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Glossary

WT1D
The one-dimensional Wavelet Transform as defined in [1]. See also [2] in this volume.

WT2D
The two-dimensional Wavelet Transform.

Discrete Ridgelet Trasnform (DRT)
The discrete implementation of the continuous Ridgelet transform.

Fast Slant Stack (FSS)
An algebraically exact Radon transform of data on a Cartesian grid.

First Generation Discrete Curvelet Transform (DCTG1)
The discrete curvelet transform constructed based on the discrete ridgelet transform.

Second Generation Discrete Curvelet Transform (DCTG2)
The discrete curvelet transform constructed based on appropriate bandpass filtering in the Fourier
domain.
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Anisotropic elements
By anistropic, we mean basis elements with elongated effective support; i.e. length > width.

Parabolic scaling law
A basis element obeys the parabolic scaling law if its effective support is such that width ≈ length2.

1 Definition of the Subject and its Importance

Despite the fact that wavelets have had a wide impact in image processing, they fail to efficiently
represent objects with highly anisotropic elements such as lines or curvilinear structures (e.g. edges).
The reason is that wavelets are non-geometrical and do not exploit the regularity of the edge curve.

The Ridgelet and the Curvelet [3, 4] transforms were developed as an answer to the weakness of
the separable wavelet transform in sparsely representing what appears to be simple building atoms
in an image, that is lines, curves and edges. Curvelets and ridgelets take the form of basis elements
which exhibit high directional sensitivity and are highly anisotropic [5, 6, 7, 8]. These very recent
geometric image representations are built upon ideas of multiscale analysis and geometry. They
have had an important success in a wide range of image processing applications including denoising
[8, 9, 10], deconvolution [11, 12], contrast enhancement [13], texture analysis [14, 15], detection
[16], watermarking [17], component separation [18], inpainting [19, 20] or blind source separation
[21, 22]. Curvelets have also proven useful in diverse fields beyond the traditional image processing
application. Let’s cite for example seismic imaging [10, 23, 24], astronomical imaging [25, 26, 27],
scientific computing and analysis of partial differential equations [28, 29]. Another reason for the
success of ridgelets and curvelets is the availability of fast transform algorithms which are available
in non-commercial software packages following the philosophy of reproducible research, see [30, 31].

2 Introduction

2.1 Sparse Geometrical Image Representation

Multiscale methods have become very popular, especially with the development of the wavelets in
the last decade. Background texts on the wavelet transform include [32, 1, 33]. An overview of
implementation and practical issues of the wavelet transform can also be found in [2], included in
this volume.

Despite the success of the classical wavelet viewpoint, it was argued that the traditional wavelets
present some strong limitations that question their effectiveness in higher-dimension than 1 [3, 4].
Wavelets rely on a dictionary of roughly isotropic elements occurring at all scales and locations,
do not describe well highly anisotropic elements, and contain only a fixed number of directional
elements, independent of scale. Following this reasoning, new constructions have been proposed
such as the ridgelets [3, 5] and the curvelets [4, 6, 7, 8]. Ridgelets and curvelets are special
members of the family of multiscale orientation-selective transforms, which has recently led to
a flurry of research activity in the field of computational and applied harmonic analysis. Many
other constructions belonging to this family have been investigated in the literature, and go by the
name contourlets [34], directionlets [35], bandlets [36, 37], grouplets [38], shearlets [39], dual-tree
wavelets and wavelet packets [40, 41], etc.

Throughout this paper, the term ’sparsity’ is used and intended in a weak sense. We are aware
that practical images and signals may not be supported in a transform domain on a set of relatively
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Figure 1: Few Ridgelets examples - The second to fourth graphs are obtained after simple geometric
manipulations of the first ridgelet, namely rotation, rescaling, and shifting.

small size (sparse set). Instead, they may only be compressible (nearly sparse) in some transform
domain. Hence, with a slight abuse of terminology, we will say that a representation is sparse for
an image within a certain class, if it provides a compact description of such an image.

Notations

We work throughout in two dimensions with spatial variable x ∈ R
2 and ν a continuous frequency-

domain variable. Parentheses (., .) are used for continuous-domain function evaluations, and brack-
ets [., .] for discrete-domain array indices. The hat ˆ notation will be used for the Fourier transform.

3 Ridgelets

3.1 The Continuous Ridgelet Transform

The two-dimensional continuous ridgelet transform in R
2 can be defined as follows [42]. We pick

a smooth univariate function ψ : R → R with sufficient decay and satisfying the admissibility
condition ∫

|ψ̂(ν)|2/|ν|2 dν <∞, (1)

which holds if, say, ψ has a vanishing mean
∫
ψ(t)dt = 0. We will suppose a special normalization

about ψ so that
∫∞
0

|ψ̂(ν)|2ν−2dν = 1.
For each scale a > 0, each position b ∈ R and each orientation θ ∈ [0, 2π), we define the bivariate

ridgelet ψa,b,θ : R
2 → R by

ψa,b,θ(x) = ψa,b,θ(x1, x2) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a); (2)

A ridgelet is constant along lines x1 cos θ + x2 sin θ = const. Transverse to these ridges it is a
wavelet. Figure 1 depicts few examples of ridgelets. The second to fourth panels are obtained after
simple geometric manipulations of the ridgelet (left panel), namely rotation, rescaling, and shifting.

Given an integrable bivariate function f(x), we define its ridgelet coefficients by

Rf (a, b, θ) :=
〈
f, ψa,b,θ

〉
=

∫

R2

f(x)ψa,b,θ(x)dx.
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We have the exact reconstruction formula

f(x) =

∫
2π

0

∫ ∞

−∞

∫ ∞

0

Rf (a, b, θ)ψa,b,θ(x)
da

a3
db
dθ

4π
(3)

valid almost everywhere for functions which are both integrable and square integrable. This formula
is stable and one can prove a Parseval relation [3].

