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1.1 Introduction

The Fermi Gamma-ray Space Telescope, which was launched by NASA
in June 2008, is a powerful space observatory which studies the high-energy
gamma-ray sky [5]. Fermi’s main instrument, the Large Area Telescope (LAT),
detects photons in an energy range between 20 MeV to greater than 300 GeV.
The LAT is much more sensitive than its predecessor, the EGRET telescope
on the Compton Gamma Ray Observatory, and is expected to find several
thousand gamma-ray point sources, which is an order of magnitude more
than its predecessor EGRET [13].

Even with its relatively large acceptance (∼2 m2 sr), the number of pho-
tons detected by the LAT outside the Galactic plane and away from intense
sources is relatively low and the sky overall has a diffuse glow from cosmic-
ray interactions with interstellar gas and low-energy photons that makes a
background against which point sources need to be detected. In addition, the
per-photon angular resolution of the LAT is relatively poor and strongly en-
ergy dependent, ranging from more than 10◦ at 20 MeV to ∼0.1◦ above 100
GeV. Consequently, the spherical photon count images obtained by Fermi are
degraded by the fluctuations on the number of detected photons. The basic
photon-imaging model assumes that the number of detected photons at each
pixel location is Poisson distributed. More specifically, the image is considered
as a realization of an inhomogeneous Poisson process. This statistical noise
makes the source detection more difficult, consequently it is highly desirable
to have an efficient denoising method for spherical Poisson data.

Several techniques have been proposed in the literature to estimate Poisson
intensity in 2D. A major class of methods adopt a multiscale bayesian frame-
work specifically tailored for Poisson data [19], independently initiated by [23]
and [15]. [16] proposed an improved bayesian framework for analyzing Poisson
processes, based on a multiscale representation of the Poisson process in which
the ratios of the underlying Poisson intensities in adjacent scales are modeled
as mixtures of conjugate parametric distributions. Another approach includes
preprocessing the count data by a variance stabilizing transform (VST) such
as the Anscombe [4] and the Fisz [10] transforms, applied respectively in the
spatial [8] or in the wavelet domain [11]. The transform reforms the data
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so that the noise approximately becomes Gaussian with a constant variance.
Standard techniques for independant identically distributed Gaussian noise
are then used for denoising. [25] proposed a powerful method called Multi-
Scale Variance Stabilizing Tranform (MS-VST). It consists in combining a
VST with a multiscale transform (wavelets, ridgelets or curvelets), yielding
asymptotically normally distributed coefficients with known variances. The
choice of the multi-scale method depends on the morphology of the data.
Wavelets represent more efficiently regular structures and isotropic singulari-
ties, whereas ridgelets are designed to represent global lines in an image, and
curvelets represent efficiently curvilinear contours. Significant coefficients are
then detected with binary hypothesis testing, and the final estimate is re-
constructed with an iterative scheme. In [21], it was shown that sources can
be detected in 3D LAT data (2D+time or 2D+energy) using a specific 3D
extension of the MS-VST.

To denoise Fermi maps, we need a method for Poisson intensity estimation
on spherical data. It is possible to decompose the spherical data into several
2D projections, denoise each projection and reconstitute the denoised spheri-
cal data, but the projection induces some caveats like visual artifacts on the
borders or deformation of the sources.

In the scope of the Fermi mission, two of the main scientific objectives are
in a sense complementary:

• Detection of point sources to build the catalog of gamma ray sources,

• Study of the Milky Way diffuse background.

The first objective implies the extraction of the Galactic diffuse back-
ground. Consequently, we want a method to suppress Poisson noise while
extracting a model of the diffuse background. The second objective implies
the suppression of the point sources: we want to apply a binary mask on the
data (equal to 0 on point sources, and to 1 everywhere else) and to denoise
the data while interpolating the missing part. Both objectives are linked: a
better knowledge of the Milky Way diffuse background enables us to improve
our background model, which leads to a better source detection, while the
detected sources are masked to study the diffuse background.

The aim of this chapter is to present a multi-scale representation for spheri-
cal data with Poisson noise called Multi-Scale Variance Stabilizing Transform
on the Sphere (MS-VSTS) [14], combining the MS-VST [25] with various
multi-scale transforms on the sphere (wavelets and curvelets) [22, 2, 3]. Sec-
tion 1.2 presents some multi-scale transforms on the sphere. Section 1.3 in-
troduces a new multi-scale representation for data with Poisson noise called
MS-VSTS. Section 1.4 applies this representation to Poisson noise removal
on Fermi data. Section 1.5 presents applications to missing data interpolation
and source extraction. Section 1.6 extends the method to multichannel data.

All experiments were performed on HEALPix maps with nside = 128 [12],
which corresponds to a good pixelisation choice for the GLAST/FERMI res-
olution.
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1.2 Wavelets and Curvelets on the Sphere
New multi-scale transforms on the sphere were developed by [22]. These

transforms can be inverted and are easy to compute with the HEALPix pix-
ellisation, and were used for denoising, deconvolution, morphological compo-
nent analysis and inpainting applications [2]. In this chapter, here we use the
Isotropic Undecimated Wavelet Transform (IUWT) and the Curvelet Trans-
form.

1.2.1 The HEALPix Pixellisation for Spherical Data

Different kinds of pixellization scheme exist for data on the sphere. For
Fermi data, we use the HEALPix representation (Hierarchical Equal Area
isoLatitude Pixellization of a sphere) [12], a curvilinear hierarchical partition
of the sphere into quadrilateral pixels of exactly equal area but with varying
shape. The base resolution divides the sphere into 12 quadrilateral faces of
equal area placed on three rings around the poles and equator. Each face is
subsequently divided into nside2 pixels following a quadrilateral multiscale
tree structure. (Fig. 1.1) The pixel centers are located on iso-latitude rings,
and pixels from the same ring are equispaced in azimuth. This is critical for
computational speed of all operations involving the evaluation of spherical
harmonic transforms, including standard numerical analysis operations such
as convolution, power spectrum estimation, etc. HEALPix is a standard pix-
elization scheme in astronomy.

