj,k), αj,k 6= 0

Uj, k ∈ [−1, 1], αj,k = 0







.

Hence, Equation 8 can be rewritten equivalently as two conditions leading to the following
(proximal) fixed point equation:

α̂j,k = 0, if
∣

∣

∣

(

AT ΓN
−1XΦT

)

j,k

∣

∣

∣
≤ µ

AT ΓN
−1(XΦT − Aα̂) = µ sign (α̂) , otherwise.

(9)

Unfortunately, Equation 9 has no closed-form solution in general. It must be iterated and
is thus computationally demanding. Fortunately, it can be simplified when A has nearly

orthogonal columns in the noise covariance matrix (i.e. ÂT ΓN
−1Â ' diag

(

ÂT ΓN
−1Â

)

).

2 For clarity, we drop the upper script (h − 1) and write Â = Â(h−1).
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Let C =
(

ÂT ΓN
−1Â

)−1

AT ΓN
−1XΦT , Equation 9 boils down to the following set of

equations ∀j ∈ {1, · · · , n}:

α̂j,k = 0, if |Cj,k| ≤ µ(h)σ2
j

α̂j = [C]j − µσ2
j sign (α̂j) , otherwise.

(10)

where [Y]j is the j-th row of Y. In practice, even if the approximation we make is not
strictly valid, such a simplification leads to good computational results. These equa-
tions are known as soft-thresholding with threshold µ(h)σ2

j . We define STδ(.), the soft-
thresholding operator with threshold δ. At iteration (h), the sources are thus estimated
such that:

α̂
(h)
j = STµ(h)σ2

j

(

[C]j

)

(11)

The jth source is reconstructed as ŝ
(h)
j = α̂

(h)
j Φ. The mixing matrix A is then estimated

by a maximum likelihood estimate amounting to a simple least-squares update assuming
S is fixed. The GMCA algorithm is then described as follows :

1. Set the number of iterations Imax and thresholds δ
(0)
j

= µ(0)σ2
j

2. While each µ(h) is higher than a given lower bound µmin (e.g. can depend on the noise variance),
– Proceed with the following iteration to estimate source coefficients α at iteration h assuming A is

fixed: α̂
(h)
j

= ST
µ(h)σ2

j

(

[

(

ÂT ΓN
−1Â

)

−1
ÂT ΓN

−1XΦT

]

j

)

:

– Update A assuming α is fixed : Â(h) = XΦT
α̂

T
(

α̂α̂
T
)

−1

– Decrease the threshold µ(h) following a given strategy

Note that the overall optimization scheme is based on an iterative and alternate thresh-
olding algorithm involving a coarse to fine estimation process. Indeed, coarse versions of
the sources (i.e. containing the most “significant” features of the sources) are first com-
puted with high values of µ(h). In the early stages of the algorithm, the mixing matrix
is then estimated from the most “significant” features of the sources which are less per-
turbed by noise. The estimation of A and S is then refined at each iteration as µ(h) (and
thus the thresholds {µ(h)σ2

j }j=1,··· ,n) decreases towards a final value µmin. We already
used this minimization scheme in [2] where this optimization process provided robustness
and helped convergence even in a noisy context. Experiments in Section 2 illustrate that
it achieves good results with GMCA as well.

2. Application to CMB and SZ reconstruction

2.1. Blind component separation

The method described above was applied to synthetic data composed of m = 6 mix-
tures of n = 3 sources : CMB, galactic dust emission and SZ maps illustrated in Figure 1
and 2. The synthetic data mimic the observations that will be acquired in the six fre-
quency channels of Planck-HFI namely : 100, 143, 217, 353, 545 and 857 GHz featured
Figure 2. White gaussian noise N is added with diagonal covariance matrix ΓN reflect-
ing the foreseen Planck-HFI noise levels. Experiments were led with 7 global noise levels
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Fig. 1. The simulated sources - Left: CMB. Middle: galactic dust emission. Right: SZ map.