Ridgelet analysis may be constructed as wavelet analysis in the Radon domain. The rationale
behind this is that the Radon transform translates singularities along lines into point singularities,
for which the wavelet transform is known to provide a sparse representation. Recall that the Radon
transform of an object f is the collection of line integrals indexed by (θ, t) ∈ [0, 2π) × R given by

Rf(θ, t) =

∫

R2

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (4)

where δ is the Dirac distribution. Then the ridgelet transform is precisely the application of a 1-
dimensional wavelet transform to the slices of the Radon transform where the angular variable θ is
constant and t is varying. Thus, the basic strategy for calculating the continuous ridgelet transform
is first to compute the Radon transform Rf(t, θ) and second, to apply a one-dimensional wavelet
transform to the slices Rf(·, θ). Several digital ridgelet transforms (DRTs) have been proposed,
and we will describe three of them in this section, based on different implementations of the Radon
transform.

3.1.1 The RectoPolar Ridgelet transform

A fast implementation of the Radon transform can be proposed in the Fourier domain, based on
the projection-slice-theorem. First the 2D FFT of the given image is computed. Then the resulting
function in the frequency domain is to be used to evaluate the frequency values in a polar grid of
rays passing through the origin and spread uniformly in angle. This conversion from Cartesian to
Polar grid could be obtained by interpolation, and this process is well known by the name gridding
in tomography. Given the polar grid samples, the number of rays corresponds to the number of
projections, and the number of samples on each ray corresponds to the number of shifts per such
angle. Applying one dimensional inverse Fourier transform for each ray, the Radon projections are
obtained.

The above described process is known to be inaccurate due to the sensitivity to the interpolation
involved. This implies that for a better accuracy, the first 2D-FFT employed should be done with
high-redundancy.

An alternative solution for the Fourier-based Radon transform exists, where the polar grid
is replaced with a pseudo-polar one. The geometry of this new grid is illustrated in Figure 2.
Concentric circles of linearly growing radius in the polar grid are replaced by concentric squares of
linearly growing sides. The rays are spread uniformly not in angle but in slope. These two changes
give a grid vaguely resembling the polar one, but for this grid a direct FFT can be implemented
with no interpolation. When applying now 1D-FFT for the rays, we get a variant of the Radon
transform, where the projection angles are not spaced uniformly.

For the pseudo-polar FFT to be stable, it was shown that it should contain at least twice as
many samples, compared to the original image we started with. A by-product of this construction
is the fact that the transform is organized as a 2D array with rows containing the projections as
a function of the angle. Thus, processing the Radon transform in one axis is easily implemented.
More details can be found in [8].
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Figure 2: Illustration of the pseudo-polar grid in the frequency domain for an n by n image (n = 8).

3.1.2 One-dimensional Wavelet Transform

To complete the ridgelet transform, we must take a one-dimensional wavelet transform (WT1D)
along the radial variable in Radon space. We now discuss the choice of the digital WT1D.

Experience has shown that compactly-supported wavelets can lead to many visual artifacts when
used in conjunction with nonlinear processing, such as hard-thresholding of individual wavelet co-
efficients, particularly for decimated wavelet schemes used at critical sampling. Also, because of
the lack of localization of such compactly-supported wavelets in the frequency domain, fluctuations
in coarse-scale wavelet coefficients can introduce fine-scale fluctuations. A frequency-domain ap-
proach must be taken, where the discrete Fourier transform is reconstructed from the inverse Radon
transform. These considerations lead to use band-limited wavelet, whose support is compact in the
Fourier domain rather than the time-domain [43, 44, 8]. In [8], a specific overcomplete wavelet
transform [45, 33] has been used. The wavelet transform algorithm is based on a scaling function φ
such that φ̂ vanishes outside of the interval [−νc, νc]. We define the Fourier transform of the scaling
function as a re-normalized B3-spline

φ̂(ν) =
3

2
B3(4ν),

and ψ̂ as the difference between two consecutive resolutions

ψ̂(2ν) = φ̂(ν) − φ̂(2ν).

Because ψ̂ is compactly supported, the sampling theorem shows than one can easily build a pyramid
of n+ n/2 + . . .+ 1 = 2n elements, see [33] for details.

This WT1D transform enjoys the following useful properties:

• The wavelet coefficients are directly calculated in the Fourier space. In the context of the
ridgelet transform, this allows avoiding the computation of the one-dimensional inverse Fourier
transform along each radial line.
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Figure 3: Discrete ridgelet transform flowchart. Each of the 2n radial lines in the Fourier domain
is processed separately. The 1-D inverse FFT is calculated along each radial line followed by a 1-D
nonorthogonal wavelet transform. In practice, the one-dimensional wavelet coefficients are directly
calculated in the Fourier space.

• Each sub-band is sampled above the Nyquist rate, hence, avoiding aliasing –a phenomenon
typically encountered by critically sampled orthogonal wavelet transforms [46].

• The reconstruction is trivial. The wavelet coefficients simply need to be co-added to recon-
struct the input signal at any given point. In our application, this implies that the ridgelet
coefficients simply need to be co-added to reconstruct Fourier coefficients.

This wavelet transform introduces an extra redundancy factor. However, we note that the goal
in this implementation is not data compression or efficient coding. Rather, this implementation
would be useful to the practitioner whose focuses on data analysis, for which it is well-known that
over-completeness through (almost) translation-invariance can provide substantial advantages.

Assembling all above ingredients together gives the flowchart of the discrete ridgelet transform
(DRT) depicted in Figure 3. The DRT of an image of size n × n is an image of size 2n × 2n,
introducing a redundancy factor equal to 4.

We note that, because this transform is made of a chain of steps, each one of which is invertible,
the whole transform is invertible, and so has the exact reconstruction property. For the same
reason, the reconstruction is stable under perturbations of the coefficients.

Last but not least, this discrete transform is computationally attractive. Indeed, the algorithm
we presented here has low complexity since it runs in O(n2 logn) flops for an n× n image.
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Figure 4: The backprojection of a ridgelet coefficient by the FFT-based ridgelet transform (left),
and by the OFRT (right).

