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ABSTRACT

Overcomplete representations are attracting interest in image
processing theory, particularly due to their potential to gener-
ate sparse representations of data based on their morphologi-
cal diversity. We here consider a scenario of image denoising
using an overcomplete dictionary of sparse linear transforms.
Rather than using the basic approach where the denoised im-
age is obtained by simple averaging of denoised estimates
provided by each sparse transform, we here develop an ele-
gant bayesian framework to optimally combine the individual
estimates. Our derivation of the optimally combined denoiser
relies on a scale mixture of gaussian (SMG) prior on the co-
efficients in each representation transform. Exploiting this
prior, we design a bayesian /5-risk (mean field) nonlinear es-
timator and we derive a closed-form for its expression when
the SMG specializes to the Bessel K form prior. Experimental
results are carried out to show the striking profits gained from
exploiting sparsity of data and their morphological diversity.

Index Terms— Sparsity, Morphological diversity, Bayesian

combined denoising.

1. INTRODUCTION

Recently, researchers spanning a diverse range of viewpoints
have advocated the use of overcomplete signal/image repre-
sentations (see e.g. [1, 2, 3]). Generally speaking, they sup-
pose we have a an image vector x € R"”, and a collection of
vectors (cp)yer, Card I = L, with L > n, such that the im-
age x can be written as the superposition of these elementary
atoms X = > aypy = Par.

Popular examples of I" include: frequency (Fourier), scale-

translation (wavelets), scale-translation-frequency (wavelet pack-

ets), translation-duration-frequency (cosine packets), scale-
translation-angle (e.g. curvelets, bandlets, contourlets, etc.).
The dictionary @ is the n X L matrix whose columns are the
generating atoms {¢. },er, which are supposed to be nor-
malized to a unit £5-norm. The forward transform is defined
via a non-necessarily square full rank matrix T = &7 ¢
RLX" with L > N. When L > n the dictionary is said
to be redundant or overcomplete. Such representations differ
from the more traditional basis representation because they
offer a wider range of generating elements; potentially, this
wider range allows more flexibility in signal representation
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and adaptativity to its morphological content, and hence more
effectiveness at tasks like signal compression and restoration.

Owing to recent advances in modern harmonic analysis,
many redundant systems, like the undecimated wavelet trans-
form or curvelet pyramids, were shown to be very effective
in sparsely representing images. By sparsity, we mean that
we are seeking a good representation of x with only very few
non-zero coefficients, i.e. |||, < n. In most practical sit-
uations, the dictionary is built by taking union of one or sev-
eral (sufficiently incoherent) transforms, generally each cor-
responding to an orthogonal basis or a tight frame. Choosing
an appropriate dictionary is a key step towards a good sparse
representation, hence recovery. A core idea here is the con-
cept of morphological diversity, as initiated in [3]. When the
transforms are amalgamated in one dictionary, they have to
be chosen such that each leads to sparse representations over
the parts of the images it is serving. Thus, to represent effi-
ciently isotropic structures in an image, a qualifying choice
is the wavelet transform [4]. The curvelet system [5, 6] is a
very good candidate for representing piecewise smooth (C?)
images away from C? contours. The ridgelet transform [7, 8]
has been shown to be very effective for representing global
lines in an image. The local DCT [4] is well suited to rep-
resent locally stationary textures. These transforms are also
computationally tractable particularly in large-scale applica-
tions. The associated implicit fast analysis and synthesis oper-
ators have typically complexities of O(n) (e.g. orthogonal or
bi-orthogonal wavelet transform) or O(nlogn) (e.g. ridgelet,
curvelet, local DCT transforms). Another desirable require-
ment that the merged transforms have to satisfy is that when
a transform sparsely represents a part in the image, it yields
non-sparse representations on the other content type.

Let’s now consider the problem of recovering the sparsest
representation possible in an overcomplete dictionary ®, in
presence of an additive gaussian white noise with variance
o2

y=%a+¢ (D)

The sparsest representation is then the solution to the opti-
mization problem:

Py: minlall, st |y — ®af, <0 2)

This is an NP-hard combinatorial optimization problem. Au-
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thors in [2] proposed a convexified and relaxed form:

1
P mcin§||y*‘1’0é||2+>\“a”1 3)

(Py) is a linear programming problem known as BPDN. It
solves (Py) under appropriate conditions [2]. Very recently,
considerable attention has focused on theoretical and practical
issues related to solving the underdetermined sparse solution
problem (P;) (see e.g. [9, 10, 11] and many others).

