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ABSTRACT

Context. One of the main challenges of modern cosmology is to understand the nature of the mysterious dark en-
ergy which causes the cosmic acceleration. The Integrated Sachs-Wolfe (ISW) effect is sensitive to dark energy and
if detected in a universe where modified gravity and curvature are excluded, presents an independent
signature of dark energy. The ISW effect occurs on large scales, where cosmic variance is high and where there are
large amounts of missing data in the CMB and large scale structure maps due to Galactic confusion. Moreover, existing
methods in the literature often make strong assumptions about the statistics of the underlying fields or estimators.
Together these effects can severely limit signal extraction.
Aims. We want to define an optimal statistical method for detecting the ISW effect, which can handle large areas of
missing data and minimise the number of underlying assumptions made about the data and estimators.
Methods. We first review current detections (and non-detections) of the ISW effect, comparing statistical subtleties
between existing methods, and identifying several limitations. We propose a novel method to detect and measure the
ISW signal. This method assumes only that the primordial CMB field is Gaussian. It is based on a sparse inpainting
method to reconstruct missing data and uses a bootstrap technique to avoid assumptions about the statistics of the
estimator. It is a complete method, which uses three complementary statistical methods.
Results. We apply our method to Euclid-like simulations and show we can expect a ∼ 7σ model-
independent detection of the ISW signal with WMAP7-like data, even when considering missing data.
Other tests return ∼ 4.7σ detection levels for a Euclid-like survey. We find detections levels are inde-
pendent from whether the galaxy field is normally or lognormally distributed. We apply our method
to the 2 Micron All Sky Survey (2MASS) and WMAP7 CMB data and find detections in the 1.1− 2.0σ
range, as expected from our simulations. As a by-product, we have also reconstructed the full-sky temperature
ISW field due to 2MASS data.
Conclusions. We have presented a novel technique, based on sparse inpainting and bootstrapping, which accurately
detects and reconstructs the ISW effect.
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1. Introduction

The recent abundance of cosmological data in the last few
decades (for an example of the most recent results see
Komatsu et al. 2009; Percival et al. 2007 a; Schrabback
et al. 2010) has provided compelling evidence towards a
standard concordance cosmology, in which the Universe is
composed of approximately 4% baryons, 26% ‘dark’ matter
and 70% ‘dark’ energy. One of the main challenges of mod-
ern cosmology is to understand the nature of the mysterious
dark energy which drives the observed cosmic acceleration
(Albrecht et al. 2006; Peacock et al. 2006) .

The Integrated Sachs-Wolfe (ISW) (Sachs & Wolfe
1967) effect is a secondary anisotropy of the Cosmic
Microwave Background (CMB), which arises because of the
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variation with time of the cosmic gravitational potential
between local observers and the surface of last scattering.
The potential can be traced by Large Scale Structure (LSS)
surveys (Crittenden & Turok 1996), and the ISW effect is
therefore a probe which links the high redshift CMB with
the low redshift matter distribution and can be detected by
cross-correlating the two.

As a cosmological probe, the ISW effect has less statis-
tical power than weak lensing or galaxy clustering (see for
e.g., Refregier et al. 2010), but it is directly sensitive to
dark energy, curvature or modified gravity (Kamionkowski
& Spergel 1994; Kinkhabwala & Kamionkowski 1999;
Carroll et al. 2005; Song et al. 2007), such that in uni-
verses where modified gravity and curvature are excluded,
detection of the ISW signal provides a direct signature of
dark energy. In more general universes, the ISW effect can
be used to trace alternative models of gravity.
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The CMB WMAP survey is already optimal for detect-
ing the ISW signal (see Sections 2 and 3), and significance
is not expected to increase with the arrival of Planck, un-
less the effect of the foreground Galactic mask can be re-
duced. The amplitude of the measured ISW signal should
however depend strongly on the details of the local tracer
of mass. Survey optimisations (Douspis et al. 2008) show
that an ideal ISW survey requires the same configuration
as surveys which are optimised for weak lensing or galaxy
clustering - meaning that an optimal measure of the ISW
signal will essentially come ‘for free’ with future planned
weak lensing and galaxy clustering surveys (see for e.g. the
Euclid survey Refregier et al. 2010). In the best scenario,
a 4σ detection is expected (Douspis et al. 2008), and it
has been shown that combined with weak lensing, galaxy
correlation and other probes such as clusters, the ISW can
be useful to break parameter degeneracies (Refregier et al.
2010), making it a promising probe.

Initial attempts to detect the ISW effect with COBE
as the CMB tracer were fruitless (Boughn & Crittenden
2002), but since the arrival of WMAP data, tens of positive
detections have been made, with the highest significance
reported for analyses using a tomographic combination of
surveys (see Sections 2 and 3 for a detailed review of de-
tections). However, several studies using the same tracer of
LSS appear to have contradicting conclusions, some anal-
yses do not find correlation where others do, and as sta-
tistical methods to analyse the data evolve, the signifi-
cance of the ISW signal is sometimes reduced (see for
e.g., Afshordi et al. 2004; Rassat et al. 2007; Francis &
Peacock 2010b).

In Section 2, we describe the cause of the ISW effect
and review current detections. In Section 3, we describe the
methodology for detection and measuring the ISW signal,
and review a large proportion of reported detections in the
literature, as well as their advantages and disadvantages.
Having identified the main issues with current methods, we
propose a new and complete method in Section 4, which
capitalises on the fact that different statistical methods are
complementary and uses sparse inpainting to solve the issue
of missing data and a bootstrapping technique to measure
the estimator’s probability distribution function (PDF). In
Section 5, we validate our new method using simulations
for 2MASS and Euclid-like surveys. In Section 6, we
apply our new method to WMAP 7 and the 2MASS survey.
In Section 7, we present our conclusions.

2. The Integrated Sachs-Wolfe Effect

2.1. Origin of the Integrated Sachs-Wolfe Effect

General relativity predicts that the wavelength of electro-
magnetic radiation is sensitive to gravitational potentials,
an effect which is called gravitational redshift. Photons trav-
elling from the surface of last scattering will necessarily
travel through the gravitational potential of Large Scale
Structure (LSS) on their way to the observer; these will
be blue-shifted as they enter the potential well and red-
shifted as they exit the potential. These shifts will accumu-
late along the line of sight of the observer. The total shift
in wavelength will translate into a change in the measured
temperature-temperature anisotropy of the CMB, and can

be calculated by:
(

∆T

T

)

ISW

= −2
∫ η0

ηL

Φ′ ((η0 − η)n̂, η) dη, (1)

where T is the temperature of the CMB, η is the conformal
time, defined by dη = dt

a(t) and η0 and ηL represent the
conformal times today and at the surface of last scattering
respectively. The unit vector n̂ is along the line of sight
and the gravitational potential Φ(x, η) depends on position
and time. The integral depends on the rate of change of the
potential Φ′ = dΦ/dη.

In a universe with no dark energy or curvature, the cos-
mic (linear) gravitational potential does not vary with time,
so that such a blue- and red-shift will always cancel out,
because Φ′ = 0 and there will be no net effect on the wave-
length of the photon.

However, in the presence of dark energy or curva-
ture (Sachs & Wolfe 1967; Kamionkowski & Spergel 1994;
Kinkhabwala & Kamionkowski 1999), the right hand side
of Equation 1 will be non-null as the cosmic potential will
change with time (see for e.g., Dodelson 2003), resulting
in a secondary anisotropy in the CMB temperature field.

2.2. Detection of the ISW signal

The ISW effect leads to a linear scale secondary anisotropy
in the temperature field of the CMB, and will thus af-
fect the CMB temperature power spectrum at large scales.
Due to the primordial anisotropies and cosmic variance on
large scales, the ISW signal is difficult to detect directly
in the temperature map of the CMB, but Crittenden &
Turok (1996) showed it could be detected through cross-
correlation of the CMB with a local tracer of mass.

The first attempt to detect the ISW effect (Boughn
& Crittenden 2002) involved correlating the Cosmic
Microwave Background explorer data (Bennett et al. 1990,
COBE) with XRB (Boldt 1987) and NVSS data (Condon
et al. 1998). This analysis did not find a significant cor-
relation between the local tracers of mass and the CMB.
Since the release of data from the Wilkinson Microwave
Anisotropy Probe (Spergel et al. 2003, WMAP) over 20
studies (see Table 1) have investigated cross-correlations
between the different years of WMAP data and local
tracers selected using various wavelengths: X-ray (Boldt
1987, XRB survey); optical (Agüeros et al. 2006; Adelman-
McCarthy et al. 2008, SDSS galaxies), (Anderson et al.
2001, SDSS QSOs), (Doroshkevich et al. 2004, SDSS
LRGs), (Maddox et al. 1990, APM); near infrared (Jarrett
et al. 2000, 2MASS); radio (Condon et al. 1998, NVSS).

The full sky WMAP data have sufficient resolution on
large scales that the measure of the ISW signal is cos-
mic variance limited. The best LSS probe of the ISW ef-
fect should include maximum sky coverage and full redshift
coverage of the dark energy dominated era (Douspis et al.
2008). No such survey exists yet, so there is room for im-
provement on the ISW detection as larger and larger LSS
surveys arise. For this reason, when we review the current
ISW detections, we classify them according to their tracer
of LSS, and not the CMB map used.

The measure of the ISW signal can be done in vari-
ous statistical spaces; we classify detections in Table 1 into
three measurement ‘domains’: D1 corresponds to spheri-
cal harmonic space; D2 to configuration space and D3 to
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Author CMB LSS Tracer Wavelength Method Claimed
Detection

Boughn & Crittenden (2002) COBE XRB Xray D2 No
Giannantonio et al. (2008) W3 D2 2.7σ
Boughn & Crittenden (2004, 2005) W1 XRB/NVSS Xray/Radio D2 ‘tentative’ (2-3 σ)

Fosalba et al. (2003) W1 SDSS DR1 D2 2σ (low z)
3.6σ (high z)

Cabré et al. (2006) W3 SDSS DR4 Optical D2 > 2σ
Giannantonio et al. (2008) W3 SDSS DR6 D2 2.2σ
Sawangwit et al. (2010) W5 SDSS DR5 D2 ‘marginal’
López-Corredoira et al. (2010) W5 SDSS DR7 D2 ‘No detection’
Giannantonio et al. (2006) W3 SDSS Quasars Optical D2 2σ
Giannantonio et al. (2008) W3 SDSS Quasars D2 2.5σ
Xia et al. (2009) W5 SDSS Quasars D2 2.7σ
Scranton et al. (2003) W1 D2 > 2σ
Padmanabhan et al. (2005) W1 D1 2.5σ
Granett et al. (2009) W3 SDSS LRG Optical D1 2σ
Giannantonio et al. (2008) W3 D2 2.2σ

Sawangwit et al. (2010) W5 SDSS LRG, 2SLAQ D2 ‘marginal’
Sawangwit et al. (2010) W5 AAOmega LRG D2 Null
Fosalba & Gaztañaga (2004) W1 APM Optical D2 2.5σ
Afshordi et al. (2004) W1 D1 2.5 σ
Rassat et al. (2007) W3 2MASS NIR D1 2σ
Giannantonio et al. (2008) W3 D2 0.5σ
Francis & Peacock (2010b) W3 D1 ‘weak’
Boughn & Crittenden (2002) COBE D2 No
Nolta et al. (2004) W1 D2 2.2σ
Pietrobon et al. (2006) W3 NVSS Radio D3 > 4σ
Vielva et al. (2006) W3 D3 3.3σ
McEwen et al. (2007) W3 D3 > 2.5σ
Raccanelli et al. (2008) W3 D2 2.7σ
McEwen et al. (2008) W3 D3 ∼ 4σ
Giannantonio et al. (2008) W3 D2 3.3σ
Hernández-Monteagudo (2009) W3 D1 < 2σ
Sawangwit et al. (2010) W5 D2 ‘marginal’ (∼ 2σ)
Corasaniti et al. (2005) W1 D2 > 2σ
Gaztañaga et al. (2006) W1 D2 2σ
Ho et al. (2008) W3 Combination Combination D1 3.7σ
Giannantonio et al. (2008) W3 D2 4.5σ

Table 1. Meta-analysis of ISW detections to date and their reported statistical significance. The ‘Method’ describes the space
in which the power spectrum analysis is done (configuration, spherical harmonic, etc . . . ), not the method for measuring the
significance level of the detection (this is described in Section 3). D1 corresponds to spherical harmonic space, D2 to configuration
space, D3 to wavelet space. The highest detections are made in wavelet space. Regarding the survey used, the highest detections
are made using NVSS (though weak and marginal detections using NVSS are also reported) or using combinations of LSS surveys
as the matter tracer.

wavelet space. (In Section 3, we review the different meth-
ods for quantifying the statistical significance of each mea-
surement).