3.2 The Orthonormal Finite Ridgelet Transform

The orthonormal finite ridgelet transform (OFRT) has been proposed [47] for image compression
and filtering. This transform is based on the finite Radon transform [48] and a 1D orthogonal
wavelet transform. It is not redundant and reversible. It would have been a great alternative to
the previously described ridgelet transform if the OFRT were not based on an awkward definition
of a line. In fact, a line in the OFRT is defined algebraically rather that geometrically, and so the
points on a ’line’ can be arbitrarily and randomly spread out in the spatial domain. Figure 4 shows
the back-projection of a ridgelet coefficient by the FFT-based ridgelet transform (left) and by the
OFRT (right). It is clear that the backprojection of the OFRT is nothing like a ridge function.

Because of this specific definition of a line, the thresholding of the OFRT coefficients produces
strong artifacts. Figure 5 shows a part of the original image Boat, and its reconstruction after hard
thresholding the OFRT of the noise-free Boat. The resulting image is not smoothed as one would
expect, but rather a noise has been added to the noise-free image as part of the filtering!

Finally, the OFRT presents another limitation: the image size must be a prime number. This
last point is however not too restrictive, because we generally use a spatial partitioning when
denoising the data, and a prime number block size can be used. The OFRT is interesting from the
conceptual point of view, but still requires work before it can be used for real applications such as
denoising.

3.3 The Fast Slant Stack Ridgelet Transform

The Fast Slant Stack (FSS) [49] is a Radon transform of data on a Cartesian grid, which is alge-
braically exact and geometrically more accurate and faithful than the previously described methods.
The back-projection of a point in Radon space is exactly a ridge function in the spatial domain (see
Figure 6). The transformation of an n × n image is a 2n × 2n image. n line integrals with angle
between [−π

4
, π

4
] are calculated from the zero padded image on the y-axis, and n line integrals with

angle between [π
4
, 3π

4
] are computed by zero padding the image on the x-axis. For a given angle

inside [−π
4
, π

4
], 2n line integrals are calculated by first shearing the zero-padded image, and then

integrating the pixel values along all horizontal lines (resp. vertical lines for angles in [π
4
, 3π

4
]). The
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Figure 5: Part of original noise-free Boat image (left), and reconstruction after hard thresholding
its OFRT coefficients (right).

Figure 6: Backprojection of a point at four different locations in the Radon space using the FSS
algorithm.

shearing is performed one column at a time (resp. one line at a time) by using the 1D FFT. Figure
7 shows an example of the image shearing step with two different angles (5π

4
and −π

4
). A DRT

based on the FSS transform has been proposed in [50]. The connection between the FSS and the
Linogram has been investigated in [49]. A FSS algorithm is also proposed in [49], based on the 2D
Fast Pseudo-polar Fourier transform which evaluates the 2-D Fourier transform on a non-Cartesian
(pseudo-polar) grid, operating in O(n2 logn) flops.

Figure 8 left exemplifies a ridgelet in the spatial domain obtained from the DRT based on
FSS implementation. Its Fourier transform is shown on Figure 8 right superimposed on the DRT
frequency tiling [50]. The Fourier transform of the discrete ridgelet lives in an angular wedge. More
precisely, the Fourier transform of a discrete ridgelet at scale j lives within a dyadic square of size
∼ 2j .

3.4 Local Ridgelet Transforms

The ridgelet transform is optimal for finding global lines of the size of the image. To detect line
segments, a partitioning must be introduced [5]. The image can be decomposed into overlapping
blocks of side-length b pixels in such a way that the overlap between two vertically adjacent blocks
is a rectangular array of size b by b/2; we use overlap to avoid blocking artifacts. For an n by n
image, we count 2n/b such blocks in each direction, and thus the redundancy factor grows by a
factor of 4.

8



Figure 7: Slant Stack Transform of an image.

Ridgelet spatial domain Ridgelet frequency domain

Figure 8: (a) Example of a ridgelet obtained by the Fast Slant Stack implementation. (b) Its FFT
superimposed on the DRT frequency tiling.
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The partitioning introduces redundancy, as a pixel belongs to 4 neighboring blocks. We present
two competing strategies to perform the analysis and synthesis:

1. The block values are weighted by a spatial window w (analysis) in such a way that the
co-addition of all blocks reproduce exactly the original pixel value (synthesis).

2. The block values are those of the image pixel values (analysis) but are weighted when the
image is reconstructed (synthesis).

Experiments have shown that the second approach leads to better results especially for restoration
problems, see [8] for details. We calculate a pixel value, f [i1, i2] from its four corresponding block
values of half-size m = b/2, namely, B1[k1, l1], B2[k2, l1], B3[k1, l2] and B4[k2, l2] with k1, l1 > b/2
and k2 = k1 −m, l2 = l1 −m, in the following way:

f1 = w(k2/m)B1[k1, l1] + w(1 − k2/m)B2[k2, l1]

f2 = w(k2/m]B3[k1, l2] + w(1 − k2/m)B4[k2, l2]

f [i1, i2] = w(l2/m)f1 + w(1 − l2/m)f2. (5)

where w(x) = cos2(πx/2) is the window. Of course, one might select any other smooth, non-
increasing function satisfying, w(0) = 1, w(1) = 0, w′(0) = 0 and obeying the symmetry property
w(x) + w(1 − x) = 1.

3.5 Sparse Representation by Ridgelets

The continuous ridgelet transform provides sparse representation of both smooth functions (in the
Sobolev space W 2

2 ) and of perfectly straight lines [51, 52]. We have just seen that there are also
various DRTs, i.e. expansions with countable discrete collection of generating elements, which
correspond either to frames or orthobases. It has been shown for these schemes that the DRT
achieves near-optimal M -term approximation - that is the non-linear approximation of f using the
M highest ridgelet coefficients in magnitude - to smooth images with discontinuities along straight
lines [3, 52]. In summary, ridgelets provide sparse presentation for piecewise smooth images away
from global straight edges.

4 Curvelets

4.1 The First Generation Curvelet Transform

In image processing, edges are curved rather than straight lines and ridgelets are not able to
efficiently represent such images. However, one can still deploy the ridgelet machinery in a localized
way, at fine scales, where curved edges are almost straight lines (see Figure 9). This is the idea
underlying the first generation curvelets (termed here CurveletG1) [7].

