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ABSTRACT

This article proposes a new method for image separation into a linear combination of morphological compo-
nents. This method is applied to decompose an image into meaningful cartoon and textural layers and is used
to solve more general inverse problems such as image inpainting. For each of these components, a dictionary is
learned from a set of exemplar images. Each layer is characterized by a sparse expansion in the corresponding
dictionary. The separation inverse problem is formalized within a variational framework as the optimization of an
energy functional. The morphological component analysis algorithm allows to solve iteratively this optimization
problem under sparsity-promoting penalties. Using adapted dictionaries learned from data allows to circumvent
some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial
to capture complex texture patterns.
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1. REGULARIZED INVERSE PROBLEM WITH SEVERAL LAYERS

Many problems in image processing can be cast as inverting a linear system f = Ku + ε where u ∈ R
N is the

data to recover, f ∈ R
m is the observed image and ε is a gaussian white noise of known variance. The linear

mapping K : R
N �→ R

m is typically ill-behaved since it models an acquisition process that encounters loss of
information. This entails ill-posedness of the inverse problem.

In order to regularize such an inversion problem, one has to add some prior knowledge on the typical structures
of the original image u. This prior information accounts for the smoothness of the solution and can range from
uniform smoothness assumption to more complex knowledge of the geometrical structures of u.

This paper supposes that the original image can be written as

u =
S∑

s=1

us

In words, u is a linear combination of S layers (the so-called morphological components), where each us accounts
for a different kind of features of the original data u. Each of these layers has its own prior assumption and
multiplying the number of priors should help to recover intricate image structures such as smooth areas, edges
and textures of natural images.

This regularized inversion with several layers can be formalized within a variational framework as the opti-
mization of {us}S

s=1 in order to solve

min
u1,...,uS

1
2

∣∣∣∣∣∣f −K
S∑

s=1

us

∣∣∣∣∣∣2
�2

+ µ
S∑

s=1

Es(us), (1)

where each energy Es : R
N �→ R

+ favors images with some specific kind of structures.
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Typical inverse problems that can be handled within this framework are for instance:

Denoising : in this case, S = 1, N = m, K = IdN and one wants to remove the additional noise ε.
Image separation: similarly to the denoising, K = IdN , but one considers S > 1 layers which allows to split
the image into meaningful components.
Deconvolution: in this case, K is a blurring kernel and f lacks the high frequency content of u.
Super-resolution: in this case, K is a blurring kernel of width σ followed by a sub-sampling by a factor σ. The
dimension is typically m = N/σ.
Inpainting : in this case, K is an operator that removes some pixels of the image.

This paper focuses on image separation and inpainting and thus assumes that m = N .

2. VARIATIONAL AND SPARSITY-BASED ENERGIES

This section recalls several classical typical energies Es that come either from modeling of images using
functional spaces or using sparse coding in various transforms. These two kinds of energies are closely related,
and this paper uses the framework of sparse expansion to derive new kinds of energies that use sparse expansions
of image patches in adapted local dictionaries.

2.1 Variational Energies and Functional Spaces

Denoising. The simplest problem corresponds to image denoising where one looks for only one component
f ≈ u1 capturing structures such as the contours of the image. The residual f − u1 is only capturing the noise
and the parameter µ should be fixed in order to fit this noise level. The Rudin-Osher-Fatemi1 model corresponds
to the use of the following energy

E1(u1)
def.= ||u1||TV

def.=
∫

|∇xu1|dx,

where the total variation norm || · ||TV imposes that the contours of u1 have a small overall length and removes
from u1 the oscillations due to noise and texture.

