Une exploration numérique des performances de l'échantillonage compressé

Charles DOSSAL¹, Gabriel PEYRÉ², Jalal FADILI³

¹IMB CNRS-Université Bordeaux 1 ²CEREMADE CNRS-Université Paris Dauphine ³GREYC CNRS-ENSICAEN-Université de Caen charles.dossal@math.u-bordeaux1.fr, gabriel.peyre@ceremade.dauphine.fr, jalal.fadili@greyc.ensicaen.fr

Résumé – Cet article explore numériquement l'efficacité de la minimisation ℓ^1 pour la restauration de signaux parcimonieux depuis des mesures compressées, dans le cas sans bruit. Nous proposons un algorithme glouton qui calcule des vecteurs parcimonieux difficiles à retrouver par minimisation ℓ^1 . Cet algorithme est inspiré par des critères topologiques d'identifiabilité ℓ^1 . Nous évaluons numériquement l'analyse théorique sans avoir à utiliser un échantillonnage de Monte-Carlo, qui tend à éviter les cas pathologiques. Ceci permet de mettre à l'épreuve les critères d'identifiabilité exploitant des projections de polytopes et de la propriété d'isométrie restreinte.

Abstract – This paper explores numerically the efficiency of ℓ^1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. Inspired by topological criteria for ℓ^1 -identifiability, a greedy algorithm computes sparse vectors that are difficult to recover by ℓ^1 -minimization. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios. This allows one to challenge sparse recovery conditions based on polytope projections and on the restricted isometry property.

1 Échantillonage compressé

L'échantillonnage compressé correspond à l'acquisition d'un petit nombre de mesures linéaires y = Ax, où $x \in \mathbb{R}^N$ est le signal haute résolution que l'on souhaite retrouver et $y \in \mathbb{R}^P$ sont les $P \ll N$ mesures.

La résolution du problème inverse mal posé y = Ax est stabilisé en considérant une matrice $A = (a_i)_{i=0}^{N-1} \in \mathbb{R}^{P \times N}$ tirée aléatoirement suivant une loi adéquate. Cet article considère, par simplicité, le cas où les coefficients de A sont tirés indépendamment selon une loi Gaussienne centrée de variance 1/P.

Pour des mesures sans bruit y = Ax, un vecteur x est récupéré par minimisation convexe

$$x^{\star} = \operatorname*{argmin}_{\tilde{x} \in \mathbb{R}^{N}} \|\tilde{x}\|_{1}$$
 sous la contrainte $A\tilde{x} = y$, (1)

où $\|\tilde{x}\|_1 = \sum_i |\tilde{x}_i|.$ Le vecteur x est dit identifiable si $x^\star = x$ pour y = Ax.

Avec forte probabilité sur la matrice d'échantillonnage A, la théorie de l'échantillonnage compressé [3, 2] montre que n'importe quel vecteur x satisfaisant

$$\|x\|_{0} = \#\{i \setminus x_{i} \neq 0\} \leqslant \rho(P/N)P$$
(2)

est identifiable pour $\rho(\eta) > 0$ fonction croissance de η .

2 Critères parcimonieux d'identifiabilité

Critères topologiques d'identifiablité. Des critères d'identifiabilité précis sont obtenus en considérant les positions et les signes des coefficients non nuls de x, qui sont indexés par le support de x

$$I = I(x) = \{i \setminus x_i \neq 0\}.$$

Ceci permet d'utiliser les interactions entre les colonnes de $A = (a_i)_i$ indexées par I, notées $A_I = (a_i)_{i \in I}$ et les autres $(a_i)_{i \notin I}$. Fuchs [9] montre que x est ℓ^1 -identifiable si

$$F(x) = \max_{i \notin I} |\langle a_i, d(x) \rangle| < 1, \tag{3}$$

$$d(x) = A_I (A_I^* A_I)^{-1} \operatorname{sign}(x_I)$$
(4)

