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ABSTRACT

Over the last few years, the development of multi-channel sensors motivated interest in methods for the
coherent processing of multivariate data. From blind source separation (BSS) to multi/hyper-spectral
data restoration, an extensive work has already been dedicated to multivariate data processing. Previ-
ous work1 has emphasized on the fundamental role played by sparsity and morphological diversity to
enhance multichannel signal processing.
Morphological diversity2, 3 has been first introduced in the mono-channel case to deal with contour/texture
extraction. The morphological diversity concept states that the data are the linear combination of sev-
eral so-called morphological components which are sparse in different incoherent representations. In
that setting, piecewise smooth features (contours) and oscillating components (textures) are separated
based on their morphological differences assuming that contours (respectively textures) are sparse in the
Curvelet representation (respectively Local Discrete Cosine representation).
In the present paper, we define a multichannel-based framework for sparse multivariate data represen-
tation. We introduce an extension of morphological diversity to the multichannel case which boils down
to assuming that each multichannel morphological component is diversely sparse spectrally and/or spa-
tially. We propose the Generalized Morphological Component Analysis algorithm (GMCA) which aims
at recovering the so-called multichannel morphological components. Hereafter, we apply the GMCA
framework to two distinct multivariate inverse problems : blind source separation (BSS) and multichan-
nel data restoration. In the two aforementioned applications, we show that GMCA provides new and
essential insights into the use of morphological diversity and sparsity for multivariate data processing.
Further details and numerical results in multivariate image and signal processing will be given illustrating
the good performance of GMCA in those distinct applications.

1. INTRODUCTION

In the multichannel data setting,4 m observations {xj} are often modelled as a function of the linear
combination of n so-called sources {si}. In a matrix formulation (each datum is a line of the data matrix
X), the general multichannel model is as follows:

X = F (AS) + N (1)

where A is the so-called mixing matrix and N models instrumental noise or model imperfections; F
is a mapping from the data space to itself. In this paper we introduce solutions to various inverse
problems in the field of multichannel data analysis:
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1. Blind Source Separation (BSS) : in the BSS setting, the mapping F is the identity (ie F (X) = X):
X = AS. Solving the BSS issue boils down to estimating the mixing matrix A and the sources S.

2. Multichannel image denoising : the mapping F is also the identity.

3. Multichannel image inpainting : the mapping F is such that the observed data Y verifies: Y =
M�X where M is a mask such that its pixels take the values : i) zero when masked, ii) one when
observed. The symbol � means the mask M is applied pixelwise to the data X. We also assume
that no additional noise N perturbs the data.

Note that different choices for F lead to important inverse problems such as deconvolution or super-
resolution.
The solutions we propose rely on promising sparsity-based approaches. In the last decade sparsity has
been one of the leading concept in a wide range of signal processing applications (restoration5 , feature
extraction6 , source separation1, 7, 8 , to name only a few). In a wide range of applications and viewpoints,
researchers have advocated the use of overcomplete signal representations. Indeed, the attractiveness
of redundant signal representations relies on their ability to sparsely represent a large class of signals.
Furthermore, handling very sparse signal representations allows more flexibility and entails effectiveness
in many signal processing tasks (restoration, separation, compression, estimation, etc). In general, a
line vector signal x ∈ R

1×t is assumed to be the linear combination of T > t signal waveforms (atoms)
{φi}i=1,··· ,T : x =

∑
i=1 αiφi, where αi =

〈
x, φi

〉
(the scalar product between x and φi) are called the

decomposition coefficients of x in the dictionary Φ = [φT
1 , · · · , φT

T ]T (the T × t matrix whose lines are
the atoms normalized to a unit �2-norm).
In neuroscience, the mammalian visual system has been shown to be probably in need of overcomplete
representation.9 In signal processing, both theoretical and practical arguments10, 11 have supported the
use of overcompleteness which entails more flexibility in representation and effectiveness at many image
processing tasks. Nonetheless, handling overcomplete representations is clearly an ill-posed problem
owing to elementary linear algebra.
We extended previously12 the overcomplete sparse decomposition issue to the multichannel case. In
that context, we then introduce in Section 2.2 a new sparse decomposition algorithm coined Generalized
Morphological Component Analysis (GMCA) devised for overcomplete dictionaries built as a union of
bases. In Section 3 we show that the GMCA provides an effective analysis tool for providing astounding
solutions to the aforementioned inverse problems.