1.2.2 Isotropic Undecimated Wavelet Transform on the
sphere

The Isotropic Undecimated Wavelet Transform on the sphere (IUWT) is a
wavelet transform on the sphere based on the spherical harmonics transform
and with a very simple reconstruction algorithm. At scale j, we denote aj(θ, ϕ)
the scale coefficients, and dj(θ, ϕ) the wavelet coefficients, with θ denoting the
longitude and ϕ the latitude. Given a scale coefficient aj , the smooth coefficient
aj+1 is obtained by a convolution with a low pass filter hj : aj+1 = aj ∗ hj .
The wavelet coefficients are defined by the difference between two consecutive
resolutions : dj+1 = aj − aj+1. A straightforward reconstruction is then given
by:

a0(θ, ϕ) = aJ(θ, ϕ) +
J∑
j=1

dj(θ, ϕ) (1.1)

Since this transform is redundant, the procedure for reconstructing an image
from its coefficients is not unique and this can be profitably used to impose
additional constraints on the synthesis functions (e.g. smoothness, positivity).
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Figure 1.1: The HEALPix sampling grid for four different resolutions.

A reconstruction algorithm based on a variety of filter banks is described
in [22]. Figure 1.2 shows the result of the IUWT on WMAP data (Cosmic
Microwave Background).

1.2.3 Curvelet Transform on the sphere

The curvelet transform enables the directional analysis of an image in dif-
ferent scales. The data undergo an Isotropic Undecimated Wavelet Transform
on the sphere. Each scale j is then decomposed into smoothly overlapping
blocks of side-length Bj in such a way that the overlap between two vertically
adjacent blocks is a rectangular array of size Bj ×Bj/2, using the HEALPix
pixellisation. Finally, the ridgelet transform [7] is applied on each individ-
ual block. The method is best for the detection of anisotropic structures and
smooth curves and edges of different lengths. The principle of the curvelet
transform is schematized on Figure 1.3. More details can be found in [22].

1.2.4 Application to Gaussian denoising on the sphere

Multiscale transforms on the sphere have been used successfully for Gaus-
sian denoising via non-linear filtering or thresholding methods. Hard thresh-
olding, for instance, consists of setting all insignificant coefficients (i.e. coef-
ficients with an absolute value below a given threshold) to zero. In practice,
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Figure 1.2: WMAP data and its wavelet transform on the sphere using five
resolution levels (4 wavelet scales and the coarse scale). The sum of these five
maps reproduces exactly the original data (top left). Top: original data and
the first wavelet scale. Middle: the second and third wavelet scales. Bottom:
the fourth wavelet scale and the last smoothed array.
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Figure 1.3: Principle of curvelets transform on the sphere.
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we need to estimate the noise standard deviation σj in each band j and a
coefficient wj is significant if |wj | > κσj , where κ is a parameter typically
chosen between 3 and 5. Denoting Y the noisy data and HTλ the threshold-
ing operator, the filtered data X are obtained by:

X = ΦHTλ(ΦTY), (1.2)

where ΦT is the multiscale transform (IUWT or curvelet) and Φ is the mul-
tiscale reconstruction. λ is a vector which has the size of the number of bands
in the used multiscale transform. The thresholding operation thresholds all
coefficients in band j with the threshold λj = κσj .

1.3 Multi-Scale Transforms on the Sphere and Poisson
Noise

1.3.1 Principle of the Multi-Scale Variance Stabilizing Trans-
form on the Sphere (MS-VSTS)

In this section, we propose a multi-scale representation designed for data
with Poisson noise. The idea is to combine the spherical multi-scale transforms
with a variance stabilizing transform (VST), in order to have a multi-scale
representation of the data where the noise on multi-scale coefficients behaves
like Gaussian noise of known variance. With this representation, it is easy to
denoise the data using standard Gaussian denoising methods.

VST of a Poisson process
Given Poisson data Y := (Yi)i, each sample Yi ∼ P(λi) has a variance

Var[Yi] = λi. Thus, the variance of Y is signal-dependant. The aim of a
VST T is to stabilize the data such that each coefficient of T(Y) has an
(asymptotically) constant variance, say 1, irrespective of the value of λi. In
addition, for the VST used in this study, T (Y) is asymptotically normally
distributed. Thus, the VST-transformed data are asymptotically stationary
and Gaussian.

The Anscombe [4] transform is a widely used VST which has a simple
square-root form

T(Y ) := 2
√
Y + 3/8. (1.3)

We can show that T(Y ) is asymptotically normal as the intensity increases.

T(Y )− 2
√
λ

D
GGGGGGGGA

λ→ +∞
N (0, 1) (1.4)

It can be shown that the Anscombe VST requires a high underlying intensity
to well stabilize the data (typically for λ > 10) [25].
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VST of a filtered Poisson process
Let Zj :=

∑
i h[i]Yj−i be the filtered process obtained by convolving (Yi)i

with a discrete filter h. We will use Z to denote any of the Zj ’s. Let us define
τk :=

∑
i(h[i])k for k = 1, 2, · · · . In addition, we adopt a local homogeneity

assumption stating that λj−i = λ for all i within the support of h.
We define the square-root transform T as follows:

T (Z) := b · sign(Z + c)|Z + c|1/2, (1.5)

where b is a normalizing factor. It is proven in [25] that T is a VST for a filtered
Poisson process (with a nonzero-mean filter) in that T (Y ) is asymptotically
normally distributed with a stabilized variance as λ becomes large.

The Multi-Scale Variance Stabilizing Transform on the Sphere (MS-VSTS)
consists in combining the square-root VST with a spherical multi-scale trans-
form (wavelets, curvelets...).

