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Jalal M. Fadili and Gabriel Peyré

Abstract

This article proposes a new algorithm to compute the projection on the set of images whose total

variation is bounded by a constant. The projection is computed through a dual formulation that is

solved by first order non-smooth optimization methods. This yields an iterative algorithm that computes

iterative soft thresholding of the dual vector fields, and for which we establish convergence rate on

the primal iterates. This projection algorithm can then be used as a building block in a variety of

applications such as solving inverse problems under a total variation constraint, or for texture synthesis.

Numerical results are reported to illustrate the usefulness and potential applicability of our TV projec-

tion algorithm on various examples including denoising, texture synthesis, inpainting, deconvolution

and tomography problems. We also show that our projection algorithm competes favorably with state-

of-the-art TV projection methods in terms of convergence speed.

Index Terms

Total variation, projection, duality, proximal operator, forward-backward splitting, Nesterov scheme,

inverse problems.

I. INTRODUCTION

Total variation is a well known image prior introduced by Rudin, Osher and Fatemi (ROF) [1]. For a

differentiable function f : Ω = [0, 1]2 → R, it is computed as ||f ||TV =
∫

Ω | ∇ f |, and can be extended

to the space BV([0, 1]2) that contains functions with discontinuities.

The total variation is used as a regularization to denoise an image f0 by solving the strictly convex

problem

min
f∈BV([0,1]2)

1

2
||f − f0||2 + λ||f ||TV, (1)
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as originally proposed in [1]. The regularization weight λ should be tuned to match the noise level

contaminating f0. Several algorithms have been proposed to solve this problem, see for instance [2], [3],

[4], [5], [6], [7], [8], [9]. Such primal, dual, or primal-dual schemes for denoising are often a building

block for solving more complex inverse problems; see e.g. [10], [11].

TV projection for denoising. Much less work has focused on denoising an image f0 by projecting it

on a total variation ball of radius τ < ||f0||TV, which requires to solve1

min
||f ||TV6τ

||f − f0||. (2)

Although there is a bijection between λ in (1) and τ in (2) such that the constrained and Lagrangian

problems share the same solution, such a bijection is unknown and hard to identify. Thus, the constrained

formulation might be preferable over (1) when little is known about the noise level perturbing f0, but

when an estimate τ of the total variation of the clean image is known. For example, such an estimate

can be set more easily by relying on some reference (e.g. the observed image itself), and the TV ball

radius τ is set as a fraction of the TV norm of this reference. Computing the solution of (2) with a fast

algorithm is thus important for denoising application as has been advocated in [12].

An iterative projected sub-gradient method was introduced in [13], [12]. We propose in this paper a

different algorithm that is based on a dual regularization of the primal projection problem. This bears

similarities with Chambolle’s algorithm [6] that solves the primal TV regularization (1) using a dual

projection. Our dual problem is then solved using two first-order iterative schemes: one-step forward-

backward splitting which dates back to [14], [15] and recently revitalized in [16], and accelerated multi-

step Nesterov scheme [17]. Both of these algorithms require only the computation of a soft thresholding

applied to the dual vector fields at each iteration. Our main theoretical result establishes the convergence

rates of the primal iterates of our projection algorithms.

Total variation projection also have far-reaching applications beyond denoising. For example, the

extraction of Cheeger sets in landslides modeling [18] can be relaxed as a TV projection problem with

boundary constraints, that has been recently solved using sub-gradient projection [19].

TV projection for synthesis. Classical synthesis methods constrain wavelet coefficients [20], [21] and

are suitable to model some natural phenomena. Computer graphics methods do not rely on statistical

modeling and generate a texture through a consistent copy of pixels from an example image [22],

[23]. Higher order statistical models [24], [25] improve the visual quality of synthesis by capturing

geometric singularities. Section VI-B shows that a total variation constraint can also be used to enhance

the sharpness of edges in texture synthesis.

1This constraint set is obviously a closed convex set.
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TV projection for inverse problems. Total variation projection might be useful as a proxy to solve

more challenging inverse problems. Popular linear inverse problems such as inpainting, deconvolution

or tomography reconstruction have been the subject of a flurry of research activity where TV has been

extensively used to regularize them.

Classical methods for inpainting use partial differential equations that propagate the information from

the boundary of the missing region to its interior, see for instance [26], [27], [28]. Tensor diffusion

makes use of a geometric layer to drive the diffusion, see [29]. TV regularization was proposed in

[30] for inpainting. Sparsity over a redundant frame has also been successfully used to regularize the

inpainting problem [31], [32].

There is an extensive literature on the deconvolution problem image processing, and many algorithms

have been developed to tackle it. For instance, TV penalty has been used as a regularization term within

a variational framework, see e.g. [33], [10], [11], [34], [9]. Wavelet-based or more generally sparsity-

based deconvolution methods have also received considerable attention over the last decade, see e.g.

[35], [36], [37], [38].

TV regularization has also been advocated in [39] to solve a tomography reconstruction problem, as

a premise of the compressed sensing theory. In this case, only a few Fourier coefficients of the sought

after image are observed.

All these inverse problems can be regularized with a total variation constraint. Sections VI-C, VI-D

and VI-E are devoted to show how these TV-constrained inverse problems can be solved efficiently

using a projected gradient descent iteration, whose projector is computed with our algorithm.

We would like however to stress that this work does not aim to give state-of-the-art results in inverse

problems, and instead concentrates on demonstrating how regularization by a TV-ball constraint and

the proposed projection algorithms can be harnessed directly to a variety of applications. For instance,

denoising will give the same result as TV regularization through the classical ROF model if one is

able to identify the appropriate regularization parameter corresponding to the chosen τ (we recall that

there is a bijection between the two parameters). As far as texture synthesis is concerned, our examples

are again a proof-of-concept that uses our projection algorithms beside other statistical constraints to

produce piecewise-regular textures, hence improving upon existing texture synthesis algorithms such as

those proposed in [25].

II. NOTATION AND ELEMENTS OF CONVEX ANALYSIS

Throughout the paper, an image f of N = n × n pixels is a vector in R
N . We denote by ||.|| the

norm induced by the inner product 〈., .〉 in R
N . We let U = R

N × R
N be the space of vector fields

with associated inner product 〈u, v〉U =
∑

06i,j6n−1(u1[i, j]v1[i, j] + u2[i, j]v2[i, j]), ∀u = (u1, u2)
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and v = (v1, v2) ∈ U . The ℓ1 and ℓ∞ norms of a vector field u = (u1, u2) ∈ U are respectively

||u||1 =
∑

06i,j6n−1 |u[i, j]| and ||u||∞ = max
i,j
|u[i, j]|, where |u[i, j]| :=

√

u1[i, j]2 + u2[i, j]2.