2. GENERALIZED MORPHOLOGICAL COMPONENT ANALYSIS

2.1. Sparse multichannel representation

In the multichannel setting, the data X live in the tensor product space of R
m and R

t : X ∈ R
m ⊗ R

t,
where m is the number of channels. Multichannel data are often made of m “observations” or channels
{Xi}i=1,··· ,m lying in R

t. For convenience, we will use the following matrix notation :

X =

⎡

⎢
⎣

X1

...
Xm

⎤

⎥
⎦ (2)

where each channel {Xi}i=1,··· ,m is a 1× t line vector. A multichannel representation is no more than a
set of vectors living in R

m ⊗ R
t. For instance, a basis of R

m ⊗ R
t can be the tensor product of a basis

of R
m (say ΦA) with a basis of R

t (say ΦS). Projecting X on such multichannel basis Φ = ΦA ⊗ΦS is
just done as follows :

α = ΦT
AXΦT

S (3)
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For the sake of clarity, we will rewrite the previous projection as : α = ΦT
AXΦT

S ≡ XΨT . When a
pseudo-inverse is applied, the same observation yields :

α =
(
ΦT

AΦA

)−1
ΦT

AXΦT
S

(
ΦSΦT

S

)−1
(4)

≡ XΨT
(
ΨΨT

)−1
(5)

Let ψγ={i,j} = φA,i ⊗ φS,j be an atom (i.e. element) of the multichannel dictionary Ψ. This atom can
be written in matrix form as : ψγ={i,j} = φT

A,iφS,j which is a m× t rank-1 matrix. The scalar product

between two multichannel atoms is such that ∗ :
〈
ψγ={i,p}, ψγ′={j,q}

〉
=

〈
φA,i, φA,j

〉〈
φS,p, φS,q

〉
. Han-

dling subsets of elements that belong to Ψ will also be needed. Let Λ = {{i1, j1}, · · · , {im′, jt′}} be a set
of index couples. Extracting the atoms of Ψ whose indices are the elements of Λ is written [Ψ]Λ. This
notation will be useful for defining the support of a signal X in Ψ. Assume that X is K-sparse in Ψ then
X =

∑
γ∈Λx

αγψγ where [Ψ]Λx
(or equivalently Λx) is the support of X. In the next, the Froebenius

or Hilbert-Schmidt norm of a matrix X is ‖X‖2 = Trace
(
XTX

)
. The �1 norm of X is defined as

the sum of the absolute value of each entry of the matrix X. Extending the redundant representation
framework to the multichannel case requires defining what a multichannel overcomplete representation
is. We assume that the multichannel dictionary Ψ at hand is the tensor product of a spectral dictionary
ΦA (m×n matrix) and a spatial or temporal dictionary ΦS (T × t matrix). Each atom of Ψ is then the
tensor product of an atomic spectrum φA and a spatial elementary signal φS :

∀{i, j} ∈ {1, · · · , n} × {1, · · · , T }, ψij = φT
A,i ⊗ φS,j (6)

which is the m× t matrix φT
A,iφS,j.

Let’s assume that the data X are K-sparse in Ψ. Hence, X is the linear combination of K multi-
channel atoms :

X =
∑

γ∈Λx

αγψγ (7)

where Card (Λx) = K.

2.2. The GMCA framework

In a slightly different context, contour/texture image decomposition techniques exploiting sparsity in
overcomplete representations have been introduced in the monochannel case.6, 13 In this monochannel
setting, the data x are assumed to be the linear combination of D so-called morphological components:

x =
D∑

i=1

ϕi (8)

where each morphological component ϕi is sparse in a specific basis/representation Φi. The whole signal
x is then equivalently sparse in Φ = [Φ1, · · · ,ΦD]. An iterative thresholding-based algorithm coined
Morphological Component Analysis (MCA) has been introduced13 to retrieve the so-called morphological
components based on the incoherence between the representations {Φi}i=1,··· ,D. Following the GMCA
paradigm,4 we decompose the multichannel data X into D morphological components which are sparse
in a set of D different multichannel representations {Ψk}k=1,··· ,D. For the sake of simplicity, we assume

that each multichannel sub-dictionary Ψk is orthonormal : ∀{i, j},
〈
ψk[i], ψk[j]