4.1.1 First Generation Curvelets Construction

The CurveletG1 transform [7, 6, 8] opens the possibility to analyze an image with different block
sizes, but with a single transform. The idea is to first decompose the image into a set of wavelet
bands, and to analyze each band by a local ridgelet transform as illustrated on Figure 9. The block
size can be changed at each scale level. Roughly speaking, different levels of the multiscale ridgelet
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Figure 9: Local ridgelet transform on bandpass filtered image. At fine scales, curved edges are
almost straight lines.

pyramid are used to represent different sub-bands of a filter bank output. At the same time, this
sub-band decomposition imposes a relationship between the width and length of the important

frame elements so that they are anisotropic and obey approximately the parabolic scaling law
width ≈ length2.

The First Generation Discrete Curvelet Transform (DCTG1) of a continuum function f(x)
makes use of a dyadic sequence of scales, and a bank of filters with the property that the bandpass
filter ∆j is concentrated near the frequencies [22j , 22j+2], i.e.

∆j(f) = Ψ2j ∗ f, Ψ̂2j(ν) = Ψ̂(2−2j
ν).

In wavelet theory, one uses a decomposition into dyadic sub-bands [2j , 2j+1]. In contrast, the sub-
bands used in the discrete curvelet transform of continuum functions have the nonstandard form
[22j , 22j+2]. This is nonstandard feature of the DCTG1 well worth remembering (this is where the
approximate parabolic scaling law comes into play).

The DCTG1 decomposition is the sequence of the following steps:

• Sub-band Decomposition. The object f is decomposed into sub-bands.

• Smooth Partitioning. Each sub-band is smoothly windowed into “squares” of an appropriate
scale (of side-length ∼ 2−j).

• Ridgelet Analysis. Each square is analyzed via the DRT.

In this definition, the two dyadic sub-bands [22j , 22j+1] and [22j+1, 22j+2] are merged before applying
the ridgelet transform.

4.1.2 Digital Implementation

It seems that the isotropic “à trous” wavelet transform [33, 2] is especially well-adapted to the
needs of the digital curvelet transform. The algorithm decomposes an n by n image f [i1, i2] as a
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superposition of the form

f [i1, i2] = cJ [i1, i2] +
J∑

j=1

wj [i1, i2],

where cJ is a coarse or smooth version of the original image f and wj represents ‘the details of f ’
at scale 2−j . Thus, the algorithm outputs J + 1 sub-band arrays of size n× n.

A sketch of the DCTG1 algorithm is as follows:

Algorithm 1 DCTG1.

Require: Input n× n image f [i1, i2], type of DRT (see above).
1: Apply the à trous isotropic WT2D with J scales,
2: Set B1 = Bmin,
3: for j = 1, . . . , J do
4: Partition the sub-band wj with a block size Bj and apply the DRT to each block,
5: if j modulo 2 = 1 then
6: Bj+1 = 2Bj ,
7: else
8: Bj+1 = Bj .
9: end if

10: end for

The side-length of the localizing windows is doubled at every other dyadic sub-band, hence
maintaining the fundamental property of the curvelet transform which says that elements of length
about 2−j/2 serve for the analysis and synthesis of the j-th sub-band [2j , 2j+1]. Note also that
the coarse description of the image cJ is left intact. In the results shown in this paper, we used
the default value Bmin = 16 pixels in our implementation. Figure 10 gives an overview of the
organization of the DCTG1 algorithm.

This implementation of the DCTG1 is also redundant. The redundancy factor is equal to 16J+1
whenever J scales are employed. The DCTG1 algorithm enjoys exact reconstruction and stability,
as each step of the analysis (decomposition) algorithm is itself invertible. One can show that the
computational complexity of the DCTG1 algorithm we described here based on the DRT of Fig.3
is O(n2(log n)2) for an n×n image. Figure 11 shows a few curvelets at different scales, orientations
and locations.

4.1.3 Sparse Representation by First Generation Curvelets

The CurveletG1 elements can form either a frame or a tight frame for L2(R
2) [4], depending on

the WT2D used and the DRT implementation (rectopolar or FSS Radon transform). The frame
elements are anisotropic by construction and become successively more anisotropic at progressively
higher scales. These curvelets also exhibit directional sensitivity and display oscillatory components
across the ’ridge’. A central motivation leading to the curvelet construction was the problem of
non-adaptively representing piecewise smooth (e.g. C2) images f which have discontinuity along
a C2 curve. Such a model is the so-called cartoon model of (non-textured) images. With the
CurveletG1 tight frame construction, it was shown in [4] that for such f , the M -term non-linear
approximations fM of f obey, for each κ > 0,

‖f − fM‖2 ≤ CκM
−2+κ, M → +∞.
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Figure 10: First Generation Discrete Curvelet Transform (DCTG1) flowchart. The figure illustrates
the decomposition of the original image into sub-bands followed by the spatial partitioning of each
sub-band. The ridgelet transform is then applied to each block.

Figure 11: A few first generation curvelets.
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The M -term approximations in the CurveletG1 are almost rate optimal, much better than M -term
Fourier or wavelet approximations for such images, see [1].

4.2 The Second Generation Curvelet Transform

Despite these interesting properties, the CurveletG1 construction presents some drawbacks. First,
the construction involves a complicated seven-index structure among which we have parameters
for scale, location and orientation. In addition, the parabolic scaling ratio width ≈ length2 is not
completely true (see subsection 4.1.1). In fact, CurveletG1 assumes a wide range of aspect ratios.
These facts make mathematical and quantitative analysis especially delicate. Second, the spatial
partitioning of the CurveletG1 transform uses overlapping windows to avoid blocking effects. This
leads to an increase of the redundancy of the DCTG1. The computational cost of the DCTG1 algo-
rithm may also be a limitation for large-scale data, especially if the FSS-based DRT implementation
is used.