Critères d'identifiabilité topologiques. Le polytope centrosymmétrique $A(B_1)$ est l'image de la boule $\ell^1 B_1 = \{\tilde{x} \setminus \|\tilde{x}\|_1 \leq 1\}$. C'est aussi l'enveloppe convexe de $\{\operatorname{sign}(x_i)a_i\}_i$. La $\|x\|_{0^-}$ facette $f_x \subset A(B_1)$ sélectionnée par x est l'enveloppe convexe de $\{\pm a_i\}_{i \in I}$. Donoho [4] montre que

$$x \operatorname{est} \ell^1$$
-identifiable $\iff f_x \in \partial A(B_1)$ (5)

où $\partial A(B_1)$ est la frontière du polytope $A(B_1)$. Dossal [5] montre que cette condition topologique est équivalente à ce que xsoit la limite de vecteurs x_n tels que $F(x_n) < 1$. En utilisant (5), Donoho [4] détermine, dans le cas sans bruit y = Ax, une valeur précise pour $\rho(\eta)$ dans (2). On a par exemple $\rho(1/2) \approx 0.089$ et $\rho(1/4) \approx 0.065$.

Critères d'isométrie restreinte. Les travaux originaux de Donoho [3], Candès, Romberg et Tao [2] se concentrent sur la stabilité de l'échantillonnage compressé. Dans ce but, ces auteurs introduisent la propriété d'isométrie restreinte (RIP), qui impose l'existence de constantes $0 < \delta_s^{\min} \leq \delta_s^{\max} < 1$ telles que pour tout $x \in \mathbb{R}^N$ avec $||x||_0 \leq s$,

$$(1 - \delta_s^{\min}) \|x\|^2 \le \|Ax\|^2 \le (1 + \delta_s^{\max}) \|x\|^2.$$
 (6)

Soit $A_I = (a_i)_{i \in I}$ une matrice de s = |I| colonnes extraites de A. Alors (6) équivaut à dire que pour tout I tel que |I| =s, les plus petite et plus grande valeurs propres $\lambda^{\min}(A_I)$ et $\lambda^{\max}(A_I)$ de la matrice de Gram $A_I^*A_I$ sont bornées respectivement inférieurement et supérieurement par $1 - \delta_s^{\min}$ et $1 + \delta_s^{\max}$. Ainsi, les constantes RIP sont définies de façon équivalente comme

$$\begin{split} \delta_s^{\min} &= \max_{|I|=s} \delta^{\min}(A_I) \text{ et } \delta_s^{\max} = \max_{|I|=s} \delta^{\max}(A_I) \\ & \text{où } \begin{cases} \delta^{\min}(A_I) = 1 - \lambda^{\min}(A_I), \\ \delta^{\max}(A_I) = \lambda^{\max}(A_I) - 1 \end{cases}. \end{split}$$

Dans les travaux originaux de Candès et al., le RIP est symétrique, et des constantes égales sont utilisées, $\delta_s^{\min} = \delta_s^{\max} = \delta_s$. Ces auteurs montrent qu'une valeur assez petite de δ_{2s} assure l'identifiabilité de tous les vecteurs *s*-parcimonieux. Ceci est obtenu avec grande probabilité sur la matrice *A* si $s \leq CP/\log(N/P)$, ce qui correspond à la condition (2) avec $\rho(\eta) \leq C/\log(\eta^{-1})$.

On peut montrer que les plus grande et plus petite valeurs propres de la matrice de Gram $A_I^*A_I$ ne dévient pas à la même vitesse de 1. En utilisant des constantes RIP asymétriques, Foucart and Lai [8] montrent que

$$(4\sqrt{2}-3)\delta_{2s}^{\min} + \delta_{2s}^{\max} < 4(\sqrt{2}-1)$$
(7)

assure l'identifiabilité de tout vecteur *s*-parcimonieux. Blanchard et al. [1] determinent ρ_0 tel qu'avec forte probabilité sur la matrice *A*,

$$\|x\|_0 \leqslant \rho_0(P/N)P \tag{8}$$

assure que la condition (7) est satisfaite. On a nécessairement $\rho_0(\eta) \leq \rho(\eta)$ puisque la condition (8) garantit non seulement l'identifiabilité, mais elle assure également une forte robustesse à des mesures bruitées. Les constantes ρ_0 ainsi obtenues sont assez petites, et on a par exemple $\rho_0(1/2) = 0.003$ et $\rho_0(1/4) = 0.0027$.