Let C a nonempty convex set. The indicator function ıC of C is

ıC(z) =







0, if z ∈ C ,

+∞, otherwise.

The domain of a function ϕ is defined by dom(ϕ) = {z : ϕ(z) < +∞} and ϕ is proper if

dom(ϕ) 6= ∅. The conjugate of a proper, lower-semicontinuous and convex function ϕ is the proper

closed convex function ϕ∗ defined by

ϕ∗(z) = sup
z∈dom(ϕ)

〈w, z〉 − ϕ(z) , (3)

and we have the bi-conjugate ϕ∗∗ = ϕ.

The subdifferential of a proper, lower-semicontinuous and convex function ϕ at z is the set-valued

map ∂ϕ

∂ϕ(z) = {w|∀v, ϕ(v) > ϕ(z) + 〈w, v − z〉} . (4)

An element w of ∂f is called a subgradient. If ϕ is Gâteaux-differentiable at z, its only subgradient is

its gradient. A function ϕ is strongly convex with modulus c > 0 if and only if

ϕ(v) > ϕ(z) + 〈w, v − z〉+ c

2
||v − z||2 ,∀v . (5)

See e.g. [40] for comprehensive account on convex analysis and subdifferential calculus.

We also define the notion of a proximity operator, which was introduced in [41] as a generalization

of convex projection operator. For every z, the function w 7→ 1
2 ||w − z||2 + ϕ(w) achieves its infimum

at a unique point denoted by proxϕ z. The uniquely-valued operator proxϕ thus defined is the proximity

operator of ϕ.

III. DISCRETE DUAL FORMULATION

The optimization (2) is computed numerically by discretizing the gradient operator and the total

variation to project an image of N = n× n pixels.

A. Discrete Total Variation

A discretized gradient for an image f ∈ R
N is defined as ∇ f [i, j] = (∂xf [i, j], ∂yf [i, j]), where

∂xf [i, j] =







f [i + 1, j]− f [i, j] if 0 6 i < n− 1,

0 otherwise,

∂yf [i, j] =







f [i, j + 1]− f [i, j] if 0 6 j < n− 1,

0 otherwise.
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The gradient is thus a vector field∇ f ∈ U . The discrete total variation is ||f ||TV = || ∇ f ||1 where the ℓ1

norm of a vector field in U is defined in Section II.

The adjoint of the gradient is ∇∗ = −div, where the divergence of a vector field u = (u1, u2) ∈ U
is div(u) = ∂∗

xu1 + ∂∗
xu2, with

∂∗
xf [i, j] =







f [i, j]− f [i− 1, j] if 0 < i < n,

0 otherwise,

∂∗
yf [i, j] =







f [i, j]− f [i, j − 1] if 0 < j < n,

0 otherwise.

B. Total Variation Projection

The goal of this paper is to compute the projection f⋆ of an image f0 on a set of images with bounded

variation

f⋆ = argmin
f∈RN , ||f ||TV6τ

||f − f0||2. (6)

where 0 < τ < ||f0||TV to avoid the trivial solution f⋆ = f0.

The following proposition shows that the primal constrained optimization problem (6) is recast into

a penalized form.

Proposition 1. For any f ∈ R
N , the primal solution is recovered as f⋆ = f0− div(u⋆) where u⋆ is the

solution of the dual problem

inf
u∈RN×2

1

2
||f0 − div(u)||2 + τ ||u||∞ . (7)

Proof: Let’s introduce the dual variable u ∈ U . First, it is easy to show that the Fenchel conjugate

of the ℓ∞ norm is the indicator function of the ℓ1 norm. Indeed, by the Hölder inequality we have

〈u, v〉U 6 ||u||∞||v||1 2, we then get

(τ ||.||∞)∗ (v) = sup
u∈U
〈u, v〉U − τ ||u||∞

= sup
ρ>0

sup
||u||∞=ρ

〈u, v〉U − τρ

= sup
ρ>0

ρ (||v||1 − τ) = ı{||·||16τ}(v) .

Thus, using the bi-conjugate relation, one can write the TV-ball indicator function as

ı{||·||TV6τ}(f) = sup
u∈U
〈u, ∇ f〉U − τ ||u||∞.

2An alternative proof can be found in e.g. [40, Proposition V.3.2.1].
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This allows to rewrite (6) as

min
f∈RN

1

2
||f − f0||2 + ı{||·||TV6τ}(f) = sup

u∈U
− τ ||u||∞ + min

f∈RN

〈u, ∇ f〉U +
1

2
||f − f0||2

= − inf
u∈U

τ ||u||∞ − min
f∈RN

− 〈div(u), f〉+ 1

2
||f − f0||2 . (8)

The inner minimization involves a strongly convex function, whose unique primal solution f⋆ is recov-

ered from the dual variable u as

f⋆ = argmin
f∈RN

− 〈div(u), f〉+ 1

2
||f − f0||2 = f0 + div(u), (9)

and

−〈div(u), f⋆〉+ 1

2
||f⋆ − f0||2 = −1

2
||f0 + div(u)||2 +

1

2
||f0||2 . (10)

Combining (8) and (10) with the obvious change of sign on u leads to the optimization problem (7).

Remark 1. Proposition 1 can be alternatively proved using Fenchel-Rockafellar duality formula well-

known in convex analysis, see e.g. [42, Section III.4]. We have chosen this line of proof for convenience

and the sake of accessibility to the reader.

IV. FIRST-ORDER SCHEMES ON THE DUAL PROBLEM

In going from the primal problem (6) to the dual formulation (7), we have replaced a constrained

problem with an unconstrained penalized form. The primal solution is easily recovered from the dual

solution as f⋆ = f0 − div(u⋆). Furthermore, it turns out that the dual problem (7) is easier to solve

with various first order non-smooth optimization schemes. Indeed, (7) involves a quadratic form which

has a Lipschitz continuous gradient, and the non-differentiable ℓ∞ term. Section IV-B presents a one-

step forward-backward splitting iteration, as explained for instance in [15], [16], while Section IV-C

proposes an accelerated multi-step scheme due to Nesterov, see [17] and also [7] for some applications

to image processing. It turns out that both these algorithms involve the computation of the proximity

operator associated to the ℓ∞ norm that can be computed explicitly as explained in the following section.