In contrast, the second generation curvelets (CurveletG2) [53, 54] exhibit a much simpler and
natural indexing structure with three parameters: scale, orientation (angle) and location, hence
simplifying mathematical analysis. The CurveletG2 transform also implements a tight frame ex-
pansion [53] and has a much lower redundancy. Unlike the DCTG1, the discrete CurveletG2
implementation will not use ridgelets yielding a faster algorithm [53, 54].

4.2.1 Second Generation Curvelets Construction

Continuous coronization The second generation curvelets are defined at scale 2−j , orientation
θl and position xj,l

k
= R−1

θl
(2−jk1, 2

−j/2k2) by translation and rotation of a mother curvelet ϕj as

ϕj,l,k(x) = ϕj(Rθl
(x − xj,l

k
)), (6)

where Rθl
is the rotation by θl radians. θl is the equi-spaced sequence of rotation angles θl =

2π2−⌊j/2⌋l, with integer l such that 0 ≤ θl ≤ 2π (note that the number of orientations varies as
1/
√

scale). k = (k1, k2) ∈ Z
2 is the sequence of translation parameters. The waveform ϕj is defined

by means of its Fourier transform ϕ̂j(ν), written in polar coordinates in the Fourier domain

ϕ̂j(r, θ) = 2−3j/4ŵ(2−jr)v̂

(
2⌊j/2⌋θ

2π

)
. (7)

The support of ϕ̂j is a polar parabolic wedge defined by the support of ŵ and v̂, the radial and
angular windows (both smooth, nonnegative and real-valued), applied with scale-dependent window
widths in each direction. ŵ and v̂ must also satisfy the partition of unity property [54]. See the
frequency tiling in Figure 12(a).

In continuous frequency ν, the CurveletG2 coefficients of data f(x) are defined as the inner
product

cj,l,k :=
〈
f, ϕj,l,k

〉
=

∫

R2

f̂(ν)ϕ̂j(Rθl
ν)eix

j,l
k

·νdν. (8)

This construction implies a few properties: (i) the CurveletG2 defines a tight frame of L2(R
2),

(ii) the effective length and width of these curvelets obey the parabolic scaling relation (2−j =
width) = (length = 2−j/2)2, (iii) the curvelets exhibit an oscillating behavior in the direction
perpendicular to their orientation. Curvelets as just constructed are complex-valued. It is easy to
obtain real-valued curvelets by working on the symmetrized version ϕ̂j(r, θ) + ϕ̂j(r, θ + π).
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Discrete coronization The discrete transform takes as input data defined on a Cartesian grid
and outputs a collection of coefficients. The continuous-space definition of the CurveletG2 uses
coronae and rotations that are not especially adapted to Cartesian arrays. It is then convenient
to replace these concepts by their Cartesian counterparts. That is concentric squares (instead of
concentric circles) and shears (instead of rotations), see Figure 12(c).

The Cartesian equivalent to the radial window ŵj(ν) = ŵ(2−j
ν) would be a bandpass frequency-

localized window which can be derived from the difference of separable low-pass windows Hj(ν) =

ĥ(2−jν1)ĥ(2
−jν2) (h is a 1D low-pass filter):

ŵj(ν) =
√
H2

j+1
(ν) −H2

j (ν),∀j ≥ 0, and , ŵ0(ν) = ĥ(ν1)ĥ(ν2)

Another possible choice is to select these windows inspired by the construction of Meyer wavelets
[55, 53]. See [54] for more details about the construction of the Cartesian ŵj ’s.

Let’s now examine the angular localization. Each Cartesian coronae has four quadrants: East,
North, West and South. Each quadrant is separated into 2⌊j/2⌋ orientations (wedges) with the same
areas. Take for example the East quadrant (−π/4 ≤ θl < π/4). For the West quadrant, we would
proceed by symmetry around the origin, and for the North and South quadrant by exchanging the
roles of ν1 and ν2. Define the angular window for the l-th direction as

v̂j,l(ν) = v̂

(
2⌊j/2⌋ ν2 − ν1 tan θl

ν1

)
, (9)

with the sequence of equi-spaced slopes (and not angles) tan θl = 2−⌊j/2⌋l, for l = −2⌊j/2⌋, . . . , 2⌊j/2⌋−
1. We can now define the window which is the Cartesian analog of ϕ̂j above,

ûj,l(ν) = ŵj(ν)v̂j,l(ν) = ŵj(ν)v̂j,0(Sθl
ν), (10)

where Sθl
is the shear matrix. From this definition, it can be seen that ûj,l is supported near the

trapezoidal wedge {ν = (ν1, ν2)|2j ≤ ν1 ≤ 2j+1,−2−j/2 ≤ ν2/ν1− tan θl ≤ 2−j/2}. The collection of
ûj,l(ν) gives rise to the frequency tiling shown in Figure 12(c). From ûj,l(ν), the digital CurveletG2
construction suggests Cartesian curvelets that are translated and sheared versions of a mother

Cartesian curvelet ϕ̂D
j (ν) = ûj,0(ν), ϕD

j,l,k(x) = 23j/4ϕD
j

(
ST

θl
x − m

)
where m = (k12

−j , k22
−j/2).

4.2.2 Digital Implementation

The goal here is to find a digital implementation of the Second Generation Discrete Curvelet
Transform (DCTG2), whose coefficients are now given by

cj,l,k :=
〈
f, ϕD

j,l,k

〉
=

∫

R2

f̂(ν)ϕ̂D
j (S−1

θl
ν)e

iS−T
θl

m·ν
dν. (11)

To evaluate this formula with discrete data, one may think of (i) using the 2D FFT to get f̂ , (ii)
form the windowed frequency data f̂ ûj,l and (iii) apply the the inverse Fourier transform. But this
necessitates to evaluate the FFT at the sheared grid S−T

θl
m, for which the classical FFT algorithm

is not valid. Two implementations were then proposed [54], essentially differing in their way of
handling the grid:

15



• A tilted grid mostly aligned with the axes of ûj,l(ν) which leads to the Unequi-Spaced FFT
(USFFT)-based DCTG2. This implementation uses a nonstandard interpolation. Further-
more, the inverse transform uses conjugate gradients iteration to invert the interpolation step.
This will have the drawback of a higher computational burden compared to the wrapping-
based implementation that we will discuss hereafter. We will not elaborate more about the
USFFT implementation as we never use it in practice. The interested reader may refer to
[54] for further details and analysis.