There are only two analyses which use COBE as CMB
data (with XRB and NVSS data, Boughn & Crittenden
2002), and both report null detections, which can reason-
ably be due to the low angular resolution of COBE even
at large scales. The rest are done correlating WMAP data
from years 1, 3 and 5 (respectively ‘W1’, ‘W3’ and ‘W5’ in
table 1).

Most ISW detections reported in Table 1 are relatively
‘weak’ (< 3σ) and this is expected from theory for a con-
cordance cosmology. Higher detections are reported for the
NVSS survey (Pietrobon et al. 2006; McEwen et al. 2008;
Giannantonio et al. 2008), though weak and marginal de-

tections using NVSS data are also reported (Hernández-
Monteagudo 2009; Sawangwit et al. 2010). High detections
are often made using a wavelet analysis (Pietrobon et al.
2006; McEwen et al. 2008), though a similar study by the
same authors using the same data but a different analysis
method finds a weaker signal (McEwen et al. 2007). The
highest detection is reported using a tomographic combi-
nation of all surveys (XRB, SDSS galaxies, SDSS QSOs,
2MASS and NVSS, Giannantonio et al. 2008), as expected
given the larger redshift coverage of the analysis.

Several analyses have been revisited to seek confirma-
tion of previous detections. In some cases, results are very
similar (Padmanabhan et al. (2005); Granett et al. (2009);
Giannantonio et al. (2008), for SDSS LRGs; Giannantonio
et al. (2006, 2008) for SDSS Quasars; Afshordi et al. (2004);



4 F.-X. Dupé et al.: An Optimal Approach for Measuring the Integrated Sachs Wolfe Effect

Rassat et al. (2007), for 2MASS), but in some cases they
are controversially different (for e.g. Pietrobon et al. (2006)
and Sawangwit et al. (2010), for NVSS or Afshordi et al.
(2004) and Giannantonio et al. (2008), for 2MASS).

We also notice that as certain surveys are revisited,
there is a trend for the statistical significance to be re-
duced: for e.g., detections from 2MASS decrease from
a 2.5σ detection (Afshordi et al. 2004), to 2σ (Rassat
et al. 2007), to 0.5σ (Giannantonio et al. 2008) to ‘weak’
(Francis & Peacock 2010b). Detections using SDSS LRGs
decrease from 2.5σ (Padmanabhan et al. 2005), to 2 −
2.2σ (Granett et al. 2009; Giannantonio et al. 2008), to
‘marginal’ (Sawangwit et al. 2010). Furthermore, there
tends to be a ‘sociological bias’ in the interpretation of
the confidence on the signal detection. The first detec-
tions interpret a 2 − 3σ detection as ‘tentative’ (Boughn
& Crittenden 2004, 2005), while further studies with sim-
ilar detection level report ‘independent evidence of dark
energy’ (Afshordi et al. 2004; Gaztañaga et al. 2006).

3. Methodology for Detecting the ISW Effect

In this paper, we are interested in qualifying the differences
between different statistical methods which exist in the lit-
erature, and comparing them with a new method we present
in Section 4. By statistical method, we mean the method
which is used to quantify the significance of a signal, not the
space in which the signal is measured. Therefore, and with-
out loss of generality, the review presented in Section 3.2
summarises methods using spherical harmonics. We com-
pare the pros and cons of each method in Section 3.3. We
begin by describing how the ISW signal can be measured
in spherical harmonics in Section 3.1

3.1. ISW Signal in Spherical Harmonics

In general, any field can be decomposed by a series of
functions which form an orthonormal set, as do the spher-
ical harmonic functions Y"m(θ,φ). Therefore a projected
galaxy overdensity (δg) or temperature anisotropy (δT ) field
δX(θ,φ), where X = g, T , can be decomposed into:

δX(θ,φ) =
∑

",m

aX
"mY"m(θ,φ), (2)

where aX
"m are the spherical harmonic coefficients of the

field. The 2-point galaxy-temperature cross-correlation
function can then be written:

CgT (&) =
1

(2& + 1)

∑

m

Re
[
ag

"m(aT
"m)∗

]
, (3)

where taking the real part of the product ensures that
CgT (&) = CTg(&).

The theory for the angular cross-correlation function is
given by:

CgT (&) = 4πbg

∫
dk

∆2(k)
k

Wg(k)WT(k), (4)

where
Wg(k) =

∫
drΘ(r)j"(kr)D(z), (5)

WT (k) = −3Ωm,0H2
0

k2c3

∫ zL

0
drj"(kr)H(z)D(z)(f − 1), (6)

∆2(k) =
4π

(2π)3
k3P (k), (7)

Θ(r) =
r2n(r)∫
drr2n(r)

. (8)

In these equations, r represents the co-moving distance,
zL the redshift at the last scattering surface, k the Fourier
mode wavenumber and quantities which depend on the red-
shift z have an intrinsic dependence on r: H(z) = H(z(r)).
The function f is the linear growth factor given by f =
d ln D(z)
d ln a(z) , where D(z) is the linear growth which measures
the growth of structure. The cross-correlation function de-
pends on the survey selection function given by n(r), in
units of galaxies per unit volume. The quantities Ωm,0 and
H0 are the values of the matter density and the Hubble
parameter at z = 0. Units are chosen so that the quantity
C(&) is unitless.

In the case where both the temperature and the galaxy
fields behave as Gaussian random fields, then the covariance
on the ISW signal can be calculated by:
〈
|CgT |2

〉
=

1
fsky(2& + 1)

[
C2

gT + (Cgg +Ng) (CTT +NT )
]
,

(9)
where CTT is the temperature-temperature power spec-
trum, Ng and NT are the noise of the galaxy and temper-
ature fields respectively. The galaxy auto-correlation func-
tion can be calculated theoretically in linear theory by:

Cgg(&) = 4πb2
g

∫
dk

∆2(k)
k

[Wg(k)]2 , (10)

There are many difficulties in measuring the ISW ef-
fect, the first being the intrinsic weakness of the signal. To
add to this, an unknown galaxy bias scales linearly with
the ISW cross-correlation signal (see Equation 4), which
is therefore strongly degenerate with cosmology. Galactic
foregrounds in both the CMB and the LSS maps also mask
crucial large scale data and can introduce spurious correla-
tions. Any method claiming to detect the ISW effect should
be as thorough as possible in accounting for missing data,
and where possible the reported detection level should be
independent of an assumed cosmology.

3.2. Review on Current Tools for ISW Detection

In the literature there are two quantities which can be
used to measure and detect the ISW signal, which we
review in this section. Without loss of generality, we
present these methods in spherical harmonic space. The
first method measures the observed cross-correlation spec-
tra (‘Spectra’ method: see section 3.2.3), whilst the second
directly compares temperature fields (‘Fields’ method: see
section 3.2.4). These two approaches differ by the quantity
they measure to infer a detection. For each method (fields
vs. spectra), it is possible to use different statistical meth-
ods to infer detection which we describe below. We review
each existing method below and summarise the pros and
cons of both of these classes as well as the statistical mod-
els in Table 2.

3.2.1. Note on the confidence score

Before reviewing the ISW detection methods, we
would like to clarify the definition of confidence
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Measured Advantage Disadvantage
Quantity

Methods exist for calculation with missing data. Assumes C(")’s or estimator are Gaussian.
Spectra Can introduce tomography easily. Most methods requires

estimation of the covariance matrix.
Fields No assumption about galaxy/matter density field Missing data is an ill-posed problem.

Statistical Advantage Disadvantage
Method
Simple correlation Independent of cosmology. Measure of significance
(Spectra / Fields) assumes estimator is Gaussian.
Amplitude estimation Detection depends on cosmology/model.
(Spectra / Fields) Validates signal and model simultaneously. Measure of significance assumes estimator is Gaussian.

Assumes underlying theory (e.g. ΛCDM) is correct.
χ2 (Spectra / Fields) Assumes C(")’s are Gaussian (Spectra).

Validates signal and model simultaneously. Only gives confidence of rejecting null hypothesis.
Assumes underlying theory (e.g. ΛCDM) is correct.

Model comparison Asks a different question than other tests. ISW signal usually too weak to be detected this way.
(Spectra) Assumes underlying theory (e.g. ΛCDM) is correct.

Table 2. TOP: Review of advantages and disadvantages of measuring spectra vs. fields in order to infer an ISW detection.
BOTTOM: Review of statistical methods existing in the literature and their respective advantages and disadvantages.

scores from a statistical point of view. The confi-
dence of a null hypothesis test can be interpreted
as the distance from the data to the null hypothe-
sis (commonly named H0). For example, let ρ be a
variable of interest (e.g. correlation coefficient, am-
plitude). The confidence score σ for the hypothesis
test H0 (i.e., ρ = 0) against H1 (i.e., ρ #= 0) is directly
computed using the formula τ = ρ/σ(ρ), where σ(ρ)
is the standart deviation. But this only true when
1) ρ is Gaussian, 2) σ(ρ) is computed independently
of the observation and 3) considering a symmet-
ric test. Then, this method does not stand for the
general case and as the correlation coefficient con-
sidered here must be positive, an asymmetric test
(one-sided test) would also be more appropriate
here.

Remember that a confidence score is directly
linked to the deviation from the H0 hypothesis
through the p-value which is a probability, so the
σ-score is always positive. Then the p-value p of
one hypothesis test is computed using the proba-
bility density function (PDF) of the test distribu-
tion: p = 1 −

∫ τ
−∞ P (x|H0)dx =

∫ +∞
τ P (x|H0)dx (for a

classical one-sided test). Remark that in that case,
if the H0 is true then ρ ≈ 0 (i.e. in the middle of the
test distribution) and the p-value p will be around
0.5 which correspond to a confidence of 0.67σ.

3.2.2. Note on the application spaces

All the methods that will be described in the next sections
can be performed in different domains. While some spaces
may be more appropriate than others for a specific task,
difficulties may also arise because of the properties of the
space. For example: for the ‘spectra’ method in configura-
tion space, the two main difficulties are missing data and
the estimation of the covariance matrix (see e.g. Hernández-
Monteagudo 2008). In this case, the covariance matrix can
be estimated using Monte Carlo methods (see Cabré et al.
2007). In spherical harmonic space, missing data induce
mode correlations which can be removed by using an appro-

priate framework for calculation of the C(&)’s (e.g. Hivon
et al. 2002). In harmonic space (when missing data is ac-
counted for) the covariance matrix is diagonal and thus
easily invertible (see Section 3.2.4).