A. ℓ∞ Proximity Operator

Recall from Section II that the proximity operator proxκ||·||∞(u) associated to κ|| · ||∞ amounts to

solving

proxκ||·||∞(u) = argmin
v∈U

1

2
||u− v||2 + κ||v||∞. (11)

Proposition 2 hereafter shows that proxκ||·||∞(u) is computed explicitly through a soft thresholding Sλ

applied on the dual vector field u for a properly chosen value of λ.
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To get the precise value of λ for a given vector field u ∈ U , we need to compute d[0] 6 d[1] 6 . . . 6

d[N − 1] that orders the set of norms

{d[t]}N−1
t=0 = {|u[i, j]|}n−1

i,j=0, (12)

and also the cumulated ordered norms

D[s] =
N−1∑

t=s+1

d[t]. (13)

Proposition 2. For u ∈ U , with d and D as defined in (12)-(13), we have proxκ||·||∞(u) = 0 if ||u||1 6 κ

and proxκ||·||∞(u) = u− Sλ(u) otherwise, where

Sλ(u)[i, j] = max

(

1− λ

|u[i, j]| , 0
)

u[i, j] (14)

and λ > 0 is given by

λ = d[t] + (d[t + 1]− d[t])
D[t + 1]− κ

D[t + 1]−D[t]
(15)

where t is such that D[t + 1] 6 κ < D[t].

Proof: Using a similar proof to that of Proposition 1, we have the relation between the primal and

dual minimization problems

proxκ||·||∞(u) = argmin
v∈U

1

2
||u− v||2 + κ||v||∞ ⇐⇒ Proj{||·||16κ}(u) = argmin

w∈U

1

2
||u− w||2 + ı{||·||16κ}(w) .

where Proj{||·||16κ}(u) is the orthogonal projection of u onto the closed ℓ1 ball in U of radius κ. In the

same vein as (9), the relation between the primal and dual solutions (both are unique here) yields

proxκ||·||∞(u) = u− Proj{||·||16κ}(u) . (16)

If ||u||1 6 κ, then proxκ||·||∞(u) = 0. Otherwise, the projection Proj{||·||16κ}(u) is computed by finding

the Lagrange multiplier λ(κ) such that

Proj{||·||16κ}(u) = argmin
v

1

2
||u− v||2 + λ(κ)||v||1. (17)

As noticed for instance in [43] for wavelet thresholding, the solution of (17) has a closed-form known

as soft-thresholding extended to vector fields

Proj{||·||16κ}(u) = Sλ(κ)(u).

Observe that ||Sλ(u)||1 =
∑

|u[i,j]|>λ (|u[i, j]| − λ) is a piecewise affine and decreasing function of

λ with slope changing at the ordered values d[t]. One can then check that the value of λ that meets the

constraint ||Sλ(u)||1 = κ is the one given by (15).

Our result bears similarities with that of [43] who use different arguments to compute the proximity

operator of the Besov norm B
1
∞,1. In words, Proposition 2 tells us that the proximity operator of the

ℓ∞-norm of a vector field u ∈ U is computed by sorting its magnitudes, which of course can be done in
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O(N log N) expected time. A similar ingredient appear in the projection on the ℓ1-ball for scalar fields

as in [44], [45]. An improved approach replaces sorting with a median-search-like procedure whose

expected complexity is linear in N , this has been rediscovered independently in [46] and [47].

Remark 2. Equation (16) can be proved alternatively using Moreau decomposition which allows to

conclude that proxϕ∗(u) = u − proxϕ(u) (Moreau identity), see for instance [48] and [16, Lemma

2.10].

B. Forward-backward Projection Algorithm

The projection f⋆ = f0 − div(u⋆) is computed by solving the dual unconstrained optimization

problem (7). Owing to Lipschitz differentiability of the quadratic term, the dual problem verifies the

necessary prerequisite to be solved with the one-step forward-backward splitting recursion.

The forward-backward scheme can be written in a compact form with descent step-size µ > 0 3

u(k+1) = proxµτ ||·||∞

(

u(k) − µ∇
(

f0 − div(u(k))
))

, (18)

where the proximity operator for κ = µτ is defined in (11). The overall algorithm to minimize (6) is

summarized in Algorithm 1.

Algorithm 1: Forward-backward total variation projection.

Initialization: choose some u(0) ∈ U , µ ∈ (0, 1/4), set k = 0.

Main iteration:

while ||u(k+1) − u(k)|| > η do

1) Gradient descent step: compute

ũ(k) = u(k) − µ∇
(

f0 − div(u(k))
)

.

2) TV correction step: compute d and D as defined in (12) and (13) and set λ as in (15) with

κ = µτ . Define

u(k+1) = ũ(k) − Sλ(ũ(k)),

using the soft thresholding operator (14).

3) k = k + 1.

Output: f⋆ = f0 − div(u(k+1)).

1) Convergence analysis: Theorem 1 ensures that the sequence (f (k))k∈N obtained from Algorithm 1

converges to the solution of (6) with a convergence rate O(1/k).

Theorem 1. Suppose that µ ∈ (0, 1/4). Let u(0) ∈ R
N×2. The sequence of iterates f (k) = f0 −

div(u(k)), where u(k) is the dual sequence in (18), converges to f⋆. More precisely, there exists a C > 0

3The descent step-size can be even a sequence µk > 0 that varies from one iteration to another.
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such that

||f (k) − f⋆||2 6 C/k.

Proof: By coercivity, the set of solutions of (7) is non empty. Moreover, let
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣ be the operator

norm of the discrete divergence. The term ||f0−div(u)||2/2 is differentiable whose gradient is Lipschitz

continuous with Lipschitz constant
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2 6 8 [6]. Thus, by continuity of the mapping u 7→ f =

f0 − div(u), and since the projection f⋆ is unique, applying [49, Corollary 6.5], we deduce that the

sequence of iterates f (k) converges to f⋆ provided that the step-size satisfies 0 < µ 6 µ 6 µ < 1/4 6

2/
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2.