Structure/texture decomposition. Yves Meyer extends this model2 in order to include an additional com-
ponent f = u1 + u2 where u2 captures the oscillating structure of textures. It corresponds to the energy

E1(u1)
def.= ||u1||TV and E2(u2)

def.= ||u2||G = min
u2=div(g)

||g||�∞ , (2)

where, for g = (g1, g2), one defines ||g||�∞ def.= supx

√
g1(x)2 + g2(x)2. The G-norm || · ||G is close to being a dual

norm to the total variation and thus favors highly oscillating functions. This model is implemented in practice
with iterative optimization schemes such as the one proposed by Aujol et al.3

2.2 Sparsity-based Energy for a Global Dictionary

An alternative to these energies based on functional spaces consists in exploiting a linear decomposition of
each component us = Dsxs in some dictionary Ds ∈ R

N×ms , ms � N . The sparsity of such a decomposition
can be measured using the �1 norm

||xs||�1 def.=
∑

j

|xs[j]|.

For redundant dictionaries ms > N , such a set of coefficients xs ∈ R
ms is not unique in general, but one can

define an energy related to the decomposition of xs in Ds as

Es(us)
def.= min

x∈Rms

1
2
||us − Dsx||2�2 + λ||x||�1 , (3)

where the parameter λ allows an approximate reconstruction Dsxs ≈ us.
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Such a sparsity-based energy requires the use of a dictionary Ds that can efficiently capture the relevant
structures of the layer us. Many dictionaries have been proposed to capture several features of natural images.

Wavelets4 are used intensively in image compression and allow to capture in an optimal way images with
bounded variations. The �1 norm of wavelets coefficients ||DW

Tv||�1 , where DW is a tight frame of translation
invariant wavelets, is closely related to the total variation norm ||v||TV, see.5

For cartoon-like images, that are regular outside a set of regular edge curves, wavelets are not anymore an
optimal representation. The tight frame of curvelets, introduced by Candès and Donoho,6 is able to efficiently
capture the contours of images.
Locally oscillating and stationary textures can be handled with a redundant tight frame DC of local cosines.4

The norm ||DC
Tv||�1 of an image in this frame is related to the G-norm of Meyer ||v||G defined in equation (2).

This article focuses on the dictionaries DW and DC that are redundant tight frames. They can capture respec-
tively the bounded variation and the oscillating parts of the image. Such dictionaries have been used by Starck
et al.,7,8 and give rise to a decomposition similar to the one of Meyer (2). This article shows how to add to these
fixed dictionaries additional dictionaries learned from a set of exemplars in order to capture complex textural
patterns.

One can note that other dictionaries can enhance over the result of local cosines to capture warped oscillating
patterns. For instance the waveatoms of Demanet and Ying9 and the brushlets of Meyer and Coifman10 have
been designed for this goal.

2.3 Sparsity-based Energy for a Local Dictionary

This article not only uses the dictionaries Ds ∈ R
N×ms defined on the whole set of N pixels, but also local

dictionaries to capture fine scale structures of the textures. Such a dictionary Ds ∈ R
n×ms is used to represent

patches Rk(us) ∈ R
n of n

def.= τ × τ pixels extracted from a component us,

∀ 0 � k1,2 <
√

N and − τ/2 � i1,2 < τ/2, Rk(us)[i] = us(k1 + i1, k2 + i2),

where k = k1

√
N + k2 with ki the index of the pixel (k1, k2).

Similarly to the energy (3) associated to a global dictionary, we can define an energy Es(us) associated to a
local dictionary Ds. This energy allows to control the sparsity of the decomposition of all the patches Rk(us) in
Ds. This energy Es(us) is defined as

Es(us) = min
{xk

s}k∈Rms×N

1
n

N−1∑
k=0

1
2
||Rk(us) − Dsx

k
s ||2�2 + λ||xk

s ||�1 . (4)

In this energy, each xk
s corresponds to the coefficient of the decomposition of the patch Rk(us) in the dictionary

Ds. The weight 1/n in the energy (4) compensates for the redundancy factor introduced by the overlap between
the patches Rk(us). This normalization allows to re-scale the local energy (4) with the global one (3).

The use of local dictionaries to perform signal processing has been proposed by Elad and co-workers in order
to use the output of their K-SVD learning scheme.11 They have tackled the problem of image denoising12 and
inpainting.13 This article proposes a common framework to include both local and global dictionaries and uses
this framework to solve more general problems involving morphological component separation.