• A grid aligned with the input Cartesian grid which leads to the wrapping-based DCTG2.

The wrapping-based DCTG2 makes a simpler choice of the spatial grid to translate the curvelets.
The curvelet coefficients are essentially the same as in (11), except that S−T

θl
m is replaced by m

with values on a rectangular grid. But again, a difficulty rises because the window ûj,l does not
fit in a rectangle of size 2j × 2j/2 to which an inverse FFT could be applied. The wrapping trick
consists in periodizing the windowed frequency data f̂ ûj,l, and reindexing the samples array by
wrapping around a ∼ 2j × 2j/2 rectangle centered at the origin, see Figure 12(d) to get a gist of
the wrapping idea.

The wrapping-based DCTG2 algorithm can be summarized as follows:

Algorithm 2 DCTG2 via wrapping.

Require: Input n × n image f [i1, i2], coarsest decomposition scale, curvelets or wavelets at the
finest scale.

1: Apply the 2D FFT and obtain Fourier samples f̂ [i1, i2].
2: for each scale j and angle l do
3: Form the product f̂ [i1, i2]ûj,l[i1, i2].
4: Wrap this product around the origin.
5: Apply the inverse 2D FFT to the wrapped data to get discrete DCTG2 coefficients.
6: end for

The DCTG2 implementation can assign either wavelets or curvelets at the finest scale. In the
CurveLab toolbox [31], the default choice is set to wavelets at the finest scale, but this can be easily
modified directly in the code.

We would like to apologize to the expert reader as many technical details are (deliberately)
missing here on the CurveletG2 construction. For instance, low-pass coarse component, window
overlapping, windows over junctions between quadrants. This paper is intended to give an overview
of these recent multi-scale transforms, and the genuinely interested reader may refer to the original
papers of Candès, Donoho, Starck and co-workers for further details (see bibliography).

The computational complexity of the wrapping-based DCTG2 analysis and reconstruction al-
gorithms is that of the FFT O(n2 log n), and in practice, the computation time is that of 6 to 10
2D FFTs [54]. This is a faster algorithm compared to the DCTG1. The DCTG2 fast algorithm
has participated to make the use of the curvelet transform more attractive in many applicative
fields (see Sections 5 and 5 for some of them). The DCTG2, as it is implemented in the CurveLab
toolbox [31], has reasonable redundancy, at most ∼ 7.8 (much higher in 3D) if curvelets are used
at the finest scale. This redundancy can even be reduced down to 4 (and 8 in 3D) if we replace in
this implementation the Meyer wavelet construction, which introduces a redundancy factor of 4, by
another wavelet pyramidal construction, similar to the one presented in Section 3.1.2 which has a
redundancy less than 2 in any dimension. Our experiments have shown that this modification does

16



not modify the results in denoising experiments. DCTG2 redundancy is anyway much smaller than
the DCTG1 one which is 16J + 1. As stated earlier, the DCTG2 coefficients are complex-valued,
but a real-valued DCTG2 with the same redundancy factor can be easily obtained by properly
combining coefficients at orientations θl and θl + π.

The DCTG2 can be extended to higher dimensions [56]. In the same vein as wavelets on the
interval [1], the DCGT2 has been recently adapted to handle image boundaries by mirror extension
instead of periodization [57]. The latter modification can have immediate implications in image
processing applications where the contrast difference at opposite image boundaries may be an issue
(see e.g. the denoising experiment discussion reported in Section 5).

We would like to make a connection with other multiscale directional transforms directly likned
to curvelets. The contourlets tigth frame of Do and Vetterli [34] implements the CurveletG2 idea
directly on a discrete grid using a perfect reconstruction filter bank procedure. In [58], the authors
proposed a modification of the contourlets with a directional filter bank that provides a frequency
partitioning which is close to the curvelets but with no redundancy. Durand in [59] recently
introduced families of non-adaptive directional wavelets with various frequency tilings, including
that of curvelets. Such families are non-redundant and form orthonormal bases for L2(R

2), and
have an implementation derived from a single nonseparable filter bank structure with nonuniform
sampling.

4.2.3 Sparse Representation by Second Generation Curvelets

It has been shown by Candès and Donoho [53] that with the CurveletG2 tight frame construction,
the M -term non-linear approximation error of C2 images except at discontinuities along C2 curves
obey

‖f − fM‖2 ≤ CM−2(logM)3.

This is an asymptotically optimal convergence rate (up to the (logM)3 factor), and holds uniformly
over the C2−C2 class of functions. This is a remarkable result since the CurveletG2 representation is
non-adaptative. However, the simplicity due to the non-adaptivity of curvelets has a cost: curvelet
approximations loose their near optimal properties when the image is composed of edges which are
not exactly C2. Additionally, if the edges are Cα-regular with α > 2, then the curvelets convergence
rate exponent remain 2. Other adaptive geometric representations such as bandlets are specifically
designed to reach the optimal decay rate O(M−α) [36, 37].

5 Stylized applications

5.1 Denoising

5.1.1 Elongated feature recovery

The ability of ridgelets to sparsely represent piecewise smooth images away from discontinuities
along lines has an immediate implication on statistical estimation. Consider a piecewise smooth
image f away from line singularities embedded in an additive white noise of standard deviation σ.
The ridgelet-based thresholding estimator is nearly optimal for recovering such functions, with a
mean-square error (MSE) decay rate almost as good as the minimax rate [60].

