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ABSTRACT
This paper introduces a novel approach to learn a dictionary in
a sparsity-promoting analysis-type prior. The dictionary is opti-
mized in order to optimally restore a set of exemplars from their
degraded noisy versions. Towards this goal, we cast our prob-
lem as a bilevel programming problem for which we propose a
gradient descent algorithm to reach a stationary point that might
be a local minimizer. When the dictionary analysis operator
specializes to a convolution, our method turns out to be a way
of learning generalized total variation-type prior. Applications
to 1-D signal denoising are reported and potential applicability
and extensions are discussed.

Keywords— Dictionary learning, analysis prior, total varia-
tion, denoising.

1. INTRODUCTION

1.1. Analysis vs. Synthesis Priors

A popular approach for solving inverse problems in signal
and image processing is through a variational formulation that
consists in minimizing an objective functional that balances a
data fidelity term against a regularization term. Such a formu-
lation has also a nice Bayesian interpretation with the MAP es-
timator. Among the overwhelming number of existing priors in
the literature, sparsity-promoting priors have received consider-
able attention over the last decade, and have been shown very
effective in recovering complex structures of natural signals and
images.

In general, the sparsity of the sought after signal or image
manifests itself in a wisely chosen dictionary D = (dm)P−1

m=0

of P atoms in RN . The literature on regularization priors can
be divided between analysis-based and synthesis-based priors.
Let y ∈ RN a noisy observed signal/image where the noise is
assumed zero-mean additive white Gaussian. A synthesis-based
prior for denoising seeks a sparse set of coefficients u that are
solutions of

u? ∈ argmin
u∈RP

1
2
||y −Du||2 + Γ(u), (1)

and the signal/image is then synthesized from these representa-
tion coefficients as Du?, where Γ(u) is a sparsity-promoting
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proper lower-semicontinuous penalty function. A popular
choice of Γ is the now celebrated convex `1 norm Γ(u) =∑
m |um|, in which case (1) is coined basis pursuit denoising

[3]. Sparsity synthesis priors in redundant dictionaries such as
translation invariant wavelets have been popular to perform de-
noising, and also to solve more complicated inverse problems;
see for instance [12].

An analysis-based prior seeks a signal or image x whose for-
ward (analysis) transform coefficients are sparse. This corre-
sponds to the minimization problem

min
x∈RN

1
2
||y − x||2 + Γ(D∗x) . (2)

One can think of choosing D∗ as the analysis operator of a re-
dundant dictionary such as a translation invariant wavelet frame.
A more frequent use of analysis priors is though via a differen-
tial operator D∗ to enforce some regularity on the signal, while
still allowing to restore discontinuities. The action of D∗ can
also be interpreted as a convolution with some finite impulse re-
sponse filter. This leads for instance to a discrete version of the
popular total variation (TV) prior introduced by Rudin Osher
and Fatemi [14].

The work of [5] was the first to give some insights into the
connections between analysis and synthesis-based priors. For
instance, if the dictionary D is square and invertible (bijective),
then the class of problems (1) and (2) are equivalent. More pre-
cisely, a solution to the analysis prior problem with the forward
operator D−1 is uniquely recovered from that of the equivalent
synthesis prior problem with the dictionary D. In our phrasing
of (1)-(2), this amounts to saying that D−1 = D∗, i.e. D is
orthonormal. In the general case this equivalence does not hold
as is the case for redundant dictionaries or the TV prior.

1.2. Dictionary Learning

Starting from the seminal work of Olshausen and Field [13],
several methods have attempted to learn a dictionary D from a
set of exemplars. All previous approaches have focused on the
synthesis-type prior (1) where the objective functional is now
jointly minimized in the coefficients and the dictionaryD –with
a norm constraint on its columns to avoid the classical scale
indeterminacy– so that the latter allows a sparse representation
of all exemplars; see for instance [10, 9, 1, 6] to name a few.
The objective functional (1) is however non-convex even if Γ is



convex, and different methods have been proposed to compute
a stationary point, which may happen to be a local minimizer
under appropriate circumstances. Synthesis prior-based learned
dictionaries have been successfully applied to denoising [1] and
more generally to inverse problems such as inpainting [11].

