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Notations

For a real discrete-time filter whose impulse response is h[n], h̄[n] = h[−n], n ∈ Z is its time-
reversed version. The hat ˆ notation will be used for the Fourier transform of square-integrable
signals. For a filter h, its z-transform is written H(z). The convolution product of two signals in
`2(Z) will be written ∗. For the octave band wavelet representation, analysis (respectively, synthesis)
filters are denoted h and g (respectively, h̃ and g̃). The scaling and wavelet functions used for the
analysis (respectively, synthesis) are denoted φ (φ( x2 ) =

∑

k h[k]φ(x − k), x ∈ R and k ∈ Z) and

ψ (ψ(x2 ) =
∑

k g[k]φ(x − k), x ∈ R and k ∈ Z) (respectively, φ̃ and ψ̃). We also define the scaled
dilated and translated version of φ at scale j and position k as φj,k(x) = 2−jφ(2−jx − k), and
similarly for ψ, φ̃ and ψ̃.

∗J.-L. Starck is with the CEA-Saclay, DAPNIA/SEDI-SAP, Service d’Astrophysique, F-91191 Gif sur Yvette,
France

†J. Fadili is with the GREYC CNRS UMR 6072, Image Processing Group, ENSICAEN 14050, Caen Cedex, France
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Glossary

WT Wavelet Trasnform
CWT Continuous Wavelet Transform
DWT Discrete (decimated) Wavelet Transform
UWT Undecimated Wavelet Transform
IUWT Isotropic Undecimated Wavelet Transform

1 Definition of the Subject and its Importance

Wavelets and related multiscale representations pervade all areas of signal processing. The recent
inclusion of wavelet algorithms in JPEG 2000 – the new still-picture compression standard– testifies
to this lasting and significant impact. The reason of the success of the wavelets is due to the fact
that wavelet basis represents well a large class of signals, and therefore allows us to detect roughly
isotropic elements occurring at all spatial scales and locations. As the noise in the physical sciences
is often not Gaussian, the modeling, in the wavelet space, of many kind of noise (Poisson noise,
combination of Gaussian and Poisson noise, long-memory 1/f noise, non-stationary noise, ...) has
also been a key step for the use of wavelets in scientific, medical, or industrial applications (Starck
et al., 1998). Extensive wavelet packages exist now, commercial (see for example (MR/1, 2001))
or non commercial (see for example (Wavelab 802, 2001; Wavelab 805, 2005)), which allows any
researcher, doctor, or engineer to analyze his data using wavelets.

2 Introduction

Over the last two decades there has been abundant interest in wavelet methods. In many hundreds
of papers published in journals throughout the scientific and engineering disciplines, a wide range
of wavelet-based tools and ideas have been proposed and studied. Background texts on the wavelet
transform include (Daubechies, 1992; Strang and Nguyen, 1996; Mallat, 1998; Starck et al., 1998;
Cohen, 2003). The most widely used wavelet transform (WT) algorithm is certainly the decimated
bi-orthogonal wavelet transform (DWT) which is used in JPEG2000. While the bi-orthogonal
wavelet transform has led to successful implementation in image compression, results were far
from optimal for other applications such as filtering, deconvolution, detection, or more generally,
analysis of data. This is mainly due to the loss of the translation-invariance property in the DWT,
leading to a large number of artifacts when an image is reconstructed after modification of its
wavelet coefficients. Later efforts found that substantial improvements in perceptual quality could
be obtained by translation invariant methods based on thresholding of an undecimated wavelet
transform.

3 The Continuous Wavelet Transform

The continuous wavelet transform uses a single function ψ(x) and all its dilated and shifted version
to analyze signals. The Morlet-Grossmann definition (Grossmann et al., 1989) of the continuous
wavelet transform (CWT) for a 1-dimensional real-valued function1 f(x) ∈ L2(R), the space of all

1We only consider here real wavelets. This can be extended to complex wavelets without too much difficulty.
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square-integrable functions, is:

W (a, b) =
1√
a

∫ +∞

−∞

f(x)ψ

(

x− b

a

)

dx (1)

where:

• W (a, b) is the wavelet coefficient of the function f(x),

• ψ(x) is the analyzing wavelet,

• a (> 0) is the scale parameter,

• b is the position parameter.

The inverse transform is obtained by:

f(x) =
1

Cψ

∫ +∞

0

∫ +∞

−∞

1√
a
W (a, b)ψ

(

x− b

a

)

da db

a2
(2)

where:

Cψ =

∫ +∞

0

|ψ̂|2
ν
dν =

∫ 0

−∞

|ψ̂|2
ν
dν (3)

Reconstruction is only possible if Cψ is finite (admissibility condition) which implies that ψ̂(0) = 0,
i.e. the mean of the wavelet function is 0. The wavelet is said to have a zero moment property, and
appears to have a band-pass profile. A closely related relation to the inverse given in Eq. 2, is an
energy conservation formula, an analogue to Plancherel’s formula (Mallat, 1998).
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Figure 1: Mexican hat function.

Fig. 1 shows the Mexican hat wavelet function, which is defined by:

ψ(x) = (1− x2)e−x
2/2 (4)

This is the second derivative of a Gaussian. The lower-part of Fig. 2 shows the CWT of a 1D signal
(top plot of Fig. 2) computed with the Mexican Hat wavelet. This diagram is called a scalogram.
Its y-axis represents the scale, and its x-axis represents the position parameter b.
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Figure 2: Top: 1D signal. Bottom: CWT computed with the Mexican Hat wavelet, the y-axis
represents the scale and the x-axis represents the position parameter b.