To illustrate these theoretical facts, we simulate a vertical band embedded in white noise with
large σ. Figure 14 (top left) represents such a noisy image. The parameters are as follows: the
pixel width of the band is 20 and the signal-to-noise ratio (SNR) is set to 0.1. Note that it is not
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Figure 12: (a) Continuous curvelet frequency tiling. The dark gray area represents a wedge obtained
as the product of the radial window (annulus shown in gray) and the angular window (light gray).
(b) The Cartesian grid in space associated to the construction in (a) whose spacing also obeys
the parabolic scaling by duality. (c) Discrete curvelet frequency tiling. The window ûj,l isolates
the frequency near trapezoidal wedge such as the one shown in dark gray. (d) The wrapping
transformation. The dashed line shows the same trapezoidal wedge as in (b). The parallelogram
contains this wedge and hence the support of the curvelet. After periodization, the wrapped Fourier
samples can be collected in the rectangle centered at the origin.
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Figure 13: An example of second generation real curvelet. Left: curvelet in spatial domain. Right:
its Fourier transform.

Figure 14: Original image containing a vertical band embedded in white noise with relatively large
amplitude (left). Denoised image using the undecimated wavelet transform (middle). Denoised
image using the DRT based on the rectopolar Radon transform (right).

possible to distinguish the band by eye. The wavelet transform (undecimated wavelet transform)
is also incapable of detecting the presence of this object; roughly speaking, wavelet coefficients
correspond to averages over approximately isotropic neighborhoods (at different scales) and those
wavelets clearly do not correlate very well with the very elongated structure (pattern) of the object
to be detected.

5.1.2 Curve recovery

Consider now the problem of recovering a piecewise C2 function f apart from a discontinuity along
a C2 edges. Again, a simple strategy based on thresholding curvelet tight frame coefficients yields
an estimator that achieves a MSE almost of the order O(σ4/3) uniformly over the C2 −C2 class of
functions [61]. This is the optimal rate of convergence as the minimax rate for that class scales as
σ4/3 [61]. Comparatively, wavelet thresholding methods only achieves a MSE of order O(σ) and no
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better. We also note that the statistical optimality of the curvelet thresholding extends to a large
class of ill-posed linear inverse problems [61].

In the experiment of Figure 15, we have added a Gaussian noise to “War and Peace,” a drawing
from Picasso which contains many curved features. Figure 15 bottom left and right shows respec-
tively the restored images by the undecimated wavelet transform and the DCTG1. Curves are more
sharply recovered with the DCTG1.

Figure 15: The Picasso picture War and Peace (top left), the same image contaminated with a
Gaussian white noise (top right). The restored images using the undecimated wavelet transform
(bottom left) and the DCTG1 (bottom right).

In a second experiment, we compared the denoising performance of several digital implementa-
tions of the curvelet transform; namely the DCTG1 with the rectopolar DRT, the DCTG1 with the
FSS-based DRT and the wrapping-based DCTG2. The results are shown in Figure 16, where the
original 512× 512 Peppers image was corrupted by a Gaussian white noise σ = 20 (PSNR=22dB).

Although the FSS-based DRT is more accurate than the rectopolar DRT, the denoising im-
provement of the former (PSNR=31.31dB) is only 0.18 dB better than the latter (PSNR=31.13dB)
on Peppers. The difference is almost undistinguishable by eye, but the computation time is 20
higher for the DCTG1 with the FSS DRT. Consequently, it appears that there is a little benefit of
using the FSS DRT in the DCTG1 for restoration applications. Denoising using the DCTG2 with
the wrapping implementation gives a PSNR=30.62dB which is ∼ 0.7dB less than the DCTG1. But
this is the price to pay for a lower redundancy and a much faster transform algorithm. Moreover,
the DCTG2 exhibits some artifacts which look like ’curvelet ghosts’. This is a consequence of the
fact that the DCTG2 makes a central use of the FFT which has the side effect of treating the image
boundaries by periodization.
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Figure 16: Comparison of denoising performance of several digital implementations of the curvelet
transform. Top left: original image. Top right: noisy image σ = 20. Bottom left: denoised with
DCTG1 using the rectopolar DRT. Bottom middle: denoised with DCTG1 using the FSS DRT.
Bottom right: denoised with DCTG2 using the wrapping implementation.
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Figure 17: Illustration of the use of curvelets (DCTG2 transform) when solving two typical linear
inverse problems: deconvolution (first row), and inpainting (second row). First row: deconvolu-
tion of Barbara image, original (left), blurred and noisy (middle), restored (right). Second row:
inpainting of Claudia image, original (left), masked image (middle), inpainted (right).

5.2 Linear inverse problems

Many problems in image processing can be cast as inverting the linear degradation equation y =
Hf + ε, where f is the image to recover, y the observed image and ε is a white noise of variance
σ2 < +∞. The linear mapping H is generally ill-behaved which entails ill-posedness of the inverse
problem. Typical examples of linear inverse problems include image deconvolution where H is the
convolution operator, or image inpainting (recovery of missing data) where H is a binary mask.

In the last few years, some authors have attacked the problem of solving linear inverse problems
under the umbrella of sparse representations and variational formulations, e.g. for deconvolution
[61, 11, 62, 63, 12] and inpainting [19, 20]. Typically, in this setting, the recovery of f is stated as
an optimization problem with a sparsity-promoting regularization on the representation coefficients
of f , e.g. its wavelet or curvelet coefficients. See [11, 12, 19, 20] for more details.

In Figure 17 first row, we depict an example of deconvolution on Barbara using the algorithm
described in [12] with the DCTG2 curvelet transform. The original, degraded (blurred with an
exponential kernel and noisy) and restored images are respectively shown on the left, middle and
right. The second row gives an example of inpainting on Claudia image using the DCTG2 with
50% missing pixels.
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Figure 18: Curvelet contrast enhancement. Left: enhanced vs original curvelet coefficient. Middle:
original Saturn image. Right: result of curvelet-based contrast enhancement.

5.3 Contrast enhancement

The curvelet transform has been successfully applied to image contrast enhancement by Starck et
al. [13]. As the curvelet transform capture efficiently edges in an image, it is a good candidate for
multiscale edge enhancement. The idea is to modify the curvelet coefficients of the input image in
order to enhance its edges. The curvelet coefficients are typically modified according to the function
displayed in the left plot of Figure 18. Basically, this plot says that the input coefficients are kept
intact (or even shrunk) if they have either low (e.g. below the noise level) or high (strongest edges)
values. Intermediate curvelet coefficient values which correspond to the faintest edges are amplified.
An example of curvelet-based image enhancement on Saturn image is given in Figure 18.