3 Facettes intérieures et vecteurs nonidentifiables

Une heuristique pour l'identifiabilité exploitant $1/||d(x)||_2$. On déduit de (5) qu'un vecteur x non identifiable correspond à une facette f_x appartenant à l'intérieur du polytope $A(B_1)$. La proposition suivante, démontrée dans [7], permet de calculer la distance de f_x au centre du polytope.

Proposition 1. Pour tout vecteur x tel que rang $(A_I) = |I|$, la distance de la facette $f_x a 0$ est $\frac{1}{\|d(x)\|_2}$, où d(x) est défini en (4).

FIGURE 1 – Géométrie de l'identifiabilité ℓ^1 , pour N = 3 and P = 2. Le vecteur $x_1 = (2, -3, 0)$ n'est pas identifiable car f_{x_1} est à l'intérieur du polytope $A(B_1)$, et a donc une grande valeur de $||d(x_1)||_2$. Au contraire, $x_2 = (-5, 0, 3)$ est identifiable car $f_{x_2} \in \partial A(B_1)$, et a une petite valeur de $||d(x_1)||_2$.

La figure 1 illustre cette proposition en dimension P = 2. Cette propriété, ainsi que la condition (5), suggèrent qu'un vecteur x ayant une petite valeur de $1/||d(x)||_2$ a plus de chance d'être non identifiable.

La figure 2 estime, par échantillonnage de Monte-Carlo, le ratio de vecteurs identifiables, en fonction de la parcimonie $||x||_0$ (courbe de gauche) et d'une valeur quantifiée de $||d(x)||_2$ (courbe de droite). La courbe paramétrée par $||d(x)||_2$ présente une transition de phase plus abrupte que la courbe paramétrée par la parcimonie (chaque point sur les courbes comprend 1000 réalisations aléatoires).

FIGURE 2 – Gauche : ratio de vecteurs x identifiables en fonction de $||x||_0$, pour (P, N) = (250, 1000). Droite : ratio de vecteurs x identifiables en fonction de $||d(x)||_2$.

La figure 2 suggère donc que des vecteurs non-identifiables peuvent être trouvés non seulement en augmentant la parcimonie $||x||_0$ d'un vecteur x, mais aussi en décroissant la valeur de $1/||d(x)||_2$.

Une heuristique pour le conditionnement des sous matrices utilisant $1/\|d(x)\|_2$. Étant donné un vecteur $d \in \mathbb{R}^P$, on définit deux régions de \mathbb{R}^P

$$\left\{ \begin{array}{l} \mathcal{C}_d = \left\{ v \in \mathbb{R}^P \setminus |\langle d, v \rangle| \ge 1 \right\} \\ \mathcal{C}_d^c = \left\{ v \in \mathbb{R}^P \setminus |\langle d, v \rangle| \le 1 \right\} \end{array} \right.$$

dans le cas normalisé où les colonnes de A sont de norme unité, C_d définit une double calotte sphérique, dont le rayon r vérifie $r^2 = 1 - 1/\|d\|_2^2$.

La proposition suivante, démontrée dans [6], montre que le regroupement des vecteurs $\{a_i\}_{i \in I}$ dans ces régions permet de définir des bornes inférieures des constantes RIP de A_I .