3.2.3. Cross-power spectra comparison

The most popular method consists in using the cross-
correlation function (Equation 4, in spherical harmonic
space) to measure the presence of the ISW signal, how-
ever this approach has recently been challenged by López-
Corredoira et al. (2010), because of its high sensitivity to
noise and fluctuations due to cosmic variance.

One of the subtleties of the cross-correlation function
method is the evaluation of the covariance matrix Ccovar

and its inverse. This matrix can be estimated using the
MC1 or MC2 methods of Cabré et al. (2007), in which case
the test is strongly dependent on the quality of the simula-
tions. Secondly, missing data will require extra care when
estimating the power spectra, this can be tackled by us-
ing MASTER (Monte Carlo Apodized Spherical Transform
Estimator) or QML (Quadratic Maximum Likelihood)
methods (Hivon et al. 2002; Efstathiou 2004; Munshi et al.
2009).

The spectra measurement can be used with one of four
different statistical methods. The advantages and disadvan-
tages of each method are summarised below and in Table 2.
The first aims to detect a correlation between two signals,
i.e. we test if the cross-power spectra is null or not. The
second fits a (model-dependent) template to the measured
cross-power spectra. The other two methods aim to validate
a cosmological model as well as confirm the presence of a
signal: the χ2 test and the model comparison. We describe
them below:

– Simple correlation detection: The simplest and
the most widely used method for detecting a cross-
correlation between two fields X and Y (here suppos-
ing that Y is correlated with X) (see e.g. Boughn &
Crittenden 2002; Afshordi et al. 2004; Pietrobon et al.
2006; Sawangwit et al. 2010) is to measure the correla-
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tion coefficient ρ(X, Y ), defined as:

ρ(X,Y ) = Cor(X, Y )/Cor(X, X),

where, Cor(X, Y ) =
1

Np

∑

p

Re [X∗(p)Y (p)] , (11)

with p a position or scale parameter and Np the number
of considered positions or scales. There is a correlation
between the two fields if ρ(X,Y ) is not null. The corre-
lation coefficient is linked to the cross-power spectra in
harmonic space:

ρ(g, T ) =

(
∑

"

(2& + 1)CgT (&)

)
/

(
∑

"

(2& + 1)Cgg(&)

)
.

(12)
Thus the nullity of the coefficient implies the nullity of
the cross-power spectra. A z-score can be performed in
order to test this nullity,

K0 = ρ/σρ , (13)

where the standard error of the correlation value, σρ

can be estimated using Monte Carlo simulations under
a given cosmology. In the literature, most applications
of this method assume that K0 follows a Gaussian dis-
tribution under the null hypothesis (i.e. no correlation),
for example Vielva et al. (2006) and Giannantonio et al.
(2008), which is not necessarily true.
The distribution of the K0 test can be inferred if we as-
sume that both fields X and Y , of the cross-correlation
are Gaussian. In this case, the correlation coefficient dis-
tribution is the normally distributed but follows a nor-
mal product distribution, which is far from Gaussian. In
the case where Y is a constant field, the correlation coef-
ficient follows a normal distribution and the distribu-
tion of the hypothesis test K0 will depend on how
the variance of the estimator σρ is computed. If
this last value is derived from the observation X,
then K0 follows a Student’s t-distribution which
converges to a Gaussian distribution only when
ρ is high (by the central limit theorem). Else, if
the variance σρ is estimated independently from
the data (through Monte-Carlo, for example) or
known for a given cosmology, K0 can be assumed
to follow a Gaussian distribution. This means
that K0 is generally not Gaussian even if the cor-
relation coefficient is Gaussian (see section 4).
This method does not include knowledge of the underly-
ing ISW signal, nor of the galaxy field, though the error
bars can be estimated from Monte Carlo simulations
which include cosmological information.

– Amplitude estimation (or template matching):
The principle of the amplitude estimation is to measure
whether an observed signal corresponds to the signal
predicted by a given cosmological model.
The estimator and its variance are given by (e.g. Ho
et al. 2008; Giannantonio et al. 2008):

λ̂ =
CTh∗

gT C−1
covarC

Obs
gT

CTh∗
gT C−1

covarCTh
gT

, σλ̂ =
1√

CTh∗
gT C−1

covarCTh
gT

,

(14)
where CTh

gT is the theoretical cross-power spectrum,
CObs

gT the estimated (observed) power spectrum and

Ccovar the covariance matrix calculated by Equation 9.
A z-score,

K1 = λ̂/σλ̂ , (15)
is usually applied to test if the amplitude is null or not.

– Goodness of fit, χ2 test:
The goodness of fit or χ2 test is given by (e.g. Afshordi
et al. 2004; Rassat et al. 2007):

K2 = (CTh
gT − CObs

gT )∗C−1
covar(C

Th
gT − CObs

gT ) , (16)

where K2 follows a χ2 distribution with number of de-
grees of freedom (d.o.f ) depending on the input data.
This tests the correspondance of the data with a given
cosmological model, but does not infer if the tested
model is in fact the best. Equation 16 also assumes that
the C(&)′s are Gaussian variables. The value of χ2 gives
a idea on the probability of rejecting the model, but can-
not be compared directly with the K2 value for the null
hypothesis without careful statistics (see next method
on model comparison).

– Model comparison:
The model comparison method is based on the gener-
alised likelihood ratio test and asks the question: ‘Do the
data prefer a given fiducial cosmological model over the
null hypothesis ?’. This question is important because
it could be possible to use the previous χ2 test to detect
an ISW signal - yet the data could still also be compat-
ible with a null hypothesis (see for e.g., Afshordi et al.
2004; Rassat et al. 2007; Francis & Peacock 2010b). In
this case it is important to perform a model compari-
son to find which model is preferred by the data. Two
hypotheses are built:
– H0: “there is no ISW signal”, i.e. the cross-power

spectra is null;
– H1: “there is an ISW signal compatible with a fidu-

cial cosmology”, i.e. the cross-power spectra is close
to an expected one.

One should then estimate:
K3 = ∆χ2 = (CObs

gT )∗C−1
covar(C

Obs
gT )−

(CTh
gT − CObs

gT )∗C−1
covar(C

Th
gT − CObs

gT ) ,
(17)

where K3 converges asymptotically to a χ2 distribution.
If the value is higher than a threshold (chosen for a re-
quired confidence level), the H0 hypothesis is rejected.
However, such method is difficult to use directly because
of the small sample bias, K3 is not likely to follow a χ2

statistic. In the case of the ISW signal, the signal for
a ‘standard’ fiducial cosmology (e.g., WMAP 7 cosmol-
ogy) is so weak that it usually returns a lack of detection
for current surveys - this may not be the case for future
or tomographic surveys. Notice that this model compar-
ison method can be seen as an improved version of the
goodness of fit.

3.2.4. Field to field comparison

Instead of comparing the spectra, one can work directly
with the temperature field to measure the presence of the
ISW signal. The observable in this case is now the ISW
temperature field (δISW), rather than the cross-correlation
power spectra CgT (&). The observed CMB temperature
anisotropies δOBS can be described as:

δOBS = δT + λδISW + δother +N , (18)
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where δISW is the ISW field and λ its amplitude (normally
near 1), δT the primordial CMB temperature field, δother

represents fluctuations due to secondary anisotropies other
than the ISW effect and N represents noise. In the context
of the ISW effect, which occurs only on large (linear) scales
where noise and other secondary anisotropies are negligible,
we have:

δOBS % δT + λδISW . (19)

The main difference between the fields and spectra ap-
proach is that the fields method requires an estimation of
the ISW temperature field (δISW). There are several meth-
ods to calculate δISW from a given matter overdensity map.
The most accurate way to reconstruct the ISW sig-
nal is to use information from the full 3-dimensional
matter distribution, which in theory requires over-
lapping galaxy and weak lensing maps on large
scales. This may be possible in the future with sur-
veys like Euclid (Refregier et al. 2010). Assuming a
simple bias relation, the matter field can also be es-
timated directly from galaxy surveys (see Granett
et al. 2009, who did this for small patches on the
sky). In the case where only the general redshift dis-
tribution of the galaxy survey is known, the ISW
field δISW can be approximated directly from the galaxy
and temperature maps using (see Cabré et al. 2007):

aISW
"m =

CgT (&)
Cgg(&)

g"m , (20)

where g"m are the spherical harmonic coefficients of the
galaxy map, and aISW

"m the coefficients of the ISW temper-
ature anisotropy map. Another approach is to reconstruct
the ISW map using Equation 1 where Φ′ is estimated using
the Poisson Equation (Francis & Peacock 2010a).

Note that the potential which creates the
ISW signal is first order in perturbation theory.
However, even in the absence of non-Gaussianities
in the primordial inflaton field, the potential φ
will evolve with redshift, and can become lognor-
mal on quasi-linear scales, where the potential is
still decaying: this will produce an ISW tempera-
ture signal (which is positively correlated with the
density field), which will approach Gaussianity on
the largest scales but may contain some traces of
non-Gaussianity on smaller scales (see Francis &
Peacock 2010a,b). On smaller and non-linear scales,
the Rees-Sciama effect will produce secondary tem-
perature anisotropies which are negatively corre-
lated with the density field (Schaefer et al. 2010;
Cai et al. 2010).

As for the spectra approach, there are several statistical
methods available to qualify detection:

– Simple correlation detection:
The simple correlation detection method described for
the spectra comparison, can in fact also be considered
as a field comparison. This is the only method which
directly overlaps between both approaches.

– Amplitude estimation (or template matching):
Using the Gaussian framework, given an ISW field,
the amplitude λ can be estimated with the corre-
sponding maximum likelihood estimator (Hernández-
Monteagudo 2008; Frommert et al. 2008; Granett et al.

2009):

λ̂ =
δ∗ISWC−1

TT δOBS

δ∗ISWC−1
TT δISW

, σλ̂ =
1√

δ∗ISWC−1
TT δISW

. (21)

A signal is present if λ̂ is non null and a z-score,

K4 = λ̂/σλ̂ , (22)

directly yields the confidence level in terms of σ.
Equation 21 implicitly assumes that the primordial
CMB field δT is a Gaussian random field (we discuss
this further in section 4).

– Goodness of fit, χ2 test:
The χ2 goodness of fit with H1 (see Model compari-
son in 3.2.3) yields:

K5 = (δISW − δOBS)∗C−1
TT (δISW − δOBS) , (23)

where K5 is a χ2 variable with number of d.o.f depend-
ing on the input data. In this case, the test only returns
the confidence of rejecting the null hypothesis H0. As
in the χ2 test for the spectra, precaution must be taken
when comparing χ2 values for different models, by using
an appropriate model comparison technique. We intro-
duce this in section 4.

3.3. Pros and cons of each method

We have identified two main classes of methods: either using
power spectra or fields to measure the ISW signal. For each
approach one can choose amongst several statistical tools
to measure the significance of a correlation or validate si-
multaneously a correlation and a model. The advantages
and disadvantages of both approaches are summarised be-
low and in the top part of Table 2.

One of the main advantages of using the field approach
is that it assumes only that the primordial CMB field
comes from a Gaussian random process, which is largely
believed to be true. In the other approach, the spectra are
assumed to be Gaussian, which is not the case. Several stud-
ies (Cole et al. 2001; Kayo et al. 2001; Wild et al. 2005) have
also shown that the matter overdensity exhibits a lognor-
mal behavior on large scale. The bias introduced has been
shown to be small (Bernardeau et al. 2002; Hamimeche &
Lewis 2008), however this approach is still theoretically ill-
motivated. The main advantage of the spectra method is
the relative ease when calculating the spectra from incom-
plete data sets, as tools are available for calculating the
spectra (see e.g. Efstathiou 2004). In the field approach,
managing missing data is an ill-posed problem.