〉
= δij where ψk[i] is

the i-th atom of the k-th sub-dictionary. The data X are assumed to be the linear combination of
K multichannel atoms. We define Λk as the support (i.e. the indices of active atoms) of X in the

∗In fact, by standard properties of the tensor product, one can easily show that the Gram matrix of a tensor
product is the tensor product of the Gram matrices. That is, GΦ = ΦΦT = GΦA ⊗ GΦS .
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sub-dictionary Ψk. As X is K-sparse in the whole dictionary,
∑D

k=1 Card(Λk) = K. The data can be
decomposed as follows :

X =
D∑

k=1

∑

i∈Λk

αk[i]ψk[i] (9)

We classically propose recovering the sparse decomposition of X in Ψ by solving the following �1 sparse
problem :

min
αk=1,··· ,D

∑

k=1,···D
‖αk‖�1 s.t

∥
∥
∥
∥
∥
X −

D∑

k=1

∑

i∈Λk

αk[i]ψk[i]

∥
∥
∥
∥
∥
< ε (10)

where αk is the concatenation of all {αk[i]}k,i. Problem (10) can be rewritten in its augmented La-
grangian form:

min
αk=1,··· ,D

∥
∥
∥
∥
∥
X−

D∑

k=1

∑

i∈Λk

αk[i]ψk[i]

∥
∥
∥
∥
∥

2

+ 2λ
∑

k=1,···D
‖αk‖�1 (11)

These two problems are equivalent under an appropriate correspondence of parameters; that is, for a
given ε, there exists a bijection λ = f(ε) such that the two problems share the same solution. As
Equation (9) can be recast as a linear combination of D morphological components : X =

∑D
k=1 ϕk,

the GMCA algorithm iteratively estimates each morphological component ϕk by alternating between
components in a Block-coordinate way.14 Each vector of coefficients {αk}k is then estimated as follows :

αk = argmin
αk

∥
∥
∥
∥
∥
Rk −

∑

i∈Λk

αk[i]ψk[i]

∥
∥
∥
∥
∥

2

+ 2λ‖αk‖�1 (12)

where Rk = X − ∑
p�=k

∑
i∈Λp

αp[i]ψp[i] is a residual term. Recall that for multichannel data, we write
βk[i] = Xψk[i]T = φA,γ1Xφ

T
S,γ2

, where ψk[i] = φT
A,γ1

⊗φS,γ2 . For the sake of clarity we define β = XΨT
k

as the vector containing all the βk[i].
As we assume that each subdictionary Ψk is orthonormal, the problem in Equation (12) is equivalent
to the following:

αk = argmin
αk

∥
∥RkΨT

k − αk

∥
∥2

+ 2λ‖αk‖�1 (13)

which has a unique solution αk = ∆λ

(
XkΨT

k

)
known as soft-thresholding with threshold λ as follows:

∆λ(u[i]) =
{

0 if u[i] < λ
u[i] − λ sign (u[i]) if u[i] ≥ λ

(14)

For a fixed λ, GMCA selects groups of atoms based on their scalar product with the residual Rk.
Allowing GMCA to select new atoms is made by decreasing the threshold λ at each iteration. The
GMCA algorithm is summarized below:

1. Set the number of iterations Imax and threshold λ(0)

2. While λ(h) is higher than a given lower bound λmin

For k = 1, · · · , D
• Compute the residual term R

(h)
k assuming the current estimates of ϕp �=k, ϕ̃

(h−1)
p �=k are fixed:

R
(h)
k = X − P

p �=k α̃
(h−1)
p Ψp

• Estimate the current coefficients of ϕ̃
(h)
ik by thresholding with threshold λ(h):

α̃
(h)
k = ∆λ(h)

“
R

(h)
k ΨT

k

”

• Get the new estimate of ϕik by reconstructing from the selected coefficients α̃
(h)
ik :

ϕ̃
(h)
k = α̃

(h)
k Ψk

3. Decrease the threshold λ(h) following a given strategy
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We previously12 introduced an effective way of managing the threshold λ coined mMOM (for multichan-
nel “Mean Of Max”).

