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2Communications and Remote Sensing Laboratory, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium

3GREYC CNRS-ENSICAEN-Université de Caen, 14050 Caen France

ABSTRACT

In this paper, following the Compressed Sensing paradigm,
we study the problem of recovering sparse or compressible
signals from uniformly quantized measurements. We present
a new class of convex optimization programs, or decoders,
coined Basis Pursuit DeQuantizer of moment p (BPDQp),
that model the quantization distortion more faithfully than
the commonly used Basis Pursuit DeNoise (BPDN) program.
Our decoders proceed by minimizing the sparsity of the sig-
nal to be reconstructed while enforcing a data fidelity term of
bounded `p-norm, for 2 < p 6∞.

We show that in oversampled situations the performance
of the BPDQp decoders are significantly better than that of
BPDN, with reconstruction error due to quantization divided
by
√
p+ 1. This reduction relies on a modified Restricted

Isometry Property of the sensing matrix expressed in the `p-
norm (RIPp); a property satisfied by Gaussian random matri-
ces with high probability. We conclude with numerical exper-
iments comparing BPDQp and BPDN for signal and image
reconstruction problems.

Index Terms— Compressed Sensing, Quantization, Sam-
pling, Uniform noise, Convex Optimization, Basis Pursuit.

1. INTRODUCTION

The theory of Compressed Sensing (CS) [1] enables recon-
struction of sparse or compressible signals from a small num-
ber of linear measurements, relative to the dimension of the
signal space. In this setting, knowledge of a signal x ∈ RN
is contained in the m 6 N linear measurements provided by
a sensing matrix Φ ∈ Rm×N , i.e. we know only the m inner
products 〈ϕi, x〉 ; where (ϕi)m−1

i=0 are the rows of Φ.
In any realistic digital acquisition system, these analog

measurements must be quantized before they may be stored
or transmitted. The study of signal recovery from quantized
measurements is thus of fundamental interest.

Therefore, in this paper we are interested in the noiseless
and uniformly quantized sensing (or coding) model:

yq = Qα[Φx] = Φx+ n, (1)
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where yq ∈ (αN+ α
2 )m is the quantized measurement vector,

(Qα[·])i = αb(·)i/αc + α
2 is the uniform quantization oper-

ator in Rm of bin width α, and n ∈ Rm is the quantization
distortion. This model is a realistic description of systems
where the quantization distortion dominates other secondary
noise sources (e.g. thermal noise), an assumption valid for
many electronic measurement devices.

A CS reconstruction program (or decoder) relies on the
assumption that the sensed signal x is sparse or compressible
in an orthogonal1 basis Ψ ∈ RN×N , i.e. the best K-term ap-
proximation xK in Ψ is an exact or accurate representation of
this signal even for small K < N . For simplicity, only the
canonical basis Ψ = Id will be considered here.

The commonly used Basis Pursuit algorithm for CS re-
covery finds the sparsest signal (in `1 norm) that could have
produced the observed measurements. Directly using the
quantized measurements in Basis Pursuit fails, however, as
there may be no signal whose (unquantized) measurements
reproduce the observed quantized values! This problem may
be resolved by relaxing the data fidelity constraint. Using
a quadratic constraint yields the standard Basis Pursuit De-
Noise (BPDN) program [3]:

∆(yq, ε) = arg min
u∈RN

‖u‖1 s.t. ‖yq − Φu‖2 6 ε, (BPDN)

where ‖ · ‖2 is the `2-norm. The value of ε depends on the
magnitude of quantization distortion, and should be chosen
just large enough to ensure that the measurements of the origi-
nal true signal satisfy the data fidelity constraint. In [3], an es-
timator of ε is obtained by considering n as a uniform random
vector X with Xi ∼iid U([−α2 ,

α
2 ]), i.e. ε2 = E[‖X‖22] +

κ
√

Var[‖X‖22] = α2

12m+κ α2

6
√

5
m

1
2 . In that case, u = x re-

spects the constraint of BPDN with a probability higher than
1− e−c0κ2

for a certain constant c0 > 0.
The stability of BPDN is guaranteed if the sensing matrix

Φ ∈ Rm×N satisfies the Restricted Isometry Property (RIP)
of order K and radius δ ∈ (0, 1), i.e. if there exists a constant
µ such that µ

√
1− δ ‖u‖2 6 ‖Φu‖2 6 µ

√
1 + δ ‖u‖2, for

allK-sparse signals u ∈ RN . Generally, CS is described with

1A generalization for redundant basis, or dictionary, exists [2].



normalized matrices Φ̄ = Φ/µ having unit-norm columns (in
expectation) so that µ is absorbed in the normalizing constant.

