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ABSTRACT

Context.
Aims. The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost
the entire statistical information of CMB perturbations. Having access to only one sky, the CMB power spectrum
measured by our experiments is only a realization of the true underlying angular power spectrum. We aim to recover
the true underlying CMB power spectrum from the one realization that we have without knowing the cosmological
parameters.
Methods. The sparsity of the CMB power spectrum is first investigated in two dictionaries; discrete cosine transform
(DCT) and wavelet transform (WT). The CMB power spectrum can be recovered with very few coefficients in these
two dictionaries and hence is very compressible.
Results. We studied the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this,
we developed a technique that estimates the true underlying CMB power spectrum from data, i.e., without a need to
know the cosmological parameters.
Conclusions. This smooth estimated spectrum can be used to simulate CMB maps with similar properties as the true
CMB simulations with the correct cosmological parameters. This allows us to perform Monte Carlo simulations in a
given project without having to know the cosmological parameters. The developed IDL code, TOUSI, for theoretical
power spectrum using sparse estimation, will be released with the next version of ISAP.
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1. Introduction

Measurements of the cosmic microwave background (CMB)
anisotropies are powerful cosmological probes. In the
currently favored cosmological model, with the nearly
Gaussian-distributed curvature perturbations, almost the
entire statistical information is contained in the CMB an-
gular power spectrum. The observed quantity on the sky is
generally the CMB temperature anisotropy Θ(~p) in direc-
tion ~p, which is described as T (~p) = TCMB [1 + Θ(~p)]. This
field is expanded on the spherical harmonic functions as

Θ(~p) =
+∞∑
`=0

∑̀
m=−`

a[`,m]Y`m(~p) , (1)

where a[`,m] =
∫

S2
Θ(~p)Y ∗`m(~p)d~p , (2)

where S2 ⊂ R3 is the unit sphere, ` is the multipole mo-
ment, which is related to the angular size on the sky as
` ∼ 180◦/θ and m is the phase ranging from −` to `. The
a[`,m] are the spherical harmonic coefficients of the (noise-
free) observed sky. For a Gaussian random field, the mean
and covariance are sufficient statistics, meaning that they
? paniez.paykari@cea.fr

carry the whole statistical information of the field. If the
random field has zero mean, E(a00) = 0 and the expansion
can be started at ` = 2, neglecting the dipole terms, i.e.,
` = 11. For ` > 2, the triangular array (a[`,m])`,m repre-
sents zero-mean, complex-valued random coefficients, with
variance

E(|a[`,m]|2) = C[`] > 0 , (3)

where C[`] is the CMB angular power spectrum, which only
depends on ` because of the isotropy assumption. Therefore,
from Equation 3, an unbiased estimator of C[`] is given by
the empirical power spectrum

Ĉ[`] =
1

2`+ 1

∑
m

|a[`,m]|2 . (4)

Furthermore, becasue the random field is stationary, the
spherical harmonic coefficients are uncorrelated,

E(a[`,m]a∗[`′,m′]) = δ``′δmm′C[`] . (5)

Since they are Gaussian, they are also independent. The
angular power spectrum depends on the cosmological pa-
rameters through an angular transfer function T`(k) as

C[`] = 4π
∫
dk

k
T 2
` (k)P (k) , (6)

1 The dipole anisotropy is dominated by the Earth’s motion
in space and it is hence ignored.
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where k defines the scale and P (k) is the primordial matter
power spectrum.

Making accurate measurements of this power spectrum
has been one of the main goals of cosmology in the past
two decades. We have seen a range of ground- and balloon-
based experiments, such as Acbar (Reichardt et al. 2009)
and CBI (Readhead et al. 2004), as well as satellite ex-
periments, such as WMAP (Bennett et al. 2003) and the
recently launched satellite Planck2. All these experiments
produce a temperature map of the sky from which the CMB
power spectrum is obtained. The estimation of the power
spectrum from CMB experiments is important because this
spectrum is a way to estimate the cosmological parameters
that describe the Universe. General methods for extract-
ing this spectrum from a Npix-map, with nonuniform cov-
erage and correlated noise are quite expensive and time-
consuming especially for Planck, where we will be dealing
with Npix = 5 × 107. All these experiments estimate the
CMB angular power spectrum from a sky map, which is a
realization of the underlying true power spectrum; no mat-
ter how much the experiments improve, we are still limited
to an accuracy within the cosmic variance. This means that
even if we had a perfect experiment (i.e. with zero instru-
mental noise), we would not be able to recover a perfect
power spectrum, because of the cosmic variance limit.

