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Abstract In this paper, we focus on statistical region-based
active contour models where image features (e.g. intensity)
are random variables whose distribution belongs to some
parametric family (e.g. exponential) rather than confining
ourselves to the special Gaussian case. In the framework de-
veloped in this paper, we consider the general case of region-
based terms involving functions of parametric probability
densities, for which the anti-log-likelihood function is a spe-
cial case. Using shape derivative tools, our effort focuses on
constructing a general expression for the derivative of the
energy (with respect to a domain), and on deriving the cor-
responding evolution speed. More precisely, we first show
by an example that the estimator of the distribution parame-
ters is crucial for the derived speed expression. On the one
hand, when using the maximum likelihood (ML) estimator
for these parameters, the evolution speed has a closed-form
expression that depends simply on the probability density
function. On the other hand, complicating additive terms ap-
pear when using other estimators, e.g. method of moments.
We then proceed by stating a general result within the frame-
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work of multi-parameter exponential family. This result is
specialized to the case of the anti-log-likelihood function
with the ML estimator and to the case of the relative en-
tropy. Experimental results on simulated data confirm our
expectations that using the appropriate noise model leads
to the best segmentation performance. We also report pre-
liminary experiments on real life Synthetic Aperture Radar
(SAR) images to demonstrate the potential applicability of
our approach.

Keywords Segmentation · Region-based active contours ·
Exponential families · Shape derivation · Maximum
likelihood · Relative entropy

Notations

�I The image domain
� A region of the image
∂� The boundary of the region �

|�| Region size
∫
�

dx
I (x) The intensity of the pixel at the location x
k(x,�) The region descriptor of �

kb(x) The boundary descriptor of ∂�

�in Inside region
�out Outside region
〈J ′(�),V〉 The Eulerian derivative of domain energy

criterion J (�)

p(y,η) Probability density function (pdf) of the
random variable Y

η Hyper-parameter vector of the pdf
E[Y ] Expectation of the random variable Y

k′(x,�,V) The domain derivative of the function k

speed(x,�) Evolution speed of the active contour
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1 Introduction

1.1 State of affairs

In image segmentation, the main issue is to extract one or
several regions according to a given criterion. Since the
seminal work of [7, 28, 36], active contours have proven
their efficiency for such a task. The general idea behind
active contours model is to apply partial differential equa-
tions (PDEs) to deform a curve towards the boundaries of
the objects of interest. Snakes [28], balloons [12] and geo-
desic active contours [7] were pioneering works on active
contour model. In these methods, the contour is driven to-
wards image edges. More recently, region-based active con-
tours (i.e. RBAC) were proposed [8, 11, 41, 47, 48]. In these
approaches, region-based terms can be advantageously com-
bined with boundary-based ones. The evolution equation
is generally deduced from a general criterion that includes
both region integrals and boundary integrals. The combina-
tion of those two terms in the energy functional allows the
use of photometric image properties, such as texture [3, 27,
39, 42] and noise [20, 32, 35], as well as geometric prop-
erties such as the prior shape of the object to be segmented
[15, 19, 21, 33, 34, 45], see also the review in [14]. RBACs
have proven their efficiency for a wide range of applications
such as medical image segmentation [9, 30], video object
segmentation or tracking [40]. The main issues when deal-
ing with RBACs models are the definition of an appropriate
criterion for the given segmentation problem and the deriva-
tion of the PDEs from this criterion.

Concerning the latter issue, we first point out that the
PDE derivation is not trivial when the energy criterion in-
volves region functions. This is mostly due to the fact that
the set of image regions does not have the structure of a
vector space, preventing us from using in a straightforward
way gradient descent methods. To circumvent this problem,
we propose to take benefit of the framework proposed in
[2, 25, 26], based on shape derivation principles developed
in [16, 44]. This framework is particularly well-adapted
when dealing with global information of the region such
as statistical image features (e.g. mean, variance, entropy,
histogram) viewed as empirical probability density function
(pdf)-based estimates. In this case, one must pay attention to
the fact that these features are globally attached to the region
and must then be taken into account in the shape derivation
framework [2, 25, 26].

As far as the definition of the criterion is concerned, we
focus on region-based terms that allow to take benefit of sta-
tistical image properties. And we pay a particular attention
to the random part that contaminates the image during its
acquisition process, i.e. the noise model. In many papers
[20, 32, 35], the authors proposed region-based terms that
involve functions of the pdf of some image attributes within

the region. The minimization of the anti-log-likelihood is
classically used for the segmentation of homogeneous re-
gions [35, 37, 38, 47, 48]. However, many works implicitly
assume that the intensity inside homogeneous regions fol-
lows a Gaussian law. This is the case in [46] when minimiz-
ing the mean squared error between the pixel intensity and
the mean of the region, or in [42, 48] where they use the
two parameters of Gaussian distributions (μ, σ 2). However
such an assumption is not always justified. For example, it
is well known that under appropriate conditions (large num-
ber of randomly located scatters), the Rayleigh distribution
is well suited to model the noise in echographic data [22].
Some recent papers consider a more general case where the
pdf belongs to other families [10, 18, 35, 43]. The pdf is then
characterized by one or more parameters describing the un-
derlying statistical model. These parameters depend on the
region and must be estimated at each evolution step of the
active contour. This necessitates to estimate these region-
dependent parameters, which can be achieved using various
estimators, typically method of moments or maximum like-
lihood (ML). Nonetheless, to the best of our knowledge, the
influence of the estimation method on the computation of
the evolution equation has never been investigated.

1.2 Contributions

In the framework developed hereafter, we consider the gen-
eral case of region-based terms involving functions of para-
metric pdfs without restricting ourselves solely to the anti-
log-likelihood function. Using shape derivative tools [2, 16,
25, 26], our effort focuses on constructing a general expres-
sion for the derivative of the energy (with respect to a do-
main) and on deriving the corresponding evolution speed
term. Shape derivation tools lead us to obtain very general
results and to rigorously take into account the way the distri-
bution parameters were estimated. As far as the derivation is
concerned, we particularly pay attention to the fact that dis-
tribution parameters depend on the region. More precisely,
we show by an example that the estimator of the distribu-
tion parameters is crucial for the derived speed expression.
On the one hand, when using ML estimators for the para-
meters, the evolution speed has a closed-form expression
that depends simply on the pdf. On the other hand, com-
plicating additive terms appear when using other estimators
such as the method of moments. We then provide a gen-
eral result for the evolution equation within the framework
of multi-parameter exponential family. The rationale behind
using exponential families is that it includes, among oth-
ers, Gaussian, Rayleigh, Poisson and Bernoulli distributions
that have proven to be useful to model the noise structure in
many real image acquisition devices (e.g. Poisson for photon
counting devices such as X-ray or CCD cameras, Rayleigh
for ultrasound images, etc.). Our general framework is also
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specialized to some particular cases, such as the anti-log-
likelihood function or the relative entropy. These particu-
lar cases are chosen because they allow to formulate a wide
range of region criteria in image segmentation, e.g. anti-log-
likelihood as region homogeneity measure, relative entropy
for region competition. Interestingly, when particularizing
our general expression to the anti-log-likelihood associated
to the ML estimator for the parameters, we recover the same
expressions as those previously published in the literature,
e.g. [35, 47]. The evolution using relative entropy for the
whole exponential family has, to the best of our knowledge,
never been investigated. Some works propose to use the rel-
ative entropy for medical image segmentation [49] but they
restrict their study to the Gaussian model. Beside theoretical
arguments, we also provide experimental results to support
our claims and show the influence of the noise model on the
final segmentation.

