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1 GREYC CNRS-ENSICAEN-Université de Caen, Caen France
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ABSTRACT

In this paper we propose a rigorous and elegant framework for

texture image segmentation relying on region-based active con-

tours (RBAC), shape derivative tools and multiscale geometrical

texture representations. After transforming the texture in a dic-

tionary of appropriate waveforms (atoms), the obtained trans-

form coefficients are intended to efficiently capture the essen-

tial spectral and geometrical contents of the texture, and to al-

low to discriminate it from other textures. Hence, to measure

the dissimilarity between two different textures, we use a di-

vergence between the non-parametric kernel density estimates

of the probability density functions (PDFs) of their respective

transform coefficients. The divergence measure is then either

minimized (supervised segmentation) or maximized (unsuper-

vised) after appropriately incorporating it within an RBAC vari-

ational functional. The functional is then optimized by taking

benefit from shape derivative tools to derive the evolution equa-

tion of the active contour. Our framework is applied to both su-

pervised (with exemplar reference textures), and unsupervised

texture segmentation. A series of experiments on synthetic and

real images are reported to illustrate the versatility and applica-

bility of our approach.

1. INTRODUCTION

Texture segmentation remains a difficult and challenging task,

and an intense research field. Indeed, the main bottleneck to

segment a texture image is to find an appropriate set of generic

computable descriptors to characterize a given texture and dis-

criminate distinct textures between them. Representing and

characterizing textures remains an important open problem,

mainly because there is no consensus on how to define a texture

model, despite several attempts including random models in

spatial or transform domains, low-dimensional manifold mod-

els, or sparsity-oriented models; see [10] for an review. There is

also number of papers devoted to the segmentation of textured

images; a comprehensive overview can be found e.g. in [7].

Some of them attacked the problem of segmenting or classify-

ing textures using the wavelet machinery as texture descriptors

[12, 5, 2, 3]. In this paper, we tackle the texture segmentation

This work was accomplished when the second and third authors were

hosted in the first institution.

problem under the umbrella of transform domain models such

as, but not limited to, wavelets, and variational region-based

active contours (RBAC). More precisely, we propose a general

texture segmentation framework that discriminates textures by

measuring a divergence between the non-parametric density

estimates of the PDFs of their respective transform coefficients.

The framework is adapted to both supervised and unsupervised

segmentation of textured images. In the supervised case (Sec-

tion 3.1.1), we consider the minimization of the divergence

between the coefficients PDF of a reference exemplar texture,

and that of the texture to segment. In the unsupervised case

(Section 3.1.2), we maximize this divergence between the coef-

ficients PDFs.

Region-based active contours and shape derivatives In vari-

ational image segmentation, the general energy functional to be

optimized is composed of region and contour terms. For the

sake of simplicity, we will focus in the sequel on the 2D case.

Let ΩI, an open bounded subset of R
2, be the domain of the im-

age. Image segmentation can then be cast as obtaining a disjoint

minimal partition of ΩI in K ≥ 2 regions

min
{Ωk}K

k=1

∣

∣∪K
k=1Ωk∪∂Ω=ΩI

F (Ω1, · · · ,ΩK , ∂Ω) =

K
∑

k=1

∫

Ωk

Fk(x; Ωk) dx +

∫

∂Ω

Fb(x) ds(x) ,

(1)

where Fk is the region descriptor attached to the open bounded

and regular domain/region Ωk, ∂Ω is the boundary of the re-

gions, and s(x) is the curvilinear abscissa. Each descriptor Fk

can be thought of as a homogeneity criterion, where homogene-

ity is to be understood in a broad sense. The contour integral

term corresponds to a local information, and can be used as a

regularization on ∂Ω. Typically, this term can be the length of

the contour (as a curve) in 2D in which case Fb(x) = λ, a pos-

itive constant that plays the role of a regularization parameter.

Once the optimization problem has been formulated, it re-

mains now to solve it with respect to the domains {Ωk}k=1,··· ,K ,

by deriving a geometrical evolution PDE that would drive the

contour to a stationary point of the minimized energy func-

tional, which may happen to be a local minimum of interest.

However, the set of domains in R
d does not have the structure

of a vector space, and classical descent algorithms do not qual-



ify straightforwardly for this problem. Throughout this work,

to exhibit such a PDE, we will focus on shape derivative tools.

To cut a long story short, shape derivative tools consist in

considering that the domain evolves in a velocity field V, and

the derivative of a domain functional Fr(Ω) :=
∫

Ω
F (x; Ω) dx

is computed in the direction V. This is summarized in the fol-

lowing result.