In this paper we investigate the possibility of estimating
the true underlying power spectrum from a realized spec-
trum; an estimation of the true power spectrum without a
need to know the cosmological parameters. For this we ex-
ploit the sparsity properties of the CMB power spectrum,
and capitalize on it to propose an estimator of the theoret-
ical power spectrum.

The idea of sparsity in different dictionaries has been
used previously . For example, Mukherjee & Wang (2004)
used wavelets to estimate the level of non-Gaussianity in
the first year of the WMAP data. In Mukherjee & Wang
(2003) wavelets were used to estimate the primordial
power spectrum. Faÿ et al. (2008) have used wavelets to
estimate the power spectrum from a CMB map, as an
alternative to the MASTER method of Hivon et al. (2002).
There have also been previous attempts to smooth the
CMB power spectrum, for instance spline-fitting, where
the smoothed power spectrum was used for visual aids (Oh
et al. 1999). Also, Aghamousa et al. (2012) have smoothed
WMAP 1-3-5-7 power spectra to investigate their evolution.

We used the sparsity of the CMB power spectrum as
a key ingredient to estimate the theoretical power spec-
trum without having to know the cosmological parameters;
this estimate will not belong to a set of possible theoret-
ical power spectra (i.e., all C[`] that can be obtained by
CAMB3 by varying the cosmological parameters). Instead,
this estimation should be useful for other applications, such
as:

• Monte Carlo: we may need to conduct Monte Carlo sim-
ulations in some applications without assuming the cos-
mological parameters.

• Wiener filtering: Wiener filtering is often used to fil-
ter the CMB map and requires the theoretical power

2 http://www.esa.int/SPECIALS/Planck/index.html
3 CAMB solves the Boltzmann equations for a cosmological

model set out by the given cosmological parameters.

spectrum as an input. We may not wish to assume any
cosmology at this stage of the processing.

• Some estimators (weak lensing, integrated SachsWolfe
(ISW), etc.) require the theoretical power spectrum to
be known. Using a data-based estimate of the theoreti-
cal C[`] could be an interesting alternative, or at least a
good first guess in an iterative scheme where the theo-
retical C[`] is required for determining the cosmological
parameters.

Paper content

Section 2 introduces the concepts of sparse representa-
tion and its applications to the CMB power spectrum. In
Section 3 we explain how sparsity is used to propose an esti-
mator of the theoretical power spectrum. Experimental re-
sults are described and discussed in Section 4, and Section 5
is devoted to a discussion and comparison of the moving
average estimator. In Section 6, conclusions are drawn and
potential perspectives are stated.

2. Sparsity of the CMB power spectrum

2.1. A brief tour of sparsity

A signal X = (X[1], . . . , X[N ]) considered as a vector in
RN , is said to be sparse if most of its entries are equal to
zero. If k number of the N samples are not equal to zero,
where k � N , then the signal is said to be k-sparse. If
only a few of the entries have high values and the rest are
zero or close to zero, the signal is said to be weakly sparse
(or compressible). With a slight abuse of terminology we
call compressible signals sparse. Generally, signals are not
sparse in direct space, but can be sparsified by transforming
them to another domain. For example, sin(x) is 1-sparse in
the Fourier domain, while it is clearly not sparse in the
original one. In the so-called sparsity synthesis model, a
signal can be represented as the linear expansion