In practice we need to discretize the scale space, and the CWT is computed for scales between
amin and amax with a step δa. amin must be chosen enough large to discretize properly the wavelet
function, and amax is limited by the number N of samples in the data. For the experiment shown
in Fig. 2, amin was set to 0.66 and since the dilated Mexican hat wavelet at scale a is approximately
supported in [−4a, 4a], we choose amax = N

8 . The number of scales J is defined as the number of
voices per octave multiplied by the number of octaves (the number of octaves is the integral part

of log2

(

amax

amin

)

. The number of voices per octave is generally chosen equal to 12, which guaranties

a good resolution in scale and the possibility to reconstruct the signal from its wavelet coefficients.

We then have J = 12log2

(

amax

amin

)

, and δa = amax−amin

J−1 .

The CWT algorithm is the following:
If the convolution is performed in the Fourier space (i.e. ψa ∗ D = IFFT(FFT(ψa)FFT(D)),

where FFT and IFFT denote respectively the Fourier transform and its inverse), the data is assumed

to be periodic. In this case, the computation of the CWT requires O
(

12N (log2N)2
)

operations

(Mallat, 1998). If the convolution is done in the direct space, we can choose other ways to deal

4



1: Set the values amin, amax, J . These values depend on both the chosen wavelet function ψ and
the number of samples N .

2: Set δa = amax−amin

J−1 and a = amin.
3: for a = amin to amax with step δa do

• Compute ψa = ψ(xa )/
√
a.

• Convolve the input data D with ψ̄a to get W (a, .) = 1√
(a)

(ψ̄a ∗ D). The convolution

product can be done either in the direct space or in the Fourier space.

• a = a+ δa

4: W contains the CWT of D.

with the borders. For instance, we may prefer to consider mirror reflexive boundary conditions (i.e.
for k = 0, ..., N − 1 we have D(−k) = D(k) and D(N + k) = D(N − 1− k)).

The choice of the wavelet function is let to the user. As described above, the only constraint
is to have a function with a zero mean (admissibility condition). Hence, a large class of functions
verifies it and we can adapt the analyzing tool, i.e. the wavelet, to the data. For oscillating data
such as audio signals or seismic data, we will prefer a wavelet function which oscillates like the
Morlet wavelet. While for other kind of data such as spectra, it is better to choose a wavelet
function with minimum oscillation and the Mexican hat would certainly be a good choice. The
wavelet function can also be complex, in which case the wavelet transform will be complex. Both
the modulus and the phase will carry information about the data.

Here, we have considered only 1D data. For higher dimensional data, we can apply exactly
the same approach as above. For 2D data for example, the wavelet function will be defined as a
function of five parameters (position (bx, by), scale in the two directions (ax, ay) and orientation
θ) and the wavelet transform of an image will be of dimension five. But The required memory
and the computation time would not be acceptable in most applications. Considering an isotropic
wavelet reduces significantly to only three the dimensionality. A even more efficient approach is
the (bi-)orthogonal wavelet transform algorithm.

4 The (Bi-)Orthogonal Wavelet Transform

Many discrete wavelet transform algorithms have been developed (Mallat, 1998; Starck et al., 1998).
The most widely-known one is certainly the orthogonal transform, proposed by Mallat (1989) and
its bi-orthogonal version (Daubechies, 1992). Here, we will introduce the bi-orthogonal through
the two-channel iterated filter bank framework.

Using the bi-orthogonal wavelet transform, a signal s can be decomposed as follows:

s(x) =
∑

k

cJ [k]φ̃J,l(x) +

J
∑

j=1

∑

k

ψ̃j,k(x)wj [k] (5)

with φj,l and ψj,l are the scaled dilated and translated version of φ and ψ, which are are respectively
the scaling function and the wavelet function. J is the number of resolution levels used in the
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decomposition, wj the wavelet (or detail) coefficients at scale j, and cJ is a coarse or smooth
version of the original signal s. Thus, the algorithm outputs J + 1 subband arrays. The indexing
is such that, here, j = 1 corresponds to the finest scale (high frequencies). Coefficients cj [k] and
wj [k] are obtained by means of the analysis filters h and g:

cj+1[l] =
∑

k

h[k − 2l]cj [k]

wj+1[l] =
∑

k

g[k − 2l]cj [k] (6)

where h and g are such that:

1

2
φ(
x

2
) =

∑

k

h[k]φ(x − k)

1

2
ψ(
x

2
) =

∑

k

g[k]φ(x − k) (7)

and the reconstruction of the signal is performed with:

cj [l] = 2
∑

k

(

h̃[k + 2l]cj+1[k] + g̃[k + 2l]wj+1[k]
)

(8)

where the filters h̃ and g̃ must verify the conditions of dealiasing and exact reconstruction:

ĥ∗
(

ν +
1

2

)

ˆ̃
h(ν) + ĝ∗

(

ν +
1

2

)

ˆ̃g(ν) = 0

ĥ∗(ν)ˆ̃h(ν) + ĝ∗(ν)ˆ̃g(ν) = 1 (9)

or equivalently, in the z-transform domain:

H(−z−1)H̃(z) +G(−z−1)G̃(z) = 0

H(z−1)H̃(z) +G(z−1)G̃(z) = 1.