Let’s now turn to the convergence rate. We let J(f) and J̃(u) be the primal and the dual objectives

given in (6) and (7), namely

J(f) =
1

2
||f − f0||2

︸ ︷︷ ︸

H(f)

+ ı{||.||TV6τ}(f)
︸ ︷︷ ︸

G(∇ f)

,

J̃(u) =
1

2
||f0 − div(u)||2 − 1

2
||f0||2

︸ ︷︷ ︸

H∗(div(u))

+ τ ||u||∞
︸ ︷︷ ︸

G∗(u)

,

(19)

where H∗ and G∗ are the conjugates of H and G respectively. Recall that from Proposition 1, we have

min
f

J(f) = − inf
u

J̃(u) ⇐⇒ J(f) > J(f⋆) = −J̃(u⋆) > −J̃(u) ∀ (f, u) ∈ R
N × U , (20)

and from the primal-dual solutions relationship

H(f⋆) + H∗(div(u⋆)) = 〈f⋆, div(u⋆)〉 ⇐⇒ f⋆ = (Du H∗)(div(u⋆)) , (21)

where Du H∗ is the gradient of H∗ with respect to u.

We introduce the following two notions which are essential to prove the convergence rate of our

scheme. First, for an optimal solution u⋆ ∈ U , we define the Bregman-like distance as the functional

B(v) = G∗(v)−G∗(u⋆) + 〈−∇(Du H∗)(div(u⋆)), v − u⋆〉U , ∀ v ∈ U . (22)

This is indeed a distance-like function to u⋆ since B(v) is non-negative and B(u⋆) = 0. B(v) is non-

negative by applying the subgradient inequality (4) to G∗ since the minimality condition corresponding

to (7) is equivalent to the inclusion ∇(Du H∗)(div(u⋆)) ∈ ∂G∗(u⋆). The Bregman distance is widely

used to analyze properties of descent algorithms, see [50], [51] and references therein.

Additionally, as H∗ is differentiable, we define the Taylor distance as the remainder of the 1st order

Taylor expansion of H∗ at u⋆

T (v) = H∗(div(v))−H∗(div(u⋆))− 〈−∇(Du H∗)(div(u⋆)), v − u⋆〉U , ∀ v ∈ U . (23)

This is again a non-negative function (H∗ is convex), and T (u⋆) = 0.
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It is not difficult to see that these functionals verify the following property

B(u(k)) + T (u(k)) = J̃(u(k))− J̃(u⋆) . (24)

Since the function H∗(f) = ||f − f0||2/2 is strongly convexity of modulus 1, and using (21), we have

T (u(k)) = H∗(div(u(k)))−H∗(div(u⋆))− 〈−∇(Du H∗)(div(u⋆)), u(k) − u⋆〉U

= H∗(div(u(k)))−H∗(div(u⋆))− 〈(Du H∗)(div(u⋆)), div(u(k))− div(u⋆)〉

=
1

2
||div(u(k))− div(u⋆)||2 =

1

2
||f (k) − f⋆||2 . (25)

Using [17, Theorem 4], the convergence rate over J̃ is such that

J̃(u(k))− J̃(u⋆) 6
2
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2R2

k + 2
, ∀ k > 0 , (26)

where R is the radius of the sublevel sets of J̃ , i.e. R = max
u:J̃(u)6J̃(u(0))

||u− u⋆|| < +∞.

Thus, by positivity of B(u(k)), and
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2 6 8

T (u(k)) 6 J̃(u(k))− J̃(u⋆) 6
16R2

k + 2
, ∀ k > 0 . (27)

Piecing together (25) and (27), we obtain

||f (k) − f⋆||2 = 2T (u(k))

6
32R2

k + 2
, ∀ k > 0 , (28)

which gives the desired rate.

Remark 3. • It is important to note that the above proof is general and applies to any problem in the

form (19) beyond the TV projection problem considered here, provided that H∗ is strongly convex

with Lipschitz continuous gradient, or by properties of the conjugate that H is strongly convex

and has a Lipschitzian gradient [40, Theorem 4.2.1 and 4.2.2]. This is typically the case for the

ROF model (1). Strong convexity is of course important to derive the rate (28) over the primal

iterates, but the rate on the dual objective in (26) remains valid anyway. Note that the equality (25)

becomes a lower-bound inequality for general strongly convex H∗, with a constant involving the

strong convexity modulus and the Lipschitz constant.

• We point out that another proof of the convergence rate of the forward-backward splitting in terms

of the objective has recently appeared in [51, Proposition 2]. The rate of [17] is nevertheless

sharper.

This result asserts that Algorithm 1 necessitates as large as O(1/η) iterations to reach a η convergence

tolerance on the iterates.
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2) Relation to other schemes:

a) Douglas-Rachford on the dual (ADMM): To solve the dual problem (7), we have exploited

its structure and smoothness that allowed us to use the forward-backward splitting algorithm. Instead,

it might be tempting to use the Douglas-Rachford splitting4 algorithm [52] to solve (7). For our dual

objective, straightforward calculations show that such an algorithm reads:






f (k+1) = (Id− γ∆)−1 (
f0 − div(u(k) − γv(k))

)

v(k+1) = Proj{||·||16τ}

(
u(k)/γ −∇ f (k+1)

)

u(k+1) = u(k) − γ
(
v(k+1) +∇ f (k+1)

)

, (29)

where γ > 0 and ∆ = div ◦∇ is the (discrete) Laplacian. The Fenchel-Rockafellar duality was used

twice, one to calculate the proximity operator of γ
2 ||f0 − div(u)||2 and update f (k+1), and the second to

get proxγτ ||·||∞ and update v(k+1), where v is a dual variable with respect to u. This iteration can also be

interpreted as the alternating-direction method of multipliers (ADMM) [14]. Eliminating the variable v

in (29), and after rearrangements, we arrive at:






f (k+1) = (Id− γ∆)−1 (
f0 − div

(
u(k)

)
− div

(
u(k) − u(k−1)

)
− γ∆f (k)

)

u(k+1) = proxγτ ||·||∞

(
u(k) − γ∇ f (k+1)

)
. (30)

In a nutshell, the update of the dual variable u in (30) has a flavor of that in (18). However, updating

the primal variable necessitates to invert a linear operator, which can be done efficiently only if the

Laplacian can be diagonalized, e.g. in the Fourier domain if periodic boundary conditions. Furthermore,

no convergence rate is known for such an algorithm in general.

b) Pre-conditioned ADMM: Shortly after this paper had been accepted for publication, it came

to the authors’ attention the work of Chambolle and Pock on a pre-conditioned version of ADMM to

minimize objectives of the form H(f)+G(Af), where A is a bounded linear operator and H and G are

closed proper convex functions [53]. The idea is to avoid to solve a least-squares problem in the update

of f in (29) (in our case it turns out that the least-squares solution has a closed-form). Transposed to our

setting, the general scheme of [53] applied to the primal problem (2) gives the following iteration:






u(k+1) = proxµτ ||·||∞

(
u(k) − µ∇ g(k)

)

f (k+1) = γ
γ+1

(
f0 − div(u(k+1))

)
+ 1

γ+1f (k)

g(k+1) = (1 + θ)f (k+1) − θf (k)

, (31)

where γ, µ > 0, γµ < 1/
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2, and θ ∈ [0, 1].