1.3. Task-driven Dictionary Learning

A recent line of research has promoted a new framework
for dictionary learning driven by the task one is ultimately in-
terested in achieving on the signal [7, 8]. In a nutshell, the
sparsity-regularized optimization problem (1) is used to solve a
task problem such as denoising, super-resolution or discrimina-
tion, and the dictionary is learned in order to achieve the best
performance for that task on a set of training samples. This
leads to a bilevel programming problem [4], that can be solved
for D using gradient descent-type algorithms.

1.4. Contributions

This paper introduces a novel approach to learn a dictionary
in a sparsity-promoting analysis-type prior. To the best of our
knowledge, this is the first work in this direction. It performs a
task-driven learning by solving a bilevel programming problem.
The method is specialized to learn a convolution dictionary. We
report numerical examples to support the usefulness of our ap-
proach.

2. ANALYSIS PRIOR SOLUTION SENSITIVITY

2.1. Smoothed Sparsity Regularization

At first glance, it is tempting to use the `1 sparsity penalty for
Γ. However, such a choice will entail important difficulties in
the bilevel programming problem, mainly because of the non-
smoothness of the `1-norm in the dictionary (and even less for
its sub-gradients). Much more complicated tools should be used
in this case which can be borrowed from variational and set-
valued analysis theory.

To alleviate these difficulties, we propose in the present work
a smooth continuously differentiable version of the `1 penalty,
that we define as

∀u ∈ RP , Γ(u) =
P−1∑
m=0

√
|um|2 + ε2, (3)

for a small smoothing parameter ε > 0. This turns also to be a
strictly convex functional. Such a smoothing is quite familiar in
the variational image processing community, and was also used
for synthesis-prior sparse coding in [2].

It is important to note that our setting is quite different in
several aspects with regard to the synthesis prior learning with
`1 penalty. In the synthesis formulation (1), the functional is
smooth with respect to the dictionary, but is not strictly convex
with respect to the coefficients, so that the minimizer in the co-
efficients is not unique. As for smoothness, uniqueness is also

important in sensitivity (perturbation) analysis of the regular-
ized minimizer, to avoid treating the minimizer as a set-valued
map. To mitigate this shortcoming, the authors of [8] replaced
the `1 norm by the elastic net regularization that combines the `1

norm and the squared `2 norm, hence strictly (in fact strongly)
convexifying the problem in the coefficients.

Let’s rewrite the analysis regularization problem (2) with Γ
as given by (3)

x(D, y) = argmin
x∈RN

1
2
||y − x||2 + Γ(D∗x) . (4)

This is a strongly (hence strictly) convex problem and x(D, y) is
uniquely determined. In the sequel, we denote by ∇Γ[u] ∈ RP
the gradient mapping of Γ at u ∈ RP , and HΓ[u] : RP → RP
its Hessian operator at u. In the case of (3), the gradient and the
Hessian read

∇Γ[u]m =
um√

ε2 + |um|2
, HΓ[u] = diag

(
ε2

(ε2 + |um|2)3/2

)
m

.

2.2. Sensitivity of the Regularized Solution

Optimizing the dictionary D in a task-driven framework,
as we will explain in Section 3, requires to characterize the
mapping D 7→ x(D, y), and in particular its variations (also
known as sensitivity or perturbation analysis in optimization
theory) with respect to the dictionaryD. The following proposi-
tion shows that this mapping is continuously differentiable and
gives the formula of its transpose derivative operator. Since
y is fixed in this section, we lighten the notation by writing
x(D) = x(D, y).

Theorem 1. The mapping D 7→ x(D) is of class C1 at D ∈
RN×P , and its derivative at D satisfies for all z ∈ RN

dx[D]∗(z) = −z̄ ×∇Γ[u]T − x(D)× (HΓ[u](D∗z̄))T
, (5)

for u = D∗x(D), z̄ = ∆−1z and where

∆ = Id +DHΓ[u]D∗ : RN → RN ,

and Id is the identity operator on RN .