2.4 Images vs coefficients, Analysis vs Synthesis

The variational formulation (1) proposed in this paper directly seeks for the components {us}S
s=1. Alternative

formulations of inverse problems in redundant dictionaries or union of bases search instead for the coefficients xs

of each component in the dictionary Ds

min
x1,...,xS

1
2

∣∣∣∣∣∣f −K
S∑

s=1

Dsxs

∣∣∣∣∣∣2
�2

+ λ
S∑

s=1

||xs||�1 , (5)
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see for instance.7,14 In this formulation, the optimized components are given by us
def.= Dsxs where the {xs}S

s=1

are the solution of (5).

In the case of orthogonal dictionaries Ds, the two formulations (1) and (5) are closely related. However, since
we consider highly redundant dictionaries, which correspond to non bijective transforms, the two results are
expected to differ significantly. Indeed, in the formulation (5) (coefficients domains) the set of feasible solutions
{us}S

s=1 is confined to the column space of the merged dictionary, whereas in the formulation (5) (image domains)
{us}S

s=1 are allowed to be arbitrary vectors in R
N . This difference disappears when the merged dictionary is

made of orthonormal bases.

One may then legitimately ask the question whether it is better to optimize with respect to coefficients or
images. Our belief is that there is not general answer to this delicate question. In the setting of local dictionaries
as exposed in section 2.3, using an energy such as (5) is unfeasible since the dimension of xs = {xk

s} is msN � N .
Furthermore we argue that the objects of interest are the image layers. Hence, it appears natural to optimize
our energy functional in terms of images as we proposed in equation (1).

3. MORPHOLOGICAL COMPONENT ANALYSIS

The morphological component analysis (MCA) algorithm7,8 allows to solve iteratively the variational separa-
tion problem (1) for sparsity-based energies Es as defined in equation (3). The main feature of this algorithm is
that the regularization parameter λ decreases through the iterations until it reaches its final value λmin that cor-
responds to the targeted level of regularization. The parameter λmin is typically set to 3−4× standard deviation
of the noise for noisy data, and set to 0 for a noiseless separation. This decay of λ has a flavor of deterministic
annealing and is also closely related to homotopy continuation15 and path following methods.16–18 It allows to
speed-up the convergence and leads to a simple update rule at each iteration using a non-linear thresholding.

For the decomposition of an image into its geometrical and textured parts, the original approach7,8 uses
fixed dictionaries of wavelets DW (and also curvelets in order to enhance the extraction of the contours) and
local cosines DC. This article extends the MCA algorithm in order to deal with energies Es associated to local
dictionaries Ds as defined in equation (4).

3.1 MCA with Local and Global Dictionaries
The new MCA-type algorithm minimizes iteratively the energy (1) by adding to the decomposition variables

{us}S
s=1 auxiliary variables {xs}S

s=1 corresponding to the coefficients of the decomposition of each us. For a
global dictionary Ds ∈ R

N×ms these coefficients are packed in a vector xs ∈ R
ms . But for a local dictionary

Ds ∈ R
n×ms these coefficients are a collection of vectors {xk

s}N−1
k=0 ∈ R

ms×N .

The energy minimized by the MCA algorithm is

E({us}s, {xs}s)
def.=

1
2
||f −K

∑
s

us||2�2 + µ
∑

s

Es(us, xs) (6)

where each energy Es is defined differently according to whether Ds is a global or a local dictionary

Es(us, xs)
def.=

{
1
2 ||us − Dsxs||2�2 + λ||xs||�1 , (global dictionary)
1
n

∑
k

1
2 ||Rk(us) − Dsx

k
s ||2�2 + λ||xk

s ||�1 . (local dictionary)

The MCA algorithm operates by minimizing successively E on each component us and then on each set of
coefficient xs while maintaining all remaining variables fixed, for s = 1, . . . , S. For each index s, the MCA
scheme performs a step of computation of the coefficients xs followed by an update of the component us. These
two steps slightly differ depending on the nature (global or local) of the dictionary Ds.

