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ABSTRACT

This work focuses on several optimization problems involved

in recovery of sparse solutions of linear inverse problems.

Such problems appear in many fields including image and

signal processing, and have attracted even more interest since

the emergence of the compressed sensing (CS) theory. In

this paper, we formalize many of these optimization prob-

lems within a unified framework of convex optimization

theory, and invoke tools from convex analysis and maxi-

mal monotone operator splitting. We characterize all these

optimization problems, and to solve them, we propose fast it-

erative convergent algorithms using forward-backward and/or

Peaceman/Douglas-Rachford splitting iterations. With non-

differentiable sparsity-promoting penalties, the proposed al-

gorithms are essentially based on iterative shrinkage. This

makes them very competitive for large-scale problems. We

also report some experiments on image reconstruction in CS

to demonstrate the applicability of the proposed framework.

Index Terms— Convex analysis, Non-smooth optimiza-

tion, Monotone operator splitting, Sparse recovery.

1. INTRODUCTION

The complex structures of natural signals and images require

tools in order to make use of their intricate redundancies. To

capture this complexity, we have witnessed a flurry of re-

search activities where researchers spanning a wide range of

viewpoints have advocated the use of sparsity and overcom-

plete signal/image representations. It has turned out that ex-

ploiting sparsity and overcompleteness offers striking benefits

in a wide range of signal and image processing areas. The

development of sparse representations in inverse problems

is facing major challenges both on theoretical and practical

sides. These problems include the design of fast optimization

algorithms to handle real world data and application to many

ill-posed problems. This work focuses on several optimiza-

tion problems involved in linear inverse problems where the

solution s = Φx,Φ : H → K, is assumed to be sparsely

represented in an overcomplete dictionary Φ of waveforms

(ϕi)i∈I . Φ is a generally a frame of H. Our goal is the generic

minimization of functions of the form f = f1 + f2

(P) min
x∈H

f1(x) + f2(x) , (1)

where f1, f2 are closed convex functions which are not nec-

essarily differentiable, are not infinite everywhere, and their

domains have non-empty intersection. f1 is typically a con-

vex sparsity-promoting penalty and f2 is a function measur-

ing the consistency to data. Problem (P) covers the case of

the ℓ1-norm decoder known also as Basis Pursuit [1, 2, 3]

when f1(x) = ‖x‖1, and f2(x) is the indicator function of

the affine subspace {x ∈ H
∣

∣s = Fx}, F = HΦ is a linear

operator which is typically a composition of a linear measure-

ment or degradation operator H and the dictionary Φ. When

the observation s is contaminated by noise, the equality con-

straint must be relaxed to a noise-aware variant. Problem

(P) becomes typically Basis Pursuit DeNoising (BPDN) in

its augmented Lagrangian form when f1(x) = λ ‖x‖1 and

f2(x) = 1
2 ‖s− Fx‖2

[1], and is also known as Lasso [4].

This augmented Lagrangian form has received a considerable

attention, see e.g. [5, 6, 7]. Only a few algorithms have been

proposed to solve the more difficult to solve constrained form

where f2 is the indicator function of the closed convex set

{x ∈ H
∣

∣ ‖s− Fx‖ 6 σ}; e.g. [8, 9, 10]. The Dantzig se-

lector [11] is also a special instance of (P) when f2 is the

indicator function of {x ∈ H
∣

∣ ‖F∗(s− Fx)‖∞ 6 τ}.

In this paper, we formalize all these optimization prob-

lems within a unified framework of convex optimization

theory, and invoke tools from convex analysis (e.g. du-

ality, proximity operators) and maximal monotone opera-

tor splitting. We characterize all these optimization prob-

lems, and to solve them, we propose fast iterative and

convergent algorithms combining forward-backward and/or

Peaceman/Douglas-Rachford splitting iterations. With non-

differentiable sparsity-promoting penalties, the proposed al-

gorithms amount to iterative shrinkage. Furthermore, the

computational burden of these algorithms is essentially in-

vested in one application at each iteration of fast implicit

operators associated to the involved dictionary Φ and the

linear measurement operator H and their respective adjoints.

This makes them very competitive for large-scale problems

such as those rising in image processing.



2. NOTATION AND TERMINOLOGY

Let H a Hilbert space (here a real vector space) equipped with

the inner product 〈., .〉 and associated norm ‖.‖. Let I be the

identity operator on H. The operator (induced) norm of A

is denoted
∣

∣

∣

∣

∣

∣A
∣

∣

∣

∣

∣

∣ = supx∈H
‖Ax‖
‖x‖ . Let ‖.‖p , p ≥ 1 be the

ℓp-norm with the usual adaptation for the case p = +∞. De-

note Bσp the closed ℓp-ball of radius σ > 0. Throughout the

paper, we denote by ⇀ weak convergence and → strong con-

vergence in H.