Proof. The first order sufficient and necessary optimality con-
dition of (4) reads

x(D)− y +D∇Γ[D∗x(D)] = 0. (6)

Equation (6) defines implicitly the mapping D 7→ x(D). Its
derivative and smoothness are obtained from the implicit func-
tion theorem applied to the mapping S(x,D) = x − y +
D∇Γ[D∗x]. Indeed, differentiating (6) with respect to D in
the direction δ ∈ RN×P gives

dx[D](δ) + δ∇Γ[D∗x(D)]+
DHΓ[D∗x(D)](δ∗x(D) +D∗dx[D](δ)) = 0, (7)

Using convexity of Γ, ∆ as defined by (5) is positive definite,
hence invertible. Thus, the implicit function theorem allows



to conclude that x(D) is C1, and the derivative is obtained by
inverting (7)

dx[D](δ) = −∆−1 (δ∇Γ[D∗x(D)] +DHΓ[D∗x(D)]δ∗x(D)) .

Transposing this equation leads to (5).

3. UNSTRUCTURED DICTIONARY LEARNING WITH
ANALYSIS PRIOR

3.1. Bilevel Programming for Analysis Dictionary Learning

In a dictionary learning framework, the object of interest is
the dictionary D = (dm)P−1

m=0. In most previous works, a set of
noisy exemplars {xk}k is given and the dictionary is solved for
so as to maximize the sparsity of the representation coefficients
of the exemplars. In a task-driven framework for denoising, as
explained in Section 1.3, the learned dictionary is optimized to
achieve the best possible performance in the task one is target-
ing, for instance denoising. This is achieved from a set of pairs
(yk, xk) where xk ∈ RN is a clean exemplar, yk = xk +wk its
corresponding noisy version, and wk is an additive noise, im-
plicitly assumed to be white Gaussian in view of (4). The dic-
tionary is then obtained by minimizing the empirical denoising
risk

min
D∈RN×P

E(D) =
1
2

∑
k

||xk − x(D, yk)||2. (8)

This optimization problem together with (4) form a hierarchical
mathematical programming problem known as bilevel program-
ming [4].

3.2. Analysis Prior Dictionary Learning Algorithm

According to Theorem 1, E is a smooth functional. A local
minimizer (or a stationary point) of (8) can then be found using
a gradient descent

D(t+1) = D(t) − ηt∇E(D(t)), (9)

where 0 < ηt < η is a small enough sequence of step-sizes.
The gradient of the energy reads

∇E(D) =
∑
k

dx[D, yk]∗(x(D, yk)− xk) , (10)

where dx(D, yk) : RP×N → RN is the differential of the map-
ping D 7→ x(D, yk) at D as exhibited in the proof of Theo-
rem 1, and dx[D, yk]∗ its adjoint operator, computed from (5).

4. CONVOLUTION DICTIONARY LEARNING WITH
ANALYSIS PRIOR

A popular family of priors is obtained when specializing D
to be translation invariant and defined from a single atom γ ∈
RN , so that di = γ(· − i) where we use periodic boundary
conditions for simplicity. This means that the dictionary prior

is defined as a circular convolution with γ, since D∗x = γ ? x.
Such a prior is reminiscent of TV regularization.

We denote ϕ(γ) ∈ RN×N the circular convolution operator
defined by γ, and ϕ(γ)∗ its adjoint associated with γ̃, where for
any vector x, x̃ is its reversed version, i.e. x̃i = x−i. The con-
volution kernel γ is learned by solving again a bilevel program
with (8) and (4) specialized to a dictionary solely parametrized
by γ,

min
γ∈RN

Ē(γ) =
1
2

∑
k

||xk − x̄(γ, yk)||2,

where x̄(γ, y) = x(ϕ(γ), y). This energy is minimized using a
gradient descent as in (9). The following proposition gives the
expression of the adjoint derivative of x̄(γ) involving only con-
volutions (dependence on y was dropped to lighten notation).

Proposition 1. For any z ∈ RN , the adjoint derivative of x̄(γ)
is

dx̄[γ]∗(z) = −z̄ ? ∇̃Γ[u]− x̄(γ) ? ˜(HΓ[u](γ ? z̄)), (11)

where u = γ ? x̄(γ), z̄ = ∆−1z and where we have written

∆ = Id + ϕ(γ)∗HΓ[u]ϕ(γ) : RN → RN .