Theorem 1 ([4, 6]) The Eulerian derivative of the domain

functional Fr(Ω) in the direction V is given by

< F ′
r(Ω),V >=

∫

Ω

F ′(x; Ω,V) dx −

∫

∂Ω

F (x; Ω) 〈V,N〉 da(x),

where N is the inward unitary normal to ∂Ω, da(x) the area

element, and F ′(x; Ω,V) is the domain derivative of F (x; Ω)
in the direction V:

F ′(x; Ω,V) = lim
τ→0

F (x; Ω(τ)) − F (x; Ω)

τ
.

With this derivative at hand, the evolution PDE of the active

contour Γ(τ) is given by

∂Γ

∂τ
= speed(x; Ω) · N , Γ(τ = 0) = Γ0, (2)

if one is able to re-express the Eulerian derivative of Fr(Ω) as

< F ′
r(Ω),V >= −

∫

∂Ω

speed(x; Ω) 〈V,N〉 da(x) . (3)

2. TEXTURE DESCRIPTORS

Sparsity in fixed or learned dictionaries has been successfully

used for texture synthesis and also for texture segmentation and

classification. For these tasks, most fixed dictionaries can be

viewed as a cascade of filter banks. These filter banks are built

in order to discriminate between the textures depending on their

frequency response. However, many of these methods are de-

signed to a particular choice of the transform. On the other

hand, this choice will obviously not be adapted for a variety

of textures. For instance, it has been known for some time now

that some transforms can entail reasonably sparse expansions of

certain textures; e.g. locally oscillatory textures in bases such as

local discrete cosines [11], brushlets [9], Gabor [8], wave-atoms

[13]. Gabor and dyadic traditional wavelets are widely used in

the image processing community for texture analysis. Their use

may be motivated by physiological evidence where simple cells

of the primary visual cortex exhibit Gabor-like responses. But

little is known on the decay, hence the approximation behavior,

of wavelet coefficients of textures in general. In fact, sparsely

representing realistic models of textures remains an open prob-

lem.

Our goal here is to segment textures in images without

confining ourselves to a specific representation to characterize

them, nor necessarily relying on the sparsity of the transform

coefficients (see Section 3.1.1). Thus, our framework is flex-

ible enough to handle virtually any transform which is able

to discriminate the targeted textures. For good success of the

segmentation, such a transform should satisfy three major re-

quirements: (i) to be multiscale; (ii) translation invariant; and

(iii) to enjoy directional selectivity. Note that multiscale and

translation invariance are reminiscent of the axioms of random

generative models popular in statistical modeling of natural

images.

We denote by αγ = 〈f, ϕγ〉 the coefficients of a texture f in

a dictionary of atoms {ϕγ}, where γ = (j, θj ,x), j ≥ 0 is the

scale, θj ∈ [0, 2π[ the subband/orientation parameter at scale j,

and x = (x1, x2) the position. For instance, for the TI-wavelet

transform, γ is: j ∈ {0, . . . , J − 1} and θj ∈ {0, π/4, π/2}
for all j. For wave-atoms: j ∈ {0, . . . , ⌈J−1

2 ⌉ + 1} and θj is

implicit in j such that νj,m = ±πm2j ∼ 22j , where νj,m is the

central frequency of the wave-atom, m = (m1,m2), (m1,m2)
is a pair of integers such that max

i=1,2
mi ∼ 2j . This relation be-

tween the central frequency and the support size of the wave-

atom is behind a parabolic scaling law which entails that wave-

atoms provide optimally sparse representation of locally warped

oscillatory patterns [13].

3. PDF-BASED TEXTURE SEGMENTATION

Hitherto, we have advocated the use of transform coefficients as

discriminative descriptors to reveal the differences between dif-

ferent textures depending on their spectral and geometrical con-

tents. Once the transform has been identified, it remains now

to compare these texture descriptors (coefficients), and we here

propose to use a divergence between their respective PDFs. Un-

der stationarity hypothesis in each subband (j, θj), the proposed

domain functional to be optimized reads:

Fj,θj
(Ω) =

∫

X

D

(

pdf1j,θj
(α; Ω) ,pdf2j,θj

(α; Ω)
)

dα , (4)

where D : R
+ × R

+ → R
+ is some metric comparing two

PDFs pdf1j,θj
and pdf2j,θj

. Typical choices of D including the

Hellinger distance, the χ2-score, or the Kullback-Leibler di-

vergence (KLD) or its symmetrized version (which is in fact

a distance), etc. Summing (4) over scales and subbands, seg-

menting a texture amounts to optimizing the following domain

functional:

F (Ω) =
∑

j,θj

Fj,θj
(Ω) . (5)

3.1. Supervised segmentation

Supervised segmentation means that an exemplar texture is

available to serve as a reference and for which the coefficients

PDF at all subbands are known a priori. Given a new candidate

image containing a similar texture, the goal is to segment it. In

the notation of (4), one of the PDFs (e.g. pdf2j,θj
) would be that

of the exemplar pdfrefj,θj
, which obviously does not depend on

Ω.