A real-valued function f : H → (−∞,+∞] is coercive,

if lim‖x‖→+∞ f (x) = +∞. The domain of f is defined

by dom f = {x ∈ H : f(x) < +∞} and f is proper if

dom f 6= ∅. We say that a real-valued function f is lower

semi-continuous (lsc) if lim infx→x0
f(x) ≥ f(x0). Γ0(H)

is the class of all proper lsc convex functions from H to

(−∞,+∞].
We note ıC the indicator of the convex set C: ıC(x) = 0 if x ∈
C, and +∞ otherwise. The interior of C will be denoted int C
and its relative interior ri C; see e.g. [12].

We recall that F is the frame synthesis operator associated to

a frame of H if its adjoint F∗ (analysis operator) satisfies the

generalized Parseval relation with bounds c1 and c2

c1 ‖x‖
2

6 ‖F∗x‖2
6 c2 ‖x‖

2
, 0 < c1 6 c2 < +∞ .

The frame is tight when c1 = c2 = c and FF∗ = cI.

3. PROXIMAL CALCULUS

We first define the notion of a proximity operator, which was

introduced in [13] as a generalization of convex projection

operator.

Definition 1 (Proximity operator [13]) Let f ∈ Γ0(H).

Then, for every x ∈ H, the function z 7→ 1
2 ‖x− z‖2

+ f(z)
achieves its infimum at a unique point denoted by proxf x.

The uniquely-valued operator proxf = (I + ∂f)
−1

: H →
H thus defined is the proximity operator of f . It will be

convenient to introduce the reflection operator rproxf =
2proxf −I.

The following lemma provides an important result on the

proximity operator of the pre-composition of f ∈ Γ0(H) with

a bounded affine operator A := F · −y. It will be at the heart

of many algorithms in the rest of the paper.

Lemma 2 Let F be a bounded linear operator such that

int(dom(f) ∩ Im(A)) 6= ∅. Then f ◦ A ∈ Γ0(H) and

(i) F is a tight frame. Then

proxf◦A(x) = x+ c−1F∗
(

proxcf −I
)

(Fx− y) . (2)

(ii) F is a general frame. Let µt ∈ (0, 2/c2). Define

u
(t+1) =µt

“

I − prox
µ−1

t
f

”

◦

“

µ
−1
t u

(t) + Ap
(t)

”

, (3)

p
(t+1) =x − F∗

u
(t+1)

. (4)

Then u(t) → ū and p(t) → proxf◦A = x − F∗ū.

More precisely, both u(t) and p(t) converge linearly and

the best convergence rateO

(

(

c2−c1
c2+c1

)t
)

is attained for

µt ≡ 2/(c1 + c2).

(iii) If c1 = 0, apply (3) with µt ∈ (0, 2/c2). Then u(t) ⇀ ū
and p(t) → proxf◦A = x− F∗ū at the rate O(1/t).

The proof is based on Fenchel-Rockafellar duality [12]

and is detailed in a forthcoming long version of the paper. In

the special case of tight frames, we recover the same result as

in [14]. Note that f ◦ A ∈ Γ0(H) is always verified when

F corresponds to a frame. The recursion (3) is basically a

forward-backward splitting [7] applied to the dual problem.

Other solvers can be used instead such as Nesterov’s scheme

[15].

4. SPARSE RECOVERY INVERSE PROBLEMS

4.1. Splitting schemes

Recall that our goal is the minimization of f = f1 + f2 in

(1) for f1, f2 ∈ Γ0(H) such that their domain has a non-

empty intersection. Let T the set of solutions of problem (P),
T = {x ∈ H

∣

∣x ∈ (∂f)−1(0)}. When T 6= ∅, the proximal-

type recursion constructed as x(t+1) = proxβf (x
(t)), β > 0

is a fundamental algorithm for solving (1), and x(t) ⇀ x̄ ∈ T .

The main difficulty with this iteration is that proxβf may be

hard to compute in general, depending on the function f . This

is for instance the case in most inverse problems arising in im-

age and signal processing. Splitting methods for problem (P)
are algorithms that do not attempt to evaluate the proximity

mapping proxβf of the combined function f , but instead per-

form a sequence of calculations involving separately the indi-

vidual proximity (resolvent) operators proxβf1 and proxβf2 .