Note that in terms of filter banks, the bi-orthogonal wavelet transform becomes orthogonal when
h = h̃ and g = g̃, in which case h is a conjugate mirror filter.

In the decomposition, cj+1 and wj+1 are computed by successively convolving aj with the filters
h̄ (low-pass) and g (high-pass). Each resulting channel is decimated by suppression of one sample
out of two. The high-frequency channel wj+1 is left, and we iterate with the low-frequency part
cj+1 (upper part of Fig. 3). In the reconstruction, we restore the sampling by inserting a 0 between
each sample, then we convolve with the dual filters h̃ and g̃, we add the resulting coefficients and
we multiply the result by 2. The procedure is iterated up to the smallest scale (lower part of Fig.
3).

Compared to the CWT, we have much less scales, because we consider only dyadic scales, i.e.
scales aj which are a power of two of the initial scale a0 (aj = 2ja0). Therefore, for a data set with
N samples, we will typically use J = log(N)− 1 scales. The algorithm is the following:
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Figure 3: Fast pyramidal algorithm associated to the bi-orthogonal wavelet transform. Top: Fast
analysis transform with a cascade of filtering with h̄ and ḡ followed by factor 2 subsampling.
Bottom: Fast inverse transform by progressively inserting zeros and filtering with dual filters h̃ and
g̃.

1: Set c0 = D, J = log(N)− 1.
2: for j = 0 to J − 1 do

• Compute cj+1 = h̄ ∗ cj , down-sample by a factor 2.

• Compute wj+1 = ḡ ∗ cj , down-sample by a factor 2.

• j = j + 1

3: The set W = {w1, ..., wJ , cJ} represents the wavelet transform of the data.

The discrete bi-orthogonal wavelet transform (DWT) is also computationally very efficient,requiring
O(N) operations as compared to O(N logN) of the fast Fourier transform (N is the number of
samples in data). The most used filters are certainly the 9/7 filters (by default in the JPEG 2000
norm), which are given in table 1.

In the literature, the filter bank can be given such that it is normalized to a unit mass
∑

k h[k] =
1, or to a unit `2-norm

∑

k h[k]
2 = 1.

The above DWT algorithm can be easily extended to any dimension by separable (tensor)
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h g h̃ g̃

0 0.02674875741 0.02674875741 0
-0.04563588155 0.0168641184 -0.0168641184 0.04563588155
-0.02877176311 -0.0782232665 -0.0782232665 -0.02877176311
0.295635881557 -0.26686411844 0.26686411844 -0.295635881557
0.557543526229 0.60294901823 0.60294901823 0.557543526229
0.295635881557 -0.26686411844 0.26686411844 -0.295635881557
-0.02877176311 -0.0782232665 -0.0782232665 -0.02877176311
-0.04563588155 0.0168641184 -0.0168641184 0.04563588155

0 0.02674875741 0.02674875741 0

Table 1: 7/9 Filter bank (normalized to a unit mass).

products of a scaling function φ and a wavelet ψ. For instance, the two-dimensional algorithm is
based on separate variables leading to prioritizing of horizontal, vertical and diagonal directions.
The scaling function is defined by φ(x, y) = φ(x)φ(y), and the passage from one resolution to the
next is achieved by:

cj+1[k, l] =
+∞
∑

m=−∞

+∞
∑

n=−∞

h[m− 2k]h[n − 2l]cj [m,n] =
(

h̄h̄ ∗ cj
)

[k, l] (10)

The detail signal is obtained from three wavelets:

• vertical wavelet : ψ1(x, y) = φ(x)ψ(y)

• horizontal wavelet: ψ2(x, y) = ψ(x)φ(y)

• diagonal wavelet: ψ3(x, y) = ψ(x)ψ(y)

which leads to three wavelet subimages at each resolution level. For three dimensional data, seven
wavelet subcubes are created at each resolution level, corresponding to an analysis in seven direc-
tions.

For a N ×N image D, the algorithm is the following:

5 The Lifting Scheme

A lifting is an elementary modification of perfect reconstruction filters, which is used to improve the
wavelet properties. The lifting scheme (Sweldens and Schröder, 1996) is a flexible technique that
has been used in several different settings, for easy construction and implementation of traditional
wavelets (Sweldens and Schröder, 1996), and for the construction of wavelets on arbitrary domains
such as bounded regions of R

d (second generation wavelets (Sweldens, 1997)) or surfaces (spherical
wavelets (Schröder and Sweldens, 1995)). To optimize the approximation and compression of
signals and images, the lifting scheme has also been widely used to construct adaptive wavelet
bases with signal-dependent liftings. For example, short wavelets are needed in the neighborhood
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1: Set c0 = D, J = log(N)− 1.
2: for j = 0 to J − 1 do

• Compute cj+1 = h̄h̄ ∗ cj, suppress one sample out of two in each dimension.

• Compute w1
j+1 = ḡh̄ ∗ cj, suppress one sample out of two in each dimension.

• Compute w2
j+1 = h̄ḡ ∗ cj, suppress one sample out of two in each dimension.

• Compute w3
j+1 = ḡḡ ∗ cj , suppress one sample out of two in each dimension.