1.3.2 Wavelets and Poisson Noise

This subsection describes the MS-VSTS + IUWT, which is a combination
of a square-root VST with the IUWT. The recursive scheme is:

IUWT
{
aj = hj−1 ∗ aj−1

dj = aj−1 − aj

=⇒
MS-VSTS
+ IUWT

{
aj = hj−1 ∗ aj−1

dj = Tj−1(aj−1)− Tj(aj)
.

(1.6)

In (1.6), the filtering on aj−1 can be rewritten as a filtering on a0 := Y,
i.e., aj = h(j) ∗ a0, where h(j) = hj−1 ∗ · · · ∗ h1 ∗ h0 for j > 1 and h(0) = δ,
where δ is the Dirac pulse (δ = 1 on a single pixel and 0 everywhere else). Tj
is the VST operator at scale j:

Tj(aj) = b(j)sign(aj + c(j))
√
|aj + c(j)|. (1.7)

Let us define τ (j)
k :=

∑
i(h

(j)[i])k. In [25], it has been shown that, to have
an optimal convergence rate for the VST, the constant c(j) associated to h(j)

should be set to:

c(j) :=
7τ (j)

2

8τ (j)
1

− τ
(j)
3

2τ (j)
2

. (1.8)

The MS-VSTS+IUWT procedure is directly invertible as we have:

a0(θ, ϕ) = T−1
0

[
TJ(aJ) +

J∑
j=1

dj

]
(θ, ϕ). (1.9)

Setting b(j) := sign(τ (j)
1 )/

√
|τ (j)

1 |, if λ is constant within the support of the
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filter. h(j), then we have [25]:

dj(θ, ϕ)
D

GGGGGGGGA

λ→ +∞
N

(
0,

τ
(j−1)
2

4τ (j−1)2

1

+

τ
(j)
2

4τ (j)2

1

− 〈h
(j−1), h(j)〉

2τ (j−1)
1 τ

(j)
1

)
,

(1.10)

where 〈., .〉 denotes inner product.
This means that the detail coefficients issued from locally homogeneous

parts of the signal follow asymptotically a central normal distribution with
an intensity-independant variance which relies solely on the filter h and the
current scale for a given filter h. Let us define σ2

(j) the stabilized variance at
scale j for a locally homogeneous part of the signal:

σ2
(j) =

τ
(j−1)
2

4τ (j−1)2

1

+
τ

(j)
2

4τ (j)2

1

− 〈h
(j−1), h(j)〉

2τ (j−1)
1 τ

(j)
1

. (1.11)

To compute the σ(j), b(j),c(j),τ
(j)
k , we only have to know the filters h(j).

We compute these filters thanks to the formula aj = h(j) ∗a0, by applying the
IUWT to a Dirac pulse a0 = δ. Then, the h(j) are the scaling coefficients of
the IUWT. The σ(j) have been precomputed for a 6-scaled IUWT (Table 1.1).

TABLE 1.1: Precomputed
values of the variances σj of the
wavelet coefficients.
Wavelet scale j Value of σj

1 0.484704
2 0.0552595
3 0.0236458
4 0.0114056
5 0.00567026

We have simulated Poisson images of different constant intensities λ, com-
puted the IUWT with MS-VSTS on each image and observed the variation of
the normalized value of σ(j) ((σ(j))simulated/(σ(j))theoretical) as a function of λ
for each scale j (Fig. 1.4). We see that the wavelet coefficients are stabilized
when λ & 0.1 except for the first wavelet scale, which is largely noise. In Fig.
1.5, we compare the result of MS-VSTS with Anscombe + wavelet shrinkage,
on sources of varying intensities. We see that MS-VSTS works well on sources
of very low intensities, whereas Anscombe does not work when the intensity
is too low.
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Figure 1.4: Normalized value ((σ(j))simulated/(σ(j))theoretical) of the stabilized
variances at each scale j as a function of λ.
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Figure 1.5: Comparison of MS-VSTS with Anscombe + wavelet shrinkage
on a single face of the first scale of the HEALPix pixelization (angular extent:
π/3sr). Top Left : Sources of varying intensity. Top Right : Sources of varying
intensity with Poisson noise. Bottom Left : Poisson sources of varying intensity
reconstructed with Anscombe + wavelet shrinkage. Bottom Right : Poisson
sources of varying intensity reconstructed with MS-VSTS.
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1.3.3 Curvelets and Poisson Noise

As the first step of the algorithm is an IUWT, we can stabilize each reso-
lution level as in Equation 1.6. We then apply the local ridgelet transform on
each stabilized wavelet band.

It is not as straightforward as with the IUWT to derive the asymptotic
noise variance in the stabilized curvelet domain. In our experiments, we de-
rived them using simulated Poisson data of stationary intensity level λ. After
having checked that the standard deviation in the curvelet bands becomes
stabilized as the intensity level increases (which means that the stabilization
is working properly), we stored the standard deviation σj,l for each wavelet
scale j and each ridgelet band l (Table 1.2).

TABLE 1.2: Asymptotic values of the variances
σj,k of the curvelet coefficients.
j l = 1 l = 2 l = 3 l = 4
1 1.74550 0.348175
2 0.230621 0.248233 0.196981
3 0.0548140 0.0989918 0.219056
4 0.0212912 0.0417454 0.0875663 0.20375
5 0.00989616 0.0158273 0.0352021 0.163248

1.4 Application to Poisson Denoising on the Sphere

1.4.1 MS-VSTS + IUWT

Under the hypothesis of homogeneous Poisson intensity, the stabilized
wavelet coefficients dj behave like centered Gaussian variables of standard
deviation σ(j). We can detect significant coefficients with binary hypothesis
testing as in Gaussian denoising.