3.1.1. Parametric approach

The path undertaken here strongly relies on the sparsity of the

texture representation coefficients at all scales and subbands in



the domain of the chosen transform. If such a hypothesis holds

true, then a good candidate sparsity-promoting prior PDF would

be the generalized Gaussian distribution (GGD) family. With

the symmetrized KLD, (5) becomes:

F (Ω) =
∑

j,θj

(

σref
j,θj

σj,θj
(Ω)

)pj,θj
(Ω) Γ

(

1+pj,θj
(Ω)

pref
j,θj

)

Γ

(

1
pref

j,θj

) +

(

σj,θj
(Ω)

σref
j,θj

)pref
j,θj Γ

(

1+pref
j,θj

pj,θj
(Ω)

)

Γ
(

1
pj,θj

(Ω)

) −
1

pj,θj
(Ω)

−
1

pref
j,θj

,

(6)

where pj,θj
(Ω) and σj,θj

(Ω) are the shape and scale parame-

ters of GGD distribution at each scale and subband, Γ(z) is the

Gamma function. These parameters are estimated in each re-

gion during the contour evolution, hence their dependence on

the domain Ω. Using a moment estimators yields:

pMO
j,θj

(Ω) = h−1







(

M
(1)
j,θj

(Ω)
)2

M
(2)
j,θj

(Ω)






, (7)

σMO
j,θj

(Ω) =

M
(1)
j,θj

(Ω)Γ

(

1
pMO

j,θj
(Ω)

)

Γ

(

2
pMO

j,θj
(Ω)

) , (8)

where h(p) =
Γ2( 2

p )
Γ( 1

p )Γ( 3
p )

, and M
(i)
j,θj

(Ω) := 1
|Ω|

∫

Ω

∣

∣αj,θj ,x

∣

∣

i
dx

is the absolute empirical moment of order i. Beyond exis-

tence and uniqueness issues of these estimators 1, their implicit

form makes the derivation of the evolution PDE through the

Eulerian derivative of F (Ω) (see Theorem 1) cumbersome.

Furthermore, such an approach is strongly sensitive to the

sparsity/compressibility assumption which may be violated for

some textures. To mitigate these limitations, we now move to

the much more versatile non-parametric approach.

3.1.2. Non-parametric approach

Kernel density estimators Given a collection of observed co-

efficient samples, supposed to be independent and identically

distributed, this approach will first estimate the underlying PDF

using the well-known kernel density estimator. Let Kς a pos-

itive kernel of unit mass and bandwidth ς . The kernel density

estimator of pdf1j,θj
in (4) is defined as

pdf1j,θj
(α; Ω) =

1

|Ω|

∫

Ω

Kς

(

αj,θj ,x − α
)

dx . (9)

Typical choices of Kς are the Gaussian kernel (Parzen) and

the Epanechnikov kernel. The choice of ς is even more

1It can be shown that pMO exists if and only if M(1)2

M(2) < 3/4, in which

case the solution to (7) is also unique.

crucial and results from a traditional bias-variance trade-

off. If the PDF is uniformly bounded and Cs+1, it is well-

known that the rate of the quadratic risk of the kernel esti-

mator scales as O
(

|Ω|
−2s/(2s+1)

)

with the optimal choice

ςopt ≍ |Ω|
−1/(2s+1)

. Typically, for s = 2, the quadratic risk

is O(|Ω|
−4/5

) which is much better that the histogram optimal

risk O(|Ω|
−2/3

).
Evolution speed Suppose the goal is to segment two textures in
an image, where we have an exemplar for each. In the language
of RBAC, and from (4), this segmentation task boils down to a
two region partition problem by minimizing the following func-
tional with respect to the inside and outside regions Ωin and
Ωout:

G(Ωin, Ωout) =
X

j,θj

“

|Ωin|

Z

X

D

“

pdf inj,θj
(α; Ωin) , pdfref,inj,θj

(α)
”

dα

| {z }

Fj,θj
(Ωin)

+

|Ωout|

Z

X

D

“

pdfout
j,θj

(α; Ωout) , pdfref,out
j,θj

(α)
”

dα

| {z }

Fj,θj
(Ωout)

”

.