• j = j + 1

3: The set W = {w1
1, w

2
1 , w

3
1, ..., w

1
J , w

2
J , w

3
J , cJ} represents the wavelet transform of the data.

SPLIT P U
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−

e

+
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Figure 4: The lifting scheme – forward direction.

of singularities, but long wavelets with more vanishing moments improve the approximation of
regular regions.

Its principle is to compute the difference between a true coefficient and its prediction:

wj+1[l] = cj [2l + 1]−P(cj [2l − 2L], ..., cj [2l − 2], cj [2l], cj [2l + 2], ..., cj [2l + 2L]) (11)

A pixel at an odd location 2l + 1 is then predicted using pixels at even locations.
Computing the wavelet transform using lifting scheme consists of several stages. The idea is to

first compute a trivial wavelet transform (the Lazy wavelet) and then improve its properties using
alternating lifting and dual lifting steps. The transformation is done in three steps:

1. Split: This corresponds to Lazy wavelets which splits the signal into even and odd indexed
samples:

cej [l] = cj [2l]

coj [l] = cj [2l + 1] (12)

2. Predict: Calculate the wavelet coefficient wj+1[l] as the prediction error of coj [l] from cej [l]
using the prediction operator P:

wj+1[l] = coj [l]−P(cej [l]) (13)
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3. Update: The coarse approximation cj+1 of the signal is obtained by using cej [l] and wj+1[l]
and the update operator U :

cj+1[l] = cej [l] + U(wj+1[l]) (14)

The lifting steps are easily inverted by:

cj [2l] = cej [l] = cj+1[l]− U(wj+1[l])

cj [2l + 1] = coj [l] = wj+1[l] + P(cej [l]) (15)

Some examples of wavelet transforms via the lifting scheme are:

• Haar wavelet via lifting: the Haar transform can be performed via the lifting scheme by
taking the predict operator equal to the identity, and an update operator which halves the
difference. The transform becomes:

wj+1[l] = coj [l]− cej [l]

cj+1[l] = cej [l] +
wj+1[l]

2

All computation can be done in-place.

• Linear wavelets via lifting: the identity predictor used before is correct when the signal is
constant. In the same way, we can use a linear predictor which is correct when the signal is
linear. The predictor and update operators are now:

P(cej [l]) =
1

2

(

cej [l] + cej [l + 1]
)

U(wj+1[l]) =
1

4
(wj+1[l − 1] + wj+1[l])

It is easy to verify that:

cj+1[l] = −1

8
cj [2l − 2] +

1

4
cj [2l − 1] +

3

4
cj[2l] +

1

4
cj [2l + 1]− 1

8
cj[2l + 2]

which is the bi-orthogonal Cohen-Daubechies-Feauveau (1992) wavelet transform.

The lifting factorization of the popular (9/7) filter pair leads to the following implementation
(Daubechies and Sweldens, 1998):

s(0)[l] = cj[2l]

d(0)[l] = cj[2l + 1]

d(1)[l] = d(0)[l] + α(s(0)[l] + s(0))[l + 1]

s(1)[l] = s(0)[l] + β(d(1)[l] + d(1)[l − 1])

d(2)[l] = d(1)[l] + γ(s(1)[l] + s(1)[l + 1])

s(2)[l] = s(1)[l] + δ(d(2)[l] + d(2)[l − 1])

cj+1[l] = us(2)[l]

wj+1[l] =
d(2)[l]

u
(16)

10



with

α = −1.586134342

β = −0.05298011854

γ = 0.8829110762

δ = 0.4435068522

u = 1.149604398 (17)

Every wavelet transform can be written via lifting.

Integer wavelet transform.

When the input data consist of integer values, the wavelet transform is not necessarily integer-
valued. For lossless coding and compression, it is useful to have a wavelet transform which produces
integer values. We can build an integer version of every wavelet transform (Calderbank et al., 1998).
For instance, denoting bxc as the largest integer not exceeding x, the integer Haar transform (also
called “S” transform) can be calculated by:

wj+1[l] = coj [l]− cej [l]

cj+1[l] = cej [l] + bwj+1[l]

2
c (18)

while the reconstruction is

cj [2l] = cj+1[l]− bwj+1[l]

2
c

cj [2l + 1] = wj+1[l] + cj [2l] (19)

More generally, the lifting operators for an integer version of the wavelet transform are:

P(cej [l]) = b
∑

k

p[k]cej [l − k] +
1

2
c

U(wj+1[l]) = b
∑

k

u[k]wj+1[l − k] +
1

2
c (20)

where p and u are appropriate filters associated to primal and dual lifting steps.
For instance, the linear integer wavelet transform2 is given by

wj+1[l] = coj [l]− b1
2

(

cej [l] + cej [l + 1]
)

+
1

2
c

cj+1[l] = cej [l] + b1
4
(wj+1[l − 1] + wj+1[l]) +

1

2
c (21)

More filters can be found in (Calderbank et al., 1998). In lossless compression of integer-valued
digital images, even if there is no filter that consistently performs better than all the other filters
on all images, it was observed that the linear integer wavelet transform performs generally better
than other integer wavelet transforms using other filters (Calderbank et al., 1998).