The Douglas/Peaceman-Rachford (DR) family is the

most general pre-existing class of monotone operator split-

ting methods. Given a fixed scalar β > 0 and a sequence

αt ∈ (0, 2), this class of methods may be expressed via the

recursion

x(t+1) =
[(

1 −
αt
2

)

I +
αt
2

rproxβf1 ◦ rproxβf2

]

x(t) . (5)

The DR splitting has been brought to light in the image and

signal processing literature very recently by [14]. Its most

general form is due to [16] where its convergence is estab-

lished.

Theorem 3 ([16]) Suppose that T 6= ∅. Let β ∈ (0,+∞),
(αt)t∈N

be a sequence in (0, 2) such that
∑

t∈N
αt(2−αt) =

+∞, and let (at)t∈N
and (bt)t∈N

be sequences in H such that
∑

t∈N
αt (‖at‖ + ‖bt‖) < +∞. Fix x(0) ∈ H and define the



recursion,

x
(t+1/2) = proxβf2

“

x
(t)

”

+ bt , (6)

x
(t+1) =x

(t) + αt

“

proxβf1

“

2x
(t+1/2)

− x
(t)

”

+ at − x
(t+1/2)

”

.

(7)

Then x(t) ⇀ x̄ and proxβ∂f2(x̄) ∈ T .

The sequences at and bt in (6)-(7) play a prominent role as

they formally establish the robustness of the DR algorithm to

numerical errors when computing the proximity operators of

f1 and f2 (e.g. via a nested inner iteration).

4.2. Sparse recovery with equality-constraint

From now, we assume that H is finite-dimensional. Let us

first consider the general equality-constrained problem

(Peq) : min
x∈H

Ψ(x) s.t. s = HΦx , (8)

Ψ ∈ Γ0 (H) is a sparsity-promoting potential function, H is

a bounded linear operator, and the equality constraint cor-

responds to an affine subspace that we denote Ceq = {x ∈
H

∣

∣s = HΦx}. We assume the following

Assumption 4 (i) We suppose in the sequel that Ψ is addi-

tive; that is Ψ(x) =
∑

i∈I ψi(xi). (ii) Ψ is coercive. (iii)

F = HΦ is surjective. (iv) s ∈ F (ri dom Ψ).

The following proposition gives the algorithm to solve (Peq)
and establishes its convergence.

Proposition 5 Suppose that Assumptions 4(i)-(iv) are satis-

fied. Let β, (µt)t∈N
, (at)t∈N

and (bt)t∈N
satisfy the condi-

tions in Theorem 3. Fix x(0) ∈ H and apply the DR recursion

(6)-(7) with

proxβf2(x) =PCeq
(x) = x+ F∗ (FF∗)

−1
(s− Fx) , (9)

proxβf1(x) =proxβΨ(x) =
(

proxβψi
(xi)

)

16i6|I|
. (10)

Then x(t) → x̄ and PCeq
(x̄) is a solution to (Peq).

To implement this DR splitting algorithm, we need to ex-

press proxβψi
. Its closed-form expression is given in [17]

for a large class of penalty functions ψi. For instance, with

ψi(xi) = λ|xi|, proxβψi
= STλ(x) the soft-thresholding op-

erator.

4.3. Sparse recovery with inequality constraint

We then consider the inequality-constrained problem

(Pσ) : min
x∈H

Ψ(x) s.t. ‖s− HΦx‖ 6 σ , (11)

which can be viewed as a noise-aware variant of (Peq). (Pσ)
only asks the reconstruction be consistent with the data such

that the reconstruction error energy is within the noise level

σ. Problem (Pσ) is challenging to solve for large-scale

problems. The following proposition is a consequence of

Lemma 2 and Theorem 3.

Proposition 6 Under Assumptions 4(i)-(iii) and 0 ∈ int (s+Bσ2 )−
F (ri dom Ψ). Define β, (µt)t∈N

, (at)t∈N
and (bt)t∈N

as be-

fore. Fix x(0) ∈ H and apply the DR recursion (6)-(7) with

proxβf1 as in (10) and

proxβf2(x) = PCσ
(x) , (12)

where PCσ
(x) is given by Lemma 2 with y = s, proxf (u) =

PBσ

2
(u) = (I−proxσ‖·‖)(u) and proxσ‖·‖(u) = u

(

1 − σ
‖u‖

)

+
.

Then x(t) → x̄ and PCσ
(x̄) is a solution to (Pσ).

If the data fidelity constraint in (Pσ) is replaced by any ℓp-

norm for p ≥ 1, the algorithm described above can be ex-

tended easily by appropriate substitution of PBσ

2
(u) by the

projector onto the ℓp-ball Bσp in Proposition 6. For exam-

ple, in the case of uniform quantization noise, a good choice

would be p = ∞, implying PBσ
∞

(u) =
(

ui

max(|ui|/σ,1)

)

i
. An-

other interesting variant is when the noise is impulsive where

the value p = 1 is advocated, and the projector onto PBσ

1
can

be computed through soft-thresholding.