This paper is organized as follows. In Sect. 2 we briefly
remind some key concepts on shape derivation tools. Then,
in Sect. 3 we present the statistical framework for our noise
model, we review some properties of exponential fami-
lies and we state a first result within this framework. In
Sect. 4, we put all previous ingredients together and give our
main theoretical results on the whole exponential family. In
Sect. 5 we detail our segmentation algorithm and our ex-
perimental results. In Sect. 6 we conclude and present some
perspectives. Proofs are deferred to the appendix awaiting
inspection by the interested reader.

2 Shape Derivation Theory

In this part we introduce the general criterion to minimize
and we briefly remind some necessary details on shape
derivative tools and on the associated evolution equation.

2.1 Introduction of a General Criterion

The boundary ∂� of � is sometimes denoted by �. The
segmentation problem consists in extracting one or more re-
gions � from the complete image �I . We search for the do-
main or the partition of the image that minimizes a general
functional which is composed of a combination of region-
based terms and boundary based terms. The minimization is
performed using active contours that are driven by an evolu-
tion equation directly deduced from the functional.

On the one hand, the region-based term corresponds to a
global information on the region of interest. It can for exam-
ple describe the homogeneity of a region. The region-based
term is usually expressed as a domain integral of a function
k called descriptor of the region or by abuse of terminology,
homogeneity criterion:

Jr(�) =
∫

�

k(x,�)dx. (1)

In the general case the function k may depend on the do-
main. For example when minimizing the difference between
the intensity and the mean value μ(�) inside the region, we
take k equal to (I (x)−μ(�))2 and μ(�) obviously depends
on the domain �.

On the other hand, the boundary-based term corresponds
to a local information on the boundary of the region of inter-
est. It can be used as a regularization term. The boundary-
based term is expressed as a boundary integral of a function
kb coined boundary descriptor of the region or by abuse of
terminology, regularity criterion:

Jb(∂�) =
∫

∂�

kb(x)da(x), (2)

where da(x) is the line element. An example of boundary-
based term can be the curve length Jb(∂�) = ∫

s
ds =

L(∂�).
For the sake of clarity, and without loss of generality, we

consider in the rest of our paper the segmentation into two
regions �in and �out , � represents the interface between the
two domains. We then look for the partition {�in,�out ,�}
of the image that minimizes the following functional:

J (�in,�out ,�)

=
∫

�in

kin(x,�in)dx +
∫

�out

kout (x,�out )dx

+
∫

�

kb(x)da. (3)

Once the functional has been expressed, the problem now
is to deduce the evolution equation that will drive the RBAC
towards a minimum of the functional. This is achieved in
our case through the derivation of the criterion using shape
derivative tools.

2.2 Shape Derivation Tools

In order to be comprehensive, we here give a brief summary
of the shape derivation theory. The interested reader may
refer to [2, 16, 24] for further details.

As stated in the introduction, the set of image regions
does not have the structure of a vector space. Consequently,
the derivation of the region-term is performed using domain
derivation tools. We remind some definitions [16] that we
state in full for the reader convenience. We can consider that
� evolves with a velocity vector field, V and calculate the
variations of J (�(t)) in the direction V. In the application,
we use only the boundary component of this velocity vector
field.

More formally, let V : R
2 → R

2 be a smooth vector field
with compact support. The flow with respect to V is defined
as the mapping Tτ : R

2 → R
2, with Tτ (x) = X(τ ) where
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X(τ ) is the solution of:

{
X′(τ ) = V(X(τ )),

X(0) = x.

From this flow, we define, �τ = Tτ (�) = {Tτ (x),x ∈ �}
and we then introduce the derivative in the direction of a
velocity field V as follows:

Definition 1 The Eulerian derivative (at τ = 0) of Jr(�) in
the direction V is defined as follows:

〈J ′
r (�),V〉 = lim

τ→0

Jr(�(τ)) − Jr(�)

τ
. (4)

Definition 2 The domain derivative (at τ = 0) of k in the
direction V denoted k′(x,�,V) is defined as follows:

k′(x,�,V) = lim
τ→0

k(x,�(τ)) − k(x,�)

τ
. (5)

Theorem 1 There is a relation between the Eulerian deriv-
ative of Jr(�) in the direction V, and the domain derivative
of k denoted k′(x,�,V):

〈J ′
r (�),V〉 =

∫

�

k′(x,�,V)dx −
∫

∂�

k(x,�)(V · N)da(x),

(6)

where N is the unit inward normal to ∂�.

A proof can be found in [16, 44] and an elementary one
in [2]. The first integral comes from the dependence of the
descriptor k(x,�) with the region, while the second term
comes from the evolution of the region itself.

2.3 Evolution Equation

From the shape derivative, we can derive the evolution equa-
tion that will drive the active contour towards a (local) min-
imum of the criterion.

Let us suppose that the shape derivative of the region �

may be written as follows:

〈J ′
r (�),V〉 = −

∫

∂�

speed(x,�)(V(x) · N(x))da(x). (7)

We can then deduce [2] the following evolution equation:

∂�

∂τ
= speed(x,�)N(x), (8)

with �(τ = 0) = �0.
Let us consider the classical homogeneity descriptor pro-

posed by [46], i.e. k(x,�) = (I (x)−μ(�))2, where μ(�) is

the mean over region �. Using Theorem 1, the shape deriv-
ative becomes [2]:

〈J ′
r (�),V〉 = −

∫

∂�

(I − μ(�))2(V(x) · N(x))da(x), (9)

because the term
∫
�

k′(x,�,V)dx vanishes in this case. It
is immediate to see that the evolution speed is:

speed(x,�) = (I (x) − μ(�))2, (10)

which is precisely the classical result found by [46]. Note
however, that in the case of a derivation using shape deriva-
tion tools, we get rid of the regularizing Dirac distribution δε

that appears when minimizing the criterion with the method
described by [46].

3 Statistical Framework for Variational Segmentation

Statistical decision and estimation theory are theoretical
tools that allow to handle rigorously the problem of infor-
mation extraction from an image under random fluctuations.
In this paper, we focus on the segmentation of a region of
interest in images. We want to take benefit of a more com-
plete modeling of the noise formation process in images so
as to incorporate this feature in a variational segmentation
framework. We begin by giving arguments supporting the
validity of exponential families in real image segmentation
problems.

3.1 Statistical Image Modeling and Segmentation

When observing an image, one does not observe the true
gray level of pixels, but rather random fluctuations of those
levels. The statistical framework appears as a rigorous and
flexible candidate to describe this randomness. In statisti-
cal image modeling, an image is generally considered either
as the observation of a random variable at different loca-
tions, or as a random field. We here adopt the former model.
The source of random fluctuations will be imputed to noise,
which is introduced by the imaging system and has its own
pdf that might be known or not. Fortunately, in many cases
of interest, the noise pdf can be modeled from a known para-
metric family. For example, the assumptions of the classical
Synthetic Aperture Radar (SAR) image generation model
lead to a Rayleigh noise model [1]. Ultrasound noise in im-
ages is also approximately Rayleigh-distributed [17]. Mod-
ulus of Magnetic Resonance Images (MRI) is known to fol-
low a Rician distribution [23], etc. In fact, it turns out that
the classical Gaussian model is an exception rather than a
rule.