5.4 Morphological component separation

The idea to morphologically decompose a signal/image into its building blocks is an important
problem in signal and image processing. Successful separation of a signal content has a key role
in the ability to effectively analyze it, enhance it, compress it, synthesize it, and more. Various
approaches have been proposed to tackle this problem.

The Morphological Component Analysis method (MCA) [18, 14] is a method which allows
us to decompose a single signal into two or more layers, each layer containing only one kind of
feature in the input signal or image. The separation can be achieved when each kind of feature is
sparsely represented by a given transformation in the dictionary of transforms. Furthermore, when
a transform sparsely represents a part in the signal/image, it yields non-sparse representation on
the other content type. For instance, lines and Gaussians in a image can be separated using the
ridgelet transform and the wavelet transform. Locally oscillating textures can be separated from
the piecewise smooth content using the local discrete cosine transform and the curvelet transform
[18]. A full description of MCA is given in [18].

The first row of Figure 19 illustrates a separation result when the input image contains only
lines and isotropic Gaussians. Two transforms were amalgamated in the dictionary; namely the
à trous WT2D and the DRT. The left, middle and right images in the first row of Figure 19
represent respectively, the original image, the reconstructed component from the à trous wavelet
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Figure 19: First row, from left to right: original image containing lines and Gaussians, separated
Gaussian component (wavelets), separated line component (ridgelets). Second row, from left to
right: original Barbara image, reconstructed local discrete cosine transform part (texture), and
piecewise smooth part (curvelets).

coefficients, and the reconstructed layer from the ridgelet coefficients. The second row of Figure 19
shows respectively the Barbara image, the reconstructed local cosine (textured) component and
the reconstructed curvelet component. In the Barbara example, the dictionary contained the local
discrete cosine and the DCTG2 transforms.

6 Future Directions

In this paper, we gave an overview of two important geometrical multiscale transforms; namely
ridgelets and curvelets. We illustrate their potential applicability on a wide range of image pro-
cessing problems. Although these transforms are not adaptive, they are strikingly effective both
theoretically and practically on piecewise images away from smooth contours.

However, in image processing, the geometry of the image and its regularity is generally not
known in advance. Therefore, to reach higher sparsity levels, it is necessary to find representations
that can adapt themselves to the geometrical content of the image. For instance, geometric trans-
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forms such as wedgelets [64] or bandlets [36, 65, 37] allow to define an adapted multiscale geometry.
These transforms perform a non-linear search for an optimal representation. They offer geometri-
cal adaptivity together with stable algorithms. Recently, Mallat [66] proposed a more biologically
inspired procedure named the grouplet transform, which defines a multiscale association field by
grouping together pairs of wavelet coefficients.

In imaging science and technology, there is a remarkable proliferation of new data types. Beside
the traditional data arrays defined on uniformly sampled cartesian grids with scalar-valued samples,
many novel imaging modalities involve data arrays that are either (or both):

• acquired on specific ”exotic” grids such as in astronomy, medicine and physics. Examples
include data defined on spherical manifolds such as in astronomical imaging, catadioptric
optical imaging where a sensor overlooks a paraboloidal mirror, etc.

• or with samples taking values in a manifold. Examples include vector fields such as those
of polarization data that may rise in astronomy, rigid motions (a special Euclidean group),
definite-positive matrices that are encountered in earth science or medical imaging, etc.

The challenge faced with this data is to find multiscale representations which are sufficiently flexible
to apply to many data types and yet defined on the proper grid and respect the manifold structure.
Extension of wavelets, curvelets and ridgelets for scalar-valued data on the sphere has been proposed
recently by [26]. Construction of wavelets for scalar-valued data defined on graphs and some
manifolds was proposed by [67]. The authors in [68, see references therein] describe multiscale
representations for data observed on equispaced grids and taking values in manifolds such as:
the sphere, the special orthogonal group, the positive definite matrices, and the Grassmannian
manifolds. Nonetheless many challenging questions are still open in this field: extend the idea of
multiscale geometrical representations such as curvelets or ridgelets to manifold-valued data, find
multiscale geometrical representations which are sufficiently general for a wide class of grids, etc.
We believe that these directions are one of the hottest topics in this field.

Most of the transforms discussed in this paper can handle efficiently smooth or piecewise smooth
functions. But sparsely representing textures remains an important open question, mainly because
there is no consensus on how to define a texture. Although Julesz [69] stated simple axioms about
the probabilistic characterization of textures. It has been known for some time now that some
transforms can sometimes enjoy reasonably sparse expansions of certain textures; e.g. oscillatory
textures in bases such as local discrete cosines [18], brushlets [70], Gabor [1], complex wavelets [40].
Gabor and wavelets are widely used in the image processing community for texture analysis. But
little is known on the decay of Gabor and wavelet coefficients of ”texture”. If one is interested
in synthesis as well as analysis, the Gabor representation may be useless (at least in its strict
definition). Restricting themselves to locally oscillating patters, Demanet and Ying have recently
proposed a wavelet-packet construction named WaveAtoms [71]. They showed that WaveAtoms
provide optimally sparse representation of warped oscillatory textures.

Another line of active research in sparse multiscale transforms was initiated by the seminal work
of Olshausen and Field [72]. Following their footprints, one can push one step forward the idea of
adaptive sparse representation and requires that the dictionary is not fixed but rather optimized
to sparsify a set of exemplar signals/images, i.e. patches. Such a learning problem corresponds
to finding a sparse matrix factorization and several algorithms have been proposed for this task
in the literature; see [73] for a good overview. Explicit structural constraints such as translation
invariance can also be enforced on the learned dictionary [74, 75]. These learning-based sparse
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representations have shown a great improvement over fixed (and even adapted) transforms for a
variety of image processing tasks such as denoising and compression [76, 77, 78], linear inverse
problems (image decomposition and inpainting) [79], texture synthesis [80].
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