Interestingly, Standard Gaussian Random (SGR) matri-
ces, i.e. with entries drawn from Φij ∼iid N(0, 1), satisfy the
RIP with a controllable high probability (with µ =

√
m), as

soon as m > O(K logN/K) [3]. Moreover, other random
constructions satisfying the RIP exist (e.g. Bernoulli matrix,
Fourier ensemble, etc.) [1, 3].

For completeness, we include the following theorem ex-
pressing the aforementioned stability result, i.e. the `2 − `1
instance optimality2 of BPDN.

Theorem 1 ([5]). Let x ∈ RN be a compressible signal with
aK-term `1-approximation error e0(K) = K−

1
2 ‖x−xK‖1,

for 0 6 K 6 N , and xK the best K-term `2-approximation
of x. Let Φ be a RIP matrix of order 2K and radius 0 <
δ2K <

√
2 − 1. Given a measurement vector y = Φx + n

corrupted by a noise n with power ‖n‖2 6 ε, the solution
x∗ = ∆(y, ε) obeys the `2 − `1 instance optimality

‖x∗ − x‖2 6 Ae0(K) + B ε
µ , (2)

for values A = 2 1+(
√

2−1)δ2K

1−(
√

2+1)δ2K
and B = 4

√
1+δ2K

1−(
√

2+1)δ2K
. For

instance, for δ2K = 0.2, A < 4.2 and B < 8.5.

However, using the BPDN decoder to account for quanti-
zation distortion is theoretically unsatisfying for several rea-
sons. First, there is no guarantee that the BPDN solution x∗

respects Quantization Consistency (QC), i.e. Qα[Φx∗] = yq.
This will be met iff ‖yq−Φx∗‖∞ 6 α

2 , which is not necessar-
ily implied by the BPDN `2 fidelity constraint. Second, from
a Bayesian Maximum a Posteriori (MAP) standpoint, BPDN
can be viewed as solving an ill-posed inverse problem where
the `2-norm used in the fidelity term corresponds to the condi-
tional log-likelihood associated to an additive white Gaussian
noise. However, the quantization distortion is not Gaussian,
but rather uniformly distributed. This motivates the need for a
new kind of CS decoder that more faithfully models the quan-
tization distortion.

Recently, a few works have focused on this problem. In
[6], the extreme case of 1-bit CS is studied, i.e. when only
the signs of the measurements are sent to the decoder. Au-
thors tackle the reconstruction problem by adding a sign con-
sistency constraint in a modified BPDN program working on
the sphere of unit-norm signals. In [7], an adaptation of both
BPDN and the Subspace Pursuit integrates the QC constraint
explicitly. However, despite interesting experimental results,
no theoretical guarantees are given about the approximation
error reached by these solutions. In oversampled ADC con-
version of signal [8] and in image restoration problems [9],
dequantization obtained from global optimization with equiv-
alent QC constraint expressed in `∞-norm can also be found.

This paper, linked to the companion technical report [11],
is structured as follows. In Section 2, we present a new class

2Adopting the definition of mixed-norm instance optimality [4].

of abstract decoders, coined Basis Pursuit DeQuantizer of
moment p (BPDQp), that model the quantization distortion
more faithfully. These decoders consist in minimizing the
sparsity of the signal to be reconstructed while imposing a
data fidelity term of bounded `p-norm, for 2 6 p 6 ∞.
Section 3 introduces a modified Restricted Isometry Property
(RIPp) expressed in the `p-norm. With this tool, we then
prove then the stability of the BPDQp programs, i.e. their
`2 − `1 instance optimality. In Section 4, we show that, given
a sufficient number of measurements, the approximation er-
ror due to quantization scales inversely with

√
p+ 1. Finally,

Section 5 reports numerical simulations on signal and image
reconstruction problems.

2. BASIS PURSUIT DEQUANTIZERS

We introduce a new class of optimization programs (or de-
coders) that generalize the fidelity term of the BPDN program
to noises that follow a centered Generalized Gaussian Distri-
bution (GGD) of shape parameter p > 1 [10], with the uni-
form noise case corresponding to p → ∞. These decoders
reconstruct an approximation of the sparse or compressible
signal x from its distorted measurements y = Φx + n when
the distortion has a bounded pth moment, i.e. ‖n‖p 6 ε. For-
mally, the decoder writes

∆p(y, ε) = arg min
u∈RN

‖u‖1 s.t. ‖y − Φu‖p 6 ε. (BPDQp)

We dub this class of decoders Basis Pursuit DeQuan-
tizer of moment p (or BPDQp) since, as shown in Section 4,
their approximation error when Φx is uniformly quantized
decreases as both the moment p and the oversampling factor
m/K increase.