Proposition 2. Si
$$\{a_i\}_{i \in I} \subset C_d$$
, alors
 $\delta_s^{\max} \ge s/\|d\|^2 - 1.$ (9)

Si $\{a_i\}_{i \in I} \subset \mathcal{C}_d^c$ et si $d \in \operatorname{Span}(a_i)_{i \in I}$ alors $\delta_s^{\min} \ge 1 - s/\|d\|^2.$ (10)

Étant donnée une sous-matrice A_I , une estimée précise de $\delta^{\max}(A_I)$ est obtenue en maximisant le membre de droite de (9). Ceci est réalisé en identifiant la région C_d contenant les colonnes de A_I et qui correspond à la plus petite valeur possible pour ||d||. Le calcul de ce groupement optimal est cependant difficile en grande dimension. Il est donc nécessaire de calculer un groupement approché en utilisant un vecteur d bien choisi afin de définir C_d . La proposition suivante, démontrée dans [6], montre que le vecteur d(x) fournit une telle approximation.

Proposition 3. Pour tout vecteur x tel que A_I soit de rang plein, avec I = I(x), le vecteur d(x) est tel que $\langle \text{sign}(x_i)a_i, d(x) \rangle \equiv \mathbf{5}$ 1. Toute autre région C_d satisfaisant cette propriété donne une plus mauvaise borne sur δ_s^{max} .

Ainsi, la région $C_{d(x)}$ est un choix optimal pour estimer la valeur de $\delta^{\max}(A_I)$ à l'aide de (9) si on se restreint à des régions qui passent par les vecteurs $\{\operatorname{sign}(x_i)a_i\}_{i\in I}$. De meilleures estimations sont possibles en utilisant une autre région C_d passant seulement par un sous ensemble de ces vecteurs où en utilisant un autre jeu de signes, mais il n'est pas évident de les calculer efficacement. Lorsque les signes $\operatorname{sign}(x_i)$ sont fixés, le vecteur d(x) est rapide à calculer car il ne nécessite que l'inversion d'un système linéaire sur-déterminé.

4 Extensions Parcimonieuses

Afin de construire un vecteur x non-identifiable, ou pour trouver une sous matrice A_I mal conditionnée avec I = I(x), on fait croître progressivement la parcimonie $||x||_0$. On considère une extension signée \tilde{x} de x, écrite comme $\tilde{x} = x + \sigma \Delta_i$, où $\sigma \in \{+1, -1\}, i \notin I(x)$ et Δ_i est un Dirac. Une telle extension accroît la parcimonie $||x||_0$, et nous sélectionnons de façon optimale i et σ pour maximiser ou minimiser la variation de $1/||d(x)||_2$, où d(x) est défini en (4).

La proposition suivante, démontrée dans [6, 7], nous donne la clef pour trouver une extension optimale.

Proposition 4. Soit $\tilde{a}_i \in \text{Span}(a_j, j \in \tilde{I} = I \cup \{i\})$ le vecteur dual tel que

$$\forall j \in I, \ \langle \tilde{a}_i, \, a_j
angle = 0 \quad \textit{et} \quad \langle \tilde{a}_i, \, a_i
angle = 1 \; .$$

Alors

$$\|d(\tilde{x})\|_{2}^{2} = \|d(x)\|_{2}^{2} + \|\tilde{a}_{i}\|^{2} |\langle d(x), a_{i} \rangle - \sigma|^{2}.$$

Le calcul de $\|\tilde{a}_j\|$ pour toutes les valeurs de $j \notin I(x)$ est coûteux car ceci demande la résolution d'un système linéaire sur déterminé pour chaque j. Nous calculons donc une extension optimale approchée en maximisant ou minimisant $|\langle d(x), a_j \rangle - \sigma|$ au lieu de $\|\tilde{a}_j\||\langle d(x), a_j \rangle - \sigma|$. Une telle maximisation (resp. minimisation) de $1/\|d(x)\|_2$ est ainsi obtenue à l'aide des extensions

$$\mathcal{E}^{+}(x) = x + \sigma^{+} \Delta_{i^{+}} \quad \text{et} \quad \mathcal{E}^{-}(x) = x + \sigma^{-} \Delta_{i^{-}}$$