2This integer wavelet transform is based upon a symmetric, bi-orthogonal wavelet transform built from the inter-
polating Deslauriers-Dubuc scaling function where both the high-pass filter and its dual has 2 vanishing moments
moments (Mallat, 1998).
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6 The Undecimated Wavelet Transform

The undecimated wavelet transform, UWT, consists of keeping the filter bank construction which
provides a fast and dyadic algorithms, but eliminating the decimation step in the orthogonal wavelet
transform (Dutilleux, 1989; Holschneider et al., 1989): c1 = h̄ ∗ c0 and w1 = ḡ ∗ c0. By separating
even and odd pixels in c1 and w1, we get (cE1 , w

E
1 ) and (cO1 , w

O
1 ), and both parts obviously allow us

to reconstruct perfectly c0. The reconstruction can be obtained by

c0 =
1

2
(h̃ ∗ cE1 + g̃ ∗ wE1 + h̃ ∗ cO1 + g̃ ∗ wO1 ). (22)

For the passage to the next resolution, both cE1 and cO1 are decomposed, leading, after the splitting
into even and odd pixels, to four coarse arrays associated with c2. All of the four data sets can
again be decomposed in order to obtain the third decomposition level, and so on.
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Figure 5: 1D undecimated wavelet transform.

Figure 5 shows the 1D UWT (UWT) decomposition. The decimation step is not applied and
both w1 and c1 have the same size as c0. c1 is then split into cE1 (even pixels) and cO1 (odd pixels),
and the same decomposition is applied to both cE1 and cO1 . cE1 produces c2,1 and w2,1, while cO1
produces c2,2 and w2,2. w2 = {w2,1, w2,1} contains the wavelet coefficients at the second scale, and
is also of the same size as c0. Figure 6 shows the 1D UWT reconstruction.

It is clear that this approach is much more complicated than the decimated bi-orthogonal
wavelet transform. There exists, however, a very efficient way to implement it, called the “à trous”
algorithm (“à trous”, a French term, meaning with holes)(Holschneider et al., 1989; Shensa, 1992).
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Figure 6: 1D undecimated wavelet reconstruction.

cj+1[l] and wj+1[l] can be expressed as

cj+1[l] = (h̄(j) ∗ cj)[l] =
∑

k

h[k]cj [l + 2jk]

wj+1[l] = (ḡ(j) ∗ cj)[l] =
∑

k

g[k]cj [l + 2jk], (23)

where h(j)[l] = h[l] if l/2j is an integer and 0 otherwise. For example, we have

h(1) = (. . . , h[−2], 0, h[−1], 0, h[0], 0, h[1], 0, h[2], . . . )

The reconstruction is obtained by

cj [l] =
1

2

[

(h̃(j) ∗ cj+1)[l] + (g̃(j) ∗ wj+1)[l]
]

. (24)

The filter bank (h, g, h̃, g̃) needs only to verify the exact reconstruction condition written in the
z-transform domain:

H(z−1)H̃(z) +G(z−1)G̃(z) = 1. (25)

This provides us with a higher degree of freedom when designing the synthesis prototype filter
bank.

The à trous algorithm can be extended to 2D, by:

cj+1[k, l] = (h̄(j)h̄(j) ∗ cj) [k, l]

w1
j+1[k, l] = (ḡ(j)h̄(j) ∗ cj) [k, l]

w2
j+1[k, l] = (h̄(j)ḡ(j) ∗ cj) [k, l]

w3
j+1[k, l] = (ḡ(j)ḡ(j) ∗ cj) [k, l]. (26)
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Figure 7: Passage from c0 to c1, and from c1 to c2 with the UWT à trous algorithm.

where hg ∗ c is the convolution of c by the separable filter hg (i.e. convolution first along the
columns by h and then convolution along the rows by g). At each scale, we have three wavelet
images, w1, w2, w3, and each has the same size as the original image. The redundancy factor is
therefore 3(J − 1) + 1 (Mallat, 1998).

7 The 2D Isotropic Undecimated Wavelet Transform

The Isotropic Undecimated Wavelet Transform, IUWT, algorithm is well known in the astronomical
domain, because it is well adapted to astronomical data where objects are more or less isotropic in
most cases (Starck and Murtagh, 2002). Requirements for a good analysis of such data are:

• Filters must be symmetric (h̄[k] = h[k], and ḡ[k] = g[k]).

• In 2D or higher dimension, h, g, ψ, φ must be nearly isotropic.

Filters do not need to be orthogonal or bi-orthogonal and this lack of the need for orthogonality or
bi-orthogonality is beneficial for design freedom. For computational reasons, we also prefer to have
the separability; h[k, l] = h[k]h[l]. Separability is not a required condition, but it allows us to have
a fast calculation, which is important for a large data set.

This has motivated the following choice for the analysis scaling and wavelet functions (Starck
and Murtagh, 2002):

φ1(x) =
1

12
(| x− 2 |3 −4 | x− 1 |3 +6 | x |3 −4 | x+ 1 |3 + | x+ 2 |3)

φ(x, y) = φ1(x)φ1(y)

1

4
ψ

(x

2
,
y

2

)

= φ(x, y)− 1

4
φ

(x

2
,
y

2

)

(27)
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Figure 8: Undecimated wavelet transform of the Einstein image.

where φ1(x) is the spline of order 3, and the wavelet function is defined as the difference between
two resolutions. The related filters h and g are defined by:

h(1D)[k] = [1, 4, 6, 4, 1]/16, k = −2, . . . , 2

h[k, l] = h(1D)[k] h(1D)[l]

g[k, l] = δ[k, l] − h[k, l] (28)

where δ is defined as δ[0, 0] = 1 and δ[k, l] = 0 for all (k, l) different from (0, 0).
The following useful properties characterize any pair of even-symmetric analysis FIR (finite

impulse response) filters (h, g = δ − h) such as those of Eq. 28:

Property 1 For any pair of even symmetric filters h and g such that g = δ − h, the following
holds:

(i) This FIR filter bank implements a frame decomposition, and perfect reconstruction using FIR
filters is possible.
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(ii) The above filters can not implement a tight frame decomposition.