4Douglas-Rachford splitting applies to general minimization problems that involve the sum of two closed proper convex

functions, without any smoothness assumption on any of them.
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The case θ = 0 corresponds to the Arrow-Hurwicz method which has been used in [54] to solve the

ROF model (1), and was shown in this case to converge at the rate O(1/
√

k) in [53] (using boundedness

of the domain of G∗ and strong convexity of H in the ROF problem). These authors conjectured that

this convergence holds true without the boundedness assumption provided that H is strongly convex,

which is the case for the TV projection problem. This rate is much worse than ours O(1/k).

Taking θ = γ = 1, it follows immediately that iteration (31) becomes exactly (18), with a mild dif-

ference on the the upper-bound of the step-size µ. This comes at no surprise as the Fenchel-Rockafellar

duality is at the heart of both schemes. For θ = 1 and γ > 0, by virtue of the convergence rate on the

restricted duality gap proved in [53, Theorem 1] and strong convexity of the objective in our primal

problem, it follows that iteration (31) converges at the rate O(1/k) on the primal iterates. This matches

the rate we established in Theorem 1.

C. Multi-step Projection Algorithm

In [17], [55], Nesterov proposes an accelerated multi-step gradient algorithm to solve functionals

formed as a sum of two convex terms: a smooth one with Lipschitz-continuous gradient and a non-

necessarily smooth term whose structure is simple. By simple, we intend in our context that the corre-

sponding proximity operator is accessible. The dual problem (7) falls within the scope of the Nesterov

algorithm. Unlike the forward-backward iteration (18), Nesterov accelerated version uses explicitly all

previous iterates u(i), i < k to compute u(k), hence the name multi-step algorithm.

Algorithm 2 details the steps of Nesterov scheme to minimize (7). It is formulated using proximal

operators, as described in [7].

1) Convergence analysis: The following results gives the convergence rate of the primal sequence

f (k) = f0 − div(u(k)) obtained from Algorithm 2.

Theorem 2. Suppose that µ ∈ (0, 1/4). Let u(0) ∈ R
N×2. Then, after k iterations, the sequence of

iterates (f (k))k>1 is such that ∃ C > 0

||f (k) − f⋆||2 6 C/k2.

Proof: The proof of this result is patterned after that of Theorem 1 starting at (26). Indeed, by virtue

of [17, Theorem 6], and
∣
∣
∣
∣
∣
∣ div

∣
∣
∣
∣
∣
∣2 6 8, we arrive at

J̃(u(k))− J̃(u⋆) 6
32R2

k2
, k > 1 , (32)

where now R = ||u⋆ − u(0)||2. Finally, from (25), we deduce the desired rate

||f (k) − f⋆||2 6
64R2

k2
, k > 1 . (33)
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Algorithm 2: Nesterov total variation projection.

Initialization: u(0) ∈ U , A0 = 0, ξ(0) = 0, µ ∈ (0, 1/4).
Main iteration:

while ||u(k+1) − u(k)|| > η do

1) First proximal computation:

υ(k) = proxAkτ ||·||∞(u(0) − ξ(k)) ,

where the proximal operator is computed as defined in Proposition 2 with κ = Akτ .

2) Set ak =
(

µ +
√

µ2 + 4µAk

)

/2 and ω(k) = Aku(k)+akυ(k)

Ak+ak

.

3) Second proximal computation:

ω̃(k) = ω(k) − µ

2
∇

(

f0 − div(ω(k))
)

,

u(k+1) = proxµτ/2||·||∞(ω̃(k)) ,

where the proximal operator is computed as defined in Proposition 2 with κ = µτ/2.

4) Update Ak+1 = Ak + ak and ξ(k+1) = ξ(k) + ak∇
(
f0 − div(u(k+1))

)
.

5) k = k + 1.

Output: f⋆ = f0 − div(u(k+1)).

Remark 4. Again, in the same vein as the proof of Theorem 1, the above proof is general and applies

straightforwardly to any problem in the form (19) beyond TV projection, with the proviso that H∗ is

strongly convex to get the rate on the iterates. For the case where H∗ is not necessarily strongly convex,

but has a bounded domain, the convergence rate over the primal objective was established in [55,

Theorem 3] and [56]. The latter followed the same lines of proof as the former.

This result asserts that Algorithm 2 necessitates only O(1/
√

η) iterations to reach a η-convergence

tolerance both on the primal iterates and objective. This is much faster than O(1/η) iterations required

by the forward-backward scheme.

2) Relation to other schemes: Our multi-step projection algorithm shares some similarities with the

accelerated scheme of [53] when applied to (7). These authors have shown that their acceleration yield

a convergence rate O(1/k2) on the primal iterates when either H or G∗ is strongly convex, which is in

total agreement with our rate as the primal objective we consider is indeed strongly convex.

V. INVERSE PROBLEMS

Image acquisition devices compute P 6 N noisy indirect measurements

y = Φf0 + ε ∈ F
p. (34)

of an image f0 ∈ R
N , where ε is an additive noise, and the field F stands for either R or C. The linear

bounded operator Φ typically accounts for blurring, sub-sampling or missing pixels so that the measured

data y only captures a small fraction of the original image f one wishes to recover.
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A. Regularization with TV Constraint

A total variation prior allows to regularize the solution by reducing the space of candidate solutions

of the inverse problem to those belonging to a total variation ball of finite radius. Thus solving such a

constrained inverse problem provides an image that both matches approximately the forward measure-

ments y and that has a low total variation. If the noise is assumed to be zero-mean of finite variance, it

is devised to solve the constrained optimization problem

min
f∈RN

||f ||TV subject to ||y − Φf || 6 γ (35)

where γ is related to the noise standard deviation supposedly known a priori.