$$\begin{array}{c} \text{où} \\ \begin{cases} i^{+} = \operatorname*{argmin}_{j \notin I(x)} |1 - |\langle d(x), a_{j} \rangle| \\ i^{-} = \operatorname*{argmax}_{j \notin I(x)} |\langle d(x), a_{j} \rangle| \\ \end{cases} \quad (11)$$

$$\begin{array}{c} \text{et} \\ \begin{cases} \sigma^{+} = \operatorname{sign}(\langle d(x), a_{i^{+}} \rangle), \\ \sigma^{-} = -\operatorname{sign}(\langle d(x), a_{i^{-}} \rangle). \end{cases} \end{cases} (12)$$

Pour chaque $j \in \{0, ..., N-1\}$, en commençant par un vecteur 1-parcimonieux initial $x_{j,0}^{\pm} = \Delta_j$, nous calculons itérativement deux extensions *s*-parcimonieuses maximale et minimale comme

$$x_{j,s}^+ = \mathcal{E}^+(x_{j,s-1}^+), \text{ et } x_{j,s}^- = \mathcal{E}^-(x_{j,s-1}^-).$$
 (13)

5 Recherche de vecteurs non-identifiables

La proposition 1 suggère que l'extension gloutonne $x_{j,s}^-$ pour différents j définie en (13) a de forte chance d'être difficile à identifier.

Étant donné $\eta = P/N \leq 1$, nous utilisons une recherche dichotomique selon s pour calculer

$$s^{\star}(\eta, P) = \min\left\{s \setminus \exists j, \ x_{j,s}^{-} \text{ n'est pas identifiable}\right\}.$$
 (14)

Cette valeur fournit une borne supérieure empirique sur la parcimonie maximale garantissant l'identifiabilité.

La table ci-dessous détaille nos résultats numériques pour $\eta = 1/4$, et compare ces valeurs numériques avec la borne théorique de Donoho [4] $\rho(1/4) \sim 0.065$.

P	125	250	500	1000
$s^{\star}(1/4, P)$	10	20	42	79
$\left\lceil \rho(1/4)P \right\rceil$	9	17	33	65

Par exemple, pour N = 1000 et P = 250, nous sommes capables de trouver un vecteur de parcimonie 20 qui n'est pas identifiable. Ceci est à comparer avec un échantillonnage de Monte Carlo, qui ne trouve aucun vecteur non identifiable de parcimonie s < 54, avec 1000 réalisations aléatoires pour chaque valeur de s, comme montré à la figure 2.

6 Recherche gloutonne de sous-matrices mal conditionnées

Bornes empiriques d'isométrie restreinte. L'extension $x_{j,s}^-$ définie en (13) est un vecteur *s*-parcimonieux avec une petite

valeur de $1/\|d(x)\|_2$. La proposition 2 suggère que son support $I = I(x_{j,s}^-)$ sélectionne une matrice de Gram $A_I^*A_I$ dont la plus petite valeur propre $\lambda_{\min}(A_I)$ est petite. De façon similaire, $I = I(x_{j,s}^+)$ peut être utilisé pour trouver une sousmatrice $A_I^*A_I$ dont la plus grande valeur propre $\lambda_{\max}(A_I)$ est grande.

On définit ainsi des bornes inférieures empiriques des constantes d'isométrie restreinte $\tilde{\delta}_s^{\min} = \min_j 1 - \lambda_{\min}(A_{I(x_{j,s}^-)})$ et $\tilde{\delta}_s^{\max} = \max_j \lambda_{\max}(A_{I(x_{i,s}^+)}) - 1$.

La figure 3, gauche et droite, montre les valeurs numériques obtenues pour $\tilde{\delta}_s^{\min}$ et $\tilde{\delta}_s^{\max}$, et les compare avec des bornes plus simples, obtenues comme suit :

- Échantillonnage aléatoire : nous utilisons 10^4 sous-matrices de s colonnes extraites aléatoirement de A.
- Échantillonnage conique : nous sélectionnons pour chaque j les s 1 colonnes $\{a_i\}_{i \in I \setminus j}$ qui sont les plus corrélées avec a_j .