The minimization of a convex functional such as E by a block-coordinate relaxation iterative algorithm is a
classical optimization strategy. The difficulty of this approach for the optimization of E stems from the non-
differentiability of the ||xs||�1 norms. When the Ds are global dictionaries corresponding to frames, the authors
in14 proved the convergence of the MCA algorithm using a fundamental result due to Tseng.19 We will later use
a similar argument to prove the convergence of our separation algorithm.
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Global dictionaries considered in this paper are tight frames and thus lead to a fast convergence of the
iterations. Local dictionaries are however in general badly conditioned because of the overlap of the patches
Rk(us) which slow down the practical optimization process and requires more iterations for the algorithm to
converge.

3.2 Computation Algorithm
For each index s, the MCA algorithm proceeds according to two different steps for the minimization of E .

Step 1 – Update of the coefficients xs. This computation requires the minimization of Es(us, xs) with
respect to xs, while keeping us fixed. The corresponding minimization differs depending on whether the dictionary
is local or global ⎧⎨

⎩
xs

def.= argmin
x

1
2 ||us − Dsx||2�2 + λ||x||�1 , (global dictionary)

xk
s

def.= argmin
x

1
2n ||Rk(us) − Dsx||2�2 + λ||x||�1 . (local dictionary)

(7)

For a local dictionary, the coefficients xs = {xk
s}k are thus computed by considering independently each patch

Rk(us).

The problem of equations (7), known as sparse coding, requires solving a convex non-smooth optimization
functional. There are several options to solve for the coefficients xs (global dictionary) or xk

s (local dictionary):

This sparse coding problem corresponds to the basis pursuit denoising (BPDN),20 which can be solved exactly
with (perturbed) linear programming. Linear programming is however too slow for large-scale applications as
in image processing, and one has to resort to an iterative thresholding approach to minimize (7).
This minimization can be solved approximately with soft thresholding (written here for a global dictionary)

xs = Sλ(Ds
Tus) where Sλ(xs) = {sλ(xs[i])}i with sλ(x) def.=

{
x − sign(x)λ if |x| > λ,
0 if |x| � λ.

(8)

This thresholding approach is in fact the exact solution in the case of an orthogonal dictionary Ds. For a tight
frame DsDs

T = IdN , this non-linear thresholding is no more the exact solution of (7). It is in fact the first
iteration of the following proximal scheme to solve (7),

x(t+1)
s = Sλγt

(
x(t)

s + γtDs
T(us − Dsx

(t)
s )

)
with 0 < inf

t
γt � sup

t
γt < 2/Bs (9)

where Bs is the upper-bound of the frame Ds. Such proximal iterations have been proved to converge to a
(non-necessarily unique) global minimizer of (7), see for instance.21,22 Since the global dictionaries DW and
DC we consider are tight frames, we use the thresholding (8) to compute the coefficients xs ∈ R

ms . A similar
approach has been used in the original MCA algorithm7,8 and has been proved to converge to the global
solution of the problem as long as tight frames are involved.23

The local dictionaries we consider might deviate substantially from being tight frames. In particular, they can
become ill-conditioned. An option to better approximate the solution of (8) is to perform q > 1 thresholdings
with a smaller threshold λ/q, which corresponds to several proximal steps (8). In practice, we use a greedy
algorithm such as orthogonal matching pursuit (OMP)4 to recover the sparse set of coefficients xk

s for the local
dictionaries.

Step 2 – Update of the components us. Each component us is updated by minimizing

||rs −Kus||2�2 + µEs(us, xs) where rs = f −K
∑
� �=s

u�, (10)

where the coefficients xs and the other components us′ �=s are held fixed. This leads to the following update rule

us =
(KTK + µIdN

)−1 (KTrs + µûs

)
(11)
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where the reconstructed ûs is computed differently depending if the dictionary is global or not

ûs
def.=

{
Dsxs, (global dictionary)∑

k Rk
T(Dsx

k
s). (local dictionary)

To derive the expression for a local dictionary, we used the fact that

1
n

∑
k

Rk
TRk = IdN ,

where a special care should be taken at the boundaries of the image.