3. APPLICATIONS

In the following applications, we will emphasize on prevalent inverse problems in multichannel image
processing: i) blind source separation (BSS), ii) multichannel image restoration and multichannel image
inpainting. In the BSS context, the usual notations involve the so-called sources S: if we define αS the
matrix (obtained from a reordering of the coefficients {αγ}) such that X = AαSΦS; then the sources are
defined as follows S = αSΦS. Each individual source is obtained as : si = αSiΦS where αSi is the i-th
line of αS. In the next Section, we illustrate the ability of GMCA to provide an effective sparsity-based
framework for solving several multichannel inverse problems.

3.1. Blind source separation

3.1.1. Principle

In the Blind Source Separation4 (BSS) problem, the mapping F is the identity: X = AS + N. We
will fix the “spectral” dictionary ΦA = I to be the identity matrix. When the sources S are sparse
in a dictionary ΦS, the data X are thus sparse in the multichannel dictionary A ⊗ ΦS. In a previous
article4 we devoted to BSS, we introduced a GMCA-based algorithm for Blind Source Separation. This
“blind”-GMCA iterative algorithm accounts for the sparsity of the so-called sources S to estimate blindly
both the mixing matrix A and the sources S. The algorithm is as follows:

1. Perform a MCA to each data channel to compute αX :
αX = [αD (xi)

T ]T (where ∆D stands for the decomposition process in D).

2. Set the number of iterations Imax and threshold {λ(0)
i }i=1,··· ,n

3. While each λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise variance),
– Proceed with the following iteration to estimate the coefficients of the sources αS at iteration h assuming

A is fixed:
αS

(h+1) = αλ(h)

“
A†(h)

αX

”
:

– Update A assuming αS is fixed :

Ã(h+1) = αXα̃
(h)T

S

“
α̃

(h)
S α̃

(h)T

S

”−1

– Decrease the threshold λ(h).
4. Stop when λ(h) = λmin.

The data X are first decomposed in the “spatial” dictionary ΦS such that X = αXΦS. The mixing
matrix is then estimated in the sparse domain. More details are available in a previous article4 .

3.1.2. Results

In this section, we will compare several BSS techniques with GMCA in an image separation context.
We chose 3 different reference BSS methods:

• JADE : the well-known ICA (Independent Component Analysis) based on fourth-order statistics.15

• Relative Newton Algorithm : the separation technique we already mentioned. This seminal work16

paved the way for sparsity in Blind Source Separation. In the next experiments, we used the
Relative Newton Algorithm (RNA) on the data transformed by a basic orthogonal bidimensional
wavelet transform (2D-DWT).

Proc. of SPIE Vol. 6701  67011U-5



/
s-A F

, i ' fljtpi 

• EFICA : this separation method improves the FastICA algorithm17 for sources following generalized
Gaussian distributions. We also applied EFICA on data transformed by a 2D-DWT where the
assumptions on the source distributions is appropriate.

Figure 1 shows the original sources (top pictures) and the 2 mixtures (bottom pictures). The original
sources s1 and s2 have a unit variance. The matrix A that mixes the sources is such that x1 =
0.25s1 + 0.5s2 + n1 and x2 = −0.75s1 + 0.5s2 + n2 where n1 and n2 are Gaussian noise vectors (with
decorrelated samples) such that the SNR equals 10dB. The noise covariance matrix ΣN is diagonal.
The comparisons we carry out here are twofold: (i) we evaluate the separation quality in terms of

Figure 1. Top : the 256 × 256 source images. Bottom : two different mixtures. Gaussian noise is added such
that the SNR is equal to 10dB.

correlation coefficient between the original and estimated sources as the noise variance varies; (ii) as
the estimated sources are also perturbed by noise, correlation coefficients are not always very sensitive
to separation errors, we also assess the performances of each method by computing the mixing matrix
criterion ∆A