In our work we want to incorporate a noise model in
RBACs. Exponential families are here chosen because they
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include a wide range of models such as Bernoulli, Binomial,
Poisson, Gamma, Beta, Rayleigh, etc. One may have no-
ticed that the few imaging modalities just cited involve noise
models whose pdfs are special instances of this general and
comprehensive family.

The introduction of the noise model in RBACs goes
through the definition of an appropriate region descriptor k.
Let us consider p(y(x), η) the parametric pdf of the obser-
vations y(x). Here, we consider y(x) as an image feature
(e.g. the intensity) at location x. The pdf often depends on
some parameters denoted η. In this paper, we focus on the
fact that these parameters evolve with the domain �.

Let us now introduce some useful definitions that will
allow to bridge the gap between the statistical framework
and the minimization of a criterion as involved in RBACs.

Definition 3 The likelihood function denoted by L, for a
given observed data y, is:

Ly(η) = p(y,η), η ∈ E ⊆ R
κ . (11)

Thus, when we think of Ly(η) as a function of η, it gives,
for some observed y the “likelihood” or “plausibility” of
various η. More clearly, we can think of Ly(η) as a mea-
sure of how likely η is to have produced the observation y. If
the image characteristics y(x) were discrete (e.g. gray level),
then for each η, Ly(η) would correspond to the probability
of observing y(x). We can easily extend this definition to the
RBACs.

In general, we use the log-likelihood function:

ly(η,�) = log(Ly(η,�)) = log(p(y(x) : x ∈ �,η)). (12)

The function log(p) turns to be the best monotone func-
tion of p to be considered for many reasons [6]. A typ-
ical one is that if the y(xi ) are independent and identi-
cally distributed (iid) with a density or frequency function
p(y(xi ),η) for i = 1, . . . , n, then, with y = (y(x1), . . . ,

y(xn)):

ly(η,�) = log(p(y,η,�)) = log
n∏

i=1

p(y(xi ),η)

=
n∑

i=1

logp(y(xi ),η). (13)

This justifies the anti-log-likelihood criterion that is clas-
sically used:

Jr(�) = −
∫

�

log(p(y(x),η))dx. (14)

This criterion was proposed in active contours by [47]. In
this paper, we consider a more general setting replacing the
− log by any proper function �, see in Sect. 4.

3.2 Exponential Families

As argued in Sect. 3.1, exponential families cover most noise
models commonly encountered in image acquisition sys-
tems. This section provides the necessary material on ex-
ponential families.

3.2.1 Definition

The multi-parameter exponential family is naturally in-
dexed by a κ-dimensional real parameter vector and a κ-
dimensional natural statistic vector T(Y ). A simple exam-
ple is the normal family when both the location and the
scale parameters are unknown (κ = 2). The normal, Poisson
and Rayleigh distributions exhibit the interesting feature that
there is a natural sufficient statistic whose dimension as ran-
dom vector is independent of the sample size. This statement
implicitly assumes that the observations are stochastically
independent. The class of families of distributions that we
introduce in this section was first discovered in statistics by
[29] through investigations of this property. Subsequently,
many other properties of these families were discovered and
they have became an important class of the modern theory
of statistics [5, 6].

Definition 4 The family of distributions of a Random Vari-
able (RV) Y {Pη : η ∈ E ⊆ R

κ}, is said a κ-parameter
canonical exponential family, if there exist real-valued func-
tions η1, . . . , ηκ : � �→ R and A(η) on E , and real-valued
functions h,T1, . . . , Tκ : R

κ �→ R, such the pdf p(y,η) of
the Pη may be written:

p(y,η) = h(y) exp[〈η,T(y)〉 − A(η)], y ∈ χ ⊂ R, (15)

where h(y) is the reference density, T = (T1, . . . , Tκ)T is
the natural sufficient statistic, η = (η1, . . . , ηκ)T and E are
the natural parameter vector and space, 〈η,T〉 denotes the
scalar product, where the natural parameter space is defined
as E = {η ∈ R

κ ;−∞ < A(η) < +∞}.

We draw the reader’s attention to the fact than η is a func-
tion of θ ∈ � ⊆ R

κ , which is the parameter of interest in
most applications. The term � designates the space of para-
meters θ . The reference density h(y) does not depend on the
parameters of the distribution. Consequently, in the context
of active contours, h(y) will be independent of the region.

Table 1 provides a synthetic description of some com-
mon distributions of exponential families, with the associ-
ated parameters, functions (see Definition 4) and sufficient
statistics.
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Table 1 Some common canonical exponential families. B(α,β) is the Euler Beta function

Distribution θT η(θ)T T(y)T A(η) E

Normal (μ,σ 2) (
μ

σ 2 , −1
2σ 2 ) (y, y2) 1

2 (− η2
1

2η2
− log −η2

π
) R×]−∞,0[

Gamma (λ,p) (−λ,p − 1) (y, logy) −(η2 + 1) log−η1 + log�(η2 + 1) ]−∞,0[×]−1,+∞[
Beta (r, s) (r − 1, s − 1) (logy, log(1 − y)) − logB(η1 + 1, η2 + 1) R

+ × R
+

Poisson μ logμ y eη
R

Exponential λ −λ y − log−η ]−∞,0[
Rayleigh θ2 −1/2θ2 y2 − log−2η ]−∞,0[

In order to illustrate this table, let us develop the form of
the natural parameters for the Normal law:

p(y(x);μ,σ)

= 1

σ
√

2π
e
− (y(x)−μ)2

2σ2

= exp

(

−1

2
log(2πσ 2) − y2

2σ 2
+ μy

σ 2
− μ2

2σ 2

)

= exp

(

〈η,T(y)〉 − 1

2
log(2πσ 2) − μ2

2σ 2

)

.

It follows that

h(y) = 1, T(y) =
[

y

y2

]

, η =
[

μ

σ 2

− 1
2σ 2

]

,

A(η) = 1

2

(

log(2πσ 2) + μ2

2σ 2

)

= −1

2

(
η2

1

2η2
+ log

(

−η2

π

))

.

3.2.2 Properties

The following results will be useful for our RBAC scheme
based on exponential families. Their proofs may be found
in [6].

Theorem 2 Let P a κ-parameter canonical exponential
family with natural sufficient statistic T(Y ) and open nat-
ural parameter space E then:

(i) E is convex;
(ii) A : E �→ S ⊆ R is convex where S = A(E );

(iii) E[T(Y )] = ∇A(η);
(iv) Cov[T (Y )] = Ä(η),

where ∇A = ( ∂A
∂η1

, ∂A
∂η2

, . . . , ∂A
∂ηκ

)T represents the gradient

of A, and Ä is the Hessian matrix of A with Äij = ∂2A
∂ηi∂ηj

.

The following theorem establishes the conditions of strict
convexity of A, and then those for Ȧ to be 1-1 on E . This is
a very useful result for optimization (derivation) purposes:

Theorem 3 Let P a full rank (i.e. Cov[T (Y )] is a positive-
definite matrix) κ-parameter canonical exponential family
with natural sufficient statistic T(Y ) and open natural para-
meter space E [6].