See (Starck et al., 2007) for a proof.

Figure 9: Left, the cubic spline function φ; right, the wavelet ψ. ψ(x) is the difference between two
resolutions.

Fig. 9 shows respectively the cubic spline scaling function φ and the wavelet ψ.
From the structure of g, it is easily seen that the wavelet coefficients are obtained just by taking

the difference between two resolutions:

wj+1[k, l] = cj [k, l]− cj+1[k, l] (29)

where cj+1[k, l] =
(

h̄(j)h̄(j) ∗ cj
)

[k, l]. At each scale j, we obtain one subband {wj} (and not three
as in the undecimated WT, denoted UWT above) which has the same number of pixels as the input
image.

The reconstruction is obtained by a simple co-addition of all wavelet scales and the final
smoothed array, namely

c0[k, l] = cJ [k, l] +

J
∑

j=1

wj [k, l] (30)

That is, the synthesis filters are h̃ = δ and g̃ = δ, which are indeed FIR as expected from Property
1(i). This wavelet transformation is very well adapted to the analysis of images which contain
isotropic objects such as in astronomy (Starck and Murtagh, 2002) or in biology (Genovesio and
Olivo-Marin, 2003). This construction has a close relation to the Laplacian pyramidal construction
introduced by Burt and Adelson (Burt and Adelson, 1983) or the FFT-based pyramidal wavelet
transform (Starck et al., 1998).

Figure 10 shows the undecimated isotropic wavelet transform of the image Einstein using six
resolution levels. This transformation contains 6 bands, each one being of the same size as the
original image. The redundancy factor is therefore equal to 6. The simple addition of these six
images reproduce exactly the original image.
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Figure 10: Undecimated isotropic wavelet transform of the Einstein image. The addition of these
six images reproduce exactly the original image.

Relation between the UWT and the IUWT

Since the dealiasing filter bank condition is not required anymore in the UWT decomposition, we can
build the standard three-directional undecimated filter bank using the non-(bi-)orthogonal “Astro”
filter bank (h1D = [1, 4, 6, 4, 1]/16, g1D = δ−h1D = [−1,−4, 10,−4,−1]/16 and h̃ = g̃ = δ). In two
dimensions, this filter bank leads to a wavelet decomposition with three orientations w1

j , w
2
j , w

3
j at

each scale j, but with the same property as for the IUWT, i.e. the sum of all scales reproduces the
original image:

c0[k, l] = cJ [k, l] +

J
∑

j=1

3
∑

d=1

wdj [k, l] (31)

Indeed, a straightforward calculation immediately shows that (Starck et al., 2007):

w1
j + w2

j +w3
j = cj − cj+1 (32)

Therefore, the sum of the three directions reproduces the IUWT detail band at scale j. Figure 11
shows the UWT of the galaxy NGC2997. When we add the three directional wavelet bands at a
given scale, we recover exactly the isotropic undecimated scale. When we add all bands, we recover
exactly the original image. The relation between the two undecimated decompositions is clear.
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8 Designing non-Orthogonal Filter Banks

A Surprising Result

Because the decomposition is non-subsampled, there are many ways to reconstruct the original
image from its wavelet transform3. For a given filter bank (h,g), any filter bank (h̃,g̃) which
satisfies the reconstruction condition of Eq. 25 leads to exact reconstruction. For instance, for
isotropic h, if we choose h̃ = h (the synthesis scaling function φ̃ = φ) we obtain a filter g̃ defined
by (Starck et al., 2007):

g̃ = δ + h

Again, as expected from Property 1, the analysis filter bank (h, g = δ−h) implements a (non-tight)
frame decomposition for FIR symmetric h, where h̃ = h and g̃ = δ + h are also FIR filters. For
instance, if h = [1, 4, 6, 4, 1]/16, then g̃ = [1, 4, 22, 4, 1]/16. g̃ is positive (Starck et al., 2007). This
means that g̃ is no longer related to a wavelet function. The synthesis scaling function related to
g̃ is defined by:

1

2
ψ̃

(x

2

)

= φ(x) +
1

2
φ

(x

2

)

(33)

Finally, note that choosing φ̃ = φ, any synthesis function ψ̃ which satisfies

ˆ̃
ψ(2ν)ψ̂(2ν) = φ̂2(ν)− φ̂2(2ν) (34)

leads to an exact reconstruction (Mallat, 1998) and
ˆ̃
ψ(0) can take any value. The synthesis function

ψ̃ does not need to verify the admissibility condition (i.e. to have a zero mean).
Figure 12 shows the two scaling functions φ̃(x) (= φ) and ψ̃(x) used in the reconstruction in

1D, corresponding to the synthesis filters h̃ = h and g̃ = δ+h. Figure 13 shows the backprojection
of a wavelet coefficient in 2D (all wavelet coefficients are set to zero, except one), when the non-zero
coefficient belongs to different bands. We can see that the reconstruction functions are positive.