Under the null hypothesis H0 of homogeneous Poisson intensity, the distri-
bution of the stabilized wavelet coefficient dj [k] at scale j and location index
k can be written as:

p(dj [k]) =
1√

2πσj
exp(−dj [k]2/2σ2

j ). (1.12)

The rejection of the hypothesis H0 depends on the double-sided p-value:

pj [k] = 2
1√

2πσj

∫ +∞

|dj [k]|
exp(−x2/2σ2

j )dx. (1.13)

Consequently, to accept or rejectH0, we compare each |dj [k]| with a critical
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threshold κσj , κ = 3, 4 or 5 corresponding respectively to significance levels.
This amounts to deciding that:

• if |dj [k]| > κσj , dj [k] is significant.

• if |dj [k]| < κσj , dj [k] is not significant.

Then we have to invert the MS-VSTS scheme to reconstruct the esti-
mate. However, although the direct inversion is possible (Eq. (??)), it can not
guarantee a positive intensity estimate, while the Poisson intensity is always
nonnegative. A positivity projection can be applied, but important structures
could be lost in the estimate. To tackle this problem, we reformulate the re-
construction as a convex optimisation problem and solve it iteratively with an
algorithm based on Hybrid Steepest Descent (HSD) [24].

We define the multiresolution supportM, which is determined by the set
of detected significant coefficients after hypothesis testing:

M := {(j, k)|if dj [k] is declared significant}. (1.14)

We formulate the reconstruction problem as a convex constrained mini-
mization problem:

Argmin
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTX)j [k] = (ΦTY)j [k],

(1.15)

where Φ denotes the IUWT synthesis operator.
This problem is solved with the following iterative scheme: the image is

initialised by X(0) = 0, and the iteration scheme is, for n = 0 to Nmax − 1:

X̃ = P+[X(n) + ΦPMΦT (Y −X(n))] (1.16)
X(n+1) = ΦSTλn

[ΦT X̃] (1.17)

where P+ denotes the projection on the positive orthant, PM denotes the
projection on the multiresolution supportM:

PMdj [k] =
{
dj [k] if (j, k) ∈M,

0 otherwise . (1.18)

and STλn
the soft-thresholding with threshold λn:

STλn [d] =
{

sign(d)(|d| − λn) if |d| > λn,
0 otherwise . (1.19)

We chose a decreasing threshold λn = Nmax−n
Nmax−1 , n = 1, 2, · · · , Nmax.

The final estimate of the Poisson intensity is: Λ̂ = X(Nmax). Algorithm 1
summarizes the main steps of the MS-VSTS + IUWT denoising algorithm.
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Algorithm 1 MS-VSTS + IUWT Denoising
Require: data a0 := Y, number of iterations Nmax, threshold κ

Detection
1: for j = 1 to J do
2: Compute aj and dj using (1.6).
3: Hard threshold |dj [k]| with threshold κσj and updateM.
4: end for

Estimation
5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −X(n))].
8: X(n+1) = ΦSTλn [ΦT X̃].
9: λn+1 = Nmax−(n+1)

Nmax−1 .
10: end for
11: Get the estimate Λ̂ = X(Nmax).

1.4.2 Multi-resolution support adaptation

When two sources are too close, the less intense source may not be de-
tected because of the negative wavelet coefficients of the brightest source. To
avoid such a drawback, we may update the multi-resolution support at each
iteration. The idea is to withdraw the detected sources and to make a detec-
tion on the remaining residual, so as to detect the sources which may have
been missed at the first detection.

At each iteration n, we compute the MS-VSTS of X(n). We denote
d
(n)
j [k] the stabilised coefficients of X(n). We make a hard thresholding on

(dj [k]− d(n)
j [k]) with the same thresholds as in the detection step. Significant

coefficients are added to the multiresolution supportM.

The main steps of the algorithm are summarized in Algorithm 2. In prac-
tice, we use Algorithm 2 instead of Algorithm 1 in our experiments.

1.4.3 MS-VSTS + Curvelets

Insignificant coefficients are zeroed by using the same hypothesis test-
ing framework as in the wavelet scale. At each wavelet scale j and ridgelet
band k, we make a hard thresholding on curvelet coefficients with thresh-
old κσj,k, κ = 3, 4 or 5. Finally, a direct reconstruction can be performed by
first inverting the local ridgelet transforms and then inverting the MS-VST +
IUWT (Equation (1.9)). An iterative reconstruction may also be performed.

Algorithm 3 summarizes the main steps of the MS-VSTS + Curvelets
denoising algorithm.
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Algorithm 2 MS-VSTS + IUWT Denoising + Multiresolution Support
Adaptation
Require: data a0 := Y, number of iterations Nmax, threshold κ

Detection
1: for j = 1 to J do
2: Compute aj and dj using (1.6).
3: Hard threshold |dj [k]| with threshold κσj and updateM.
4: end for

Estimation
5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −X(n))].
8: X(n+1) = ΦSTλn

[ΦT X̃].
9: Compute the MS-VSTS on X(n) to get the stabilised coeffcients d(n)

j .
10: Hard threshold |dj [k]− d(n)

j [k]| and updateM.
11: λn+1 = Nmax−(n+1)

Nmax−1 .
12: end for
13: Get the estimate Λ̂ = X(Nmax).

Algorithm 3 MS-VSTS + Curvelets Denoising
1: Apply the MS-VST + IUWT with J scales to get the stabilized wavelet

subbands dj .
2: Set B1 = Bmin.
3: for j = 1 to J do
4: Partition the subband dj with blocks of side-length Bj and apply the

digital ridgelet transform to each block to obtain the stabilized curvelet
coefficients.