4 . The GMCA algorithm was computed with the union of a Fast Curvelet Transform
(available online18) and a Local Discrete Cosine Transform (LDCT). The union of the curvelet transform
and LDCT are often well suited to a wide class of “natural” images.
Figure 2 portrays the evolution of the correlation coefficient of source 1 (left picture) and source 2 (right
picture) as a function of the SNR. At first glance, GMCA, RNA and EFICA are very robust to noise as
they give correlation coefficients closed to the optimal value 1. On these images, JADE behaves rather
badly. It might be due to the correlation between these two sources. For higher noise levels ( SNR
lower than 10dB), EFICA tends to perform slightly worse than GMCA and RNA. In our experiments,
a mixing matrix-based criterion turns out to be more sensitive to separation errors and then better
discriminates between the methods. Figure 3 depicts the behavior of the mixing matrix criterion as the
SNR increases. Recall that the correlation coefficient was not able to discriminate between GMCA and
RNA. The mixing matrix criterion clearly reveals the differences between these methods. First, it
confirms the dramatic behavior of JADE on that set of mixtures. Secondly, RNA and EFICA behave
rather similarly. Thirdly, GMCA seems to provide far better results with mixing matrix criterion
values that are approximately 10 times lower than RNA and EFICA.
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Figure 2. Evolution of the correlation coefficient between original and estimated sources as the noise variance
varies: solid line : GMCA, dashed line: JADE, (�) : EFICA, (+) : RNA. Abscissa : SNR in dB. Ordinate
: correlation coefficients.

To summarize, the findings of this experiment confirm the key role of sparsity in blind source sepa-
ration:

• Sparsity brings better results : remark that, amongst the methods we used, only JADE is not
a sparsity-based separation algorithm. Whatever the method, separating in a sparse representation
enhances the separation quality : RNA, EFICA and GMCA clearly outperform JADE.

• GMCA takes better advantage of overcompleteness and morphological diversity:
RNA, EFICA and GMCA provide better separation results with the benefit of sparsity. Nonethe-
less, GMCA takes better advantage of sparse representations than RNA and EFICA.
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Figure 3. Evolution of the mixing matrix criterion ∆A as the noise variance varies: solid line : GMCA, dashed
line : JADE, (�) : EFICA, (+) : RNA. Abscissa : SNR in dB. Ordinate : mixing matrix criterion value.

3.2. Multivariate data restoration

In the present paper we also address some multivariate data restoration issues. More particularly, we
focus on colour image restoration problems. The same restoration scheme could be easily used for any
multivariate data.

3.2.1. Denoising color images

Up to now we emphasized on sparse blind source separation. The “spectral” dictionary is assumed to
be the identity matrix: ΦA = I. We showed4 that the stable solutions of the aforementioned blind-
GMCA are the sparsest in the dictionary ΦS. Thus it is tempting to extend GMCA to other multivalued
problems such as multi-spectral data restoration.
For instance, it is intuitively appealing to denoise multivalued data (such as color images) in multichannel
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representations in which the new components are sparse in a given dictionary ΦS. Let’s consider
multivalued data stored row-wise in the data matrix X. We assume that those multivalued data are
perturbed by additive noise. Intuition tells us that it would be worth looking for a new representation
X = AS such that the new components S are sparse in the dictionary ΦS.
We applied the blind-GMCA algorithm in the context of color image denoising ( SNR = 15dB). This
is illustrated in Figure 4 where the original RGB image† are shown on the left. Figure 4 in the middle
shows the RGB image obtained using a classical wavelet-based denoising method on each color plane
(hard-thresholding in the Undecimated Discrete Wavelet Transform (UDWT)). The blind-GMCA is
computed in the curvelet domain on the RGB colour channels and the same UDWT-based denoising
is applied to the sources S. The denoised data are obtained by coming back to the RGB space via the
matrix A. Figure 4 on the right shows the denoised blind-GMCA image using the same wavelet-based
denoising method. Visually, denoising in the ”GMCA colour space” performs better than in the RGB
space. Note that GMCA was computed in the curvelet space which is known to sparsely represent
piecewise smooth images with C2 contours19. We also applied this denoising scheme with other color

Figure 4. Left : Original 256 × 256 image with additive Gaussian noise. The SNR is equal to 15 dB. Middle
: Wavelet-based denoising in the RGB space. Right : Wavelet-based denoising in the curvelet-GMCA space.

space representations : YUV, YCC (Luminance and chrominance spaces). We also applied JADE on
the original colour images and denoised the components estimated by JADE. The question is then:
would it be worth denoising in a different space (YUV, YCC, JADE or GMCA) instead of denoising
in the original RGB space ? Figure 5 shows the SNR improvement (in dB) as compared to denoising
in the RGB space obtained by each method method (YUV, YCC, JADE and GMCA). Figure 5 shows
that YUV and YCC representations lead to the same results. Note that the YCC colour standard is
derived from the YUV one. With this particular colour image, JADE gives satisfactory results as it
can improve denoising up to 1 dB. Finally, as expected, a sparsity-based representation such as GMCA
provides better results. Here, GMCA enhances denoising up to 2dB. This series of tests confirms the
visual impression that we get from Figure 4. Note that such “GMCA colour space” is adaptive to the
data.