(i) ∇A : E �→ S is 1-1.
(ii) The family may be uniquely parameterized by μ(η) ≡

E[T(Y )] = ∇A(η).
(iii) The anti-log-likelihood function is a strictly convex

function of η on E .

These results establish a 1-1 correspondence between η

and E[T(Y )] such that:

S � μ = ∇A(η) = E[(T(Y )] ⇔ E � η = ψ (E[T(Y )]) (16)

holds uniquely with ∇A and ψ continuous. At this stage, it
is interesting to mention that an alternative solution to estab-
lish this bijection, is to use the Legendre conjugate (convex
analysis) in the same vein as in the work of [4] which used
it to prove the bijection between exponential families and
Bregman divergences.

It is also interesting to point out that in (16), when the
expectation E[T(Y )] is replaced with the empirical estimate
of the mean T(Y ),1 the obtained estimate coincides with the
ML estimator (MLE) of η. For example, when dealing with
the Rayleigh distribution, we have:

η = −1

2θ2
, A(η) = − log(−2η), T (y) = y2. (17)

By computing A′(η) = T(Y ), we find that:

−1

η
= 1

|�|
∫

�

y(x)2dx, (18)

which corresponds to the MLE of the parameter θ2 given
by:

θ̂2
ML = 1

2|�|
∫

�

y(x)2dx. (19)

1For a full regular exponential family, the natural statistic is complete
and sufficient, and hence is the minimum variance unbiased estimator
for its expectation.
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3.3 A Primer Case for the Statistical Region-Based Active
Contours

This section is devoted to illustrate the influence of the pa-
rameters estimator on the expression of the RBAC evolu-
tion speed. We consider here the minimization of the anti-
log-likelihood function when the image feature is Rayleigh-
distributed, and we compute the shape derivative of this
region-based term. For such a computation, we need to eval-
uate the parameter of the law using some estimation method.
The MLE can then be computed. There is another classical
estimation method, namely the method of moments. This
alternative is a technique for constructing estimators of the
parameters that is based on matching the sample moments
with the corresponding distribution moments. We propose
here to compare the evolution equation of the active contour
obtained using the MLE and the method of moments when
minimizing the anti-log-likelihood criterion for the Rayleigh
law.

3.3.1 Prologue

The functional to minimize is then:

Jr(�) = −
∫

�

log(p(y(x), θ))dx (20)

with p the Rayleigh pdf of scalar parameter θ , i.e.

p(y(x), θ) = y(x)

θ2 exp (
−y(x)2

2θ2 ).

Classically, one can compute an estimate of the parameter
θ using the method of moments. In this case the estimator is
given by the sample mean:

θ̂MO =
√

2

π

1

|�|
∫

�

y(x)dx =
√

2

π
y(x), (21)

where y(x) = 1
|�|

∫
�

y(x)dx denotes the sample mean inside
the region �.

Alternatively, one can also compute an estimate through
the MLE as given by:

θ̂ML =
√

1

2|�|
∫

�

y(x)2dx. (22)

3.3.2 Shape derivative with the moment estimator

Theorem 4 The Eulerian derivative, in the direction of V,
of the functional Jr(�) = − ∫

�
log(p(y(x), θ̂MO)dx with p

a Rayleigh pdf, is the following:

〈J ′
r (�),V〉 =

∫

∂�

(
log

(
p(y(x), θ̂MO)

)
+ Add(y(x),�)

)

× (V · N)da(x), (23)

Add(y(x),�) =
(

2 − π

4

y2(x)

y(x)
2

)(

1 − y(x)

y(x)

)

.

The proof can be found in Appendix A.
In this case, it follows that the evolution equation is:

∂�(p, τ)

∂τ
= −

[
log

(
p(y(x), θ̂MO)

)
+ Add(y(x),�)

]
N(x).

(24)

3.3.3 Shape Derivative with the MLE

Theorem 5 The Eulerian derivative, in the direction of V,
of the functional Jr(�) = − ∫

�
log(p(y(x), θ̂ML))dx with p

a Rayleigh pdf, is the following:

〈J ′
r (�),V〉 =

∫

∂�

log
(
p(y(x), θ̂ML)

)
(V · N)da(x). (25)

This theorem is a particular case of Corollary 1, see
Sect. 4.2.

The evolution equation becomes here:

∂�(p, τ)

∂τ
= − log

(
p(y(x), θ̂ML)

)
N(x). (26)

3.4 Epilogue

One can see that the parameter estimator has a clear im-
pact on the evolution speed expression, as the additive term
Add(y(x),�) appears in the shape derivative when the mo-
ment estimator is used. These theoretical results are con-
firmed by experimental tests on a synthetic image as de-
picted in Fig. 1. These tests were carried out using MLE and
moments-based theoretical evolution speeds given in (26)
and (24), and also using the moments-based speed where
the additive term was deliberately dropped.

The segmentation results on this test image are visually
similar using either ML or moment estimators. However
when the moment additive term is neglected, the contour
does not converge to the desired minimum. This confirms
the importance of the estimation of the pdf parameters. Of
course, in exponential families, the MLE always exists (ex-
cept in some pathological cases such as the segmentation of
a one pixel region). But, unfortunately, closed-form analyt-
ical expressions of the MLE are not always accessible, and
one may have to resort to alternative estimators such as the
method of moments or cumulants.

4 General Segmentation Setting

We now turn to the general case and consider the following
functional.:

Jr(�) =
∫

�

�(p(y(x),η(�)))dx, (27)
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Fig. 1 (a) Original square image, (b) Image corrupted by Rayleigh noise, (c) Final boundary segmentation using MLE, (d) Final boundary
segmentation using moment estimator and additive term, (e) Final boundary segmentation using moment estimator with no additive term

where � is a continuously differentiable and integrable
function, p(.) belongs to the multi-parameter exponential
family and is expressed by (15), and η is the natural para-
meter vector.

4.1 A general result for exponential families

In the sequel, for the sake of simplicity, we will denote η for
the natural parameter and η̂ its finite sample estimate over
the domain. We are now ready to state our main result:

Theorem 6 The Eulerian derivative, in the direction of V,
of the functional (27), is:

〈J ′
r (�),V〉

= −
∫

∂�

�(p(y(x),η(�)))(V · N)da(x)

+
∫

�

p(y(x),η(�))�′(p(y(x),η(�)))〈∇Vη,T(y(x))

− ∇A(η)〉dx, (28)

with ∇Vη = 〈η′(�),V〉 the Eulerian derivative of η in the
direction of V, and 〈., .〉 is the usual scalar product of two
vectors.

The proof is detailed in Appendix B.
This result can be divided into two parts. On the one

hand, the term of the evolution of the region, on the other
hand, an additive term coming from the dependence of the
parameters η to the region.

4.2 Specializing to ML

In a finite sample setting, when using the MLE, we can re-
place ∇A(η) by T(y), the 1st order sample moment of T(y).
This is a consequence of Theorem 2. Thus, when using the
anti-log-likelihood function, the second term becomes equal
to

∫
�
〈∇Vη,T (y(x)) − T(y)〉dx, and hence vanishes. The

following corollary is straightforward:

Corollary 1 The Eulerian derivative, in the direction of
V, of the functional Jr(�) = − ∫

�
log(p(y(x), η̂ML(�)))dx

where η̂ML is the ML estimate, is the following:

〈J ′
r (�),V〉 =

∫

∂�

(log (p(y(x), η̂ML(�))))(V · N)da(x).