5: if j modulo 2 = 1 then
6: Bj+1 = 2Bj
7: else
8: Bj+1 = Bj
9: end if

10: HTs on the stabilized curvelet coefficients.
11: end for
12: Invert the ridgelet transform in each block before inverting the MS-VST

+ IUWT.
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1.4.4 Experiments

The method was tested on simulated Fermi data. The simulated data are
the sum of a Milky Way diffuse background model and 1000 gamma ray point
sources. We based our Galactic diffuse emission model intensity on the model
gll_iem_v02 obtained at the Fermi Science Support Center [17] . This model
results from a fit of the LAT photons with various gas templates as well as
inverse Compton in several energy bands. We used a realistic point-spread
function for the sources, based on Monte Carlo simulations of the LAT and
accelerator tests, that scale with energy approximately as 0.8(E/1GeV )−0.8

degrees (68% containment angle). The positions of the 205 brightest sources
were taken from the Fermi 3-month source list [1]. The positions of the 795
remaining sources follow the LAT 1-year Point Source Catalog [18] source
distribution: each simulated source was randomly sorted in a box in Galactic
coordinates of ∆l=5o and ∆b=1o around a LAT 1-year catalog source. We
simulated each source assuming a power-law dependence with its spectral
index given by the 3-month source list and the first year catalog. We used an
exposure of 3.1010s.cm2 corresponding approximatively to one year of Fermi
all-sky survey around 1 GeV. The simulated counts map shown in this section
correspond to photons energy from 150 MeV to 20 GeV.

Fig. 1.6 compares the result of denoising with MS-VST + IUWT (Algo-
rithm 1), MS-VST + curvelets (Algorithm 3) and Anscombe VST + wavelet
shrinkage on a simulated Fermi map. Fig. 1.7 shows the results on one single
face of the first scale of the HEALPix pixelization(angular extent: π/3sr).
As expected from theory, the Anscombe method produces poor results to de-
noise Fermi data, because the underlying intensity is too weak. Both wavelet
and curvelet denoising on the sphere perform much better. For this appli-
cation, wavelets are slightly better than curvelets (SNRwavelets = 65.8dB,
SNRcurvelets = 37.3dB, SNR(dB) = 20 log(σsignal/σnoise)). As this image
contains many point sources, this result is expected. Indeed wavelets are bet-
ter than curvelets to represent isotropic objects.

1.5 Application to Inpainting and Source Extraction

1.5.1 Milky Way diffuse background study: denoising and in-
painting

In order to extract from the Fermi photon maps the Galactic diffuse emis-
sion, we want to remove the point sources from the Fermi image. As our HSD
algorithm is very close to the MCA (Morphological Component Analysis) al-
gorithm [20], an idea is to mask the most intense sources and to modify our
algorithm in order to interpolate through the gaps exactly as in the MCA-
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Figure 1.6: Top Left: Fermi simulated map without noise. Top Right: Fermi
simulated map with Poisson noise. Middle Left: Fermi simulated map denoised
with Anscombe VST + wavelet shrinkage. Middle Right: Fermi simulated map
denoised with MS-VSTS + curvelets (Algorithm 3). Bottom Left: Fermi sim-
ulated map denoised with MS-VSTS + IUWT (Algorithm 1) with threshold
5σj . Bottom Right: Fermi simulated map denoised with MS-VSTS + IUWT
(Algorithm 1) with threshold 3σj . Pictures are in logarithmic scale.
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Figure 1.7: View of a single HEALPix face (angular extent: π/3sr) from
the results of Figure 1.6. Top Left: Fermi simulated map without noise. Top
Right: Fermi simulated map with Poisson noise. Middle Left: Fermi simulated
map denoised with Anscombe VST + wavelet shrinkage. Middle Right: Fermi
simulated map denoised with MS-VSTS + curvelets (Algorithm 3). Bottom
Left: Fermi simulated map denoised with MS-VSTS + IUWT (Algorithm 1)
with threshold 5σj . Bottom Right: Fermi simulated map denoised with MS-
VSTS + IUWT (Algorithm 1) with threshold 3σj . Pictures are in logarithmic
scale.
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Inpainting algorithm [2]. This modified algorithm can be called MS-VSTS-
Inpainting algorithm.

The problem can be reformulated as a convex constrained minimization
problem:

Argmin
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTΠX)j [k] = (ΦTY)j [k],

(1.20)

where Π is a binary mask (1 on valid data and 0 on invalid data).
The iterative scheme can be adapted to cope with a binary mask, which

gives:

X̃ = P+[X(n) + ΦPMΦTΠ(Y −X(n))], (1.21)
X(n+1) = ΦSTλn [ΦX̃]. (1.22)

The thresholding strategy has to be adapted. Indeed, for the inpainting
task we need to have a very large initial threshold in order to have a very
smooth image in the beginning and to refine the details progressively. We
chose an exponentially decreasing threshold:

λn = λmax(2( Nmax−n
Nmax−1 ) − 1), n = 1, 2, · · · , Nmax, (1.23)

where λmax = max(ΦTX).

Algorithm 4 MS-VST + IUWT Denoising + Inpainting
Require: data a0 := Y, mask Π, number of iterations Nmax, threshold κ.

Detection
1: for j = 1 to J do
2: Compute aj and dj using (1.6).
3: Hard threshold |dj [k]| with threshold κσj and updateM.
4: end for

Estimation
5: Initialize X(0) = 0, λ0 = λmax.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦTΠ(Y −X(n))].
8: X(n+1) = ΦST

λn
[ΦT X̃].

9: λn+1 = λmax(2(
Nmax−(n+1)

Nmax−1 ) − 1)
10: end for
11: Get the estimate Λ̂ = X(Nmax).

Experiment

We applied this method on simulated Fermi data where we masked the
most luminous sources.
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Figure 1.8: MS-VSTS - Inpainting. Left: Fermi simulated map with Poisson
noise and the most luminous sources masked. Right: Fermi simulated map de-
noised and inpainted with wavelets (Algorithm 4). Pictures are in logarithmic
scale.