We remind that a problem is defined as a well-posed
problem (Hadamard 1902) if 1) a solution exists, 2) the so-
lution is unique and 3) the solution depends continuously
on the data (in some reasonable topology). Otherwise, the
problem is defined as a ill-posed problem. With missing
data, the second point cannot be verified. Reconstruction
of the data also requires inversion of an operation (e.g., the
mask), and is therefore an ill-posed inverse problem. Notice
that most inverse problems are ill-posed (e.g. deconvolu-
tion).



8 F.-X. Dupé et al.: An Optimal Approach for Measuring the Integrated Sachs Wolfe Effect

4. A rigorous method for detecting the ISW effect

Having identified in the previous section the numerous
methods used in the literature to detect and measure the
ISW signal, as well as their relative advantages and disad-
vantages, we propose here a complete and rigorous method
for detecting and quantifying the signal significance. We
describe this method in detail below and it is summarised
in Figure 2.

4.1. Motivation

If we consider the pros and cons of each detection method
shown in Table 2 and in Section 3.3, we remark first that
any method based on the comparison of spectra makes
the demanding assumption that the C(&)′s be Gaussian,
whereas methods based on field comparison require only the
primordial CMB field to be Gaussian. Instead the fields
method assumes only that the primordial CMB is
Gaussian, so we recommend this method be used
for an ISW analysis.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

Empirical distribution
Normal distribution
2σ boundary (normal)
2.5σ boundary (empiric)

Fig. 1. Comparison of Gaussian PDF for estimator λ/σλ with its
true estimated distribution. A 2σ significance using the Gaussian
PDF corresponds in fact to a 2.5σ detection with the true dis-
tribution. (Calculation for 2MASS survey, see section 6).

Another key issue is the estimation of the signal sig-
nificance. We find that most approaches in the literature
assume that the probability distribution function (PDF) of
the estimator is Gaussian. In Figure 1 we evaluate the esti-
mator’s PDF (under the null hypothesis) for the ISW signal
due the 2MASS survey (see Section 6) using a Monte-Carlo
method (purple bars) and compare it with a Gaussian PDF
(red solid line). The distributions’ tails differ which leads
to a bias in the confidence level for positive data (i.e. data
with an ISW signal). For the 2MASS survey, a 2σ detec-
tion with a Gaussian assumption (vertical solid/green line)
corresponds in fact to a 2.5σ detection using the true un-
derlying PDF. In this case, the signal amplitude is under-
estimated with the Gaussian assumption. Such behavior
has also been studied for marginal detections by Bassett &

Afshordi (2010). To avoid this bias, we recommend that the
PDF be estimated, and not assumed Gaussian.

Finally, there is not one ‘ideal’ statistical method.
Different methods have both advantages and disadvantages
and a combination of different methods can prove comple-
mentary.

4.2. The Saclay method

We present here a new ISW detection method which uses
the fields as input (and not the spectra). As we have seen,
several statistical tests are interesting in the sense that they
do not address the same questions. Therefore we believe
that a solid ISW detection method should test:

1. The correlation detection: this test is independent of the
cosmology.

2. The amplitude estimation: this will seek for a specific
signal.

3. The model comparison: this allows us to check whether
the model with ISW is preferred to the model without
ISW.

Using the fields instead of the spectra means we must
deal with the problem of missing data, which we solve with
a sparse inpainting technique (see Appendix A). Such a
method has already been applied with success for CMB
lensing estimations (Perotto et al. 2010).

The last important issue is how we estimate the final
detection level. As explained before, the z-score asymptot-
ically follows a Gaussian distribution and so a bootstrap
or Monte-Carlo method is required to derive the correct
p-value from the true test distribution.

4.2.1. Methodology

Our optimal strategy (summarised by Figure 2) for ISW
detection is the following:

1. Apply sparse inpainting to both the galaxy and CMB
maps which may have different masks, essentially recon-
structing missing data around the Galactic plane and
bulge.

2. Test for simple correlation, using a double bootstrap
(one to estimate the variance and another to estimate
the confidence) and using the fields as input. This re-
turns a model-independent detection level.

3. Reconstruct the ISW signal using expected cosmology
and the inpainted galaxy density map.

4. Estimate the signal amplitude using the fields as input,
and apply a bootstrap (or MC) to the estimator. This
validates both the signal and the model.

5. Apply the model comparison test using the fields as in-
put (see Section 4.2.2), essentially testing whether the
data prefers a fiducial (e.g., ΛCDM) model over the null
hypothesis, and measure relative fit of models.

As we have chosen to work with the fields, the very first
step is to deal with the missing data. This is an ill-posed
problem, which can be solved using sparse inpainting (see
Appendix A for more details). This approach reconstructs
the entirety of the field, including along the Galactic plane
and bulge. We show in Section 5 that the use of sparse
inpainting does not introduce a bias in the detection of the
ISW effect.
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Fig. 2. Description of the steps involved in our method for detecting the ISW effect. Tests 1 to 3 are complementary and ask
different statistical questions.

We then perform a correlation detection on the re-
constructed fields data using a double bootstrap (see
Appendix B.1). Experiments show that the bootstrap tends
to over-estimate the confidence interval, especially when the
p-values are small. This is why the obtained detection must
be used as a indicator when near a significant value (for high
p-values, the bootstrap remains accurate).

The second test evaluates the signal amplitude, which
validates both the presence of a signal and the chosen
model. Bootstrapping test can also be used here as it has
no assumption on the underlying cosmology. However, since
the accuracy of bootstrap depends on the quantity of ob-
served elements, it may become inaccurate for low p-value,
i.e. when there is detection. In such case, Monte-Carlo (MC)
will provide more accurate p-values and, for example, with
106 MC simulations, we have an accuracy of about 1/1000.

This second test compares the ISW signal with a fidu-
cial model, but does not consider the possibility that the
measured signal could in fact be consistent with the ‘null
hypothesis’. So even with a significant signal, a third test
is necessary. This more pertinent question is addressed by
using the ‘Model Comparison’ method (defined in Section
4.2.2), for the first time using the fields approach.

In conclusion, our method consists of a series of comple-
mentary tests which together answer several questions. The
first test seeks the presence of a correlation between two
fields, without any referring cosmology. The second model-
dependent test searches a given signal and tests its nullity.
The third test asks whether the data prefers a fiducial ISW
signal over the null hypothesis.

4.2.2. ‘Field’ model comparison

We define here the model comparison technique us-
ing the fields approach, which has until now not
been used in the literature. Using a generalised likeli-
hood ratio approach, the quantity to measure is:

K6 = δ∗OBSC−1
TT δOBS−

(δISW − δOBS)∗C−1
TT (δISW − δOBS) .

(24)

Theoretically K6 convergences asymptotically to a χ2 vari-
able with a certain number of d.o.f ’s. As we only have one
observation we cannot assume (asymptotic) convergence.
We can however use a Monte Carlo approach in order to
estimate the p-value of the test under the H0 hypothesis.

The p-value is defined as the probability that under H0

the test value can be over a given K6, i.e. P (t > K6) =∫∞
K6

p(x)dx, where p is the probability distribution of the
test under the H0 hypothesis. By simulating primordial
CMB for a fiducial cosmology, these values can be easily
computed. Then the p-value gives us a confidence on re-
jecting the H0 hypothesis.

Notice that the same procedure for the p-value esti-
mation can be applied on K4 (Equation 22), even on K1

(Equation 15) and K3 (Equation 17) for the power spectra
methods. We will further refer to this p-value estimation as
the Monte-Carlo estimation, as we theoretically know the
distribution under the null hypothesis, i.e. the primordial
CMB is supposed to come from a Gaussian random process.

5. Validation of the Saclay Method

In order to validate the Saclay method, we estimate the
detection level expected using WMAP 7 data for the
CMB and 2MASS and Euclid data for the galaxy data
(see section 6 for a description of WMAP and 2MASS data
sets). We quantify the effect of the inpainting process on
CMB maps with and without an ISW signal. We do this by
simulating 2MASS-like and Euclid-like Gaussian and
lognormal galaxy distributions and WMAP7-like Gaussian
CMB maps (using cosmological parameters from Table 6)
both with and without an ISW signal. We then apply our
method to attempt a detection of the ISW signal. We do
this both on full-sky maps as well as on masked data where
we have reconstructed data behind the mask using the
sparse inpainting technique (the masks we use are as de-
scribed in 6.1 and 6.2).

For each simulation, we run the 3-step Saclay method.
Except for the cross-correlation method where we use 100
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iterations for the 2MASS-like and 1000 for Euclid-
like simulations for the p-value estimation and 201 for the
variance estimation (nested bootstrap), every other Monte-
Carlo process was performed using 10 000 iterationsAll
tests were performed inside the spherical harmonics do-
main with ! ∈ [2, 100] for 2MASS and & = [2, 350] for
a Euclid-like survey.

For the Euclid-like survey, we consider a galaxy
distribution as defined in Amara & Réfrégier
(2007), with mean redshift zm = 0.8 and slopes
α = 2, β = 1.5. We reconstruct the ISW effect created
by the projected galaxy distribution of the Euclid
survey, by considering only one large redshift bin.
In the future, it could be possible to refine such
a reconstructed map by considering tomographic
bins, or using information from the spectroscopic
survey. As sky coverage maps are not yet avail-
able for Euclid, we consider the same mask as for
2MASS and inpaint regions with missing data fol-
lowing Section 6.3. We choose do to this, rather
than simply assume a value for the fraction of sky
covered (fsky), so as to consider more realistic prob-
lems relating to the shape of the mask, and to test
our inpainting method.

5.1. Expected level of detection:

The expected detection levels (in units of σ) are reported
in Table 3 (2MASS) and Table 4 (Euclid). Methods
1− 3 correspond to the 3-step method described in Figure
2, where (b) and (MC) denote bootstrap and Monte Carlo
evaluations of the variance and the p-value of the test. The
p-values are converted as a σ value using the following for-
mula:

s =
√

2 erf−1(1− p) , (25)

where p is the p-value, s the corresponding σ-score and
erf−1 the inverse error function.

The 2MASS simulations (Table 3) show that we
expect the same level of significance for an ISW de-
tection, whether the mass tracer follows a Gaussian
or a lognormal distribution. In either case the sig-
nificance is low, around 1σ ± 1σ. This mean that
for 2MASS-like survey, we have a signal to noise
ratio (S/N) around 1σ. We see no major difference
between the expected detection levels of M2 and
M3. The only difference is for M1 (but there is still
agreement with M2 and M3 within 1σ error bars) -
this may be due to the fact that the bootstrap tech-
nique is more efficient for Gaussian assumptions.

We also apply our method to CMB simulations
with no ISW signal present (2 left columns of Table
3), and find a lower detection significance than
when an ISW signal is present. This is true even
when inpainting is used to recover missing data,
showing that the inpainting method does not intro-
duce spurious correlations.

In any case, all methods suggest it is difficult to
detect the ISW signal with high significance using
the 2MASS data as a local tracer of the matter
distribution.