3.2.2. Steps ahead : learning the sparse representation :

In this section, we consider the particular case of colour image inpainting. In this setting, the mapping
F is no more the identity. Indeed, as data are missing, the observed data Y are such that : Y = M�X
where M is a mask such that its pixels take the values : i) zero when masked, ii) one when observed.
The symbol � means the mask M is applied pixelwise to the data X. We also assume that no additional
noise N perturbs the data. The “spectral” dictionary is assumed to be the identity matrix: ΦA = I. The
data X are made of 3 observed channels corresponding to each colour layer (for instance red, green and
blue). We saw previously that restoring colour image in a different colour (i.e. YUV) may sometimes
enhance the restoration performance.
In a previous article12 we propose recovering masked colour images using GMCA by seeking the colour

†All colour images can be downloaded at http://perso.orange.fr/jbobin/gmca2.html.
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Figure 5. Denoising color images : how GMCA can improve multivariate data restoration. Abscissa : Mean
SNR in dB. Ordinate : Gain in terms of SNR in dB compared to a denoising process in the RGB color space.
Solid line: GMCA, dashed-dotted line: JADE, ′•′ YUV, ′+′: YCC.

space in which the data X are sparse. Assume that the data X are represented in the RGB space and
let S be such that : X = AS =

∑3
i=1 a

isi where ai is the i-th column of A and si is the i-th line of S.
The 3 × 3 matrix A changes the colour space in which the data are represented. Adapting the colour
space to the data then amounts to estimate an “optimal” matrix A.
The GMCA algorithm is then adapted such that at each iteration, each column ai of the colour space
matrix A is updated by its least-squares estimate12:

1. Set the number of iterations Imax and threshold λ(0)

2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise variance),
Compute Y(h) = Y + X̃(h−1) −M� X̃(h−1)

For i = 1, · · · , n do:
• Estimate si by performing a GMCA step to decompose Rk = Y(h) − P

j �=i ajsj in ai ⊗ ΦS

• Update the i-th colour space vector:
ai = 1

‖si‖XsT
i

– Decrease the thresholds λ(h)

Note that when the update of the mixing matrix is omitted, the algorithm is similar to the multichannel
extension of the MCA-based inpainting method introduced by Fadili20 et al. The top-left picture in
Figure 6 shows the original Barbara colour image. The top-right picture depicts the masked colour
image where 90% of the colour pixels are missing. The bottom-left picture portrays the recovered
image using GMCA in the original RGB colour space (which amounts to perform a monochannel MCA-
based inpainting on each channel). The last bottom-right picture shows the recovered image with the
colour space-adaptive GMCA algorithm. The zoom on the recovered images in Figure 7 shows that
adapting the colour space avoids chromatic abberrations and hence produces a better visual result. This
visual impression is quantitatively confirmed by SNR measure, where the colour space-adaptive GMCA
improves the SNR by 1dB.

4. CONCLUSION

The use of overcomplete representations and sparsity have emerged as an effective analysis tool in a
wide range of applications. However, decomposing a signal in a redundant dictionary is theoretically
challenging. We extended the sparse decomposition framework to the multichannel setting. Furthermore,
designing a fast and effective decomposition algorithm is also a harsh task. We also introduced a fast and
practical decomposition algorithm coined Generalized Morphological Component Analysis (GMCA). We
extended GMCA to account for Blind Source Separation issues and adaptive multivariate data restoration
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Figure 6. Recovering colour images - top-left original colour image. Top-right : masked image - 90% of
the colour pixels are missing. Bottom - left : recovered image using the original GMCA algorithm. Bottom
- right : recovered image using the adaptive GMCA algorithm.

for which it provides good performances. GMCA then provides an effective tool for analyzing sparse
multivariate data. Further work will focus on hyperspectral image analysis.
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