The results are on Figure 1.8. The MS-VST + IUWT + Inpainting method
(Algorithm 4) interpolates the missing data very well. Indeed, the missing part
can not be seen anymore in the inpainted map, which shows that the diffuse
emission component has been correctly reconstructed.

1.5.2 Source detection: denoising and background modeling

1.5.2.1 Method

In the case of Fermi data, the diffuse gamma-ray emission from the Milky
Way, due to interaction between cosmic rays and interstellar gas and radiation,
makes a relatively intense background. We have to extract this background in
order to detect point sources. This diffuse interstellar emission can be modelled
by a linear combination of gas templates and inverse compton map. We can
use such a background model and incorporate a background removal in our
denoising algorithm.

We denote Y the data, B the background we want to remove, and d(b)
j [k]

the MS-VSTS coefficients of B at scale j and position k. We determine the
multi-resolution support by comparing |dj [k]− d(b)

j [k]| with κσj .
We formulate the reconstruction problem as a convex constrained mini-

mization problem:

Argmin
X
‖ΦTX‖1, s.t.{

X > 0,
∀(j, k) ∈M, (ΦTX)j [k] = (ΦT (Y −B))j [k],

(1.24)
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Then, the reconstruction algorithm scheme becomes:

X̃ = P+[X(n) + ΦPMΦT (Y −B−X(n))], (1.25)
X(n+1) = ΦSTλn

[ΦT X̃]. (1.26)

The algorithm is illustrated by the theoretical study in Figure 1.9. We
denoise Poisson data while separating a single source, which is a Gaussian of
standard deviation equal to 0.01, from a background, which is a sum of two
Gaussians of standard deviation equal to 0.1 and 0.01 respectively.

Algorithm 5 MS-VSTS + IUWT Denoising + Background extraction
Require: data a0 := Y, background B, number of iterationsNmax, thresh-

old κ.
Detection

1: for j = 1 to J do
2: Compute aj and dj using (1.6).
3: Hard threshold (dj [k]− d(b)

j [k]) with threshold κσj and updateM.
4: end for

Estimation
5: Initialize X(0) = 0, λ0 = 1.
6: for n = 0 to Nmax − 1 do
7: X̃ = P+[X(n) + ΦPMΦT (Y −B−X(n))].
8: X(n+1) = ΦSTλn

[ΦT X̃].
9: λn+1 = Nmax−(n+1)

Nmax−1 .
10: end for
11: Get the estimate Λ̂ = X(Nmax).

Like Algorithm 1, Algorithm 5 can be adapted to make multiresolution
support adaptation.

1.5.2.2 Experiment

We applied Algorithms 5 on simulated Fermi data. To test the efficiency
of our method, we detect the sources with the SExtractor routine [6], and
compare the detected sources with the input source list to get the number of
true and false detections. Results are shown on Figures 1.10 and 1.11. The
SExtractor method was applied on the first wavelet scale of the reconstructed
map, with a detection threshold equal to 1. It has been chosen to optimise
the number of true detections. SExtractor makes 593 true detections and 71
false detections on the Fermi simulated map restored with Algorithm 2 among
the 1000 sources of the simulation. On noisy data, many fluctuations due to
Poisson noise are detected as sources by SExtractor, which leads to a big
number of false detections (more than 2000 in the case of Fermi data).

Sensitivity to model errors
As it is difficult to model the background precisely, it is important to study
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Figure 1.9: Theoretical testing for MS-VSTS + IUWT denoising + back-
ground removal algorithm (Algorithm 5). View on a single HEALPix face.
Top Left: Simulated background : sum of two Gaussians of standard devia-
tion equal to 0.1 and 0.01 respectively. Top Right: Simulated source: Gaussian
of standard deviation equal to 0.01. Bottom Left: Simulated poisson data.
Bottom Right: Image denoised with MS-VSTS + IUWT and background re-
moval.
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Figure 1.10: Top Left: Simulated background model. Top Right: Simulated
Gamma Ray sources. Middle Left: Simulated Fermi data with Poisson noise.
Middle Right: Reconstructed Gamma Ray Sources with MS-VSTS + IUWT +
background removal (Algorithm 5) with threshold 5σj . Bottom: Reconstructed
Gamma Ray Sources with MS-VSTS + IUWT + background removal (Algo-
rithm 5) with threshold 3σj . Pictures are in logarithmic scale.
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Figure 1.11: View of a single HEALPix face (angular extent: π/3sr) from
the results of Figure 1.10.Top Left: Simulated background model. Top Right:
Simulated Gamma Ray sources. Middle Left: Simulated Fermi data with Pois-
son noise. Middle Right: Reconstructed Gamma Ray Sources with MS-VSTS
+ IUWT + background removal (Algorithm 5) with threshold 5σj . Bottom:
Reconstructed Gamma Ray Sources with MS-VSTS + IUWT + background
removal (Algorithm 5) with threshold 3σj . Pictures are in logarithmic scale.
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TABLE 1.3: Percent of true and false detection and signal-noise
ratio versus the standard deviation of the Gaussian noise on the
background model.
Model error std dev % of true detect % of false detect SNR (dB)

0 59.3% 7.1% 23.8
10 57.0% 11.0% 23.2
20 53.2% 18.9% 22.6
30 49.1% 43.5% 21.7
40 42.3% 44.3% 21.0
50 34.9% 39.0% 20.3
60 30.3% 37.5% 19.5
70 25.0% 34.6% 18.9
80 23.0% 28.5% 18.7
90 23.6% 27.1% 18.3

the sensitivity of the method to model errors. We add a stationary Gaussian
noise to the background model, we compute the MS-VSTS + IUWT with
threshold 3σj on the simulated Fermi Poisson data with extraction of the
noisy background, and we study the percent of true and false detections with
respect to the total number of sources of the simulation and the signal-noise
ratio (SNR(dB) = 20 log(σsignal/σnoise)) versus the standard deviation of the
Gaussian perturbation. Table 1.3 shows that, when the standard deviation
of the noise on the background model becomes of the same range as the
mean of the Poisson intensity distribution (λmean = 68.764), the number of
false detections increases, the number of true detections decreases and the
signal noise ratio decreases. While the perturbation is not too strong (standard
deviation < 10), the effect of the model error remains low.