(29)

This provides an alternative and elegant proof to the re-
sult of [35, 47]. Nonetheless, we here point out that, in the
work of [35], the role of the parameters estimator was not
elucidated. Indeed, the evolution speed expression of Corol-
lary 1 is only valid when the MLE is used for η, otherwise
complicated additive terms may appear with others estima-
tors.

A straightforward exercise is to apply (29) to some com-
mon members of exponential families. This is the goal of
Table 2 which summarizes the computed speed expressions
of some common distributions, when minimizing the anti-
log-likelihood and using the MLE for the parameters.

4.3 Beyond ML: Relative Entropy

As far as the segmentation of homogeneous regions is con-
cerned, we may also focus our attention on energy criteria
based on information measures [13] such as the relative en-
tropy. The latter is also known as the Kullback-Leibler di-
vergence (KLD). Note that in this case the integrals are over
the real line and no more over the domain. In this section,
we first give a general result concerning the derivation of
the expectation of a function of a pdf. This general result is
then applied to obtain the derivative of the KLD.

4.3.1 Derivation of the Expectation of a Function of a pdf

Let us introduce the following quantity which designs the
expectation over a pdf pin(y,η(�in)) of a function of the
pdf pout (y,η(�out )):

HY (ηin,ηout ) = Ein[�(pout (Y,ηout ))]
=

∫

χ

pin(y,ηin)�(pout (y,ηout ))dy, (30)

where χ is the domain of the random variable Y and � is
a continuously differentiable and integrable function. When
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Table 2 Speed expressions of some common members of exponential families, when minimizing the anti-log-likelihood associated to the MLE
for the parameters

Law Parameter η Speed expression

Normal (μ,σ ) log(σin) + (I−μin)2

2σ 2
in

− log(σout ) − (I−μout )
2

2σ 2
out

Exponential λ − log(λin) + λinI + log(λout ) − λout I

Poisson μ −I log(μin) + μin + I log(μout ) − μout

Rayleigh θ2 I 2

2θ2
in

− log( I

θ2
in

) − I 2

2θ2
out

+ log( I

θ2
out

)

Gamma (λ,p) log(�(pin)λ
pin

in ) + I
λin

− pin log(I ) − log(�(pout )λ
pout
out ) − I

λout
+ pout log(I )

we consider the pdf of a feature y within a region �, the
pdf parameters vectors are again region-dependent, that is
HY (ηin,ηout ) = HY (ηin(�in),ηout (�out )). Such a quantity
appears in many interesting information measures such as
the cross entropy (with �(p) = − log(p)), the differential
entropy (with in = out and �(p) = − log(p)), or the KLD
which is detailed thereafter. It is then interesting to compute
the Eulerian derivative with respect to the domain of this
quantity:

Theorem 7 The Eulerian derivative, in the direction V, of
the functional HY (ηin,ηout ) defined in (30) with pin(y,ηin)

and pout (y,ηout ) two members of exponential families that
belong to the same parametric law, is as follows:

〈HY (ηin,ηout ),V〉
= 〈∇Vηout ,Ein[pout�

′(pout )(T(Y ) − ∇A(ηout ))]〉
+ 〈∇Vηin,Ein[�(pout )(T(Y ) − ∇A(ηin))]〉.

The proof can be found in Appendix C.

4.3.2 Region Competition Using the KLD

When considering the segmentation of an image into two
regions �in and �out , we propose here to consider the max-
imization of the relative entropy or KLD defined as follows:

Definition 5 The relative entropy between the pdf
pin(y,ηin) of the feature y within the region �in and the pdf
pout (y,ηout ) of the feature y within the region �out is de-
fined as follows:

D(pin‖pout ) =
∫

χ

pin(y,ηin) log
pin(y,ηin)

pout (y,ηout )
dy. (31)

This quantity is always positive and convex, but non-
symmetric. It can be expressed using the expectation under
the pdf pin, denoted by Ein, as follows:

D(pin‖pout ) = Ein[log(pin(Y,ηin))]
− Ein[log(pout (Y,ηout ))]. (32)

To get the gist of using KLD as a criterion in an RBAC
functional, consider the data yi = {y(x)|x ∈ �i} as an iid
sequence from the statistical model pi(y,ηi ). Maximizing
the KLD between the two pdfs pin and pout can be seen as
equivalent to minimizing the log-likelihood function [13]:

1

|�in|
∫

�in

log(p(y(x),ηout )dx,

which tends to Ein[log(pout (y,ηout ))] using the weak law
of large number for a very large domain �in. In other words,
the KLD-maximization based segmentation criterion will
look for the configuration that maximizes the log-likelihood
of the data yi under their actual model pin, while minimiz-
ing the plausibility of the same data under pout . Thus, trans-
lating this into a segmentation setting, the KLD acts as a
region competition criterion.

When the two pdfs of exponential families belong to the
same parametric law, we can compute the Eulerian deriva-
tive of D(pin‖pout ).

Theorem 8 Suppose that pin(y,ηin) and pout (y,ηout ) are
two members of exponential families that follow the same
distribution with distinct parameters. The Eulerian deriva-
tive, in the direction V, of the functional D(pin‖pout ) is:

〈D′(pin‖pout ),V〉
= 〈∇Vηin, Ä(ηin)(ηin − ηout )〉

+ 〈∇Vηout ,∇A(ηout ) − ∇A(ηin)〉. (33)

The proof is given in Appendix D.
We can specialize this result when the parameter η is

estimated using the ML method for the full rank exponen-
tial family and using two complementary domains �in and
�out . The two domains then share the same boundary with
normals pointing to opposite directions.
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Corollary 2 The Eulerian derivative, in the direction V, of
the functional D(pin‖pout ) with pin(y, η̂in) and pout (y, η̂out )

two members of exponential families with η̂in and η̂out the
parameters estimated using the MLE, is as follows:

〈D′(pin‖pout ),V〉
= −〈∇VT(y)in, η̂in − η̂out 〉 + 〈∇VT(y)out , (34)

[Ä( ˆηout )]−1[∇A(η̂out ) − ∇A( ˆηin)])〉,
where

∇VT(y)in = 1

|�in|
∫

∂�in

(
T(y)in − T(y(x))

)

× (V · N)da(x), (35)

and

∇VT(y)out = − 1

|�out |
∫

∂�out

(
T(y)out − T(y(x))

)

× (V · N)da(x). (36)

The proof is given in Appendix E.
Again, for the reader’s convenience, let us take the exam-

ple of the Rayleigh pdf where:

T (y) = y2, η̂i = −1

T (y)
= −1

2θ2
i

,

(37)

A′(η̂i) = −1

η̂i

, A′′(η̂i) = 1

η̂i
2
, A′′(η̂i)

−1 = η̂i
2
,

where i = in or out . After appropriate substitutions in (34)
and some rearrangements, we obtain:

〈D′(pin‖pout ),V〉

=
(

1 − θ2
in

θ2
out

)

×
(

1

|�in|
∫

∂�in

(

1 − y2(x)

2θ2
in

)

(V · N)da(x)

)

+
(

1 − θ2
in

θ2
out

)

×
(

1

|�out |
∫

∂�out

(

1 − y2(x)

2θ2
out

)

(V · N)da(x)

)

. (38)

In order to maximize the relative entropy between the two
pdfs, we can make an active contour evolve using the fol-
lowing velocity:

speed(x,�)

=
(

1 − θ2
in

θ2
out

)

×
(

1

|�in|

(

1 − y2(x)

2θ2
in

)

+ 1

|�out |
(

1 − y2(x)

2θ2
out

))

.