Fig. 2. The observed CMB data - global SNR = 2.7dB

with SNR from 1.7 to 16.7dB such that the experimental noise covariance ΓN was pro-
portional to the nominal noise covariance. Note that the nominal Planck-HFI global
noise level is about 10dB. Each measurement point was computed from 30 experiments
involving random noise, randomly chosen sources from a data set of several simulated
CMB, galactic dust and SZ 256× 256 maps. Separation was obtained with GMCA using
a single orthonormal wavelet basis. Figure 3 depicts the average correlation coefficients
over experiments (with ±σ bars) between the estimated source map and the true source
map. Figure 3 upper left panel shows the correlation coefficient between the true simu-
lated CMB map and the one estimated by JADE (dotted line with 2), SMICA (dashed
line with ◦) and GMCA (solid line). The CMB map is well estimated by SMICA, which
indeed was designed for the blind separation of stationary colored Gaussian processes,
but not as well using JADE as one might have expected. GMCA turns out to perform
similarly to SMICA. In upper right panel of Figure 3, galactic dust is well estimated by
both GMCA and SMICA. The SMICA estimates seem to have a slightly higher variance
than GMCA estimates for higher global noise levels (SNR lower than 5 dB). Finally, the
lower left panel shows that GMCA gives better estimates of the SZ map than SMICA
when the noise variance increases. At first sight GMCA is a general method for providing
simultaneously good SZ and CMB estimates as it seems to perform similarly to state-of-
the-art blind component separation techniques for CMB data.
In a noisy context, assessing separation techniques turns out to be more accurate using
a mixing matrix criterion. We define the mixing matrix criterion ∆A = ‖I−PÂ−1A‖1,1
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Fig. 3. Correlation coefficients between the estimated source map and the true source map

- Top left: CMB. Top right: galactic dust. Bottom left: SZ map. Bottom right: mixing matrix
criterion ∆A Legend : JADE : dotted line with 2 - SMICA : dashed line with ◦ - GMCA : solid line.
Abscissa : SNR in dB.

(where P is a matrix that reduces the scale/permutation indeterminacy of the mixing
model, and ‖.‖1,1 is the entrywise `1 matrix norm). Indeed, when A is perfectly estimated,

it is equal to Â up to scale and permutation. As we entirely manage our experiments,
the true sources and mixing matrix are known and thus P can be computed easily. The
mixing matrix criterion is thus strictly positive unless the mixing matrix is perfectly
estimated up to scale and permutation. This mixing matrix criterion is experimentally
much more sensitive to separation error. The bottom right panel of Figure 3 illustrates
the behavior of the mixing matrix criterion ∆A with JADE, SMICA and GMCA as the
global noise variance varies. GMCA clearly outperforms SMICA and JADE when applied
to CMB data.

2.2. Adding some physical constraint : the versatility of GMCA

In practice, the separation task is only partly blind. Indeed, the CMB emission law is
extremely well-known. In this section, we illustrate that GMCA is versatile enough to
account for such prior knowledge. In the following experiment, CMB-GMCA has been
designed by constraining the column of the mixing matrix A related to CMB to its
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true value. This is equivalent to placing a strict prior on the CMB column of A; that is
P (acmb) = δ(acmb−acmb

0 ) where δ(.) is the Dirac measure and acmb
0 is the true simulated

CMB emission law in the frequency range of Planck-HFI. Figure 4 shows the correlation
coefficients between the true source maps and the source maps estimated using GMCA
with and without the CMB prior. As expected, the top left picture of Figure 4 shows
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Fig. 4. Correlation coefficients between the estimated sources and the true sources - Top

left: CMB. Top right: galactic dust. Bottom: SZ map. Legend : CMB-GMCA : dashed line with
� - GMCA : solid line. Abscissa : SNR in dB. Ordinate : correlation coefficient.

that assuming acmb
0 is known improves the estimation of CMB. Interestingly, the galactic

dust map (top right of Figure 4) is also better estimated. As a matter of fact, CMB and
galactic emission both have large scale structures a better estimate of CMB automatically
results in a better reconstruction of the galactic signal. Furthermore, the CMB-GMCA
SZ map estimate is likely to have a lower variance (lower panel of Figure 4). Moreover, it
is likely to provide more robustness to the SZ and galactic dust estimates thus enhancing
the global separation performances.

3. Conclusion

In this paper we underlined that recovering information from CMB data requires solv-
ing a blind source separation issue (BSS). Several BSS techniques have already been
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applied to CMB data without providing good global performances. In this paper, we
provide a sparsity-based source separation method coined Generalized Morphological
Component Analysis (GMCA) which turns to give astounding results to effectively re-
cover both CMB and SZ maps. In that context, sparsity enhances the contrast between
the sources leading to an improved separation task even in a noisy context. In the blind
case, when no prior knowledge is assumed on the emission laws of the components, GMCA
outperforms state-of-the-art blind component separation techniques already applied to
CMB data. Furthermore, GMCA is versatile enough to easily include some prior knowl-
edge of the emission laws of the components. This is an extremely valuable feature of
the proposed method in the case of CMB data analysis. Indeed, the CMB has a known
black-body spectrum. Including this information in the GMCA algorithm enhances the
source separation globally. Future work will be devoted to taking advantage of GMCA’s
versatility to adapt to more complex physical models.
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