1.6 Extension to multichannel data

1.6.1 Gaussian Noise

1.6.1.1 2D-1D Wavelet Transform on the Sphere

We propose a denoising method for 2D - 1D data on the sphere, where
the two first dimensions are spatial (longitude and latitude) and the third
dimension is either the time or the energy. We need to analyze the data with
a non-isotropic wavelet, where the time or energy scale is not connected to
the spatial scale. An ideal wavelet function would be defined by:

ψ(θ, ϕ, t) = ψ(θ,ϕ)(θ, ϕ)ψ(t)(t) (1.27)
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where ψ(θ,ϕ) is the spatial wavelet and ψ(t) is the temporal (or energy) wavelet.
In the following, we will consider only isotropic and dyadic spatial scales, and
we denote j1 the spatial resolution index (i.e. scale 2j1), j2 the time (or energy)
resolution index. We thus define the scaled spatial and temporal (or energy)
wavelets ψ(θ,ϕ)

j1
(θ, ϕ) = 1

2j1 ψ
(θ,ϕ)( θ

2j1 ,
ϕ

2j1 ) and ψ(t)
j1

= 1
2j2 ψ

(t)( t
2j1 ).

Hence, we derive the wavelet coefficients wj1,j2 [kθ, kϕ, kt] from a given data
set D (kθ and kϕ are spatial index and kz a time (or energy) index. In con-
tinuous coordinates, this amounts to the formula

wj1,j2 [kθ, kϕ, kt] =
1

2j1
1√
2j2

∫ ∫ ∫ +∞

−∞
D(θ, ϕ, t)

×ψ(θ,ϕ)(
θ − kθ

2j1
,
ϕ− kϕ

2j1
ψ(t)(

t− kt
2j2

)dxdydz = D ∗ ψ̄(θ,ϕ)
j1

∗ ψ̄(t)
j2

(θ, ϕ, t)

(1.28)

where ∗ is the convolution and ψ̄(t) = ψ(−t).

1.6.1.2 Fast Undecimated 2D-1D decomposition/reconstruction

In order to have a fast algorithm for discrete data, we use wavelet func-
tions associated to filter banks. Hence, our wavelet decomposition consists in
applying first a IUWT on the sphere for each frame kz. Using the spherical
IUWT, we have the reconstruction formula:

D[kθ, kϕ, kt] = aJ1 [kθ, kϕ] +
J1∑
j1=1

wj1 [kθ, kϕ, kt],∀kt (1.29)

where J1 is the number of spatial scales. To have simpler notations, we replace
the two spatial indexes by a single index kr which corresponds to the pixel
index:

D[kr, kt] = aJ1 [kr] +
J1∑
j1=1

wj1 [kr, kt],∀kt (1.30)

Then, for each spatial location kr and for each 2D wavelet scale j1, we apply
a 1D wavelet transform along t on the spatial wavelet coefficients wj1 [kr, kt]
such that

wj1 [kr, kt] = wj1,J2 [kr, kt] +
J2∑
j2=1

wj1,j2 [kr, kt],∀(kr, kt) (1.31)

where j2 is the number of scales along t.The same processing is also applied
on the coarse spatial scale aJ1 [kr, kt] and we have

aJ1 [kr, kt] = aJ1,J2 [kr, kt] +
J2∑
j2=1

wJ1,j2 [kr, kt],∀(kr, kt) (1.32)
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Hence, we have a 2D-1D spherical undecimated wavelet representation of the
input data D:

D[kr, kt] = aJ1,J2 [kr, kt]+
J1∑
j1=1

wj1,J2 [kr, kt]+
J2∑
j2=1

wJ1,j2 [kr, kt]+
J1∑
j1=1

J2∑
j2=1

wj1,j2 [kr, kt]

(1.33)
From this expression, we distinguish four kinds of coefficients:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, kt] = (δ−h̄1D)?(h̄(j2−1)
1D ?aj1−1[kr, ·]−h(j2−1)

1D ?aj1 [kr, ·]) (1.34)

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, kt] = h
(j2−1)
1D ? aJ1 [kr, ·]− h(j2)

1D ? aJ1 [kr, ·] (1.35)

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, kt] = h
(J2)
1D ? aj1−1[kr, ·]− h(J2)

1D ? aj1 [kr, ·] (1.36)

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

aJ1,J2 [kr, kt] = h
(J2)
1D ? aJ1 [kr, ·] (1.37)

1.6.1.3 Multichannel Gaussian denoising

As the spherical 2D-1D undecimated wavelet transform just described is
fully linear, a Gaussian noise remains Gaussian after transformation. There-
fore, all thresholding strategies which have been developed for wavelet Gaus-
sian denoising are still valid with the spherical 2D-1D wavelet transform. De-
noting TH the thresholding operator, the denoised cube in the case of additive
white Gaussian noise is obtained by:

D̃[kr, kt] = aJ1,J2 [kr, kt]+
J1∑
j1=1

TH(wj1,J2 [kr, kt])+
J2∑
j2=1

TH(wJ1,j2 [kr, kt])+
J1∑
j1=1

J2∑
j2=1

TH(wj1,j2 [kr, kt])

(1.38)
A typical choice of TH is the hard thresholding operator, i.e.