(10)

where pdf inj,θj
and pdfout

j,θj
are the kernel density estimates as

given by (9). Using shape derivative tools, as in [1], the follow-

ing result can be established, see [7] for the proof.

Theorem 2 The PDE evolution of the active contour Γ(τ) cor-
responding to (10) is:

∂Γ

∂τ
=

X

j,θj

“

Fj,θj
(Ωin) − Fj,θj

(Ωout) + Cj,θj
(Ωout) − Cj,θj

(Ωin)

+
` `

Vj,θj
(·; Ωin) − Vj,θj

(·; Ωout)
´

∗ Kς

´

(αj,θj ,x)
”

N , (11)

where

Vj,θj
(α; Ωi) = ∂1D

“

pdfi
j,θj

(α; Ωi), pdfref,ij,θj
(α)

”

,

Cj,θj
(Ωi) =

R

X
Vj,θj

(α; Ωi) pdfi
j,θj

(α; Ωi) dα ,

∂1D(., .) is the partial derivative of D(., .) with respect to its

first argument, and N is the unit normal to the contour.

Explicit expressions of Cj,θj
and Vj,θj

for specific choices of D

including the KLD and the Hellinger distance are given in [7].

They are omitted here for obvious space limitations.

3.2. Unsupervised segmentation and region competition

When no exemplar textures are available, it appears natural to
make the regions compete. This leads to a maximization prob-
lem of the form:

G(Ωin, Ωout) =
X

j,θj

Z

X

D

“

pdf inj,θj
(α; Ωin) , pdfout

j,θj
(α; Ωout)

”

dα, (12)

where pdf inj,θj
(α; Ωin) and pdfout

j,θj
(α; Ωout) are the kernel

density estimates as given by (9). In plain words, maximizing

this functional will seek the partition in which the coefficients

PDFs in the inside and outside regions are the most distinct.



(a) Synthetic images: Supervised

(wave-atoms).

(b) Synthetic images: Supervised

(wavelets).

(c) Synthetic images: Unsupervised

(wave-atoms).

(d) Synthetic images: Unsupervised

(wavelets).

(e) Real images: Unsupervised (wavelets and wave-

atoms).

Fig. 1. Non parametric texture segmentation examples with dif-

ferent transforms. (a)-(d): synthetic images from the Brodatz

database. (e): natural images

With the same notation as in Theorem 2, the evolution speed

associated to (12) is given by the following result, see the proof

in [7].

Theorem 3 The PDE evolution of the active contour Γ(τ) to
maximize (12) is:

∂Γ

∂τ
=

X

j,θj

“ 1

|Ωin|

`

−
`

Vj,θj
(·; Ωin) ∗ Kς

´

(αj,θj ,x) + Cj,θj
(Ωin)

´

+
1

|Ωout|

` `

Vj,θj
(·; Ωout) ∗ Kς

´

(αj,θj ,x) − Cj,θj
(Ωout)

´

”

N ,

(13)

Vj,θj
(α; Ωin) = ∂1D

“

pdf inj,θj
(α, Ωin), pdfout

j,θj
(α, Ωout)

”

,

Vj,θj
(α; Ωout) = ∂2D

“

pdf inj,θj
(α, Ωin), pdfout

j,θj
(α, Ωout)

”

,

Cj,θj
(Ωin) =

Z

X

Vj,θj
(α; Ωin) pdf inj,θj

(α; Ωin) dα,

Cj,θj
(Ωout) =

Z

X

Vj,θj
(α; Ωout) pdfout

j,θj
(α; Ωout) dα .

4. EXPERIMENTAL RESULTS AND DISCUSSION

Fig. 1 displays some examples of non-parametric texture seg-

mentation with two transforms (separable wavelets and wave-

atoms) and the supervised and unsupervised approaches. The

minimized functional was (1). Beside the speeds provided by

Theorem 2 and 3, the active contour evolution speed included

an additional curvature term corresponding to the regularization

in (1). In all the experiments, D was the KLD and Kς is the

Gaussian kernel with a bandwith chosen according to the above

discussion. The synthetic images were generated by randomly

combining textures from the Brodatz database. The evolution

PDE was implicitly implemented with the level-sets method.

Overall, the results are very good. In general, wave-atoms were

able to segment more complex textures than separable wavelets

owing to their directional selectivity. As expected, wavelets

are well adapted whenever the texture is an oscillatory pattern

mainly oriented vertically, horizontally or diagonally. With such

textures, unsupervised segmentation (texture competition) can

be successfully applied to an image with even more than two

textures, or one texture and one cartoon part as soon as the ori-

ented texture can be clearly distinguished from the other parts

of the image. This is clearly confirmed by the results on real

images.
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