Finally, we have an expansion of a 1D signal s,

s(x) =
∑

k

cJ [k]φ̃J,k(x) +
J

∑

j=1

∑

k

wj [k]ψ̃j,k(x) (35)

where φ̃ and ψ̃ are not wavelet functions (both of them have a non-zero mean and are positive),
but the wj are wavelet coefficients.

Reconstruction from the Haar Undecimated Coefficients

The Haar filters (h = h̃ = [1/2, 1/2], g = g̃ = [−1/2, 1/2]) are not considered as good filters in
practice because of their lack of smoothness. They are however very useful in many situations such
as denoising where their simplicity allows us to derive analytical or semi-analytical detection levels
even when the noise does not follow a Gaussian distribution.

3In frame theory parlance, we would say that the UWT frame synthesis operator is not injective.
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Adopting the same design approach as before, we can reconstruct a signal from its Haar wavelet
coefficients choosing a smooth scaling function. For instance, if h̃ = [1, 4, 6, 4, 1]/16, it is easy to
derive that the z transforms of these three filters are respectively:

H(z) =
1 + z−1

2
, G(z) =

z−1 − 1

2
, H̃(z) =

z2 + 4z + 6 + 4z−1 + z−2

16
(36)

From the exact reconstruction condition in Eq. 25, we obtain:

G̃(z) =
1− H̃(z)H(z−1)

G(z−1)
(37)

In the case of the spline filter bank, this yields after some re-arrangement (where we used simple
convolution properties of splines),

G̃(z) = −2
1− z3

(

1+z−1

2

)5

1− z−1
= z3 1 + 6z−1 + 16z−2 − 6z−3 − z−4

16
(38)

which is the z-transform of the corresponding filter g̃ = [1, 6, 16,−6,−1]/16.
The Haar analysis filters fulfill the following property:

Property 2 Haar analysis filters can implement a tight frame expansion (more precisely, one
scale of the Haar wavelet UWT does). Perfect reconstruction with FIR synthesis filters is possible.

Figure 14, upper left and right, depicts the coarsest scale and a wavelet scale of the Haar
transform when the input signal contains only zero values except one sample (Dirac δ[k]). Figure 14,
bottom left, portrays the backprojection of a Dirac at the coarsest scale (all coefficients are set to
zero) and Figure 14, bottom right, shows the backprojection of a Haar wavelet coefficient. Since the
synthesis filters are regular, the backprojection of a Dirac does not produce any block staircase-like
artifact. Finally, we would like to point out that other alternatives exist. For example the filter
bank (h = [1/2,−1/2] ,g = [−1/4, 1/2,−1/4], h̃ = [1, 3, 3, 1]/8 and g̃ = [1, 6, 1]/4 leads also to an
interesting solution where the synthesis filters are both positive.

Another Interesting Filter Bank

A particular case is obtained when
ˆ̃
φ = φ̂ and ψ̂(2ν) = φ̂2(ν)−φ̂2(2ν)

φ̂(ν)
, which leads to a filter g equal

to δ−h∗h. In this case, the synthesis function ψ̃ is defined by 1
2 ψ̃(x2 ) = φ(x) and the filter g̃ = δ is

the solution to Eq. 25. We end up with a synthesis scheme where only the smooth part is convolved
during the reconstruction. Furthermore, for a symmetric FIR filter h, it can be easily shown that
this filter bank fulfills the statements of Property 1.

Deriving h from a spline scaling function, for instance B1 (h1 = [1, 2, 1]/4) or B3 (h3 =
[1, 4, 6, 4, 1]/16) (note that h3 = h1 ∗ h1), since h is even-symmetric (i.e. H(z) = H(z−1)), the
z-transform of g is then:

G(z) = 1−H2(z) = 1− z4

(

1 + z−1

2

)8

=
(

−z4 − 8z3 − 28z2 − 56z + 186− 56z−1 − 28z−2 − 8z−3 − z−4
)

/256 (39)
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which is the z-transform of the filter g = [−1,−8,−28,−56, 186,−56,−28,−8,−1]/256. We get
the following filter bank:

h = h3 = h̃ = [1, 4, 6, 4, 1]/16

g = δ − h ∗ h = [−1,−8,−28,−56, 186,−56,−28,−8,−1]/256 (40)

g̃ = δ (41)

With this filter bank, there is a no convolution with the filter g̃ during the reconstruction. Only
the low-pass synthesis filter h̃ is used. The reconstruction formula is:

cj [l] = (h(j) ∗ cj+1)[l] + wj+1[l] (42)

and denoting Lj = h(0) ∗ · · · ∗ h(j−1) and L0 = δ, we have

c0[l] =
(

LJ ∗ cJ
)

[l] +

J
∑

j=1

(

Lj−1 ∗ wj
)

[l] (43)

Each wavelet scale is convolved with a low-pass filter.
Figure 15 shows the analysis scaling and wavelet functions. The synthesis functions φ̃ and ψ̃

are the same as those in Figure 12.