In Table 4, we show that an Euclid-like sur-
vey, which is optimally designed for an ISW de-
tection (see, Douspis et al. 2008), permits a much

Gaussian density
Method Monte-Carlo Bootstrap
Cross-Correlation
(Equation 11)

0.46± 0.28 0.44± 0.35

Amplitude estimation
(Equation 21)

0.44± 0.30 0.47± 0.33

Lognormal density
Method Monte-Carlo Bootstrap
Cross-Correlation
(Equation 11)

0.39± 0.27 0.38± 0.31

Amplitude estimation
(Equation 21)

0.41± 0.26 0.40± 0.30

Table 5. Expected p-values for inpainted maps of ISW signal for
a 2MASS-like local tracer of mass using Monte-Carlo or boot-
strap methods for the first two steps of the Saclay method.

higher detection than with a 2MASS survey. As
with 2MASS simulations, we notice that M2 and
M3 return similar detection levels, which are lower
than M1. Inclusion of masked data reduced the sig-
nificance, but our inpainting method does not intro-
duce spurious correlations as inpainted maps with
no ISW do not return a detection. For a Euclid-like
survey with incomplete sky coverage, we can expect
to show that the data prefers an ISW component
over no dark energy (M3) at the 4.7σ level, and de-
tect a cross-correlation signal at the ∼ 7σ level. We
find no significant differences in the detection lev-
els when the simulations are assumed lognormal or
Gaussian.

We also investigate the performance of the wild boot-
strap method for the confidence estimation. Table 5 shows
the p-values estimated using Monte-Carlo procedure and
wild bootstrap for the first two methods of the 3-step Saclay
method. Notice that the bootstrap results are almost equiv-
alent to Monte-Carlo ones. We find the bootstrap method
wasn’t always reliable when the p-value becomes small, be-
cause the precision of the bootstrap depends on both the
number of bootstrap samples (as any MC-like process) and
the number of observed elements. This last dependence
makes the bootstrap uncertain when the detection is almost
certain, that is why we consider the bootstrapped cross-
correlation as an indicator that needs refinement when the
results are very significant.

5.2. Power of the tests

In order to investigate the different strengths of each
method, we also evaluate the rate of true positives vs. the
number of false positives (i.e. false detections) - this infor-
mation is summarised in Figure 3 which shows Receiver
Operating Characteristic (ROC) curves. The construction
of the ROC curve requires the computation of p-values for
several simulated cases (i.e., simulations with and without
an ISW signal), which are then sorted by value. For each
p-value or threshold, the corresponding false positive and
true positive rates are computed.

Generally, a more sensitive method may be more per-
missive and so will return a higher proportion of false de-
tections. An ideal method will have a ROC curve above the
diagonal from (0, 1) to (1, 1). Similarly, a poor detector will
produce a curve below the diagonal, which corresponds to
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2MASS / Method Full sky Inpainted Full sky Inpainted
maps (with ISW) maps (with ISW) map (no ISW) map (no ISW)

Gaussian matter density field

1 Simple correlation (b) 1.12± 0.98 1.08± 0.99 0.78± 0.81 0.81± 0.86
2 Field amplitude (MC) 0.94± 0.67 0.91± 0.65 0.68± 0.57 0.71± 0.58
3 Field model test (MC) 0.94± 0.67 0.91± 0.64 0.69± 0.57 0.72± 0.58

Lognormal matter density field

1 Simple correlation (b) 1.37± 1.51 1.30± 1.37 0.85± 1.05 0.98± 1.34
2 Field amplitude (MC) 0.97± 0.62 1.00± 0.65 0.69± 0.54 0.78± 0.61
3 Field model test (MC ) 0.97± 0.62 1.00± 0.65 0.69± 0.53 0.78± 0.60

Table 3. Expected detection level (units of σ) of ISW signal for a 2MASS-like local tracer of mass assuming Gaussian and
lognormal distribution for a fiducial cosmology (see Table 6). Methods 1 − 3 represent the 3-step method. Angular scales
included in the analysis are " = [2− 100].

Euclid / Method Full sky Inpainted Full sky Inpainted
maps (with ISW) maps (with ISW) map (no ISW) map (no ISW)

Gaussian matter density field

1 Simple correlation (b) > 7 6.98± 2.30 0.87± 0.67 0.99± 0.72
2 Field amplitude (MC) > 5 4.70± 2.40 0.78± 0.49 0.88± 0.54
3 Field model test (MC) > 5 4.77± 2.42 0.78± 0.48 0.88± 0.54

Lognormal matter density field

1 Simple correlation (b) > 7 6.29± 2.60 0.84± 0.70 0.77± 0.72
2 Field amplitude (MC) > 5 4.43± 2.37 0.75± 0.54 0.74± 0.54
3 Field model test (MC ) > 5 4.43± 2.37 0.74± 0.53 0.74± 0.54

Table 4. Expected detection level (units of σ) of ISW signal for a Euclid-like local tracer of mass assuming Gaussian
distribution for a fiducial cosmology (see Table 6). Methods 1 − 3 represent the 3-step method. Angular scales
included in the analysis are " = [2− 300].

odds worse than tossing a coin. The X-axis corresponds
to the false positive rate, i.e. the ratio of CMB maps
without ISW where ISW signal is detected at the
current threshold. The Y-axis corresponds to the
true positive rate, i.e. the ratio of CMB maps with
ISW where ISW signal is detected at the current.
We recall that a point on the ROC curve corre-
sponds to a threshold.

Figure 3 shows the ROC curves for three methods ap-
plied to a 2MASS-like survey (Left) and a Euclid-like sur-
vey (emphRight): fields model test (thin solid green), field
amplitude estimation (dot-dashed blue), simple correlation
(dashed red). For the 2MASS survey, all the methods are
inside the 1σ error bar of the field’s amplitude estimation
and so are nearly equivalent, i.e. no method performs better
than the others.

For the Euclid-like survey, the statistics return
much better values then for 2MASS (i.e., the ROC
curves are far from the diagonal). The simple corre-
lation method will return more false positives than
the other two methods, which are nearly identical.
The ROC curves for each method differ by more
than 1σ at some points and so different methods
will perform differently.

6. The ISW signal in WMAP7 due to 2MASS
galaxies

We apply the new detection method described in Section
4 to WMAP7 data (Jarosik et al. 2010) and the 2MASS
galaxy survey which has been extensively used as a tracer of
mass for the ISW signal (see Table 1).We describe first the
data in Sections 6.1 and 6.2. In Section 6.3 we describe the

inpainting process that we apply to both CMB and galaxy
data. In Section 6.4, we present the detection results.

6.1. WMAP

For the cosmic microwave background data, we use sev-
eral maps from NASA Wilkinson Microwave Anisotropy
Probe: the internal linear combination map (ILC) for years
5 and 7 (WMAP5, Komatsu et al. 2009) (WMAP7, Jarosik
et al. 2010) and the ILC map by Delabrouille et al. (2009)
which was reconstructed using a needlets technique. We
avoid regions which are contaminated by Galactic emission
by applying the Kq85 temperature mask - which roughly
corresponds to the Kp2 mask from the third year release
(see Figure 4). We also substract the kinetic Doppler
quadrupole contribution from the data. WMAP sim-
ulations used to produce Tables 3 and 4 use WMAP 7 best
fit parameters for a flat ΛCDM universe (see Table 6).

Ωb 0.0449 Ωm 0.266 ΩΛ 0.734
n 0.963 σ8 0.801 h 0.710
τ 0.088 w0 -1.00 wa 0.0

Table 6. Best fit WMAP 7 cosmological parameters used
throughout this paper.

6.2. 2MASS Galaxy Survey

The 2 Micron All-Sky Survey (2MASS) is a publicly avail-
able full-sky extended source catalogue (XSC) selected in
the near-IR (Jarrett et al. 2000). The near-IR selection
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Fig. 3. ROC curves for the 3-step Saclay method for the 2MASS survey (Left) and the Euclid survey (Right). Note the
axes in the right-hand panel are different than in the left-hand panel. The statistical methods correspond to: fields model
test (thin solid green, Method 3 in Table 3), field amplitude estimation (dot-dashed blue, Method 2), simple correlation (dashed
red, Method 1). For the 2MASS survey, all the methods are inside the 1σ error bar of the field’s amplitude estimation and so
are nearly equivalent. For the Euclid-like survey, the statistics return much better values than for 2MASS (i.e., the
ROC curves are far from the diagonal). The simple correlation method will return more false positives than the
other two methods, which are nearly identical. The ROC curves of the simple correlation test differs sometimes
by more than 1σ at some points from the other two methods and so is expected to perform differently.

Method Inpainted
maps (with ISW)

Simple cross-correlation (Eq. 13) 1.30σ ± 1.37
Amplitude estimation (Eq. 22) 1.00σ ± 0.65
Model selection (Eq. 23) 1.00σ ± 0.65

Table 7. Expected detections for 2MASS like survey (from log-
normal results in Table 3).

means galaxies are surveyed deep into the Galactic plane,
meaning 2MASS has a very large sky coverage, ideal for
detecting the ISW signal.

Following (Afshordi et al. 2004), we create a mask
to exclude regions of sky where XSC is unreliable using
the IR reddening maps of Schlegel et al. (1998). Using
Ak = 0.367×E(B − V ), Afshordi et al. (2004) find a limit
AK < 0.05 for which 2MASS is seen to 98% complete for
K20 < 13.85, where K20 is the Ks-band isophotal magni-
tude. Masking areas with AK > 0.05 leaves 69% of the sky
and approximately 828 000 galaxies for the analysis (see
Figure 4).

We use the redshift distribution computed by Afshordi
et al. (2004) (and also used in Rassat et al. 2007), and in
order to maximise the signal, we consider one overall bin
for magnitudes 12 < K < 14. The redshift distribution for
2MASS is that shown in Figure 1 of Rassat et al. (2007)
(solid black line) and peaks at z ∼ 0.073. The authors also
showed that the small angle approximation could be used
for calculations relating to 2MASS, so Equations 10 and 4

can be replaced by their simpler small angle form:

CgT (&) =
−3bH2

0Ωm,0

c3(& + 1/2)2

∫
drΘD2H[f − 1]P

(
& + 1/2

r

)
,

(26)
and

Cgg(&) = b2

∫
dr

Θ2

r2
D2P

(
& + 1/2

r

)
(27)

We estimate the bias from the 2MASS galaxy power spec-
trum using the cosmology in Table 6 and find b = 1.27 ±
0.03, which is lower than that found in Rassat et al. (2007).

6.3. Applying Sparse Inpainting to CMB and Galaxy data

As discussed in Section 4, regions of missing data in galaxy
and CMB maps constitute an ill-posed problem when using
a ‘field’ based method. We propose to use sparse inpainting
(see Starck et al. 2010, and appendix A) to reconstruct the
field in the regions of missing data.

We apply this method to both the WMAP7 and 2MASS
maps, and the reconstructed maps are shown in Figure 4.
All maps are pixelised using the HEALPix software (Górski
et al. 2002; Gorski et al. 2005) with resolution correspond-
ing to NSIDE=512. The top two figures show 2MASS data
(left) and ILC map (right) with the masks in grey. The two
figures in the middle show the reconstructed density fields
for 2MASS data (left) and the ILC map (right). The bot-
tom two figures show the reconstruction of the ISW field
using the inpainted 2MASS density map and Equation 20
(for clarity, the first two multipoles (& = 0, 1) are not
present in this map).
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Fig. 4. Top: 2MASS map with mask (left) and WMAP 7 ILC map with mask (right). Middle: Reconstructed 2MASS (left) and
WMAP 7 ILC (right) maps using our inpainting method. Bottom: reconstructed ISW temperature field due to 2MASS galaxies,
calculated using Equation 20. For better visualisation of the maps as an input of the Saclay method, we consider only the information
inside " ∈ [2, 200].
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6.4. ISW Detection using 2MASS and WMAP7 Data

We use the Saclay method (section 4) on WMAP7 and
2MASS data with 106 iterations for the Monte-Carlo it-
erations, 1000 iterations for both bootstrap and nested
bootstrap of the correlation detection, and search for the
ISW signal. In order to test the effect of includ-
ing smaller (and possibly non-linear) scales, we
perform the analysis for three different &-ranges:
& ∈ [&min, 50], [&min, 100], [&min, 200], where &min = 2 or 3.
We notice that inclusion or not of the quadrupole
(& = 2) can affect the significance level slighty, which
is why we chose two values for &min. We report our mea-
sured detection levels in Table 8. We recall the expected
detections for 2MASS in Table 7, which can also be found
in the more complete set of results presented in Table 3.