4.4. The Dantzig Selector

Let’s now turn to the problem

(PDS) : min
x∈H

Ψ(x) s.t. ‖F∗(s− Fx)‖∞ 6 τ . (13)

To avoid the unique trivial solution x = 0, we assume that

τ < ‖F∗s‖∞. The compact convex constraint set in (13) is

CDS. The Dantzig Selector [11] is when Ψ is the ℓ1-norm. In

this case, (PDS) can be recast as a linear program [11].

Let G = F∗F be the (self-adjoint) Gram operator and

z = F∗s. Beside Assumption 4(i) and (iii), suppose that

0 ∈ int (z +Bτ∞)−G (ri dom Ψ). Again, by straightforward

application of Lemma 2 and Theorem 3 we arrive at

Proposition 7 Fix x(0) and apply the DR recursion (6)-(7)

with proxβf1 as in (10) and

proxβf2(x) =PCDS
(x) , (14)

where PCDS
(x) is given by Lemma 2(iii) with G in lieu of F,

y = z and (I− proxf )(u) = (I−PBτ
∞

)(u) = STτ (u). Then

x(t) → x̄ and PCDS
(x̄) is a solution to (PDS).

4.5. Analysis prior

In the problems considered above, we seek a sparse set of co-

efficients x and the solution image is synthesized from these

representation coefficients s̄ = Φx. Such a prior is called



m 28 29 210 211 212 213 214

DR 0.58 1.17 2.52 3.80 6.43 15.18 36.20

LARS 0.28 1.00 3.65 6.60 10.54 24.77 59.38

LP-IP 2.07 9.85 45.35 163.62 631.57 3191.38 13175.63

StOMP 0.34 0.84 2.36 3.61 6.38 16.65 43.13

Table 1. Computation times in seconds for exact CS reconstruction

from Hadamard measurements.

a synthesis prior. A less common approach seeks an image

s whose coefficients x = Φ∗s are sparse. Such a prior is

called an analysis prior. This is typically the case for the To-

tal Variation regularization. (Peq), (Pσ), its Lagrangian form

or (PDS) can be modified to incorporate such a prior. For

example, (Pσ) becomes

(Qσ) : min
s∈K

Ψ(Φ∗s) s.t. ‖s− Hx‖2 6 σ , (15)

and similarly for the other problems. Despite its apparent dif-

ficulty, it turns out that the analysis-prior problems such as

(Qσ) can still be solved using (6)-(7). The only modifica-

tion is the computation of the proximity operator of f1 =
Ψ◦Φ∗. The expression of the latter is easily accessible owing

to Lemma 2(iii). Indeed, we have the following corollary.

Corollary 8 Let µt ∈ (0, 2/
∣

∣

∣

∣

∣

∣Φ
∣

∣

∣

∣

∣

∣

2
). Define

p
(t+1) = s − µtΦ

“

I − prox
µ−1

t
Ψ

”

◦

“

µ
−1
t u

(t) + Φ∗(s − Φu
(t))

”

.

Then p(t) → proxΨ◦Φ∗ at the rate O(1/t).

5. NUMERICAL EXAMPLES

The proposed framework has been applied successfully to

several inverse problems such as denoising, component sep-

aration, inpainting and CS. For obvious space limitation, we

only report experiments on CS reconstruction.

In the first one, we solve (Peq) with Ψ(x) = ‖x‖1,

H is m × 4m random sensing matrix generated from the

Hadamard ensemble, Φ = I (canonical basis), the support of

xwas selected uniformly at random with sparsity level 0.05m
and normally distributed non-zero entries. Four algorithms

were compared: our DR scheme (9)-(10), the LARS/LASSO

[4], linear-programming with interior point solver [1, 3] and

StOMP [18]. The results are shown in Table 1 (similar re-

sults were observed for Fourier measurements). As claimed,

our DR splitting solver is among the fastest, and becomes

faster than the other algorithms as m gets large. Fig 1 de-

picts the image recovered using (10)-(12) from 17% noisy

(SNR=30dB) Fourier measurements of the 2562 Mondrian

image. The dictionary Φ was the wavelet transform.

6. CONCLUSION

In this paper, we proposed a general framework for solving

several optimization problems arising in sparse solutions of

Fig. 1. Left: original 2562 Mondrian image. Right: recovery from

17% noisy (SNR=30dB) Fourier measurements with the wavelet

sparsity basis, SNR=22dB.

linear inverse problems. The algorithms were characterized

and proven convergent. Sparse recovery from CS measure-

ments illustrated the applicability of this framework.
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