Global+local MCA algorithm. The MCA algorithm, given in listing 1, performs iteratively these two steps
for each index s = 1 . . . S. The regularization parameter λ decays at each iteration. The number of iterations
q allows to define the step δ = (λmax − λmin)/q, which is fixed to q = 100 in the numerical simulations of this
paper.

Listing 1 Morphological components analysis with both global and local dictionaries.
Initialization: ∀ s, us = 0, λ = λmax.
Loop: While λ > λmin,
Loop: For each s = 1, . . . , S,

(Compute the coefficients) The coefficients xs are computed by solving the sparse coding (7) with the thresh-
olding (8) (global dictionary) or by OMP (local dictionary).
(Update the components) The component us is computed using equation (11).

End For
(Update the threshold) λ ← λ − δ.
End While

3.3 Convergence properties

Note first that the objective functional E({us}s, {xs}s) defined in (6) is a coercive proper function. Thus,
minimizing (6) has at least one solution. The convergence proof of the cyclic algorithm in listing 1 follows, after
identifying our problem with the one considered by the author in.19 Then using the same notation as in19 (for
a global dictionary, the same holds for a local dictionary), we can write:

E({us}s, {xs}s) = µf0({us}s, {xs}s) + f1({us}s) + µ
∑

s

fx
s (xs)

where f0({us}s, {xs}s) =
∑

s

1
2
||us − Dsxs||2�2 ,

f1({us}s) =
1
2
||f −K

∑
s

us||2�2 , fx
s (xs) = λ||xs||�1 , ∀s = 1, . . . , S

It is not difficult to see that f0 has a non-empty open domain and is continuously differentiable on its
domain. Thus f0 satisfies Assumption A.1 in.19 Moreover, E({us}s, {xs}s) is continuous on its effective domain,
with bounded level sets. As f1 and fx

s are convex, and f0 is strictly convex, E({us}s, {xs}s) is strictly convex
(hence pseudoconvex). Thus, Lemma 3.1 and Theorem 4.1(a) of19 imply that the sequence of iterates provided
by the above cyclic MCA algorithm is defined, bounded and every accumulation point is a stationary point of
E({us}s, {xs}s). This accumulation point is the unique global minimizer by strict convexity.
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4. DICTIONARY LEARNING

4.1 Adaptive Representations

In order to efficiently represent complex natural images, one needs representation tools that can adapt to the
regular part, the contours and the textured areas of such images. Fixed dictionaries such as wavelets or local
cosines allow to capture only simple patterns, but more adaptive representations have been developed to handle
more complex image models.

A class of adaptive methods consists in using a family of orthogonal bases and look for the best basis in
this family using combinatorial optimization algorithms. The wedglets24 and the bandlets25,26 allow to better
represent contours than a traditional wavelet dictionary DW. For oscillating textures, a proper tree of the wavelet
packets bases4 with an appropriate tiling of the frequency domain can do good a job at sparsity of oscillatory
patterns; see the waveatoms.9 Cosine packets allow a dyadic partition of the spatial domain4 according to a
quad-tree structure. Grouplets bases27 are able to approximate efficiently oscillating and turbulent textures.

Contrarily to these approaches, which are able to handle only a particular kind of images or textures, other
approaches can adapt to the content of images through a learning process. By optimizing a sparsity criterion,
such algorithms allow to optimize a local dictionary for a set of exemplar patches. This kind of methods naturally
fit into the MCA framework developed in section 3 by considering local dictionaries applied to all the patches
of the image to process. The remaining part of this section explains the procedure of computing such adapted
local dictionaries.

4.2 Dictionary Optimization and Learning

The energy (4) defined on the patches of n = τ × τ pixels requires the use of a dictionary Ds adapted to the
local structures of the textures. In order to obtain such a dictionary, Olshausen and Field28 proposed to learn
the matrix Ds to optimally represent a set Y = {yk}p

k=1 ∈ R
n×p of p � n patches. They showed that when

these patches are extracted from a set of natural images, the obtained dictionary is similar to the dictionary DW

of redundant wavelets.

Other formalisms have been proposed for the adaptation of a dictionary to a set of exemplars, see for in-
stance,11,29,30 where each method defines its own energy together with an optimization procedure.