X = Φα =
T∑
i=1

φiα[i] , (7)

where α[i] are the synthesis coefficients of X, Φ =
(φ1, . . . , φT ) is the dictionary, and φi are called the atoms
(elementary waveforms) of the dictionary Φ. In the lan-
guage of linear algebra, the dictionary Φ is a N ×T matrix
whose columns are the normalized atoms, supposed here
to be normalized to a unit `2-norm, i.e. ∀i ∈ [1, T ], ‖φi‖22 =∑N
n=1 |φi[n]|2 = 14. A function can be decomposed in many

dictionaries, but the best dictionary is that with the spars-
est (most economical) representation of the signal. In prac-
tice, it is convenient to use dictionaries with fast implicit
transform (such as Fourier transform, wavelet transform,
etc.) which allow us to directly obtain the coefficients and
reconstruct the signal from these coefficients using fast al-
gorithms that run in linear or almost linear time (unlike
matrix-vector multiplications). The Fourier, wavelet, and
discrete cosine transforms are certainly the most well known
dictionaries. A comprehensive account of sparsity and its
applications can be found in the monograph Starck et al.
(2010).

4 The lp-norm of a vector X, p ≥ 1, is defined as ‖X‖p =`P
i |X[i]|p

´1/p
, with the usual adaptation ‖X‖∞ = maxiX[i].



P. Paykari et al.: True cosmic microwave background power spectrum estimation 3

2.2. Which dictionary for the theoretical CMB power
spectrum?

We investigated the sparsity of the CMB power spectrum
in two different dictionaries, both having a fast implicit
transform: the wavelet transform (WT) and the discrete
cosine transform (DCT).

Figure 1 shows an angular power spectrum (calculated
with CAMB (Lewis et al. 2000) with WMAP7 (Larson
et al. 2010) parameters) along with the DCT- and WT-
reconstructed power spectra with a varying fraction of the
largest transform coefficients retained in the reconstruc-
tion. The inner plots show the difference between the actual
power spectrum and the reconstructed ones. Clearly, with
only few coefficients the shape of the power spectrum is cor-
rectly reconstructed in both dictionaries. The height and
the position of the peaks and troughs are very important
here because the estimation of the cosmological parameters
heavily relies on these characteristics of the power spec-
trum. The best domain would be the one with the sparsest
representation and yet the most accurate representation of
the power spectrum. Let C[`](M) be its best M -term ap-
proximation, i.e., obtained by reconstructing from the M -
largest (in magnitude) coefficients of C[`] in a given do-
main. To compare the WT and DCT dictionaries, we plot
the resulting non-linear approximation (NLA) error curve
in Figure 2, which shows the reconstruction error EM as a
function of M , the number of retained coefficients

EM =

∥∥∥C[`]− C[`](M)
∥∥∥

2

‖C[`]‖2
× 100 . (8)

As M increases we approach the complete reconstruction,
and the error reaches zero when all coefficients have been
used. Usually the domain with the steepest EM curve is
the sparsest domain. In this case, though, both dictionaries
show a very similar behavior. There is only a small window
in the coefficients for which DCT performs better than WT.
However, DCT flattens after using ∼ 1% of the coefficients
and does not improve the reconstruction until many coeffi-
cients have been used.

Both dictionaries seem to suffer from boundary prob-
lems at low and high `s. This can be solved for high `s
because one can always perform the reconstruction beyond
the desired `. For low `s it can be solved by different means,
for instance by extrapolating the spectrum. Note that the
boundary problems are more severe in the DCT domain
than in the WT; this is because DCT atoms are not com-
pactly supported.

Next we investigated the sparsity of a set of realized
spectra in the two dictionaries. We simulated 100 maps
from the theoretical power spectrum used above and es-
timated their power spectra using Equation 4. As before,
we decomposed each realization in the DCT and WT dic-
tionaries and reconstructed keeping increasing fractions of
the highest coefficients. At this stage, it is important to
note that because we are dealing with the empirical power
spectrum, we are no longer in an approximation setting but
instead in an estimation one. Indeed, the empirical power
spectrum can be considered a noisy version of the true one.
Intuitively, reconstructing from a very small fraction of high
coefficients will reject most of the noise (low estimator vari-
ance) but at the price of retaining only a small fraction of
the true spectrum coefficients (strong bias). The opposite

is true when a large proportion of coefficients is kept in the
reconstruction. Therefore, there is a threshold value that
will entail a bias-variance trade-off, hence minimizing the
estimation risk. This is exactly the idea underlying thresh-
olding estimators in sparsifying domains.