Ceci montre que notre méthode gloutonne est capable de trouver des sous-matrices beaucoup plus mal conditionnées que des méthodes de recherche plus simples.

FIGURE 3 – Constantes empiriques d'isométrie restreinte, pour (N, P) = (4000, 1000). Les courbes en trait plein montrent $1 - s/\|d(x_s^-)\|^2$ sur la gauche, et $s/\|d(x_s^+)\|^2 - 1$ sur la droite.

On note x_s^- le vecteur atteignant les bornes empiriques $\tilde{\delta}_s^{\min} = 1 - \lambda_{\min}(A_{I(x_s^-)})$. La figure 4, gauche montre que les valeurs de $1 - s/\|d(x_s^-)\|^2$ sont proches des bornes empiriques d'isométrie restreinte δ_s^{\min} . La même chose est vraie pour l'estimation de $\tilde{\delta}_s^{\max}$ à l'aide de $s/\|d(x_s^+)\|^2 - 1$. Ceci montre numériquement que notre heuristique est précise en pratique.

Bornes empiriques de parcimonie pour les conditions d'isométrie restreinte. Étant donné $\eta = P/N$, nous définissons $s^*(\eta, P)$ la parcimonie s minimale qui invalide la borne (7), c'est-à-dire

$$(4\sqrt{2}-3)\tilde{\delta}_{2s}^{\min}+\tilde{\delta}_{2s}^{\max} \geqslant 4(\sqrt{2}-1).$$

La figure 4, droite, montre notre estimation numérique de la borne (7) pour un s variable. La table ci-dessous détaille nos résultats numériques pour $\eta = 1/4$, et compare ces valeurs numériques avec la borne théorique de Blanchard et al. [1], $\rho_0(1/4) \approx 0.027$.

FIGURE 4 – Gauche : courbes pleines : valeur de $\tilde{\delta}_s^{\min}$ et $\tilde{\delta}_s^{\max}$ en fonction de s ; courbes en pointillés : valeur de $1 - s/\|d(x_s^-)\|^2$ et $s/\|d(x_s^+)\|^2 - 1$. Droite : borne inférieure sur la condition (7), pour (N, P) = (4000, 1000), la courbe en pointillés correspond à la borne $4(\sqrt{2} - 1)$.

P	250	500	1000	2000
$s_0^{\star}(1/4, P)$	1	2	3	6
$\lceil \rho(1/4)P \rceil$	2	3	5	8

Références

- J.D. Blanchard, C. Cartis, and J. Tanner. The restricted isometry property and l^q-regularization : Phase transitions for sparse approximation. *Preprint*, 2009.
- [2] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles : Exact signal reconstruction from highly incomplete frequency information. *IEEE Trans. Info. Theory*, 52(2) :489–509, 2006.
- [3] D. Donoho. Compressed sensing. *IEEE Trans. Info. Theory*, 52(4):1289–1306, 2006.
- [4] D. L. Donoho. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. *Discrete & Computational Geometry*, 35(4):617–652, 2006.
- [5] C. Dossal. A necessary and sufficient condition for exact recovery by *l*₁ minimization. *Preprint*, 2007.
- [6] C. Dossal, G. Peyré, and J. Fadili. Challenging restricted isometry constants with greedy pursuit. *Preprint Hal-00373450*, 2009.
- [7] C. Dossal, G. Peyré, and J. Fadili. A numerical exploration of compressed sampling recovery. *Proceedings of SPARS'09*, 2009.
- [8] S. Foucart and M.-J. Lai. Sparsest solutions of underdetermined linear systems via via ℓ_q -minimization for $0 < q \leq 1$. to appear in Applied and Computational Harmonic Analysis, 2009.
- [9] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. *IEEE Trans. Info. Theory*, 50(6) :1341–1344, 2004.