Learning with fixed layer exemplar. Ultimately, the goal of the learning stage is to optimize a set of local
dictionaries {Ds}s in order to minimize the morphological separation energy E of equation (6). However, in many
applications, one already has an exemplar ũs of some typical layer one would like to extract. Consequently, we
first consider the problem of optimizing a single dictionary Ds in order to sparsify a set of patches {yk = Rk(ũs)}k

extracted from the exemplar ũs.

For the learning stage to be efficient, we suppose that the exemplar ũs corresponds to a single homogeneous
texture. The dictionary Ds trained from the patches {yk}k is thus optimized to represent typical patterns of this
texture and the component us extracted from f in the decomposition (1) is likely to contain these patterns.

Fixing the layer us in energy (6) thus leads to the following optimization problem

min
Ds∈Rn×ms ,{xk}k∈Rms×p

p∑
k=1

1
2
||yk − Dsx

k||2�2 + λ||xk||�1 .

which is close to the K-SVD method optimization problem proposed by Aharon et al.11 In order for this problem
to be well-posed, one has to impose the additional normalization ||dj ||�2 = 1 on the columns of the dictionary
Ds ∈ R

n×ms .

This optimization problem is non-linear and non-convex and the algorithm K-SVD allows to find a local
minimum by iteratively cycling between the computation of the coefficients {xk}k and the dictionary Ds. Listing
2 details these two steps. Figure 1 (d) shows a learned dictionary. One can see that the learned atoms dj do a
good job at capturing the patterns of the exemplar texture depicted on figure 1 (a).
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Learning both the dictionaries and the decomposition. Optimizing the energy (6) over both the de-
composition variables {us, xs}s and the dictionaries {Ds}s is a non-convex difficult problem. In particular, it is
sensitive to the initialization of the dictionaries. This minimization can be carried over using a block-coordinate
descent method that iterates on the following steps:

(MCA decomposition) The dictionaries {Ds}s are fixed, and the MCA algorithm, listing 1, is used to compute
the layers {us}s.
(Dictionary update) The layers {us}s are fixed, and the K-SVD algorithm, listing 2, is used to compute the
optimized dictionaries {Ds}s.

Similarly to subsection 3.3, this alternating block-relaxation minimization scheme has at least one solution by
coercivity. But this time, when also optimizing (6) with respect to the dictionaries {Ds}s, E is no longer convex,
neither pseudoconvex in every pair of coordinate blocks. Thus, we are only able to claim that the algorithm will
converge to a stationary point using Lemma 3.1 and Theorem 4.1(b) of.19

Listing 2 K-SVD algorithm.

Initialization: The dictionary is initialized with the cosine transform Ds = DC and xk ← Ds
Tyk.

Loop: While Ds has not converged,
Ds fixed : the coefficients {xk}k are updated for each sample yk by minimizing

xk ← argmin
x

µ

2
||yk − Dsx||2�2 + ||x||�1 .

This optimization can be solved approximately using a pursuit algorithm (e.g. OMP), see.4

{xk}k fixed : for each atom dj , define Ij =
{
k \ xk[j] 
= 0

}
the set of indices pointing to patches that use the

atom dj . This atom dj is updated by minimizing

dj ← argmin
g

min
x

∑
k∈Ij

||ỹk − x[k]g||�2 , where ỹk = yk −
∑
� �=j

xk[�]d�.

This minimization is equivalent to a rank-1 approximation of the matrix containing the signals ỹk for k ∈ Ij ,
which can in turn be solved with a singular value decomposition (SVD).

5. APPLICATIONS

5.1 Image decomposition

The image decomposition problem corresponds to K = IdN . One thus looks for an approximate decomposition
f ≈ ∑

s us. The component update (11) is written as the convex combination

us = (1 + µ)−1(rs + µûs).

Image decomposition with exemplars. This application uses a first dictionary D1 = DW of redundant
wavelets in order to capture the geometric part of the input image f . The second dictionary D2 is either:

a redundant cosine transform D2 = DC. The image decomposition result with the DW and DC global dictio-
naries, as proposed by,7,8 is illustrated on figure 1 (e);
or learned by using the method described in section 4 from a known texture ũ2 that is close to the texture we
would like to remove from f .