This discussion is clearly illustrated by the inner plots
of Figure 3, which shows the normalized mean-square error
(NMSE) defined as

NMSEM =

∥∥∥∥C[`]− Ĉ[`]
(M)
∥∥∥∥

2

‖C[`]‖2
× 100 , (9)

as a function of the fraction of coefficients used in the recon-
struction. The error is large when only a few coefficients are
used. As more coefficients are included, one starts to recover
the main (i.e., the general shape of the spectrum) features
of the power spectrum. With more coefficients, more noise
enters the estimation and the error increases again. The
NMSE curve shows a clear minimum at which the under-
lying true power spectrum is best recovered.

Despite the differences in the performance of the two
dictionaries, the minima of the NMSE have about the same
proportions of the coefficients. This is because the NMSE
reflects a global behavior. On the one hand, although the
DCT can recover the features of the spectrum correctly, it is
less smooth than WT. On the other hand, the WT cannot
reconstruct the proper shape of the power spectrum, but
provides a smoother estimate.

Figures 4 and 5 show the same results for an average
over the 100 realizations. Evidently, on average DCT per-
forms very well in recovering the features of the CMB spec-
trum. Indeed, the minimum of NMSE curve is at a lower
proportion of coefficients for DCT than WT. This is be-
cause the small noisy features of the DCT-reconstructed
spectra cancel out in the averaging, while the wrong re-
covery of the shape of the spectrum by WT does not. In
a nutshell, DCT seems to perform better in reconstructing
the true underlying CMB power spectrum from its realiza-
tions.

To summarize, from the above discussion, we conclude
the following:

• the CMB power spectrum is very sparse in both DCT
and WT dictionaries, although their sparsifying capa-
bilities are different;

• DCT recovers global features of spectrum (i.e., the
peaks and troughs), while WT recovers localized fea-
tures;

• WT recovers more localized (noisy) features than the
global ones for realizations, while the DCT concentrates
on the global features.

In the next section, these complementary capabilities of
the DCT and WT transforms will be combined to propose
a versatile way for adaptively estimating the theoretical
power spectrum from a single realization of it.

3. Sparse reconstruction of the theoretical power
spectrum

We begin with the simple model where the observed sig-
nal Y is contaminated by a zero-mean white Gaussian
noise, Y = X + ε, where X is the signal of interest and
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Fig. 1. Theoretical CMB power spectrum along with the reconstructed power spectra, using the DCT and WT dictio-
naries. The panels show the reconstructions for different fractions of the coefficients. The inner plots show the differences
between the actual and the reconstructed power spectra. Both dictionaries suffer from boundary effects, but this is more
severe for DCT because the corresponding atoms are not compactly supported. The power spectrum that is decomposed
onto the two dictionaries is in the form `(`+ 1)C[`]/2π.

ε ∼ N (0, σ2). Sparse recovery with an analysis-type spar-
sity prior amounts to finding the solution of the following
problem:

min
X

∥∥ΦTX
∥∥

1
s.t. ‖Y −X‖2 ≤ δ , (10)

where ΦTX represents the transform coefficients of X in
the dictionary Φ, and δ controls the fidelity to the data
and obviously depends on the noise standard deviation σ.

We now turn to denoising the power spectrum from one
empirical realization of it. In this case, however, the noise
is highly non-Gaussian and needs to be treated differently.
Indeed, as we will see in the next section, the empirical
power spectrum will entail a multiplicative χ2-distributed
noise with a number of degrees of freedom that depends
on `. That is, the noise has a variance profile that depends
both on the true spectrum and `. We therefore need to
stabilize the noise on the empirical power spectrum prior to
estimation, using a variance stabilization transform (VST).
Hopefully, the latter will yield stabilized samples that have
(asymptotically) constant variance, say 1, irrespective of
the value of the input noise level.

3.1. Variance stabilizing transform

In the statistical literature the problem of removing the
noise from an empirical power spectrum is called peri-
odogram denoising (Donoho 1993). Komm et al. (1999)
approximated the noise with a correlated Gaussian noise
model and derived a threshold at each wavelet scale us-
ing the MAD (median of absolute deviation) estimator. A
more elegant approach was proposed in Donoho (1993) and
Moulin (1994), where the so-called Wahba VST was used.
This VST is defined as

T (X) = (logX + γ)
√

6
π

, (11)

where γ = 0.57721... is the Euler-Mascheroni constant.
After the VST, the stabilized samples can be treated as
if the noise contaminating them were white Gaussian noise
with unit variance.