(Py) can also be seen as the MAP estimator with a Lapla-
cian prior on the coefficients. The core of our proposal is (i)
to replace the ¢;-norm prior with a flexible family of spar-
sity promoting priors based on the SMG, and (ii) to replace
the MAP estimator by the ¢5-risk mean-field (MF) estimator;
that is we substitute integration (MF) for optimization (MAP).
Rather than using the basic approach where the denoised im-
age is obtained by simple averaging of denoised estimates in
each sparse transform, we here develop a bayesian framework
to optimally combine the individual estimates. Our derivation
relies on a scale mixture of gaussians (SMG) prior on the co-
efficients in each representation transform. More specifically,
we use a special instance of the SMG, namely the BKF prior,
for which we have derived a closed-form for its MF estima-
tor in a previous contribution [12]. Experimental results are
carried out to show the effectiveness and performance of our
method.

2. STATISTICAL PRIOR

In the bayesian approach a prior distribution is imposed on the
representation coefficients in order to capture the sparseness
of the linear expansion. The following section is intended to
provide an introduction to SMG family suitable to character-
ize the sparse representation coefficient densities which have
been already observed to be sharply peaked and heavily tailed.
The SMG model have been already used in [13], and some of
its instances have also been proposed in different works (see
e.g. [14, 12]).

2.1. Scale Mixture of Gaussians (SMG)

Definition 1 ([15]) Let X be a random variable (RV) with
real-valued realizations. Under the SMG, there exist two in-
dependent RVs U > 0 and Z ~ N(0, 1) such that:

X< z2VU

Property 1 SMG is a subset of the elliptically symmetric dis-
tributions. The pdf fx exists at 0 if only if E[U~/?] < +o0.
The pdf fx is unimodal, symmetric around the mode and dif-
ferentiable almost everywhere. Moreover, if fy the pdf of U

is differentiable, then:
\/Zu—3/2c ((2u)—1)

“4)

fu(u) = )

where ((.) is the inverse Laplace transform of the pdf fx (\[)

The following lemma establishes that such a representation is
adapted as a sparsity-promoting prior:

Lemma 1

(i) The RV X has a SMG representation if and only if the
k™ derivatives of fx(\/y) have alternating sign, i.e.:

d k
(dy) x (V) >0 Vy >0 ®)

(ii) IfU > 0 is random, then kurtosis(X) > 0 => the sym-
metric distribution of X is necessarily sharply peaked
(leptokurtic) with heavy tails.

Proof: The first statement is due to [15]. The second one
is straightforward by marginalizing with respect to the mixing
RV U.

As for sparse representations, the empirical coefficient pdfs
were observed to be symmetric around 0, leptokurtic and heavy
tailed, these pdfs have their 1st and 2nd derivatives of alter-
nating signs on R*. Consequently, Lemma 1 states that the
SMG family fulfills all necessary requirements to capture the
sparsity of decompositions and is then legitimate as a prior for
the coefficients. Note also that a key advantage of SMG is that
it transfers all desirable properties of the gaussian distribution
through the mixing RV.

2.2. The BKEF prior

The Bessel K form (BFK) prior [12] is a particular instance of
the SMG family where the mixing RV U in Eq.4 is Gamma
distributed with a shape parameter 5 and a scale parameter
c. Our interest in this distribution relies on two facts: (i) the
hyperparameters (3, ¢) associated to the BKF can be easily
estimated even in presence of noise using either a cumulant
or an EM-based estimator, (ii) the posterior-conditional mean
(or mean-field) estimator associated the £5-bayesian risk has
a closed form expression. See [12] for details.

3. BAYESIAN COMBINED DENOISING

Here, we describe our approach to optimally combine individ-
ual estimates obtained with each transform separately. This
is accomplished in a bayesian framework where the optimal
weights are derived. The overall strategy is sketched in Fig.1.