On the contrary, if a little is known about the noise ε, but one has some guess τ on the total variation

of the image, it is better to consider the following problem

f⋆ ∈ argmin
f∈RN

1

2
||y − Φf ||2 subject to ||f ||TV 6 τ, (36)

where the minimum is not necessarily unique depending on the kernel of the operator Φ.

B. Projected Gradient Descent

Solving (36) requires the minimization of the gradient Lipschitz functional 1
2 ||y−Φf ||2 under a convex

constraint. It is thus possible to use a projected gradient descent

f (ℓ+1) = Proj{||·||TV6τ}

(

f (ℓ) + νΦ∗(y − Φf (ℓ))
)

, (37)

where Proj{||·||TV6τ} is the projector on the TV ball defined in (6).

The following Theorem ensures the convergence of the iteration.

Theorem 3. If ν ∈ (0, 2/
∣
∣
∣
∣
∣
∣Φ

∣
∣
∣
∣
∣
∣2), where

∣
∣
∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
∣ is the operator spectral norm, then f (ℓ) converges to a

minimizer f⋆ of (36) with the rate O(1/ℓ) on the objective. If moreover, Φ is injective, then both the

objective and the sequence f (ℓ) converge linearly to the unique minimizer of (36).

Proof: We use the same arguments as in the first part in the proof of Theorem 1. The conver-

gence rate on the objective is a classical result that can be found in [57]. The second claim on linear

convergence is a consequence of strong convexity when Φ is an injective operator.

The projector in (37) cannot be computed exactly but is rather computed via a nested inner iteration

using either the forward-backward projection detailed in Algorithm 1 or the multi-step Nesterov projec-

tion detailed in Algorithm 2. As these projection algorithms are ran a finite number of inner iterations

Nℓ at each outer iteration ℓ, they yield an estimate of the TV-ball projector up to an error term aℓ. Put

formally, we have

f (ℓ+1) = f̃ (ℓ) − div
(

u[ℓ+1]
)

= Proj{||·||TV6τ}(f̃
(ℓ)) + aℓ , (38)
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where f̃ (ℓ) = f (ℓ) + νΦ∗(y − Φf (ℓ)), and u[ℓ+1] is the dual vector solution provided by applying

Algorithm 1 or 2 to f̃ (ℓ) with a convergence tolerance ηproj,ℓ. At this stage, we advise to use u[ℓ] as an

initialization in the next call of Algorithm 1 or 2 at the outer iteration ℓ+1. This initialization is intended

to make the constant smaller in the convergence rate of the projection algorithms; see the constants R

in the proofs of Theorem 1 and 2. This leads to the TV projection algorithm to solve inverse problems

summarized in Algorithm 3.

Algorithm 3: TV-constrained inverse problem resolution algorithm.

Initialization: set f (0) = 0, u[0] = 0, ℓ = 0 and ν ∈ (0, 2/
∣
∣
∣
∣
∣
∣Φ

∣
∣
∣
∣
∣
∣2).

Main iteration:

while ||f (ℓ+1) − f (ℓ)|| > η do

1) Gradient descent step:

f̃ (ℓ) = f (ℓ) + νΦ∗(y − Φf (ℓ)).

2) Projection step: use u[ℓ] as an initialization in Algorithm 1 or Algorithm 2, and apply them to f̃ (ℓ)

with convergence tolerance ηproj,ℓ. Get the new dual solution u[ℓ+1] given by these algorithms.

3) Update: Set f (ℓ+1) = f̃ (ℓ) − div
(
u[ℓ+1]

)
.

4) ℓ = ℓ + 1.

The errors aℓ are inevitable and may prevent the above algorithm from converging. But fortunately,

a distinctive property of the projected gradient (which is actually a special instance of the forward-

backward scheme), is its robustness to these errors under appropriate sufficient conditions to be made

precise in the next proposition; see also [49], [16]. Denote C as the constant appearing either in the rates

of Theorem 1 or 2.

Proposition 3. Suppose that the sequence
(
ηproj,ℓ

)

ℓ∈N
is summable. If Algorithm 1 or 2 are ran Nℓ >

(2C)1/αη
−1/α
proj,ℓ iterations, where α = 1/2 for Algorithm 1 and α = 1 for Algorithm 2, then Algorithm 3

converges.

Proof: In view of Theorem 1 and 2, as well as the triangle inequality, it is sufficient to take Nℓ >

(2C)1/αη
−1/α
proj,ℓ in Algorithm 1 and 2 to reach a ηproj,ℓ-tolerance on the successive primal iterates. From

the definition of aℓ in (38), this implies that ||aℓ|| 6 CN−α
ℓ 6 ηproj,ℓ/2. For the projected gradient outer

iteration to converge, the error sequence aℓ must obey
∑

ℓ∈N
||aℓ|| < +∞ [49], [16]. It is then sufficient

to require that the sequence
(
ηproj,ℓ

)

ℓ∈N
is summable.

This result provides a useful guideline on the way the sequence of tolerances ηproj,ℓ should be chosen.

But putting exactly this choice into practice is somewhat delicate as we have to circumvent two main

difficulties: (i) the estimation of the constant C, more precisely the abstract constants R in (28)-(33),

and (ii) the choice of a summable sequence ηproj,ℓ such that the dual projection algorithms converge

in a reasonable number of iterations given their predicted convergence rates. We here propose to take
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ηproj,ℓ ∝ ρℓ (or equivalently Nℓ at least ∝ ρ−ℓ/α or larger), for 0 < ρ < 1, a parameter that can be

adjusted to the application at hand.

Remark 5. A this stage, the reader may think of using the multi-step Nesterov algorithm to solve (36)

instead of the one-step projected gradient descent. However, one must be aware that while the projected

gradient is robust to errors in the computation of the projection operator as we discuss above, we do not

have any proof of robustness of the multi-step Nesterov scheme to such errors. This is the main reason

we did not use it here to solve TV-constrained inverse problems.

VI. NUMERICAL EXAMPLES

A. Denoising

We have first tested our TV projection algorithms for denoising, i.e. Φ = Id in (34). In our experiment

y = f0 + ε is an observed image of N = 5122 pixels contaminated by a zero-mean additive white

Gaussian noise (AWGN) ε of standard deviation 0.06||f0||∞ (PSNR=24.4 dB).