We will take a similar path here, generalizing the above
approach to the case of the angular power spectrum.
Indeed, from Equation 4, one can show that under mild
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Fig. 2. Non-linear approximation (NLA) error curves for the two dictionaries. Below 1% the DCT curve is dropping
faster, which means it is performing better. However, past ∼ 2% the DCT curve flattens off, while WT decreases to ∼ 0
very quickly.

regularity assumptions on the true power spectrum,

Ĉ[`] d→ C[`]Z[`], where ∀` ≥ 2, 2LZ[`] ∼ χ2
2L, L = 2`+1 ,

(12)
where d→means convergence in distribution. From Equation
12, it is appealing then to take the logarithm to transform
the multiplicative noise Z into an additive one. The result-
ing log-stabilized empirical power spectrum reads

Cs[`] := T`(Ĉ[`]) = log Ĉ[`]− µL = logC[`] + η[`] , (13)

where η[`] := logZ[`]−µL, L = 2`+1. Using the asymptotic
results from Bartlett & Kendall (1946) on the moments of
log−χ2 variables, it can be shown that µL = ψ0 (L)−logL,
E(η[`]) = 0 and σ2

L = Var [η[`]] = ψ1 (L), where ψm(t) is
the standard polygamma function, ψm(t) = dm+1

dtm+1 log Γ(t).
We can now consider the stabilized Cs[`] as noisy ver-

sions of the logC[`], where the noise is zero-mean additive
and independent. Owing to the central limit theorem, the
noise tends to Gaussian with variance σ2

L as ` increases.
At low `, normality is only an approximation. Indeed, the
noise η[`] has a probability density function of the form

pη(`) =
(2L)L

2LΓ(L)
exp

[
L
(
`+ µL − e`+µL

)]
, (14)

which might be used to estimate the thresholds in the
wavelet domain.

To standardize the noise, we slightly modify the VST
(13) to the normalized form

Cs[`] := T`(Ĉ[`]) =
log Ĉ[`]− µL

σL
= Xs[`] + ε[`] , (15)

where now the noise ε[`] is a zero-mean (asymptotically)
Gaussian with unit variance, and Xs[`] := logC[`]/σL. It
can be checked that the Wahba VST (11) is a specialization
of Equation 15 to L = 0.

In the following, we will use the operator notation
T (X) for the VST that applies Equation 15 entry-wise to
each X[`], and R(X) its inverse operator, i.e. R(X) :=(
R`(X[`])

)
`

with R`(X[`]) = exp(σLX[`]).

3.2. Signal detection in the wavelet domain

Without of loss of generality, we restrict our description
here to the wavelet transform. The same approach applies
to other sparsifying transforms, e.g., DCT.

To estimate the true CMB power spectrum from the
wavelet transform, it is important to detect the wavelet
coefficients that are “significant”, i.e. those wavelet coeffi-
cients whose absolute value is too high to be due to noise



6 P. Paykari et al.: True cosmic microwave background power spectrum estimation

Fig. 3. A simulated CMB power spectrum along with the reconstructed spectra, using the DCT and WT dictionaries.
The black solid line is the true underlying power spectrum from which the simulations were made. The blue and red dots
show the simulated and the reconstructed power spectra respectively. With only 1% of the coefficients, DCT can recover
the input power spectrum (i.e. the black solid line) very well, recovering the peaks and troughs accurately. Unlike DCT,
WT seems to have difficulties in recovering the peaks and troughs. The inner plots shows the NMSE curves.

(cosmic variance + instrumental noise). Let wj [`] be the
wavelet coefficient of a signal Y at scale j and location `.
We define the multiresolution support M of Y as

Mj [`] =
{

1 if wj [`] is significant,
0 if wj [`] otherwise.