(39)

Table 3 summarizes the evolution speed expressions of
some common distributions belonging to exponential fam-
ilies, when maximizing the relative entropy and using the
MLE for the parameters.

4.4 Summary

So far, we have introduced mainly two general region de-
scriptors taking into account the statistical properties of the
noise, and we have given expressions of the associated evo-
lution speeds. Let us now summarize how these descriptors
will be incorporated in our RBAC-based segmentation algo-
rithm. Hereafter, the feature y(x) of the image is chosen to
be the intensity I (x) at pixel x.

– The first type of RBAC functional to be minimized can be
finally written as:

J (�1, . . . ,�n,�)

=
m∑

i=1

∫

�i

�(pi(I (x),ηi ))dx + βEb(�), (40)

where � = ⋃m
i=1 ∂�i , and as in (2), Eb is a regularization

term (e.g. curve length) balanced with a positive real pa-
rameter β . Here the RBAC segmentation problem aims
at finding a partition of the image into m ≥ 2 regions
{�1, . . . ,�m}. This functional is typically chosen with
the anti-log-likelihood descriptor where one can assign a
specific noise model to each region �i all possibly dif-
ferent. The evolution speed associated to this energy is
directly obtained from the results of Sects. 4.1 or 4.2.

– As explained in Sect. 4.3.2, the KLD acts as a region com-
petition criterion, and makes sense only when segmenting
in two regions. The criterion to maximize becomes:

J (�in,�out ,�)

= Ein[log(pin(I,ηin))] − Ein[log(pout (I,ηout ))]
+ βEb(�), (41)

and the associated evolution speed is obtained from the re-
sults given Sect. 4.3.2. This expression is non-symmetric
in the assignment of “in” and “out”. Thus, the segmen-
tation will depend on what is defined as the inside re-
gion, and even more on the initialization of the active con-
tour.
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Table 3 Speed expressions of some common distributions of exponential families when maximizing the relative entropy and using the MLE for
the parameters

Law η Speed expression

Normal (μ,σ ) 1
|�in| [(μin − y)(

μin

σ 2
in

− μout

σ 2
out

) + (μ2
in + σ 2

in − y2)( 1
2σ 2

out

− 1
2σ 2

in

)]
− 1

σ 2
out |�out | (μout − y)[(1 + 2μ2

out

σ 2
out

)(μout − μin) − μout

σ 2
out

(μ2
out − μ2

in + σ 2
out − σ 2

in)]
− 1

σ 2
out |�out | (μ

2
out + σ 2

out − y2)[−μout

σ 2
out

(μout − μin) + 1
2σ 2

out

(μ2
out − μ2

in + σ 2
out − σ 2

in)]

Exponential λ − 1
|�in| ((

1
λin

− y(x))(λout − λin)) + 1
|�out | ((

1
λout

− y(x))(λout − λin

λout
))

Poisson μ − 1
|�in| ((μin − y(x))(log(

μout

μin
))) + 1

|�out | ((μout − y(x))(1 − μin

μout
))

Rayleigh θ2 (1 − θ2
in

θ2
out

)( 1
|�in| (1 − y2(x)

2θ2
in

) + 1
|�out | (1 − y2(x)

2θ2
out

))

Gamma (λ,p) − 1
|�in| (

pin

λin
− y)(λout − λin) + (�0(pin) − log(λiny))(pin − pout )

+ A · ( pout

λout
− y)[λout

2�1(pout )(
pout

λout
− pin

λin
) − λout (�0(pout ) − �0(pin) + log(

λin

λout
))]

+ A · (�0(pout ) − log(λout y))[pout (�0(pout ) − �0(pin) + log(
λin

λout
)) − λout (

pout

λout
− pin

λin
)]

where A = 1
|�out |(pout �1(pout )−1)

5 Experimental Results

5.1 Synthetic Data

This section presents some experimental results on noisy im-
ages. The synthetic noise-free test image is shown in Fig. 2.

The first experiment that we report here sheds light on
the role of the noise model on the actual performance
of the RBAC segmentation algorithm. For four different
Battacharya distances (BD), we have systematically cor-
rupted the test image with two types of noise: Poisson and
Rayleigh. The Battacharya distance is used as a measure of
“contrast” between the objects and the background. It is de-
fined as:

D(pb(I (x)),po(I (x))) = − log
∫

X

√
pb(I (x))po(I (x))dx

(42)

with pb and po are respectively the background and the ob-
ject pdfs.

For each combination of BD value and noise type, 50
noisy images were generated. Each noisy image was then
segmented using five different energy functions, namely
Chan-Vese [46], and our functional (40) with the anti-log-
likelihood function and MLE with four assumed noise mod-
els: Gaussian, Rayleigh, Exponential and Poisson. The evo-
lution speeds associated to our noise models were picked up
from Table 2. For each segmented image with each method
at each BD value, the average false positive fraction (FPF)
and true positive fraction (TPF), over the 50 simulations
were computed. The bottom-line of the experiment is to

Fig. 2 Synthetic noise-free test
image

show that using the appropriate noise model will lead to the
best performance in terms of compromise between speci-
ficity (over-segmentation as revealed by the FPF) and sensi-
tivity (under-segmentation as revealed by the TPF).

Figure 4 depicts the average TPF (left) and FPF (right)
as a function of the BD for Rayleigh ((a)–(b)) and Poisson
((c)–(d)) noises. As expected, the FPF exhibits a decreasing
tendency as the BD increases, while the TPF increases with
BD, which is intuitively acceptable. More interestingly, the
best performance in terms of compromise between FPF and
TPF is reached when the contaminating noise and the noise
model in the functional (Table 2) are the same. This behav-
ior is more salient at low BD values, i.e. high noise levels.
These quantitative results are confirmed by visual results as
portrayed in Fig. 3(e)–(h).

We also compared the two RBAC functionals (40)
and (41). In this experiment, the noise-free image was cor-
rupted with a Rayleigh noise and 50 noisy images were gen-
erated. Each noisy image was segmented using each of the
two energy functionals, where pin and pout are Rayleigh
pdfs and MLE was used for the estimation of their parame-
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Fig. 3 (a) Histogram of the noisy image, (b) Rayleigh-noisy image
with original contrast (Battacharya distance is 1.0), (c) Noisy image
after contrast enhancement, (d) Initial contour, (e) Final contour with
Chan-Vese criterion, (f) Final contour with Poisson criterion and anti-

log-likelihood function, (g) Final contour with Exponential criterion
and anti-log-likelihood function, (h) Final contour with Rayleigh crite-
rion and anti-log-likelihood function, (i) Final contour with KLD and
Rayleigh pdf

Fig. 4 TPF and FPF as a function of BD for the anti-log-likelihood
function using five models: Chan-Vese (dotted line with crosses),
Gaussian (dashed line with squares), Poisson (solid line with circles),

Rayleigh (dash-dotted line with diamonds), Exponential (solid line
with stars). (a) TPF for Rayleigh noise, (b) FPF for Rayleigh noise,
(c) TPF for Poisson noise, (d) FPF for Poisson noise

ters. The associated speeds are respectively obtained from

Table 2 and 3.