3. RIPp AND `2 − `1 INSTANCE OPTIMALITY

In order to study the approximation error of BPDQp, we intro-
duce the Restricted Isometry Property of moment p (or RIPp).

Definition 1. A matrix Φ ∈ Rm×N satisfies the RIPp (1 6
p 6 ∞) property of order K and radius δ, if there exists a
constant µp > 0 such that

µp
√

1− δ ‖x‖2 6 ‖Φx‖p 6 µp
√

1 + δ ‖x‖2, (3)

for all x ∈ RN with ‖x‖0 6 K, and where ‖·‖p is the `p-norm
on Rm.

The common RIP previously introduced is thus the RIP2.
Interestingly, SGR matrices Φ ∈ Rm×N satisfy also the RIPp
of order K and radius 0 < δ < 1 with high probability pro-
vided that m > O

(
(δ−2K logN/K)p/2

)
for 2 6 p <∞, or

logm > O(δ−2K logN/K) for p =∞; see [11] for details.
Moreover, for these matrices an asymptotic (in m) approxi-
mation for µp is

√
2π−

1
2p Γ[p+1

2 ]
1
pm

1
p (4)
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Fig. 1: Quality of BPDQp for different m/K and p.

if 2 6 p < ∞ and µ∞ > ρ−1
√

logm for a certain ρ > 0
[11]. This results from the specialization to SGR vectors of a
study made in [12]. We are now ready to state our main result.

Theorem 2. Let x ∈ RN be a compressible signal with a K-
term `1-approximation error e0(K) = K−

1
2 ‖x − xK‖1, for

0 6 K 6 N , and xK the best K-term `2-approximation of
x. Let Φ be a RIPp matrix on s sparse signals with radius δs,
for s ∈ {K, 2K, 3K} and 2 6 p <∞. Given a measurement
vector y = Φx+n with ‖n‖p 6 ε, the solution x∗p = ∆p(y, ε)
obeys the `2 − `1 instance optimality

‖x∗p − x‖2 6 Ap e0(K) + Bp
ε

µp
, (5)

for Ap = 2(1+Cp−δ2K)
1−δ2K−Cp

, Bp = 4
√

1+δ2K

1−δ2K−Cp
, and with Cp =

Cp(δK , δ2K , δ3K) well behaved.

The approximation error reached by BPDQ is thus bounded
in (5) by the sum of the compressibility and the noise er-
rors. As shown in [11], this theorem uses explicitly the
2-smoothness of the Banach spaces `p when 2 6 p < ∞
[13] and their possible embedding in `2. The value Cp
behaves as

√
(δK + δ3K) (1 + δ2K) p for large p, and as

δ3K + 3
4 (1 + δ3K)(p − 2) for p ' 2. For p = 2, Theorem 2

reduces to Theorem 1 if δ3K =
√

2 δ2K .

4. QUANTIZATION ERROR REDUCTION

We now turn to the behavior of the BPDNp decoders on quan-
tized measurements of sparse or compressible signals. First,
assuming the quantization distortion n = Qα[Φx] − Φx is
uniformly distributed in each quantization bin, we proved in
[11] that for

ε = εp(α) , α
2 (p+1)1/p

(
m+ κ (p+ 1)

√
m
) 1

p , (6)

u = x is a solution of the BPDQp fidelity constraint with a
probability at least 1− e−2κ2

.
Second, by Theorem 2, when Φ is RIPp with 2 6 p <∞,

i.e. when for m > O
(
(δ−2K logN/K)p/2

)
for SGR matri-

ces, we have

‖x− x∗p‖2 6 Ap e0(K) + Bp
εp(α)
µp

. (7)

Third, from (4), we have the approximation µp ' cpm
1
p

with cp =
√

2π−
1
2p Γ[p+1

2 ]
1
p > 2−

1
2 e−

3
4
√
p+ 1

(
1 +

O(p−2)
)
, using Stirling formula Γ(z) = ( 2π

z )
1
2 ( ze )z(1 +

O( 1
z )).
Finally, bounding the different functions involved yields
εp(α)
µp

. C
α√
p+ 1

(
1 +O(p−2)

)
, C < 1.497. (8)

In short, the noise error term in the `2 − `1 instance opti-
mality relation (7) for the quantized model (1) is thus divided
by
√
p+ 1 if the sensing matrix Φ satisfies the RIPp!