The results in Table 8 are compatible with the
results in Table 3 within the errors bars. Rassat
et al. (2007) used a spectra model-comparison
method over & = [3− 30], and found that the model
with dark energy was marginally preferred over the
null hypothesis. Over a range & = [2/3 − 50], using
a fields model-comparison method, we find that a
model with dark energy is preferred over the null
hypothesis at the 1.1− 1.8σ level, depending on the
map. More generally, our results are compatible with the
earliest ISW measurement using 2MASS data (Afshordi
et al. 2004; Rassat et al. 2007) and lie in the 1.1 − 2.0σ
range depending on the data and statistical test used.

The simple correlation test tends to report marginally
higher detection levels than the field amplitude and model
comparison tests, and the model comparison test similar
values as the field amplitude test, which is compatible
with the predictions from the ROC curves in Figure
3.

7. Discussion

In this paper we have extensively reviewed the numerous
methods in the literature which are used to detect and mea-
sure the presence of an ISW signal using maps for the CMB
and local tracers of mass. We noticed that the variety of
methods used can lead to different and conflicting conclu-
sions. We also noted two broad classes of methods: one
which uses the cross-correlation spectrum as the measure
and the other which uses the reconstructed ISW tempera-
ture field.

We identified the advantages and disadvantages of all
methods used in the literature and concluded that:

1. Using the fields (instead of spectra) as input required
only the primordial CMB to be Gaussian. This requires
reconstruction of the ISW field, which is difficult with
missing data.

2. The ill-posed problem of missing data can be solved
using sparse inpainting, a method which does not
introduce spurious correlations between maps.

3. Assuming the estimator was Gaussian led to under-
estimation of the signal estimation.

4. A series of statistical tests could provide complementary
information.

This led us to construct a new and complete method
for detecting and measuring the ISW effect. The method is
summarised as follows:

1. Apply sparse inpainting to both the galaxy and CMB
maps which may have different masks, essentially recon-
structing missing data around the Galactic plane and
bulge.

2. Test for simple correlation, using a double bootstrap
(one to estimate the variance and another to estimate
the confidence) and using the fields as input. This re-
turns a model-independent detection level.

3. Reconstruct the ISW signal using expected cosmology
and the inpainted galaxy density map;

4. Estimate the signal amplitude using the fields as input,
and apply a bootstrap (or MC) to the estimator. This
validates both the signal and the model.

5. Apply the fields model comparison test, essentially test-
ing whether the data prefers a given model over the null
hypothesis, and measure relative fit of models.

The method we present in this paper makes only
one assumption: that the primordial CMB temper-
ature field behaves like a Gaussian random field.
The method is general in that it ‘allows’ the galaxy
field to behave as a lognormal field, but does not
automatically assume that the galaxy field is log-
normal.

We first applied our method to 2MASS and
Euclid simulations. We find that it is difficult to
detect the ISW significantly using 2MASS simu-
lations, and find no difference between assuming
the underlying galaxy field is Gaussian or lognor-
mal, and only mild differences depending on the
statistical test used. With a Euclid-like survey, we
expect high detection levels, even with incomplete
sky coverage - we expect ∼ 7σ detection level us-
ing the simple correlation method, and ∼ 4.7σ de-
tection level using the fields amplitude or method
comparison techniques. These detections levels are
the same whether the Euclid galaxy field follows
a Gaussian or lognormal distribution. Our results
also show that the inpainting method does not in-
troduce spurious correlations between maps.

We applied this method to WMAP7 and 2MASS data,
and found that our results were comparable with early de-
tections of the ISW signal using 2MASS data (Afshordi
et al. 2004; Rassat et al. 2007) and lied roughly in the
1.1 − 2.0σ range. These results are also compatible
with the simulations we ran for the 2MASS survey.

The last test we performed, the model comparison test,
asks the much more pertinent question of whether the data
prefers a ΛCDM model to the null hypothesis (i.e. no cur-
vature and no dark energy). Using this test, we find a
1.1 − 1.8σ detection for ranges & = [2/3 − 50] and
1.2− 1.9σ for ranges & = [2/3− 100/200], which is some-
times higher than what was previously reported in Rassat
et al. (2007) using a spectra models comparison test,
without sparse inpainting or bootstrapping. A by-product
of this measurement is the reconstruction of the
temperature ISW field due to 2MASS galaxies, re-
constructed with full sky coverage.

By applying our method on different estimation
of the CMB map, we have highlighted the effect
of the component separation on the ISW detection.
Table 8 shows score between 1.1−2.0σ on that should
be almost the same data, and with a previous test
not reported here, we were able to detect ISW at
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Galaxy Survey 2MASS
CMB data WMAP ILC 7yr WMAP ILC 5yr Needlets ILC 5yr

Scales interval " ∈ [2, 50]

Simple correlation detection 1.3σ 1.3σ 1.2σ
Field amplitude 1.3σ 1.3σ 1.1σ
Model comparison 1.3σ 1.3σ 1.1σ

Scales interval " ∈ [2, 100]

Simple correlation detection 1.5σ 1.4σ 1.3σ
Field amplitude 1.4σ 1.3σ 1.2σ
Model comparison 1.4σ 1.3σ 1.2σ

Scales interval " ∈ [2, 200]

Simple correlation detection 1.4σ 1.4σ 1.3σ
Field amplitude 1.4σ 1.3σ 1.2σ
Model comparison 1.4σ 1.3σ 1.2σ

Scales interval " ∈ [3, 50]

Simple correlation detection 2.0σ 1.9σ 1.5σ
Field amplitude 1.8σ 1.7σ 1.4σ
Model comparison 1.8σ 1.7σ 1.4σ

Scales interval " ∈ [3, 100]

Simple correlation detection 2.0σ 2.0σ 1.5σ
Field amplitude 1.9σ 1.7σ 1.5σ
Model comparison 1.9σ 1.7σ 1.5σ

Scales interval " ∈ [3, 200]

Simple correlation detection 1.9σ 1.9σ 1.6σ
Field amplitude 1.8σ 1.7σ 1.5σ
Model comparison 1.8σ 1.7σ 1.5σ

Table 8. Detection levels obtained with different CMB maps and different scales intervals (considering with and
without quadrupole) using the Saclay method described in 4.

2.7σ using a another map (not presented in this pa-
per). The influence of the component separation
method on the quality of the estimation needs to
be more deeply understood in future works.
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Appendix A: Sparse Inpainting

The goal of inpainting is to restore missing or damaged re-
gions of an image, in such a way that the restored map
has the same statistical properties as the underlying un-
masked map (Elad et al. 2005). Sparse Inpainting has been
proposed for filling the gaps in CMB maps (Abrial et al.
2007, 2008) and for weak lensing mass map reconstruction
(Pires et al. 2009, 2010). In Perotto et al. (2010), it has been
shown that the sparse inpainting method does not destroy
the CMB weak lensing signal, and is therefore an elegant
way to handle the mask problem.

The inpainting problem can be defined as follows. Let
X be the ideal complete image, Y the observed incomplete
image (images can be fields on the sphere) and L the bi-
nary mask (i.e. L[k, l] = 1 if we have information at pixel

1 http://jstarck.free.fr/isap.html
2 http://www.ipac.caltech.edu/2mass/
3 http://map.gsfc.nasa.gov

(k, l), L[k, l] = 0 otherwise). In short, we have: Y = LX.
Inpainting consists in recovering X knowing Y and L. The
masking effect can be thought of as a loss of sparsity in the
spherical harmonic domain since the information required
to define the map has been spread across the spherical har-
monic basis.

Sparsity means that most of the information is concen-
trated in a few coefficients, which when sorted from the
largest to the smallest, follow an exponential decay. More
details can be found in (Starck et al. 2010). In this paper,
the chosen ‘dictionary’ is the spherical harmonic domain.

Denoting the spherical harmonic basis as Φ (so ΦT is
the spherical harmonic transform, i.e. the projector onto
the spherical harmonic space), ||z||0 the l0 pseudo-norm,
i.e. the number of non-zero entries in z and ||z|| the classical
l2 norm (i.e. ||z||2 =

∑
k(zk)2), we thus want to minimise:

min
X
‖ΦT X‖0 subject to ‖ Y − LX ‖"2≤ σ, (A.1)

where σ stands for the noise standard deviation in the noisy
case. It has also been shown that if X is sparse enough, the
l0 pseudo-norm can also be replaced by the convex l1 norm
(i.e. ||z||1 =

∑
k |zk|) (Donoho & Huo 2001). The solution

of such an optimisation task can be obtained through an
iterative thresholding algorithm called MCA (Elad et al.
2005; Fadili et al. 2009; Starck et al. 2010) :

Xn+1 = ∆Φ,λn(Xn + Y − LXn) (A.2)

where the nonlinear operator ∆Φ,λ(Z) consists in:

1. decomposing the signal Z on the dictionary Φ to derive
the coefficients α = ΦT Z (i.e. α is the vector containing
the a"m coefficients).
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2. threshold the coefficients: α̃ = ρ(α,λ), where the thresh-
olding operator ρ can either be a hard thresholding (i.e.
ρ(αi, λ) = αi if |αi| > λ and 0 otherwise) or a soft
thresholding (i.e. ρ(αi, λ) = sign(αi)max(0, |αi| − λ)).
The hard thresholding corresponds to the l0 optimisa-
tion problem while the soft-threshold solves that for l1.

3. reconstruct Z̃ from the thresholds coefficients α̃.

The threshold parameter λn decreases with the iteration
number and it plays a role similar to the cooling parame-
ter of the simulated annealing techniques, i.e. it allows the
solution to escape from local minima.

It has been shown in Abrial et al. (2008) that this in-
painting technique leads to accurate CMB recovery results.
More details relative to this optimisation problem can be
found in Combettes & Wajs (2005); Starck et al. (2010)
and theoretical justifications for CMB sparse inpainting in
Rauhut & Ward (2010). The software is available in the
Multi-Resolution on the Sphere (MRS) package 4.

Appendix B: Bootstrapping detection tests

Most detection methods rely on a z-score whose confidence
is computed assuming a Gaussian distribution (see sec-
tion 3.2). This assumption is valid within the central limit
theorem and so is not always true. Using an estimator of
the true distribution will give more reliable confidence lev-
els. To estimate the true distribution, two approaches are
generally used: Monte-Carlo simulations when a model and
its parameters are available or non-parametric bootstraps
methods.

In order to build a fully non-parametric and cosmology
independent correlation detection test, we propose to use
the wild bootstrap in order to estimate both estimator vari-
ance and confidence interval. The remaining question will
be the reliability of such test when bootstraps are some-
times known to underestimate confidence intervals. The
answer to the question depends mainly on the choice of
domain (e.g. pixels, spherical harmonics) and the method
chosen for estimating.

Working with correlated data is difficult and estimated
values are generally different to the true ones. We chose
to work in the spherical harmonic domain, which produces
heteroskedastic (i.e., the power spectrum is scale depen-
dent) and uncorrelated data. For heteroskedastic and un-
correlated data, bootstraps methods like wild bootstrap
can be used. Flachaire (2005); Davidson & Flachaire (2008)
showed the good behaviour of wild bootstrap in many situa-
tions. We propose here a short introduction to this method,
which we use to estimate p-values and estimator variances.