For the sake of simplicity, the dictionary is now supposed
to be a union of M (sufficiently incoherent) bases {®,,, }m=1...
(that is L = Mmn). It is easy to see that the (merged) estimate
at spatial location s can be written as a function of the indi-
vidual estimates as follows:

M

> % (5)P (mly(s); UT)

m=1

x(s) =

(N
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X, = E[X|Y, 0] N

P(@.]Y:U}) X

X, = E[X]Y,®,
P(0,]Y;U2)

Optimally
combine

estimates
|

Xy = E[X|Y,0y]
P(®un|Y;UY)

T

Fig. 1. The flowchart of bayesian combined denoising.

where X,,, is the MF-based estimate of the image x obtained
in the transform mth transform, and:

P (@mly(s); UZ””) o<
s m m m
ST P (y(s)|‘1>m, uy ) P (U7 |<I>m) P(®,,)dUr
®)
Assume now that (i) the SMG prior is independent of the
transform, and (ii) all transforms are equiprobable!. Then,
using properties of the SMG, we obtain:

P (®p]y(s),UT") o
f e foJFOO ¢(y(s)7 ;um(s)7 Tm
©))
where ¢(y; i, o2) stands for the normal pdf with mean p and
variance 02, ji,, is the low-pass component in the transform
$y,, that one may want to keep intact (vague prior). fum (ul)
is the joint pdf of the SMG prior mixing variables in the mth
transform. 7,,,(s) is the variance in the spatial domain:

>l ()P ul (10)

Ym E€lm

Tm(8) =

Eq.9 is computationally intractable since it necessitates nu-
merical integration to compute in practice. Nonetheless, this
difficulty can be alleviated by assuming that the SMG pri-
ors have mixing RVs <U’7Yn)m:1,..., Moyers, that are subband-
independent and rapidly decreasing pdfs (point mass at the
mode). Hence, Eq.9 simplifies to:

Ay (5); m(s), Tim(5) + 02)
Zﬁf/:1 ¢(Y(S)> Hm/ (5)7 Tm’(s) + Ug)

where in the expression of 7,,,(s), the mixing RV realization
ul" is replaced with the mode @7'. For example, in the case
of the BKF prior, the mode is easily expressed in terms of the
prior hyperparameters 4] = max ((ﬂ;“ — 1)l 0).

Let’s now turn to the expression of 7,,. To be computed,
this will necessitate to have the atoms ¢, , available. But, as

stated in the introduction, the dictionaries (®,,),, are never

P(®mly(s), UT) =

! Alternatively, a prior probability map of the transforms that has been
provided by a learning step can be easily fed into the above expression.

constructed explicitly which would be otherwise computa-
tionally prohibitive (implicit fast analysis and reconstruction
operators are used instead). Fortunately, for many usual trans-
form bases (e.g. DCT, Haar basis), 7,, is exactly:

T = Y0 (12)
Ym

For other bases (wavelet transform with other wavelets than
Haar), this expression is not exact but can be shown to be
relevant to a good approximation.

4. EXPERIMENTAL RESULTS

The performance of the combined approach has been assessed
on several 2D datasets, from which we here illustrate two ex-
amples. The first one is a synthetic image containing textured
areas and gaussians. The dictionary naturally contained the
wavelet transform (with Symmlet 4 QMF) and a local DCT
(actually a local cosine packet basis at a fixed depth). Fig.2
shows the denoising results using ad hoc averaging of indi-
vidual estimates and the combined adaptive strategy. The
wavelet transform alone performs well on the smooth parts,
while the local DCT alone is better in the textured areas. The
combined approach performs well in both parts (a gain of 2dB

(s) + 02) fup (u) duf" ... dufft was observed compared to single transform denoising). The

combined approach also outperforms the simple averaging
method. Furthermore, one may notice how the conditional
probability map of the first transform (wavelet) reflects the
spatial distribution of the gaussians. These results are con-
firmed when applied to the more complicated Barbara image.
The dictionary contained the same transforms as before. A
gain of 1dB was achieved for this image compared to a single
transform denoising.

5. CONCLUSION

In this paper, a bayesian MF estimator exploiting sparsity in
several transforms is proposed. The denoiser optimally com-
bines the transforms in the dictionary instead of ad hoc av-
eraging. As each transform is intended to sparsely represent
certain parts of the image its is serving, our approach asso-
ciates the advantages of all these representations, and thus,

(11)will perform well over all the image. A byproduct of the

method is a (posterior) conditional probability map attached
to each transform that may be useful for other purposes (e.g.
separation). The performance of the approach clearly demon-
strates the benefit of overcomplete over single transform de-
noising. This also confirms the striking profits gained from
exploiting sparsity of data and their morphological diversity.
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