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F.-X. Dupéa, M.J. Fadilib and J.-L. Starcka

a AIM UMR CNRS - CEA
91191 Gif-sur-Yvette France

b GREYC UMR CNRS 6072
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ABSTRACT

The matter density is an important knowledge for today cos-
mology as many phenomena are linked to matter fluctuations.
However, this density is not directly available, but estimated
through lensing maps or galaxy surveys. In this article, we
focus on galaxy surveys which are incomplete and noisy ob-
servations of the galaxy density. Incomplete, as part of the sky
is unobserved or unreliable. Noisy as they are count maps de-
graded by Poisson noise. Using a data augmentation method,
we propose a two-step method for recovering the density map,
one step for inferring missing data and one for estimating
the density. The results show that the missing areas are ef-
ficiently inferred and the statistical properties of the maps are
preserved.

Index Terms— Inpainting, Bayesian framework, Sparse
representation, Poisson noise, Data augmentation

1. INTRODUCTION

Information about the origin of the Universe is encoded in-
side the cosmological matter distribution. It is an important
challenge to be able to estimate such a distribution. However,
the whole matter is not available, only a biased observation
is possible using count maps estimator of massive objects.
These maps are degraded both by shot noise and astrophysics
phenomena (e.g. Milky Way, galactic dust).

Current methods for reconstructing the density maps are
more focused on the denoising problem than on the missing
data. For example, [3] propose a Wiener filter for estimating
the SDSS DR6 survey [4] and a maximum a posteriori was
introduced in [2] with a Poisson data fidelity term (including
the mask operator) and a log-normal prior.

The log-normal prior comes from Hubble who found in
1934 that the distribution of galaxy counts is well fitted by a
log-normal distribution. This statement was later confirmed
by others studies for a given interval of scales (mostly the
medium scales) [1, 2].

In this paper, we propose both to estimate the density map
and infer the missing data using a data augmentation process
[5]. First, we present how to generate realistic data with a
random texture synthesis algorithm. Secondly, a maximum a
posteriori estimator is proposed for the density using a log-

normal prior. Then, we apply our method on real data and
compare the results with some state-of-art alternatives in the
literature.

Notation and terminology

We denote by ‖.‖2 the norm associated with the inner product
in Rn, and I is the identity operator on Rn. A function f is
coercive, if lim‖δ‖2→+∞ f (δ) = +∞. Γ0(Rn) is the class of
all proper lower semi-continuous convex functions from Rn
to ]−∞,+∞]. Let δ ∈ Rn be an n-pixel map.

2. RECOVERING THE GALAXY DENSITY

The galaxy surveys are count maps degraded by Poisson noise
and parts of the sky are not observed or present elements from
astrophysical phenomena and objects (e.g. Milky Way, galac-
tic dust). The underlying image formation model is,

y ∼ P(Mm̄(1 + δ)) , (1)

where y is the observation, P the Poisson law, δ the density
field, m̄ the mean number of counts (e.g. galaxies) per pixel
and M the binary mask operator (i.e. 0 where data are missing
and 1 else).

Estimating δ from y is an ill-posed problem, so priors are
needed to reduce the solution set. The density field is assumed
to follow a log-normal distribution [1], (1 + δ) ∼ LN (µ,Σ),
i.e. (1 + δ) = exp(x), x ∼ N (µ,Σ), where the mean µ and
the covariance matrix Σ are the parameters of the underlying
Gaussian field.

2.1. A data augmentation method

Inferring missing data is a longstanding and delicate problem.
Most used methods in statistics to handle missing data are
the expectation-maximization (EM) algorithm and multiple
imputation (MI); see [6] for a comprehensive review.

As the distribution of δ is known, the data augmentation
method [5] seems to be the most adapted. This is an EM
scheme (described in Algorithm 1) where, first, the missing
data are inferred using multiple imputations (i.e. several new



observations are generated at each iteration). Then, the M-
step consists in estimating the sought after parameter(s) based
on the new completed data.

Algorithm 1: The data augmentation scheme.
Task: Data augmentation method for both inferring the
missing data and estimating the parameters.
Parameters: The observation y, number of iterations Niter

and the number of imputations NMI.
Main iteration:
Initialization: Compute estimates of the log-normal
parameters, Σ̂ and µ̂, and of the mean number of counts ˆ̄m.
For t = 0 to Niter − 1,

• E-step: create NMI complete observations by filling the
missing area using the prior distribution of the density field
and the estimated parameters,

• M-step: for each complete observation estimate the density
field, the log-normal parameters, Σi and µi of the field and
the mean m̄i,

• Update step: each parameter is updated using the estimates
from the multiple imputations, µ̂ = (

∑
i µi)/NMI,

Σ̂ = (
∑
i Σi)/NMI, ˆ̄m = (

∑
i m̄i)/NMI.