B.1. Wild Bootstrap and Regression Model

Bootstrap methods were introduced by Efron (1979) as a
generalisation of the jackknife and its concept has been ex-
tended to many situations. For the regression case with
heteroskedastic data, wild bootstrap was developed by Liu
(1988), who established the ability of wild bootstrap to
provide refinements for the linear regression model with
heteroskedastic disturbances. Mammen (1993) showed that
the wild bootstrap was asymptotically justified, in the sense
that the asymptotic distribution of various statistics is the

4 http://jstarck.free.fr/mrs.html

same as the asymptotic distribution of their wild bootstrap
counterparts.

If you look at the correlation estimator (Equation 11)
and the amplitude estimation (Equation 21), they both sup-
pose an underlying linear model:

δO
"m = ρδC

"m + σ"m , (B.1)

where δO is the observed field which contains the signal
of interest (e.g. CMB), δC a tracer of the signal of inter-
est (e.g. matter density, ISW reconstruction), ρ is either
the correlation coefficient and the amplitude of the signal
(depending of the estimator) and σ is the noise which is
dependent of the position.

The originality of the wild bootstrap relies in the fact
that its data generating process (DGP) creates new samples
without any prior on the distribution of the noise. This
process uses the residual, i.e. u"m = δO

"m − ρ̂δC
"m, where ρ̂

is the parameter estimate. Then, new samples are created
using the following formula,

δO&
"m = ρ̂δC

"m + u&
"m , (B.2)

u&
"m =

u"mε

1− h"m
, h"m =

∣∣δC
"m

∣∣2
∑

",m

∣∣δC
"m

∣∣2
(B.3)

where ∗ indicate the bootstrapped version of the sample
and ε is a random variable following a given distribution.
The performance of the wild bootstrap mainly depends on
the distribution of ε, which must verify some conditions like
having a null mean and a unit variance.

For example Liu (1988) proposed to use Rademacher
variables for the distribution,

ε =
{

1 with probability 0.5 ,
−1 with probability 0.5 .

(B.4)

Davidson & Flachaire (2008) showed that exact in-
ference (up to a theoretical accuracy) is possible
if δC

"m is independent from all the disturbance u"m

and if the test distribution is symmetric about 0.
Moreover, the rate of convergence of the error in the
rejection probabilities (ERP) is at most n−3/2 with sym-
metric errors and n−1/2 with asymmetric errors (n is the
size of the observed sample). The ERP is the difference
between the actual rejection frequency under the null hy-
pothesis and the level of the test (e.g. about 0.045 for a
2σ detection). In other words, this is the precision error on
the inferred p-value. Notice that it mainly depends on the
sample size.

B.2. Parametric bootstrap

The wild bootstrap is very useful when little is known about
the noise. However, sometimes the noise distribution is well
known and its parameters can be estimated from the obser-
vations. In this case, it is possible to use this distribution
in order to generate new samples. For example, if we model
the CMB primordial distribution by a multivariate normal
law, the u&

"m can be generated as, u&
"m ∼ N (0, CCMB) where

CCMB is the power spectra of the primordial CMB. Notice,
that using the theoretical CMB power spectra leads to a
Monte-Carlo methods which is then dependent on the cho-
sen cosmology.
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B.3. Estimating the estimator variance

When the variance of an estimator is unknown, a bootstrap
can be used to estimate it with the following scheme:

1. Estimate the parameter vector ρ̂ from the observed
data;

2. Create B bootstrap samples, using Equation B.2 or an-
other method (see section B.2);

3. For each bootstrap sample,estimate the parameter vec-
tor ρ&

i , i ∈ [1, B],
4. Compute the estimation of the variance of the estima-

tor,

Var(ρ̂) =
1

B − 1

B∑

i=1

(ρ&
i−ρ̄&)2 , ρ̄& =

1
B

B∑

i=1

ρ&
i . (B.5)

B.4. Estimating the p-value of a test

The estimation of the confidence interval of a hypothesis
test requires the generation of samples under the null hy-
pothesis. Inside the wild bootstrap DGP, that leads to set
ρ̂ = 0 when using Equation B.2 for new samples (it also
remain true with a parametric bootstrap). Using this prop-
erty, the scheme for computing the p-value is the following,

1. Estimate the parameter vector and its variance (e.g. us-
ing the previous scheme in B.3), ρ̂ and Var(ρ̂);

2. Compute the z-score,

τ̂ = ρ̂/
√

Var(ρ̂) ; (B.6)

3. Create B bootstrap samples which follow the null hy-
pothesis using B.2 (or section B.2) and ρ̂ = 0 ;

4. For each bootstrap sample, estimate the parameter, ρ&
i ,

and its variance Var(ρ&
i ), i ∈ [1, B];

5. For each bootstrap sample, compute the correspondant
z-score,

τ&
i = ρ&

i /
√

Var(ρ&
i ) ; (B.7)

6. Compute the bootstrapped p-value,

p& =
1
B

∑

i

I(τ&
i > τ̂) , (B.8)

where I denotes the indicator function, which is equal
to 1 when its argument is true and 0 otherwise.

Equation B.8 can be a little too rough and may
lead to inaccurate results when the answer is just be-
tween two bootstrap samples. One way to reduce this ef-
fect is by smoothing the empirical distribution (Racine &
MacKinnon 2007), for example with a Gaussian kernel,

p& = 1− 1
B

B−1∑

i=0

ϕ

(
τ̂ − τ&

i

h

)
, (B.9)

where ϕ is the Gaussian cumulative distribution function
and h the bandwidth of the kernel (chosen depending on
the required precision, see Racine & MacKinnon 2007).

B.5. Reliability of bootstrap

One can be perplexed by the efficiency and the re-
liability of bootstrap method. Many studies have
proved that these methods outperform asymp-
totic tests (i.e. using the asymptotic distribu-
tion) (Davidson & MacKinnon 2006) and some-
times perform almost as well as exact tests (i.e. with
the true distribution) (we refer the reader to Efron
1987; DiCiccio & Efron 1996; Hall 1995, for more
information). The efficiency is mostly dependent on
three key elements: 1) the Data Generating Process
(DGP) under both hypotheses (often generating
under the alternative hypothesis is non trivial), 2)
the number of observations and 3) the number of
bootstrapped samples. The variance on p is given by
p(1− 100)/B, where B is the number of bootstraps.
While the number of bootstrapped sample can be
easily tackled, the DGP on the chosen method and
the number of observation depends on many pa-
rameters (e.g. configuration, instruments, acquisi-
tion time). Even with the most efficient DGP, the
precision of the bootstrap methods is limited by the
number of observations, often in O(1/

√
n), some-

times O(1/n). In other words, bootstrap methods
are mostly inaccurate when the observed value is
at the tail of the involved distribution (i.e. and so
rare event). For example, a p-value estimated us-
ing 100 observations will be ±0.1 and be inefficient
for characterizing high confidence, but can still be
useful for rejecting.
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Answer to the second report on the Paper:
“An Optimal Approach for Measuring the

Integrated Sachs Wolfe Effect”

F.-X. Dupé, A. Rassat, J.-L. Starck and M. J. Fadili

We thank the reviewer for their comments and the very detailed review of our article they
have provided.

Before answering the different concerns of the reviewer, we summarise here some major
changes to the paper:

• Further analysis of the GMCA map has highlighted aspects of the component separation
which we do not fully understand, and so we have decided to exclude the GMCA map
from our current simulations and data analysis with 2MASS. We will investigate the
GMCA data more thoroughly in a future study. As the GMCA map originally returned
the highest detection levels, this means that the original claims of higher detection (2.7σ)
in the first version of this paper no longer hold. In order to investigate other data sets too,
we have also included the Delabrouille et al 2009 ILC map reconstructed using needlets
as a new data set with which to detect the ISW signal. Figure 4 and Table 8 have been
updated accordingly.

• We have performed a new set of simulations for a Euclid-like survey, which better illus-
trates the differences between the statistical tests which form the Saclay method. A new
Table 4 has been added.

• We have updated our ISW detection simulations. We now consider both Gaussian and
lognormal cases for the 2MASS and Euclid galaxy distributions. We find that this has
very little effect on the detection levels, since our methods assume only that the CMB
field is Gaussian.

We have also corrected all the mistakes pointed out by the reviewer. We present below our
answers to the different concerns of the reviewer.

1 Part I, (first level of concern)

The theory makes a clear cut prediction in this respect: the part of the phi that
generates ISW is first order in perturbation theory and, in the absence of non-
Gaussianities in the primordial inflaton field (as predicted by most of inflationary
models), that same part of phi should be strictly Gaussian. On the scales of ISW
analyses, non-linear corrections should be small *and* with opposite sign in the
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phi dot (see, for instance, the works of Cui et al. 2008, Smith et al. 2009, based
upon the analyses of numerical simulations). Although depending on the amount
of galaxies/galaxy number density, for the particular case of 2MASS Poisson shot
noise should be negligible on the largest scales: this can be deduced by a simple
analysis of C!’s from 2MASS. Only on the smallest scales the C!’s should become
constant (and dominated by the Poisson component).

For clarity throughout this answer, we call ‘ISW’ the secondary temperature field which is
positively correlated with the density field, and ‘Rees-Sciama’, the secondary temperature field
which is negatively correlated with the density field.

We agree with the referee that the part of the potential which creates the ISW signal is first
order in perturbation theory. However, even in the absence of non-Gaussianities in the pri-
mordial inflaton field, the potential phi will evolve with redshift, and can become lognormal on
quasi-linear scales, where the potential is still decaying: this will produce an ISW signal, which
will approach Gaussianity on the largest scales and contain some traces of non-Gaussianity on
smaller (but not non-linear) scales (see [5, 4]). Furthermore, there is currently no observa-
tional proof that lognormalities on quasi-linear scales do not affect the ISW signal, so there is
no motivation to formally exclude these effects from our analysis.

It might occur however that the proposed method projects the statistics of the 2MASS
galaxy density field into the phi reconstruction, and, as the authors claim, there may
be significant non-Gaussian signal in the 2MASS survey on large angular scales.
Since 2MASS is relatively shallow, there may be slight non-Gaussianities (or ”log-
normalities”) projected on relatively large angular scales which could be reflected
in the phi prediction performed by the authors’ method. But this non-Gaussian
component should not give rise to any ISW. One possible way to test if the authors’
method indeed project the statistics of the density field into the potential field is by
simply applying their method on a pure Gaussian density realization and test the
statistics of the inferred potential field.

Our method does indeed use the 2MASS density field to infer the phi field. Since there is
a one-to-one mapping of the density and phi fields in Fourier space, any quasi-linearities in
the density field should lead to quasi-linearities in the phi field, which in turn will affect the
structure of the ISW field (see answer to previous section). In spherical harmonic space, these
quasi-linear effects may in practise be negligible.

To test this, we applied our method on both Gaussian and lognormal fields for full sky
simulations (i.e. no missing data) to test whether the statistics of the density field will affect
the detection level, as suggested by the referee. We found no difference in terms of detection
level (see the updated Table 3), apart from a slight difference for the simple correlation method
(we suspect this is related to the wild bootstrap method which is more efficient in the Gaussian
case).

Furthermore, our detection method does not use any priors on the statistics of the galaxy
(or ISW) field and we expect the result to be independent of such information. This discussion
has been added to the paper.

I would be happy if that were the case and the non-Gaussianities in the reconstructed
phi is due to non-Gaussianities in the 2MASS density field present on the moderate
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to large scales. But this should be then clearly said in the text, and the readers
should be made aware that ISW is still associated *only* to the linear (and hence
Gaussian for most models) component of the potential.