(16)

For Gaussian noise, it is easy to derive an estimate of the
noise standard deviation σj at scale j from the noise stan-
dard deviation, which can be evaluated with good accuracy
in an automated way (Starck & Murtagh 1998). To detect
the significant wavelet coefficients, it suffices to compare
the wavelet coefficients in magnitude |wj [`]| to a threshold
level tj . This threshold is generally taken to be equal to κσj ,
where κ ranges from 3 to 5. This means that a small magni-
tude compared to the threshold implies that the coefficients
are very likely to be due to noise and are hence insignifi-
cant. This decision corresponds to the hard-thresholding
operator

if |wj [`]| ≥ tj then wj [`] is significant ,
if |wj [`]| < tj then wj [`] is not significant. (17)

To summarize, the multiresolution support is obtained
from the signal Y by computing the forward transform co-

efficients, applying hard thresholding, and recording the co-
ordinates of the retained coefficients.

3.3. Power spectrum recovery algorithm

We now turn to the adaptive estimator of the true CMB
power spectrum C[`] from its empirical estimate Ĉ[`].
Because we benefit from the (asymptotic) normality of the
noise in the stabilized samples Cs[`] in Equation 15, we are
in position to easily construct the multiresolution support
M of Cs as described in the previous section. Once the
support M of significant coefficients has been determined,
our goal is to reconstruct an estimate X̃ of the true power
spectrum, known to be sparsely represented in some dictio-
nary Φ(regularization), such that the significant transform
coefficients of its stabilized version reproduce those of Cs
(fidelity to data). Furthermore, because a power spectrum
is a positive, a positivity constraint must be imposed. These
requirements can be cast as seeking an estimate that solves
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Fig. 4. Average of the DCT-reconstructed power spectra when different fractions of the most significant coefficients used
in the reconstruction. The inner plot shows the NMSE curve for this average. The minimum of the curve is at less than
10% of the coefficients, meaning that the true CMB spectrum can be recovered with less than 10% of the coefficients
while ensuring a good bias-variance trade-off.

the following constrained optimization problem:

min
X
‖ΦTX‖1 s.t.

{
X > 0
M �

(
ΦTT (X)

)
= M �

(
ΦTCs

) ,

(18)
where � stands for the Hadamard product (i.e., entry-wise
multiplication) of two vectors. This problem has a global
minimizer, which is bounded. However, in addition to non-
smoothness of the l1-norm and the constraints, the problem
is also non-convex because of the VST operator T . It is
therefore far from easy to solve.

We propose the following scheme, which starts with an
initial guess of the power spectrum X(0) = 0, and then
iterates for n = 0 to Nmax − 1,

X̃ = R
(
T
(
X(n)

)
+ ΦM �

(
ΦT
(
Cs − T

(
X(n)

))))
X(n+1) = P+

(
Φ STλn

(ΦT X̃)
)
,

(19)

where P+ denotes the projection onto the positive or-
thant and guarantees non-negativity of the spectrum es-
timator, STλn

(w) = (STλn
(w[i]))i is the soft-thresholding

with threshold λn that applies term-by-term the shrinkage
rule

STλn
(w[i]) =

{
sign(w[i])(|w[i]| − λn) if |w[i]| > λn ,

0 otherwise .
(20)

Here, we have chosen a decreasing threshold with the iter-
ation number n, λn = (Nmax−n)/(Nmax−1). More details
pertaining to this algorithm can be found in Starck et al.
(2010)

Algorithm 1 summarizes the main steps of the sparse
denoising algorithm. A similar approach was proposed in
Starck et al. (2009) and Schmitt et al. (2010) for Poisson
noise removal in 2D and 3D data sets.

3.4. Instrumental noise

In practice, the data are generally contaminated by an in-
strumental noise, and estimating the true CMB power spec-
trum C[`] from the empirical power spectrum Ĉ[`] requires
one to remove this instrumental noise. The instrumental
noise is assumed to be stationary and independent of the
CMB. We also assumed that we have access to the power
spectrum of the noise, or we can compute the empirical
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Fig. 5. Same as Figure 4, but for the WT domain. It seems that WT cannot perform well for simulated power spectra,
compared to the DCT domain; the minimum of the NMSE curve is at more than 35% — while the curve is quite flat
after ∼ 20%.