End main iteration

The multiple imputation is very useful when parameters
are updated, and the number of imputations is linked to the
amount of missing data (for example 5 imputations should
be sufficient for 0.5 ratio [6]). The tricky point remains the
generation of realistic data. With prior information, one can
advocate Markov Chain Monte Carlo (MCMC) methods, but
such methods are usually computationally very expensive.

2.2. Generating realistic data (E-step)

As an alternative to MCMC methods, we propose a texture
synthesis-like method for creating realistic data inside the
missing areas obeying the appropriate statistical properties
underlying the image formation model. Indeed, such data
should respect the model formation (1) (with M ≡ I) and the
density field has to follow a given log-normal distribution.

Inspired by the work of [7] in texture synthesis, our statis-
tical data generation can be cast as a hard feasibility problem,

find δ ∈ ∩3i=1 Ci , (2)

where each Ci represents a constraint set. In our case, we want
to constraint the mean and the covariance of the underlying
Gaussian field (as log-normality is assumed), but the observed
parts of the density field must be preserved. The solution is
then computed by projecting the data onto the constraints sets
using the Von-Neumann alternating projections algorithm,

δt+1 = PC1
◦ PC2

◦ PC3
(δt) , (3)

where C1 is the convex constraint set pertaining to the ob-
served part preservation, C2 is associated to the covariance

constraint, i.e. we assume that the solution should present a
given covariance, and so it forms a non-convex constraint, and
C3 is the mean constraint set (convex), i.e. we impose a given
mean to the solution. Algorithm 2 summarizes the steps of
this the synthesis method for our problem. As C2 is not con-
vex, sophisticated arguments are needed to potentially prove
convergence of the sequence (δt)t∈N to a point in ∩3i=1 Ci (if
non-empty). This will be left to a future work. In practice,
only a few iterations were necessary to produce satisfactory
results.

Algorithm 2: Texture generating process for the impu-
tation step (E-step).

Task: Generating realistic data to infer the missing data.
Parameters: The current estimate of the density field δ̂, the
observation y, the binary mask operator M, the covariance
matrix Σ, the mean µ, the mean number of count m̄, and the
number of iterations Ntex.
Initialization: p0 = δ̂,
Replace the data in the missing areas of p with random data
using the log-normal distribution.
Main iteration:
For t = 0 to Ntex − 1,

• Get the Gaussian field: zt = log(1 + pt),
• Estimate the mean: mz

t = E(zt),
• Contraint the mean: zt = zt −mz

t + µ,
• Estimate the covariance: Szt = Cov(zt),

• Constraint the covariance: zt = Σ
1
2 S
− 1

2
z zt,

• Update the estimate: pt = Mδ̂ + (I−M)(exp(zt)− 1).

End main iteration
Add Poisson noise: p̂ ∼ P(m̄(1 + pNtex)).
Output: The imputed observation ŷ = My + (I−M)p̂.

2.3. Estimating the galaxy density (M-step)

Now, we assume complete observations,

ŷ ∼ P (m̄(1 + δ)) . (4)

The density field estimation amounts now to a Poisson denois-
ing problem. By adopting a Bayesian framework and using a
standard maximum a posteriori (MAP) rule, we combine data
fidelity with both log-normal prior and sparsity prior.

The data fidelity term is directly constructed from the anti
log-likelihood of the multivariate Poisson distribution,

−`` : η ∈ Rn 7→
n∑
i=1

fpoisson(η[i]), (5)

if y[i] > 0, fpoisson(η[i]) =

{
−y[i] log(η[i]) + η[i] if η[i] > 0,

+∞ otherwise,

if y[i] = 0, fpoisson(η[i]) =

{
η[i] if η[i] ∈ [0,+∞),

+∞ otherwise.

where η = 1 + δ.



The regularization term for the log-normal prior is given
by anti-log likelihood of the multivariate log-normal distribu-
tion for a covariance matrix Σ and a mean µ,

qLN(δ|µ,Σ) = (6)

1

2
(log(1 + δ)− µ)TΣ−1(log(1 + δ)− µ) +

n∑
i=1

log(1 + δ[i]) .

Notice that qLN is not convex because the log function is
concave.

2.3.1. The optimization problem

The non-convexity of qLN can be avoided using a change of
variable, z = log(1+δ). Then, the new optimization problem,
is,

(P) : min
z∈Rn

J(z) (7)

J : z 7→ m̄ exp (z) + (1− y)Tz + 1/2 ‖z − µ‖2Σ−1 ,

where 1 is the vector of ones, Σ and µ the parameter of the
log-normal prior. Then the solution is given by x = exp(z)−
1.