Indeed, the non-Gaussianities which may be present in the reconstructed phi field, directly
arise from non-Gaussianities which may be found in the density field. As we have discussed
above, since the density and phi fields are directly related, it is theoretically possible for the
ISW field to present non-Gaussianities. However, the test performed in the previous paragraph
and suggested by the referee (see the updated Table 3 for 2MASS and new Table 4 for Euclid)
shows that whether the underlying 2MASS or Euclid fields are Gaussian or lognormal has very
little effect on detection levels.

In practise, separating the Gaussian and lognormal components of a galaxy or density field
is technically very difficult (especially at large scales where few modes are available).

We do however clarify in the text, that we are looking at the ISW signal (i.e. the temperature
component which is positively correlated with the matter distribution), and not the non-linear
Rees-Sciama effect. We have also added references to Cai et al 2010 and Schaefer et al 2010
which investigate the scale on which the Rees-Sciama effect intervenes.

Regarding the resulting pdf of the statistic used to measure the cross-correlation, I
agree that if both density and potential vary, then the statistic is the product of two
normal distributions that is far from a normal one. However, when computing sta-
tistical significances, one of them (usually the field inferred from the galaxy survey)
is assumed *fixed*. In this case, if one of the two fields (either rho or phi) is fixed,
then the pdf will depend on the particular definition of the statistic. I agree with the
authors that with their definition of their statistic (τ = ρ/Var(ρ)) the pdf should be
a Student’s t-distribution and hence non-Gaussian a priori. But, in my opinion,
this would be the case *only* if Var(ρ) is estimated from the data. If Var(ρ) can be
estimated from theory (i.e., it is a fixed quantity for all MC simulations for a given
cosmology) then Var(ρ) is merely a constant and we should be again in the situation
where τ is a Gaussian random variable. For instance, in Eq.(14) the quantity σλ̃
is a quantity that is computed theoretically, and also a theoretical expression can be
written for the σρ defined in the denominator of Eq.(13). Again, this would only
apply if one of the fields (i.e., the one inferred from the galaxy survey) is fixed. I
think that the reader would appreciate becoming aware of these issues. In particu-
lar, it should be clearly stated which of all cases considered in this discussion was
actually used when building the histogram in Fig.1.

We agree with the reviewer that if the variance is known or estimated independently of the
data, then τ follows a Gaussian distribution. We add this remark in the paper.

Regarding Appendix B.2., the bootstrap approach can be more easily understood
as it reads now. It is claimed that Davidson & Flachaire (08) proved that this
distribution gives exact results in specific cases, but it is not specified which those
are. I think that the issue is whether this distribution is able (or not) to provide the
correct pdf for the cross-correlation estimates in the particular ISW - LSS scenario
(which provides a clear model against which the performance of this approach can
be tested). That is, under the usual ideal scenario of Gaussian ISW and LSS fields
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it can be computed what the pdf for ρ (in Eq.(B.2.)) should be, and this can be
compared to the outcome of this bootstrap approach. I leave this exercise up to the
authors, but I would recommend to emphasize in the text that this approach should
be taken with caution too, as long as it is not compared to theoretical expectations.

We add the assumptions needed for the claim. We understand the skepticism of the reviewer
on the reliability of bootstrap methods, however we think that some points must be highlighted:
1) the bootstrap is only used for the simple correlation test, 2) bootstrap methods allow us to
perform tests without knowing the underlying distributions and 3) these methods are known to
perform better than asymptotic testing (e.g. most of χ2-test) [1]. The bootstrap method has
already been successfully used to estimate the confidence intervals in many situation [3, 2, 7]
and its reliability depends mainly on the way new samples are generated and on the observation
size.

I agree with what the authors say about the difficulties on reconstructing the ISW /
potential field out of a survey like 2MASS, and actually I think it should be added
in the text, close to Eq.(20). However, the authors have made no comment on my
remark on Eq.(20): this Equation is, at best, an approximation for only a part of the
aISW

!,m . One way to see why is that, since it makes no use of the redshift distribution
of the sources, but it uses integrated along the line of sight quantities, it can not
perform as well as a full 3D inversion of the density field into the potential field. I
think the authors should warn the readers about this issue in the text too.

We agree with the referee that the method we use will only lead to an approximation of
the ISW field. Of course, the reconstruction of the ISW field using the 3D matter density
is the most efficient and precise way to proceed. However, there are currently no full sky
spectroscopic galaxy or lensing maps from which we could infer a 3D matter distribution. The
ISW reconstruction is still an open problem with some big issues like the missing data and the
redshift estimation. This discussion has been added to the paper.

2 Part II, (second level of concern)

I refer again to the argument given above. The ISW (as a linear effect) is due
to the linear (and supposedly Gaussian) component of the density field. What-
ever 2nd-order (and hence non Gaussian) component present in the density field
should not positively correlate with the ISW component of the CMB (but rather
anti-correlate to the CMB - i.e., Rees-Sciama effect). Third order effects should
be even smaller. Studies of numerical N-body simulations (Cui et al. 08, Smith et
al.08, Cui et al. 09, Diego et al. 10) show that the 2nd-order Rees Sciama effect
are already negligible. This means that the impact of those log-normalities in the
density distribution on the CMB/ISW are hence negligible as well. The ISW should
therefore provide no hint whatsoever about non-Gaussianities, provided the linear
density field is Gaussian.

If a density peak has non-Gaussian (or log-normal) patterns, these should leave
no signature in the ISW component generated by that overdensity, but only on the
RS component which is found in simulations to be much smaller, limited to much
higher multipoles (and much deeper buried in ”cosmological” intrinsic CMB noise).
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We have clarified in the text that when we refer to ‘ISW’ signal, we mean the secondary
temperature anisotropy which is positively correlated with the density field (but which may
have some non-Gaussian signatures, but tends to Gaussianity on the largest scales), and the
‘Rees-Sciama’ effect, as the secondary temperature anisotropy which is negatively correlated
with the density field (and is necessarily non-Gaussian).

The detection method which we have developed in this paper is very general and makes only
one major assumption: that the primordial CMB behaves as a Gaussian field. The method
is also general as it *allows* the galaxy field to behave as a lognormal field, but does not
automatically assume that the galaxy field is lognormal (e.g., it can be perfectly Gaussian, and
our method allows for this).

I agree with the authors that by using an estimate of the phi/ISW from 2MASS one
is focusing the analyses on the angular scales where the S/N is located. However,
my request was different: given the angular coverage and the depth of 2MASS, I
would like to see the level of S/N that one would expect for a 2MASS-like survey,
even in the case where the authors’ method is applied (and not only a simple density
x CMB cross correlation approach). Apparently, this is shown in Table 3, where the
number of sigmas to be obtained by each method are given after running a number
of MC simulations.

The expected ratio S/N can be defined, in our case, as the expected mean detection level
we compute through the simulation. For 2MASS we have then a S/N ≈ 1σ which agrees with
previous results [8, 6]. This was clarified inside the section on the expected level of detections.

I must say this table looks rather odd to me: (1) Numbers quoting # of sigma look a
bit too high (for a survey as shallow as 2MASS [zmax ∼ 0.15] a simple comparison
with Fig.3 of Frommert et al. [08] show that, under full sky coverage, a perfect
density survey up to redshift z 0.2 should yield S/N 1) ; (2) the table values referred
to the cases with no ISW are of the order of one, and I would have expected them
to be close to zero, since if there is no ISW there is no cross correlation between
the fields inferred from the galaxy survey and the CMB maps – this is actually a
particularly puzzling result: if there is no ISW, we expect *no* cross-correlation
whatsoever between the CMB and the galaxy template, I just cannot understand
those values quoted in the table–; and (3) similar significance is reached for the
inpainted case as compared to the full sky case, for the with-ISW cases (two leftmost
columns).

The confidence of a null hypothesis test can be interpreted as the distance from the data
to the null hypothesis (commonly named H0). For example, let ρ be a variable of interest
(e.g. correlation coefficient, amplitude). The confidence score σ for the hypothesis test H0

(i.e., ρ = 0) against H1 (i.e., ρ #= 0) is directly computed using the formula τ = ρ/σ(ρ), where
σ(ρ) is the standard deviation. But this only true when 1) ρ is Gaussian, 2) σ(ρ) is computed
independently of the observation and 3) considering a symmetric test. Then, this method does
not stand for the general case and as the correlation coefficient considered here is positive, an
asymmetric test (one-sided test) would also be more appropriate here.

Remember that a confidence score is directly linked to the deviation from the H0 hypothesis
through the p-value which is a probability, so the σ-score is always positive. Then the p-
value p of one hypothesis test is computed using the probability density function (PDF) of
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the test distribution: p = 1 −
∫ τ
−∞ P (x|H0)dx =

∫ +∞
τ P (x|H0)dx (for a classical one-sided

test). Remark that in that case, if the H0 is true then ρ ≈ 0 (i.e. in the middle of the test
distribution) and the p-value p will be around 0.5 which correspond to a confidence of 0.67σ.
This paragraph was added to the paper as a subsection.

I would have expected that, since there is no information from the in painted area,
the total significance should consequently decrease. It is very hard for me to be-
lieve that after inpainting 30% of the sky practically no significance of the cross-
correlation is lost. (What would then the achieved significance be if 50% of the sky
is first masked and then inpainted?)

It is true that missing data leads to a loss of correlation between the two maps, and that
the ratio of missing data will highly impact the success of detecting the correlation. The
inpainting method helps us to reduced the variance of the detection, but we can see from the
Euclid simulation that we cannot recover the full correlation. This fact was imperceptible with
the 2MASS simulation because of the low detection level.

I must confess I am very skeptical about the results of this table, and since they are
critical since many of the results of the paper are based upon them, I need to be
convinced on their correctness.

We believe that most of this skepticism comes from the way of reading the σ scores. We
hope that our explanation above makes the correctness of the method clearer.

I appreciate the effort put in describing the ROC computation. As I understand,
simulations are run, and they are sorted according to the p-value provided by each
statistic. The Y coordinate is computed then as the ratio of true to false detections.
One last thing: how is a ”false” or ”true” detection defined in this context?

The X-axis corresponds to the false positive rate, i.e. the ratio of CMB maps without ISW
where ISW signal is detected at the current threshold. The Y-axis corresponds to the true
positive rate, i.e. the ratio of CMB maps with ISW where ISW signal is detected at the current.
We recall that a point on the ROC curve corresponds to a threshold. We complete the paper
to make it clearer. We have also added the ROC curve for the Euclid survey in the paper.

As they authors say it is hard to decide which of the two maps (ILC and GMCA)
are closer to reality. The fact that they yield so different results (2.1 to 2.7 σ)
should hence be taken very cautiously. And for this reason I would explicitely write
this caveat in the abstract, lowering the tone of the claims (in particular the one
pointing to 1.6% probability of false positive).

As we have discussed at the beginning of this answer, we have decided not to include the
GMCA data in this paper, as we believe a more thorough analysis of the component separation
is necessary, which we plan to do in a further study.
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3 Part III, (third level of concern)

I am OK with all points but one: I cannot see why there is no difference when
considering l=2 (quadrupole). For l=2 the ISW has its highest amplitude, and it
should also contribute to the ISW total signal.

We agree with the referee that the quadrupole should contribute to the detection of the ISW.
We first thought that the quadrupole has no importance in the detection, because with the
GMCA map, we hardly see one. However, when we further investigated this using the other
maps, we actually find that including or not the quadrupole leads to very different results. The
results are actually counter-intuitive, in that including the quadrupole reduces the significance.
We suppose that this phenomena is linked with the anomalously low power of the quadrupole.
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