Algorithm 1: TOUSI power spectrum smoothing
Require:

Empirical power spectrum bC,
number of iterations Nmax,
threshold κ (default value is 5).
Detection

1: Compute Cs using Equation 15.
2: Compute the decomposition coefficients W of Cs in Φ,
W = ΦTCs.

3: Compute the support M from W with the threshold κ,
assuming standard additive white Gaussian noise.
Estimation

4: Initialize X(0) = 0.
5: for n = 0 to Nmax − 1 do

6: eX = R
“
T
“
X(n)

”
+ ΦM �

“
ΦT
“
Cs − T

“
X(n)

””””
.

7: X(n+1) = P+

“
Φ STλn

“
ΦT eX””.

8: λn+1 = Nmax−(n+1)
Nmax−1

.

9: end for
10: Return: The estimate eX = X(Nmax).

power spectrum ŜN [`] of at least one realization, either from
a JackKnife data map or from realistic instrumental noise
simulations. The above algorithm can be adapted to handle

this case after rewriting the optimizing problem as follows:

min
X
‖ΦTX‖1 s.t.

{
X > 0
M �

(
ΦTT (X + ŜN )

)
= M �

(
ΦTCs

) .

(21)
Thus, Equation 19 becomes

X̃ = R
(
T (X(n) + ŜN ) +

ΦM �
(

ΦT
(
Cs − T (X(n) + ŜN )

)))
− ŜN

X(n+1) = P+

(
Φ STλn

(ΦT X̃)
)
.

(22)

Algorithm 1 can be modified accordingly.

3.5. Combining several dictionnaries

We have seen in Section 2.2 that the WT and DCT dic-
tionaries had complementary benefits. Indeed, each dictio-
nary is able to capture the features with shapes similar to
its atoms well. More generally, assuming that we have D
dictionaries Φ1, · · · ,ΦD. Given a candidate signal Y , we
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can derive a support Md associated to each dictionary Φd,
for d ∈ {1, · · · , D}. The optimization problem to solve now
reads

min
X
‖ΦTX‖1 s.t.{

X > 0
Md �

(
ΦTd T (X + ŜN )

)
= Md �

(
ΦTdC

s
)
, d ∈ {1, · · · , D}

.

(23)

Again, this is a challenging optimization problem. We
propose to solve it by applying Equation 22 successively and
alternatively on each dictionary Φd. Algorithm 2 describes
in detail the different steps.

Algorithm 2: TOUSI power spectrum smoothing
with D dictionaries

Require:

Empirical power spectrum bC, D dictionaries Φ1, ...,ΦD,

noise power spectrum bSN ,
number of iterations Nmax,
threshold κ (default value is 5).
Detection

1: Compute Cs using Equation 15.
2: For all d, compute the decomposition coefficients Wd of Cs

in Φd, Wd = ΦTd C
s.

3: For all d, compute the support Md from Wd with the
threshold κ, assuming standard additive white Gaussian
noise.
Estimation

4: Initialize X(0) = 0,
5: for n = 0 to Nmax − 1 do
6: Zd = X(n).
7: for d = 1 to D do
8: T = T

`
Zd + bSN´.

9: eZ = R
„
T + ΦdM �

“
Φd

T
`
Cs − T

´”«
− bSN .

10: Zd+1 = P+

“
Φd STλn(Φd

T eZ)
”

.

11: end for
12: X(n+1) = ZD+1.
13: λn+1 = Nmax−(n+1)

Nmax−1
.

14: end for
15: Get the estimate eX = X(Nmax).

4. Application: Monte Carlo simulations

We simulated 100 maps from a theoretical CMB power
spectrum that was calculated by CAMB. The power spectra
of these maps are equivalent to 100 realizations of the true
CMB power spectrum — this realized spectrum is what we
have access to in reality. Each of these 100 simulated spec-
tra were run through the TOUSI algorithm, with the aim of
recovering the theoretical spectrum from which these 100
spectra were simulated (i.e., the one that was calculated by
CAMB).