Proof. Using the chain rule, we have

dx̄[γ]∗(z) = dϕ[γ]∗ (dx[ϕ(γ)]∗(z)) . (12)

For 1-D convolutions, it can be shown that the adjoint derivative
dϕ[γ]∗ corresponds to summing along the diagonals of a matrix
A ∈ RN×N ,

dϕ[γ]∗(A) = α where αi =
∑
s−t=i

As,t , (13)

and equality of indices should be understood modulo N . This
expression extends to higher dimensional convolution. It is not
difficult to verify that if A = uvT, meaning in particular that
Ai,j = uivj , then dϕ[γ]∗(A) = u ? ṽ. Thus, piecing together
(5) (with ϕ(γ) in lieu ofD∗), (12) and (13) yields the expression
of the adjoint derivative (11), where (13) allows to simplify (11)
by involving only convolutions.

The computation of dx̄[γ]∗(z) from (11) requires only four
convolutions, and the resolution of the linear system ∆z̄ = z.
This system is solved efficiently with a few conjugate gradient
iterations capitalizing on the special structure of the operator
ϕ(γ) and its adjoint ϕ(γ)∗.

5. NUMERICAL EXPERIMENTS

In the first experiment, we consider 1-D binary piecewise
constant signals xk = 1[ak,bk] of size n = 128 where 0 6 ak <
bk < n are distinct discretized uniform random locations. In
this setting the discrete TV regularization, computed with the
FIR filter γTV,λ(0) = λ, γTV,λ(1) = −λ and 0 otherwise, is
used as a gold-standard since it is known to recover almost per-
fectly piecewise constant signals. In the following, λ is chosen



in order to minimize Ē(γTV,λ) = E(DTV,λ). The unstructured
dictionary learning scheme is performed with an initial dictio-
naryD(0) which is a random white noise, and ε = 10−3. Figure
1, left, shows that the denoising energy E(D(t)) converges to
that of the TV dictionary E(DTV,λ). Though the convergence is
rather slow given the poor initialization and the small value of
ε. This shows the ability of the method to recover the TV filter
from an arbitrary initialization.

0

-2

-4

-6

-8

0 2000 4000 0 50 100 150
0

0.2

0.4

0.6

0.8

Fig. 1. Evolution of the denoising energy
−10 log10(E(D(t))/E(DTV,λ)) with the number of itera-
tions t. Left: unstructured dictionary, step exemplar signals.
Right: convolution dictionary, natural signals.

In the second experiment, a convolution analysis prior is
learned on a set of 1D natural signals of size n = 256 with
ε = 10−2. Each signal xk(i) = f(ak, i) is extracted uniformly
randomly as a row ak of the “lena” image f of size 2562, see
Figure 2, left. We initialize γ(0) = γTV,λ as the TV filter with
the optimal value of λ. Figure 1, right, shows how the learning
improves the denoising performance up to 0.8dB on the training
data. Note now how dictionary structuring together with good
initialization speed up convergence. Figure 2, right, displays the
optimal filter computed with our method. We then applied this
learned filter to denoise another set of natural signals, obtained
from the rows of the “Boat” image. This yielded an average
denoising improvement of 0.3dB with respect to the TV filter.
This is less that for Lena which can be explained by the fact
that the “Boat” has stronger edges and is less oscillatory, which
makes the learned filter somewhat less adapted.
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Fig. 2. Left: example of 1-D natural signal xk used for the
learning. Right: optimal filter γ(∞) learned by our method.

6. CONCLUSION AND PERSPECTIVES

This paper has introduced a novel approach for dictionary
learning of a sparsity-based analysis prior. Although we only

reported some preliminary experiments to exemplify potential
applications to 1-D signal denoising, we believe our method has
very promising potentials. Some future investigations which
will certainly be our next milestones include:
• Extend the framework to higher dimensions starting with 2-

D image processing while incorporating invariances, such
as translation invariance through 2-D convolutions, and ex-
emplars extracted from image patches.
• Extend to multiple kernels learning to better capture com-

plicated regularity patterns while preserving translation in-
variance.
• Extend to other tasks such as linear inverse problems regu-

larization and classification.
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