More precisely, with a philosophy close to the oversam-
pled ADC conversion [8], this error noise reduction happens
in oversampled sensing, i.e. when the oversampling factor
m/K is high. Indeed, in that case a SGR matrix Φ satisfies
the RIPp with high probability for high p. Moreover, over-
sampling gives a smaller δ, i.e. δ ∝ m−1/p, hence counter-
acting the increase of p in the factor Cp of the values Ap > 2
and Bp > 4. This decrease of δ also favors BPDN, but since
the value A = A2 and B = B2 in (2) are bounded from be-
low this effect is limited. This is confirmed experimentally in
Section 5.

Finally, note that the necessity of satisfying RIPp implies
that we cannot directly set p = ∞ in BPDQp to impose
Quantization Consistency (QC) of this decoder3. Indeed, for
a given oversampling factor m/K, a SGR matrix Φ can be
RIPp only over a finite interval p ∈ [2, pmax].

5. EXPERIMENTAL RESULTS

The BPDQp decoders are practically solved by monotone
operator splitting proximal methods [14, 11]. More pre-
cisely, as both the `1-norm and the indicator function of the
constraint in BPDQp are non-differentiable, the Douglas-
Rachford splitting is used. The Douglas-Rachford recursion
to solve BPDQp can be written in the compact form

u(t+1) = (1− αt

2 )u(t) + αt

2 (2Sγ−Id )◦(2PTp(ε)−Id )(u(t)),

where αt ∈ (0, 2),∀t ∈ N, γ > 0, Sγ is the component-
wise soft-thresholding operator with threshold γ and PTp(ε)

is the orthogonal projection onto the closed convex constraint
set Tp(ε) = {u ∈ RN : ‖yq − Φu‖p 6 ε}. From [14],
one can show that the sequence (u(t))t∈N converges to some
point u∗ and PTp(ε)(u∗) is a solution of BPDQp. The projec-
tion PTp(ε) was computed iteratively using Newton’s method
to solve the Lagrange multiplier equations arising from mini-
mizing the distance to the constraint set.

For the first experiment, setting the dimension N = 1024
and the sparsity level K = 16, we have generated 500 K-
sparse signals with support selected uniformly at random in
{1, · · · , N}. The non-zero elements have been drawn from
a standard Gaussian distribution N(0, 1). For each sparse
signal, m quantized measurements have been recorded as in

3Observing also that limp→∞ εp(α) = α/2.
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Fig. 2: Reconstruction from quantized undersampled Fourier measurements. (a) Original; details from (b) BPDN; and (c) BPDQ10

model (1) with a SGR matrix Φ ∈ Rm×N . The bin width
has been set to α = ‖Φx‖∞/40. In Figure 1, we plot the
average quality of the reconstructions of BPDQp for various
p > 2 and m/K ∈ [10, 40]. We use the quality metric
SNR(x̂;x) = 20 log10

||x||2
||x−x̂||2

, where x is the true original
signal and x̂ the reconstruction. The different decoders be-
come dominant from oversampling factors m/K increasing
with p. This confirms the fact that the noise error can be re-
duced when both p and m/K are high.

In the second experiment, we applied our methods to a
model undersampled MRI reconstruction problem. Using
an example similar to [15], the original signal is a 256 by
256 pixel “simulated angiogram” comprised of 10 randomly
placed ellipses. The linear measurements are the real and
imaginary components of one sixth of the Fourier coeffi-
cients at randomly selected locations in Fourier space, giving
m = 2562/6 independent measurements. These are quan-
tized with a bin width α giving at most 12 quantization levels
for each measurement. We use the Haar wavelet transform as
a sparsity basis. The measurement matrix is then Φ = FΨ,
where Ψ is the Haar matrix, and F is formed by the randomly
selected rows of the Discrete Fourier Transform matrix. The
original image has K = 821 nonzero wavelet coefficients,
giving an oversampling ratio m/K = 13.3. In Figure 2, we
show 100 by 100 pixel details of the results of reconstruction
with BPDN, and with BPDQ for p = 10. Note that we do not
have any proof that the sensing matrix Φ satisfies the RIPp
(3). We nonetheless obtain similar results as in the previous
1-d example. The BPDQ reconstruction shows improvements
both in SNR and visual quality compared to BPDN.

6. CONCLUSION

The objective of this paper was to show that the BPDN re-
construction program commonly used in Compressed Sens-
ing with noisy measurements is not always adapted to quanti-
zation distortion. We introduced a new class of decoders, the
Basis Pursuit DeQuantizers, and we have shown both theoret-
ically and experimentally that BPDQp exhibit an substantial

reduction of the approximation error in oversampled situa-
tions. An interesting perspective is to characterize the evo-
lution of the optimal moment p with the oversampling ratio.
This could allow the selection of the best BPDQ decoder as a
function of the precise CS coding/decoding scenario.
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