Figure 1 shows the projections f⋆ of the noisy image computed with our dual projection algorithms

described either in Algorithm 1 or Algorithm 2 for a decreasing value of the constraint τ , so that only

the strongest edges are present in the projected images. The output PSNR values of the projected images

are respectively 28.9 dB, 23.7 dB and 19.36 dB.

Figure 2 compares the convergence speed of our one-step and multi-step projection algorithms sum-

marized in Algorithm 1 and Algorithm 2, with the sub-gradient projection method proposed in [12],

[13]. Since an iteration of the multi-step Nesterov projection is approximately twice the computational

cost of one iteration of the two other algorithms, we displayed the errors generated by f (k/2) instead of

f (k) for the curve of the multi-step algorithm. The one-step algorithm converges slightly faster compared

to the sub-gradient projection. Moreover, and as predicted by our convergence analysis, the multi-step

projection algorithm clearly outperforms the two other methods. Figure 3 shows the evolution of the

total variation of the iterates.

B. Total Variation Texture Synthesis

Statistical approaches to texture synthesis draw an image at random from a set of potential textures

defined by constraints that can be learned from an exemplar texture. A standard procedure considers

the outputs of a filter-bank, such as wavelets, and constrains their marginal distributions to match those

of the exemplar [21], [24]. Instead of considering the uniform distribution inside the set of constraints–

assumed to have a non-empty intersection– and sample from this intersection, a simpler approach is to

use alternating projections onto the constraints of an initial random white noise image [25]. Although

the constrained sets are often non-convex, hopefully, this scheme converges locally to a point within the

intersection of the constraints that is expected to be visually similar to the exemplar image.
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Noisy image y f⋆ with ||f0||TV/||f⋆||TV = 2

f⋆ with ||f0||TV/||f⋆||TV = 4 f⋆ with ||f0||TV/||f⋆||TV = 8

Fig. 1. Examples of total variation projections computed with our algorithm.

We propose here to consider a total variation constraint to better preserve sharp edges during the

synthesis

CTV =
{
f ∈ R

N \ ||f ||TV 6 τ
}

,

where τ might be computed from an exemplar texture τ = ||f0||TV. This constraint is especially suitable

for piecewise-smooth textures representing objects occluding each other.

To enforce other statistical constraints as well, we set up a simple texture model where the mean and

the standard deviation of the synthesized texture are preserved. Without loss of generality, the mean can
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Fig. 2. Decay with k of the error log10(||f
(k) −f⋆||/||f⋆||) for the one-step forward-backward dual projection in Algorithm 1

(solid line), for the multi-step dual projection in Algorithm 2 (dashed-dotted line), and the sub-gradient projection [12] (dashed

line). Here τ = ||f0||TV/2.

be set to zero, and the standard deviation constraint amounts to the non-convex closed set

Cstd =
{
f ∈ R

N \ ||f − f̄ ||/n = β
}

.

where f̄ =
∑n−1

i,j=0 f [i, j]/N is the mean of f , and β can be set from an exemplar β = ||f0 − f̄0||/n.

Clearly, in finite dimensions, the set Cstd is a bounded sphere in R
N . The closed set Cstd is prox-regular

since its associated orthogonal projector is single-valued through the simple formula

ProjCstd
(f) = nβ

(
f − f̄

)
/||f − f̄ || . (39)

The synthesis algorithm, detailed in Algorithm 4, corresponds to the von Neumann’s method of

alternating projections onto the two constraint sets

f (ℓ+1) = ProjCstd

(

Proj||·||TV6τ (f
(ℓ))

)

,

starting from an initial noise texture f (0).

Using arguments from [58], we can conclude that our non-convex alternating projections algorithm

for texture synthesis converges locally to a point of the intersection CTV ∩ Cstd which is non-empty as

the exemplar f0 is in it. Indeed, both constraint sets are closed and prox-regular, i.e. the associated

orthogonal projectors are single-valued since CTV is convex and Cstd is a smooth manifold. Thus, by

[58, Corollary 5.18], Algorithm 4 converges at a linear rate associated with a modulus of regularity
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Fig. 3. Decay with k of the total variation error log10(||f
(k)||TV/τ − 1) for the same algorithms as in Figure 2. Here

τ = ||f0||TV/2.

Algorithm 4: Total variation texture synthesis algorithm.

Initialization: set f (0) = random white noise and set ℓ = 0.

Main iteration:

while ||f (ℓ+1) − f (ℓ)|| > η do

1) Impose TV constraint: compute

f̃ (ℓ) = Proj||·||TV6τ f (ℓ)

using our dual projection Algorithm 1 or 2.

2) Impose histogram constraint: compute

f (ℓ+1) = ProjCstd
f̃ (ℓ)

where.

3) ℓ← ℓ + 1.

depending on the geometry of the intersection, with the proviso that the latter is strongly regular; see

[58, Section 2] for a definition of strong regularity. The legitimate question that one may ask is whether

the above algorithm is robust with regard to the inexact computation of the projector onto CTV which

is obtained by running Algorithm 1 or 2 a finite number of iterations. It turns out that by virtue of [58,

Theorem 6.1], the convergence of Algorithm 4 with the inexact projection on CTV can still be guaranteed.

Figure 4 depicts examples of texture synthesis using Algorithm 4. The latter always converged in

practice though we cannot guarantee in fact that the intersection of the two constraint sets is strongly

regular. When the total variation constraint τ decreases, short edges are removed. This allows to inter-
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polate between a noisy texture and a cartoon image with sharp edges.

||f (0)||TV/||f⋆||TV = 4 ||f (0)||TV/||f⋆||TV = 8

||f (0)||TV/||f⋆||TV = 16 ||f (0)||TV/||f⋆||TV = 32

Fig. 4. Texture synthesis with TV projection and standard deviation constraint.

C. Inpainting

Inpainting aims at restoring an image f0 from which a set Ω ⊂ {0, . . . , n− 1}2 of pixels is missing.

It corresponds to the inversion of the ill-posed linear problem (34) where Φ is defined as

(Φf)[i, j] =







0 if (i, j) ∈ Ω,

f [i, j] if (i, j) /∈ Ω.

(40)
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In this case, it is obvious that
∣
∣
∣
∣
∣
∣Φ

∣
∣
∣
∣
∣
∣ = 1, and we use ν = 1 for the projected gradient descent

Algorithm 3. The recursion (37) amounts to first imposing the known values outside Ω

f̃ (ℓ)[i, j] =







f (ℓ)[i, j] if (i, j) ∈ Ω,

y[i, j] otherwise.

and then projecting onto the TV ball

f (ℓ+1) = Proj{||·||TV6τ} f̃ (ℓ).