9 Iterative Reconstruction

Denoting W the undecimated wavelet transform operator and R the reconstruction operator, and
thanks to the exact reconstruction formulae, we have the relation: αS = WRαS , where S is a
signal or image and αS its wavelet coefficients (i.e. αS = WS). But we loose one fundamental
property of the (bi-)orthogonal WT. Indeed, the relation α = WRα is not true for all α sets. For
example, if we set all wavelet coefficients to zero except one at a coarse scale, there is no image
such that its UWT would produce a Dirac at a coarse scale. Another way to understand this point
is to consider the Fourier domain of a given undecimated scale. Indeed, wavelet coefficients αj at
scale j obtained using the wavelet transform operator will contain information only localised at a
given frequency band. But any modification of the coefficients at this scale, such as a thresholding
(αT = ∆T (α), where ∆T is the thresholding operator with threshold T and αT are the thresholded
coefficients), will introduce some frequency components which should not exist at this scale j, and
we have αT 6= WRαT .

Reconstruction from a Subset of Coefficients

Without loss of generality, we consider hereafter the case of 1D signals. If only a subset of coefficients
(for instance after thresholding) is different from zero, we would like to reconstruct an image S̃
such that its wavelet transform reproduces the non-zero wavelet coefficients. This can be cast as
an inverse problem. We want to solve the following optimization problem minS̃ ‖M(αT −WS̃) ‖2

2

where Mj[k] is the multiresolution support of α, i.e. Mj [k] = 1 if the wavelet coefficient αj [k] at
scale j and at position k is different from zero, and Mj [k] = 0 otherwise. A solution can be obtained
using the Landweber iterative scheme (Starck et al., 1995; Starck et al., 1998):

S̃n+1 = S̃n +RM
[

αT −WS̃n
]

(44)
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If the solution is known to be positive, the positivity constraint can be introduced using the following
equation:

S̃n+1 = P+

(

S̃n +RM
[

αT −WS̃n
])

(45)

where P+ is the projection on the cone of non-negative images. This iterative scheme can also be
interpreted in terms of alternating projections onto convex sets (POCS). It has also proven very
effective at many tasks such as image approximation and restoration when using the UWT (Starck
et al., 2007).

10 Future Directions

For 2D or 3D data set, wavelet bases present some intrinsic limitations, because they are not
adapted to the detection of highly anisotropic elements, such as lines or curvilinear structures in an
image, or sheets in a cube. Recently, other multiscale systems like curvelets (Candès and Donoho,
1999b; Starck et al., 2002; Do and Vetterli, 2003; Candes et al., 2006) and ridgelets (Candès and
Donoho, 1999a) which are very different from wavelet-like systems have been developed. Curvelets
and ridgelets take the form of basis elements which exhibit very high directional sensitivity and
are highly anisotropic. A digital implementation of both the ridgelet and the curvelet transform
for image denoising has been described in (Starck et al., 2002). These new data representations,
combined with wavelets, have been used in many applications such denoising (Starck et al., 2002;
Saevarsson et al., 2006; Hennenfent and Herrmann, 2006), deconvolution (Starck et al., 2003b),
contrast enhancement (Starck et al., 2003a), texture analysis (Starck et al., 2005; Arivazhagan
et al., 2006), detection (Jin et al., 2005), watermarking (Zhang et al., 2006), component separation
(Starck et al., 2004), inpainting (Elad et al., 2006) or blind source separation (Bobin et al., 2006;
Bobin et al., 2007).

To reach higher sparsity levels, the transforms just mentioned with a fixed geometry can be
replaced by adaptive representations using an optimized basis. Geometric transforms such as
wedgelets (Donoho, 1999) or bandlets (Le Pennec and Mallat, 2005; Mallat and Peyré, 2006)
allow to define an adapted multiscale geometry. These transforms perform a non-linear search
for an optimal representation. They offer geometrical adaptivity together with fast and stable
algorithms. Recently, Mallat (Mallat, 2006) proposed a more biologically inspired procedure named
the grouplet transform, which defines a multiscale association field by grouping together pairs of
wavelet coefficients.

Following Olshausen and Field (Olshausen and Field, 1996), one can push one step forward
the idea of adaptive sparse representation and requires that the dictionary is not fixed but rather
optimized to sparsify a set of exemplar signals/images. Such a learning problem corresponds to
finding a sparse matrix factorization as exposed in the K-SVD framework (Aharon et al., 2006).
Explicit structural constraints such as translation invariance can also be enforced on the learned
dictionary (Olshausen, 2000; Blumensath and Davies, 2006).
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Figure 11: UWT of the galaxy NGC2997 using the Astro filter bank. The addition of three bands
at a given scale is exactly the band related to the isotropic wavelet transform. Addition of all bands
reproduces exactly the original image.

Figure 12: Left, the φ̃ synthesis scaling function and right, the ψ̃ detail synthesis function.
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Figure 13: Back projection: Each image corresponds to the backprojection of one wavelet coefficient.
All these reconstructed images are positive (no negative values). From left to right, the coefficient
belongs to the vertical, horizontal and diagonal direction. From top to bottom, the scale index
increases.
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Figure 14: Haar Undecimated Transform: Upper Left, coarsest scale when the signal is δ[k]. Upper
right, one wavelet scale of the Dirac decomposition. Bottom left, backprojection of a Dirac at the
coarsest scale. Bottom right, backprojection of a Haar wavelet coefficient.

Figure 15: Left, the φ analysis scaling function and right, the ψ analysis wavelet function. The
synthesis functions φ̃ and ψ̃ are the same as those in Figure 12.
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