TH(x) =
{

0 if |x| < τ
x if |x| > τ

(1.39)

The threshold τ is generally chosen between 3 and 5 times the noise standard
deviation.
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1.6.2 Poisson Noise

1.6.2.1 Multi-Scale Variance Stabilzing Transform

To perform a Poisson denoising, we have to plug the MS-VST into the
spherical 2D-1D undecimated wavelet transform. Again, we distinguish four
kinds of coefficients that take the following forms:

• Detail-Detail coefficients (j1 6 J1 and j2 6 J2):

wj1,j2 [kr, kt] = (δ−h̄1D)?(Tj1−1,j2−1[h̄(j2−1)
1D ?aj1−1[kr, ·]]−Tj1,j2−1[h(j2−1)

1D ?aj1 [kr, ·]])
(1.40)

• Approximation-Detail coefficients (j1 = J1 and j2 6 J2):

wJ1,j2 [kr, kt] = TJ1,j2−1[h(j2−1)
1D ? aJ1 [kr, ·]]− TJ1,j2 [h(j2)

1D ? aJ1 [kr, ·]]
(1.41)

• Detail-Approximation coefficients (j1 6 J1 and j2 = J2):

wj1,J2 [kr, kt] = Tj1−1,J2 [h(J2)
1D ? aj1−1[kr, ·]]− Tj1,J2 [h(J2)

1D ? aj1 [kr, ·]]
(1.42)

• Approximation-Approximation coefficients (j1 = J1 and j2 = J2):

aJ1,J2 [kr, kt] = h
(J2)
1D ? aJ1 [kr, ·] (1.43)

Hence, all 2D-1D wavelet coefficients wj1,j2 are now stabilized, and the noise on
all these wavelet coefficients is Gaussian with known scale-dependent variance
that depends solely on h. Denoising is however not straightforward because
there is no explicit reconstruction formula available because of the form of
the stabilization equations above. Formally, the stabilizing operators Tj1,j2
and the convolution operators along the spatial and temporal dimensions do
not commute, even though the filter bank satisfies the exact reconstruction
formula. To circumvent this difficulty, we propose to solve this reconstruction
problem by using an iterative reconstruction scheme.

1.6.2.2 Detection-Reconstruction

As the noise on the stabilized coefficients is Gaussian, and without loss of
generality, we let its standard deviation equal to 1, we consider that a wavelet
coefficient wj1,j2 [kr, kt] is significant, i.e., not due to noise, if its absolute value
is larger than a critical threshold τ , where τ is typically between 3 and 5.

The multiresolution support will be obtained by detecting at each scale the
significant coefficients. The multiresolution support for j1 6 J1 and j2 6 J2

is defined as:

Mj1,j2 [kr, kt] =
{

1 if wj1,j2 [kr, kt]is significant
0 otherwise (1.44)
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We denote W the spherical 2D-1D undecimated wavelet transform de-
scribed above, and R the inverse wavelet transform. We want our solution
X to preserve the significant structures of the original data by reproducing
exactly the same coefficients as the wavelet coefficients of the input data Y ,
but only at scales and positions where significant signal has been detected.
At other scales and positions, we want the smoothest solution with the lowest
budget in terms of wavelet coefficients.Furthermore, as Poisson intensity func-
tions are positive by nature, a positivity constraint is imposed on the solution.
It is clear that there are many solutions satisfying the positivity and multireso-
lution support consistency requirements, e.g. Y itself. Thus, our reconstruction
problem based solely on these constraints is an ill-posed inverse problem that
must be regularized. Typically, the solution in which we are interested must be
sparse by involving the lowest budget of wavelet coefficients. Therefore our re-
construction is formulated as a constrained sparsity-promoting minimization
problem that can be written as follows

min
X
‖WX‖1 subject to

{
MWX =MWY

X > 0 (1.45)

where ‖ · ‖ is the L1-norm playing the role of regularization and is well known
to promote sparsity[9]. This problem can be solved efficently using the hy-
brid steepest descent algorithm [24][25], and requires about 10 iterations in
practice. Transposed into our context, its main steps can be summarized as
follows:

Require: Input noisy data Y, a low-pass filter h, multiresolution support
M from the detection step, number of iterations Nmax

1: Initialize X(0) =MWY =MwY ,
2: for n = 1 to Nmax do
3: d̃ =MwY + (1−M)WX(n−1),
4: X(n) = P+(RSTβn

[d̃]),
5: Update the step βn = (Nmax − n)/(Nmax − 1)
6: end for

where P+ is the projector onto the positive orthant, i.e. P+(x) = max(x, 0),
STβn

is the soft-thresholding operator with threshold βn, i.e. STβn
[x] = x −

βnsign(x) if |x| > βn, and 0 otherwise.

The final spherical MSVST 2D-1D wavelet denoising algorithm is the fol-
lowing:
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Require: Input noisy data Y, a low-pass filter h, threshold level τ
1: Spherical 2D-1D MSVST: Apply the spherical 2D-1D-MSVST to the data

using (1.40)-(1.43).
2: Detection: Detect the significant wavelet coefficients that are above τ , and

compute the multiresolution supportM.
3: Reconstruction: Reconstruct the denoised data using the algorithm above.

1.7 Conclusion
This chapter presented new methods for restoration of spherical data with

noise following a Poisson distribution. A denoising method was proposed,
which used a variance stabilization method and multiscale transforms on the
sphere. Experiments have shown it is very efficient for Fermi data denois-
ing. Two spherical multiscale transforms, the wavelet and the curvelets, were
used. Then, we have proposed an extension of the denoising method in order
to take into account missing data, and we have shown that this inpainting
method could be a useful tool to estimate the diffuse emission. Then, we have
introduced a new denoising method on the sphere which takes into account a
background model. The simulated data have shown that it is relatively robust
to errors in the model, and can therefore be used for Fermi diffuse background
modeling and source detection. Finally, we introduced an extension for mul-
tichannel data.
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