The input image is generated as f = u1 + u2 where u2 is a texture visually similar to ũ2. The MCA algorithm
described in section 3 is applied to the image f shown on figure 1 (c). Figure 1 (e) and (f) compare the result of
two decompositions using DW −DC (e), and DW−learned (f). One can see from (e) that the overlaying texture
u2 is not sparse enough in the cosine frame and this decomposition does not extract any textural patterns. These
patterns are however perfectly recovered from the adapted decomposition as can be clearly seen on figure 1 (f).
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01. /

(a) (b) (c) (d)

(e) + (f) +

Figure 1. (a) Known texture ũ2, (b) texture to extract u2, (c) input image to decompose f = u1 + u2, (d) learned
dictionary D2, (e) decomposition using translation invariant wavelets D1 = DW and a cosine dictionary D2 = DC, (f)
decomposition using translation invariant wavelets D1 = DW and a learned dictionary D2.

Image decomposition with both dictionary and decomposition optimization. In this second decom-
position, we compute a separation f =

∑4
s=1 us using the wavelet dictionary D1 = DW and three learned

dictionaries {Ds}4
s=2. Each of these dictionaries D2, D3, D4 is optimized automatically along with the computa-

tion of the decomposition as described in the end of subsection 4.2. The important issue is thus the initialization
of these dictionaries. These initial dictionaries are obtained by training them with the K-SVD on patches ex-
tracted around pixels interactively selected by the user, see figure 2. This figure show the ability of the learned
dictionaries to adapt to the orientation of the textures on the shirt.

Figure 3 exemplifies another decomposition with a single textured component. The dictionary was initialized
from patches extracted around the center of the image.

= +

+ +

Figure 2. Decomposition using a wavelet dictionary and three learned dictionaries.
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= +

Figure 3. Decomposition using a learned dictionary where its initialization is obtained from patches extracted around the
center of the image.

5.2 Inpainting
Inpainting is to restore missing image information based upon the still available (observed) cues from destroyed

or deliberately masked subregions of the image f . Inpainting of non-textured images has been traditionally
approached by diffusion equations that progressively fills the missing pixels. The original work of Masnou and
Morel makes use of the continuation law of the level sets.31 Following their work, several authors proposed high
order PDEs, see for instance32–34 and anisotropic diffusion35 for non-texture inpainting.

The MCA framework has been also used to solve the inpainting problem14,36 for images containing simple
textural content such as locally parallel oscillations. Our extension of the MCA framework to local dictionaries
allows to inpaint more complex textures as long as one is able to correctly train the dictionary on the existing
parts of the image.

The inpainting problem corresponds to a diagonal operator

K = diag(ηi) where ηi =
{

1 if i /∈ Ω
0 if i ∈ Ω

where Ω ⊂ {0, . . . , N − 1} denotes the set of missing pixels. The component update (11) becomes

us[i] =
{

(1 + µ)−1(rs[i] + µûs[i]) if i /∈ Ω,
ûs[i] if i ∈ Ω.

As shown in,14 an important feature of the MCA approach to solving the inpainting is that the noise level
can be estimated at each iteration using the known pixels inside Ω. In this article however, we use the MCA
algorithm as given in listing 1 with a linear decay of the threshold λ and minimum threshold λmin = 0 since it
works well in the inpainting problem we consider.

Figure 4 shows an example of inpainting to restore an image where 65% of the pixels are missing. This
figure compares the inpainting done with a wavelet and a local DCT transform with the inpainting done with an
additional layer with a learned dictionary. This dictionary is trained from an exemplar texture as already done
for the experiment of figure 1. One can see that the inpainting result with a learned dictionary is able to recover
the missing fine scale details of the texture, which is not the case with the use of only a local DCT to represent
the texture. Figure 5 shows another example of inpainting with large holes that requires a learned dictionary in
order to respect the patterns of the overlaid texture.
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