The results are reported in Figs. 3 and 5. In Fig. 3(b),
the noisy image looks badly contrasted because of noise
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predominance. For the reader’s convenience and for better
visual rendering, the contrast was artificially enhanced as
shown in Fig. 3(c). The segmentation results are also su-
perimposed over the contrast-enhanced image. By visual in-
spection of Fig. 3(h)–(i), the segmentation results provided
by the two functionals are quite comparable. This visual im-

Fig. 5 Comparison of FPF and TPF as a function of BD for the
anti-log-likelihood (dash-dotted line with diamonds) and KLD (dotted
line with cross). The noise is Rayleigh-distributed. (a) TPF, (b) FPF

pression was more deeply investigated by a careful quanti-
tative study of the fractions FPF and TPF depicted in Fig. 5.
Again, TPF and FPF respect the intuitive monotonic ten-
dencies (FPF decreases while TPF increases). The anti-log-
likelihood functional seems to be the best followed by the
KLD.

5.2 SAR Imaging Data

Our RBAC segmentation algorithm was applied to a real
SAR image shown on Fig. 6(a).

The segmentation results of the original image are de-
picted in Fig. 7. The initial contour (Fig. 6(b)) is com-
posed of many bubbles uniformly spread over the image.
The Chan-Vese model is implicitly a Gaussian noise model
where the standard deviation is assumed to be known and
constant over the image. We see clearly that the five assumed
noise models (Chan-Vese, Gaussian, Poisson, Exponential
and Rayleigh) provide rather good segmentation results of
the image. This shows the applicability of our method to
noise-free images and the stability results of all the differ-
ent models presented before. Moreover, we see clearly that
the segmentation of noise-free images, or equivalently im-
ages with a large Battacharya distance, is virtually the same
whatever the assumed noise model. This confirms the find-
ings of the synthetic image in the previous section when we
quantified the performance using FPF and TPF measures.
When the Battacharya distance became high, the segmenta-
tion errors were negligible. Of course, here we consider a
real image where no ground-truth is available. But, visually,
the results look satisfactory.

We performed the same tests the SAR image corrupted
by a Gaussian noise with 2.5 as Battacharya distance, see
Fig. 6(c). The histogram of this Gaussian noisy image is
given in Fig. 6(d). Visually, the image seems to be rela-
tively simple to segment. However, at this noise level, the
two Gaussians have a large overlap, and a simple thresh-
olding would be definitely awkward. The results on Fig. 8

Fig. 6 SAR Images.
(a) Original image, (b) Initial
contour on original image,
(c) Noisy image corrupted by a
Gaussian noise, (d) Histogram
of the Gaussian noisy image,
(e) Noisy image corrupted by a
Rayleigh noise, (f) Histogram of
the Rayleigh noisy image



J Math Imaging Vis

Fig. 7 Segmentation results of
the original image
(a) Chan-Vese model, (b)
Gaussian model, (c) Poisson
model, (d) Rayleigh model, (e)
Exponential model.
Initialization Fig. 6(b)

Fig. 8 Segmentation results of
the noisy image corrupted by a
Gaussian noise (a) Chan-Vese
model, (b) Gaussian model,
(c) Poisson model, (d) Rayleigh
model, (e) Exponential model.
Initialization as in Fig. 6(b)

Fig. 9 Segmentation results of
the noisy image corrupted by a
Rayleigh noise (a) Chan-Vese
model, (b) Gaussian model,
(c) Poisson model, (d) Rayleigh
model, (e) Exponential model.
Initialization as in Fig. 6(b)

show the final segmentation using the five models cited just
before. Differences are now visible: on the one hand, the two
models based on a Gaussian noise (i.e. Chan-Vese Fig. 8(a)
and Gaussian (b)) give good and comparable results. On the
other hand, the other noise models perform badly except per-
haps the Exponential model. For the Gaussian model, this
was predictable, because it is precisely the type of noise that
contaminates the image. As far as the Poisson model is con-
cerned Fig. 8(c), the darkest (i.e. left) part of the image is
rather properly segmented while the initial contour (bub-
bles) did not evolve that much on the brightest (i.e. right)
part. One may think that this is an initialization issue. We
carried out other tests using many other (random) initializa-
tions, and the segmentation was always poor on the brightest
part. Our interpretation of this behavior is that a Poisson ran-
dom variable tends to be Gaussian when its mean gets very
large (i.e. very bright image). But the mean and variance at
this asymptotic regime are the same. That is, on the bright-
est part of the image, the noise would be almost Gaussian
but with a highly signal-dependent variance. Finally, using
a Rayleigh model Fig. 8(d), the contour does not even con-
verge whatever the initialization is.

We also carried out the same experiment when a Rayleigh
noise with Battacharya distance of 2 contaminates the SAR
image Fig. 6(e). In this case, manual segmentation is chal-
lenging and difficult. The histogram of this Rayleigh noisy
image is portrayed in Fig. 6(f). Now, the four models con-
verge (Fig. 9) but the Rayleigh model (Fig. 9(d)) is the only
one to provide a segmentation result that is consistent with
visual expectations.

6 Conclusion

In this work, we proposed a novel statistical region-based ac-
tive contours method, where the region descriptor is written
as a function � of some pdf belonging to exponential fami-
lies. The particular case of anti-log-likelihood function is de-
veloped and obtained as a special case of our general setting.
We also shed light on the influence of parameters’ estima-
tion. That is to say, while using log-likelihood function and
MLE (i.e. the more classical case) our results are strictly the
same as the literature. But, using another estimation method,
(i.e. Moments method), complicating additive terms appear.
We also presented another function (KLD) that may be inter-
esting candidates in segmentation problems. This function
acts as a region competition descriptor.

Some experimental results prove the applicability of our
method. First, we have illustrated the influence of additive
terms on the convergence of the active contour using the
moments-based estimator and the necessity to take care of
the dependence of the pdf parameters to the domain. Sec-
ondly, the Monte-Carlo simulations demonstrated that using
the appropriate noise model leads to the best segmentation.
That prove that our model is flexible enough to incorporate
other photometric or geometric priors [33].

Our ongoing work is directed towards extending the im-
plementation of our approach to m > 2 regions by adapt-
ing the multiphase method [46]. We also want to add to our
noise model a texture model [31] to segment textured im-
ages.
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Appendix A: Proof of Theorem 4

Proof In the case of Rayleigh law, the pdf is:

p(y, θ) = y

θ2
exp

(−y2

2θ2

)

, (43)

and the region criterion becomes (for the method of mo-
ments estimator):

Jr(�) = −
∫

�

logy(x)dx + 1

2θ̂2
MO

∫

�

y(x)2dx

+ |�| log(θ̂2
MO(�)). (44)

We first compute the Eulerian derivative in the direction
of V, of the moment estimator θ̂MO. We obtain:

〈θ̂ ′
MO(�),V〉 =

√
2

π

1

|�|
∫

∂�

(y − y(x))(V · N)da(x). (45)

Using Theorem 1, the Eulerian derivative of Jr(�) is:

〈J ′
r (�),V〉 =

∫

∂�

logy(x)(V · N)da(x)

− 〈θ̂MO(�),V〉
θ̂3

MO

∫

�

y(x)2dx

− 1

2θ̂2
MO

∫

∂�

y(x)2(V · N)da(x)

− log(θ̂2
MO)