From (Pλ,ψ) we can characterize the solution,

Proposition 1.
Let assume that Σ is a definite positive matrix, then the following

holds:

1. Existence: J ∈ Γ0(RL) and is coercive, then (P) has at least
one solution.

2. Uniqueness: J is strictly convex then (P) has a unique solu-
tion.

2.3.2. Solving the optimization problem

We first define the notion of a proximity operator, which was
introduced as a generalization of the notion of a convex pro-
jection operator.

Definition 2 ([8]). Let f ∈ Γ0(Rn). Then, for every x ∈ Rn, the
function y 7→ f(y) + ‖x− y‖2 /2 achieves its infimum at a unique
point denoted by proxf x. The operator proxf : Rn → Rn thus
defined is the proximity operator of f .

Then the proximity operator from the terms of both data
fidelity and log-normal prior.

Lemma 3. The proximity operator associated to τF : x 7→ τ(1 −
y)Tx+ τ ‖x− µ‖2Σ−1 , τ ∈ R is,

proxτF x =
(
I + τΣ−1)−1 [

τ(y − 1 + Σ−1µ) + x
]
. (8)

Lemma 4. The proximity operator associated to τG : x 7→
τm̄ exp(x), τ ∈ R is,

proxτG x = log (W(τm̄ exp(x))/(τm̄)) , (9)

where W is the Lambert W function [10].

Then, we propose to use the generalization of the Douglas-
Rachford algorithm presented in [9] in order to solve (7). The
solution is computed using the iterative scheme presented by
Algorithm 3.

Algorithm 3: Density field estimation, solve (P).
Task: Estimate the density field.
Parameters: The observed image counts y, the mean
number of count m̄, the number of iterations Nest, the
proximal step τ , the log-normal prior parameter Σ and µ.
Initialization:
∀i ∈ {0, 1}, p(0,i) = y.
z0 = y.
Main iteration:
For t = 0 to Nest − 1,

• Data fidelity with log-normal prior (Lemma 3):
ξ(t,0) = proxτF/2(p(t,0)).

• Data fidelity with exponential term (Lemma 4):
ξ(t,1) = proxτG/2(p(t,1)).

• Average the proximity operators: ξt = (ξ(t,0) + ξ(t,1))/2.
• Choose θt ∈]0, 2[.
• Update the components:
∀i ∈ {0, 1, 2}, p(t+1,i) = p(t,i) + θt(2ξt − zt − ξ(t,i)).

• Update the estimate: zt+1 = zt + θt(ξt − zt)
End main iteration
Output: Denoised field δ? = exp(zNest)− 1.

3. RESULTS ON THE 2MASS SURVEY

As an experiment, we apply our method on the 2MASS
galaxy survey [11]. As we are working on the sphere, some of
the operations were performed inside the spherical harmonics
domain. The manually tuned parameters were Ntex = 15,
Nest = 40 ,Niter = 6 andNMI = 10, that seems sufficient for
recovering most of the large scales. This method was com-
pared with the inpainting method proposed in [12] (denoted
M2) which fills in the missing data area using both sparsity
and a quadratic data fidelity.

The results are pictured by Fig. 1. In order to compare
efficiently the results, we remove all the spherical harmonic
modes beyond 200 (i.e. ` 6 200) of the maps. Method M1
gives a better estimation of the inpainted areas, as realistic
structures has been created inside these areas and the transi-
tion between missing and observed pixels are invisible. While
with method M2, transitions can be clearly seen and no struc-
ture is infer inside the large missing area in the center.

For the denoised zones, both methods preserve the struc-
tures and the amplitude. In order to compare the behavior
of the two methods, we also compare in Fig. 2 the second-
order statistics of the inpainted maps to the theory [13]. More
precisely, we focus on the first modes of the harmonic power
spectrum of the density field. While at the beginning meth-
ods M1 and M2 provide similar results, they differ on higher
modes where the Poisson noise becomes more salient at the
profit of the M1 method.



Fig. 1. Results on the inpainting methods on the 2MASS
count map. Top: The 2MASS noisy density map with the
missing data in gray. Middle and bottom: The inpainted den-
sity map using the method M1 (Middle) and M2 (bottom).

4. CONCLUSION

An inpainting method is proposed using a data augmentation
procedure, where the observation is first completed with real-
istic data. For galaxy density field, we propose to use two pri-
ors, first we assume that the density field follows a log-normal
distribution and secondly, the underlying Gaussian field is as-
sumed to be sparse inside a wisely chosen dictionary. The
resulting algorithm is able to preserve the second order statis-
tical properties which are important features for astrophysics
application.
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