The top of Figure 5, exemplifies a damaged image y of N = 5122 pixels, with |Ω|/N = 0.7 of

randomly removed pixels. The noise is AWGN with standard deviation 0.05||f0||∞.

The inpainted image f⋆ (output PSNR=25.67 dB) is computed by solving (36) with the projected

gradient descent, Algorithm 3, with a total variation constraint size τ = 0.6||f0||TV. The number of

iterations for the projection step 3) is controlled by setting ηproj = 10−2. Roughly between 10 to 20

iterations of dual projections are required to maintain the total variation constraints during the gradient

descent. Figure 6(a) depicts the decay in log scale of the iterates error, that exhibits a roughly linear

convergence speed for large ℓ. This rate is likely to be a consequence of the special structure of the

masking operator Φ. We think that this may be justified in the light of compressed sensing arguments

(the mask is random here), and the convergence analysis in [51]. We leave these aspects, which are

beyond the scope of the paper, to a future work.

D. Deconvolution

An optical system produces a blur that is modeled by convolution with a low pass point spread

function (PSF) ϕ. In such a case, the operator Φ in (34) represents the circular convolution with ϕ. The

convolution by ϕ removes high frequency details and the total variation constraint (36) helps to recover

sharp edges of the original image.

Figure 6, middle, gives an example of blurred image y of N = 5122 pixels. The PSF is a Gaussian

kernel of standard deviation s = 4 pixels, normalized to a unit mass. Thus
∣
∣
∣
∣
∣
∣Φ

∣
∣
∣
∣
∣
∣ = 1. The noise is

AWGN with standard deviation 0.02||f0||∞. We use a gradient descent step-size ν = 1.9 in Algorithm 3.

The deconvolved image f⋆ (output PSNR=24.48 dB) is computed by applying Algorithm 3 to y, with

a total variation constraint size τ = 0.6||f0||TV. Figure 6(b) shows the decay in log scale of the iterates

error. This is consistent with the predicted convergence rate of Theorem 3.

E. Tomography

In this last example, we illustrate our algorithm on a tomography reconstruction problem with missing

Fourier measurements. In such case, the operator Φ in (34) belongs to the partial Fourier ensemble,

i.e. subsampling rows from the orthonormal Fourier matrix. Note that obviously ΦΦ∗ = Id, hence
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∣
∣
∣
∣
∣
∣Φ

∣
∣
∣
∣
∣
∣ = 1. In our case, the subsampling is not random at uniform and therefore, one should avoid

thinking of this example as a compressed sensing reconstruction problem. As advocated in [39], we

solve this tomography reconstruction problem by promoting the sparsity of the gradient of the image;

i.e. by solving (36) using Algorithm 3.

Figure 6, bottom left, shows the original Shepp-Logan phantom (N = 2562). The bottom center

image depicts the frequency domain sampling, where approximately 10% of the Fourier coefficients of

the original image are kept on a star-shaped domain consisting of 22 radial lines. Such a sampling is

usual in parallel-beam tomography. The noise is (complex) AWGN with standard deviation 0.02||f0||∞.

We use a step-size ν = 1.9 in Algorithm 3.

The recovered image f⋆ (output PSNR=28.34 dB) is displayed in Figure 6, bottom right. It is obtained

with a total variation constraint size τ = 0.8||f0||TV. Figure 6(c) shows the decay in log scale of the

iterates error.

VII. CONCLUSION

This paper proposes a new approach to compute the projection of an image on a total variation

ball. This approach solves an unconstrained dual formulation of the primal problem, and boils down

to an iterative soft thresholding on the gradient field. Two algorithms for solving the dual minimization

problem were proposed. We also studied their convergence behavior and established their convergence

rates.

Even though we only focused on the total variation norm in the constraint, our dualization-based

projection approach is quite general and extends to any positively 1-homogeneous functional for which

the conjugate can be easily computed. This includes constraints involving functionals of the form ||Af ||1
for any bounded linear operator A (of explicit adjoint) such as the analysis operator of a frame. The

scheme also generalizes very easily to arbitrary dimension. In particular, our proof of convergence rate

on the forward-backward can be extended to the infinite dimensional case.

We have illustrated the projection algorithm over several applications such as denoising when little is

known about the noise statistics, or to enforce total variation constraint in texture synthesis.

A projected gradient descent was also proposed that uses this projection to solve linear inverse

problems under a total variation constraint. Our projector can be advantageously used when additional

constraints are involved, such as for example contrast bounds a 6 f 6 b or affine constraints Af = g.

Such a problem with compound constraints can be solved for instance using e.g. Douglas-Rachford

splitting and its extensions.

Acknowledgment: The authors would like to thank Pierre Weiss for reading an earlier version of

this paper and for fruitful discussions. This work is supported by ANR grant ANR-08-EMER-009.

July 12, 2010 DRAFT



23

f0 y = Φf0 + ε f⋆

Fig. 5. Examples of inpainting (top row), deconvolution (middle row) and tomography (bottom row) using the TV constraint.
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[11] J. Bect, L. Blanc Féraud, G. Aubert, and A. Chambolle, “A ℓ1-unified variational framework for image restoration,” in

Proc. of ECCV04. Springer-Verlag, 2004, pp. Vol IV: 1–13.

[12] P.-L. Combettes and J.-C. Pesquet, “Image restoration subject to a total variation constraint,” IEEE Trans. Image Proc.,

vol. 13, no. 9, pp. 1213–1222, 2004.

[13] P.-L. Combettes, “A block-iterative surrogate constraint splitting method for quadratic signal recovery,” IEEE Trans.

Signal Proc., vol. 51, no. 7, pp. 1771–1782, 2003.

[14] D. Gabay, “Applications of the method of multipliers to variational inequalities,” in Augmented Lagrangian Methods:

July 12, 2010 DRAFT



25

Applications to the Solution of Boundary-Value Problems, M. Fortin and R. Glowinski, Eds. North-Holland, Amsterdam,

1983.

[15] P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,”

SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991.

[16] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Modeling &

Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.

[17] Y. Nesterov, “Gradient methods for minimizing composite objective function,” Université catholique de Louvain, Center
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