∫

∂�

(V · N)da(x)

+ 2|�| 〈θ̂
′
MO(�),V〉

θ̂MO
,

which gives:

〈J ′
r (�),V〉 =

∫

∂�

(
log (p(y(x, θ̂MO)))

)
(V · N)da(x)

+ 〈θ̂MO(�),V〉
θ̂3

MO

|�|(2θ̂2
MO − y2), (46)

where y2 = 1
|�|

∫
�

y2(x)dx. We replace θ̂MO and its deriva-
tive by their expressions which leads to:

〈J ′
r (�),V〉 =

∫

∂�

(
log (p(y(x), θ̂MO))

)
(V · N)da(x)

+ π

2

((4/π)y2 − y2)

y3

×
∫

∂�

(y − y(x))(V · N)da(x). (47)

Thus,

〈J ′
r (�),V〉 =

∫

∂�

(
log (p(y(x), θ̂MO))

)
(V · N)da(x)

+ 2

(

1 − π

4

y2

y2

)∫

∂�

(

1 − y(x)

y

)

× (V · N)da(x), (48)

and the result follows. �

Appendix B: Proof of Theorem 6

To compute 〈J ′
r (�),V〉, we must first get the derivative of

p(y(x),η) with respect to the domain, and apply the chain
rule to �(p(y(x),η)).

Using the definition of p(y,η) given in (15) and the chain
rule applied to A(η(�)), we obtain:

〈p′(y,η),V〉 = h(y) (〈∇Vη,T(y)〉 − 〈∇Vη,∇A(η)〉)
× e〈η(�),T(y)〉−A(η(�))

= p(y,η)〈∇Vη,T(y) − ∇A(η)〉. (49)

By the chain rule applied to �(p(y(x),η)), we get:

〈�′(p(y,η)),V〉 = 〈p′(y,η),V〉�′(p), (50)

where �′(r) is the derivative of the function �(r) according
to r , which completes the proof.

Appendix C: Proof of Theorem 7

Using the derivative of the pdf p(y,η) in the direction V
given in (49), we find:

〈HY (ηin,ηout ),V〉
= Ein

[
pout�

′(pout )〈∇Vηout ,Tout (Y ) − ∇Aout (ηout )〉
]

+ Ein

[
�(pout )〈∇Vηin,Tin(Y ) − ∇Ain(ηin)〉

]
.

If the two pdfs belong to the same parametric law, we have
Tin(y) = Tout (y) = T(y), Ain(η) = Aout (η) = A(η) and
hin(y) = hout (y) = h(y). The derivative then reduces to:

〈HY (ηin,ηout ),V〉
= 〈∇Vηout ,Ein[pout�

′(pout )(T(Y ) − ∇A(ηout ))]〉
+ 〈∇Vηin,Ein[�(pout )(T(Y ) − ∇A(ηin))]〉.
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Appendix D: Proof of Theorem 8

We can develop the relative entropy as follows:

D(pin(y,ηin)‖pout (y,ηout ))

= Ein[log(pin(y,ηin))] − Ein[log(pout (y,ηout ))]
= HY (ηin,ηin) − HY (ηin,ηout ).

If the two pdfs belong to the same parametric law, we have
Tin(y) = Tout (y) = T(y), Ain(η) = Aout (η) = A(η) and
hin(y) = hout (y) = h(y). Using Theorem 7, we can deduce
the following derivative for KLD:

〈D′(pin‖pout ),V〉
= 〈∇Vηin,Ein[(T(Y ) − ∇A(ηin))]〉

+ 〈∇Vηin,Ein[log(pin)(T(Y ) − ∇A(ηin))]〉
− 〈∇Vηout ,Ein[(T(Y ) − ∇A(ηout ))]〉
− 〈∇Vηin,Ein[log(pout )(T(Y ) − ∇A(ηout ))]〉.

Using Theorem 2, we can replace Ein[T(y)] by ∇A(ηin),
which yields:

〈D′(pin‖pout ),V〉
= 〈∇Vηin,

Ein[(log(pin) − log(pout ))(T(Y ) − ∇A(ηin))]〉
+ 〈∇Vηout ,∇A(ηout ) − ∇A(ηin))〉

Since pin and pout belong to the same parametric law within
exponential families, we can replace log(pin)− log(pout ) by
〈ηin − ηout ,T(y)〉 − A(ηin) + A(ηout ) and then rearranging
the terms we find:

〈D′(pin‖pout ),V〉
= 〈∇Vηin,Ein[〈ηin − ηout ,T(Y )〉(T(Y ) − Ein[T(Y )])]〉

+ 〈∇Vηout ,∇A(ηout ) − ∇A(ηin)〉
Using the fact that Ä(η) = Cov[T(Y )] and then that
Ä(η)ij = E[Ti(Y )Tj (Y )] − E[Ti(Y )]E[Tj (Y )], we find:

〈D′(pin‖pout ),V〉
= 〈∇Vηin, Ä(ηin)(ηin − ηout )〉

+ 〈∇Vηout ,∇A(ηout ) − ∇A(ηin)〉, (51)

which is the desired result.

Appendix E: Proof of Corollary 2

As discussed after Theorem 3, the parameter η̂ for exponen-
tial families can be uniquely parameterized as a function of

ψ (E[T(Y )]). When using the MLE, the term E[T(Y )] can
be empirically estimated with T(y) and so derived easily
with respect to the domain �. We propose to directly de-
rive the expression ∇A(η) = T(y). This expression can be
written as:

∂A

∂ηi

(η̂) = Ti (y) ∀i ∈ [1, κ]. (52)

We can then compute the shape derivative of this expression,
which gives:

κ∑

j=1

〈η̂j
′
,V〉 ∂2A

∂ηi∂ηj

(η̂) = 〈Ti (y)
′
,V〉 ∀i ∈ [1, κ], (53)

which can be written in the compact form:

∇V(T) = Ä(η̂)∇Vη̂, (54)

where

∇VT(y) = (〈T1(y)
′
,V〉, 〈T2(y)

′
,V〉, . . . , 〈Tκ(y)

′
,V〉)T .

Restricting our study to the full rank exponential family,
where Ä(η) is a symmetric positive-definite, hence invert-
ible, matrix (Theorem 3), the domain derivative of the para-
meters η is uniquely determined by:

Ä(η̂)−1∇V(T) = ∇Vη̂. (55)

This equation holds for η̂in and η̂out and thus, the domain
derivative of D(pin‖pout ) can be expressed as:

〈D′(pin‖pout ),V〉
= 〈Ä(η̂in)

−1∇V(Tin), Ä(η̂in)(η̂in − η̂out )〉
+ 〈Ä(η̂out )

−1∇V(Tout ),∇A(η̂out ) − ∇A(η̂in)〉. (56)

The corollary follows after simplification using the fact that
the matrix Ä(η̂i )

−1 is symmetric.
The domain derivative ∇V(Tin) is computed using The-

orem 1 and is given by

∇V(Tin) = 1

|�in|
∫

∂�

(
T(y)in − T(y(x))

)
(V · N)da(x).

(57)

The domain �out is the complement of the domain �in.
They share the same boundary with normals pointing to op-
posite direction. Similar results can then be found when con-
sidering the domain derivative of Tout :

∇V(Tout ) = − 1

|�out |
∫

∂�out

(
T(y)out − T(y(x))

)

× (V · N)da(x). (58)
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