Figure 6 shows an example of this; the empirical power
spectrum of one realization (blue dots) that was fed into the
TOUSI algorithm, the average of the 100 estimated power
spectral using TOUSI (red line) and the input theoretical
spectra (black line). The black line is the input theoreti-
cal spectrum that was calculated by CAMB, which is what
we are trying to recover. The reconstruction of the peaks

and troughs of the power spectrum by this algorithm is
very impressive. This is very important because these fea-
tures define the cosmological parameters. To additionally
check the accuracy of these reconstructed spectra, we es-
timated a set of cosmological parameters from these spec-
tra, using CosmoMC (Lewis & Bridle 2002). First, a set of
cosmological parameters were estimated from the 100 sim-
ulated spectra. The results are shown in Figure 4 as black
solid lines. Then a ‘mean’ reconstructed spectrum was cal-
culated by averaging the 100 reconstructed spectra. This,
in principle (i.e., if the algorithm has worked), should be
an estimation of the true input spectrum with the same
characteristics and the same cosmological parameters. To
test this, we used this ‘mean’ reconstructed spectrum to
simulate another 100 maps and then 100 spectra. These
simulated spectra were run through CosmoMC to estimate
the same set of cosmological parameters. These are shown
as red lines in Figure 4. Clearly, the TOUSI algorithm can
reconstruct the true underlying power spectrum with great
accuracy in the cosmological parameters.

4.1. Data with instrumental noise

Here we present the performance of the TOUSI algorithm
in the presence of instrumental noise. The noise maps were
simulated using a theoretical (Planck level) noise power
spectrum. They were added to the CMB maps simulated
above and the power spectra of the combined maps were
estimated using Equation 4.

Figure 8 shows the reconstruction of the theoretical
CMB spectrum in the presence of noise. The blue dots
show the empirical power spectrum of one realization with
instrumental noise. Yellow dots show the estimated power
spectrum of one of the simulated noise maps. Green dots
show the the spectrum with the noise power spectrum re-
moved. The black and red solid lines are the input and
reconstructed power spectra, respectively. The theoretical
power spectrum can be reconstructed up to the point where
the structure of the power spectrum has not been destroyed
by the instrumental noise. In our case, having Planck level
noise, this goes to ` up to 2500. Obviously, the TOUSI per-
forms very well in reconstructing the input power spectrum
even in the presence of instrumental noise.

4.2. Test on WMAP7 power spectrum

We tested our algorithm on real data. Figure 9 shows the
application of our technique to the WMAP7 power spec-
trum. The method indeed works well up to ` of ∼ 800.
After this point the instrumental noise becomes so domi-
nant that the features of the spectrum are washed out and
cannot be recovered.

5. Sparsity versus averaging

A very common approach to reduce the noise on the power
spectrum is the moving average filter, i.e., average values
in a given window,

C̃A[b] =
1

b(b+ 1)ωb

b+
ωb
2∑

`=b−ωb
2

`(`+ 1)Ĉ[`] , (24)
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Fig. 6. Theoretical CMB power spectrum (black line), the empirical power spectrum of one realization (blue dots), and
the avegared of estimated power spectra (red line) using the TOUSI algorithm. The inner plots show a zoomed-in version.

and the window size ωb is increasing with `. Here,
we used window sizes of {1, 2, 5, 10, 20, 50, 100}, respec-
tively, for ` ranging from {2, 11, 31, 151, 421, 1201, 2501}
to {10, 30, 150, 420, 1200, 2500, 3200}, which have also been
used in the framework of the Planck project in Leach et al.
(2008).

Figure 10 shows a reconstruction of the power spectrum
for TOUSI versus averaging. From the NMSE curve it is
clear that our algorithm is much more efficient. Figure 11
shows the average error the 100 realizations as a function
of `

E[`] =
1

100

100∑
i=1

‖ C[`]− C̃i[`] ‖2 , (25)

where C̃i is the estimated power spectrum from the i-th re-
alization. We display the errors for the spectra estimated by
the empirical estimator (the realization, black dotted line),
the averaging estimator (red dashed line) and TOUSI (solid
blue line). The cosmic variance is overplotted as a solid
black line. Evidently, the expected error is highly reduced
when using the sparsity-based estimator.

6. Conclusion

Measurements of the CMB anisotropies are powerful
cosmological probes. In the currently favored cosmological

model, with the nearly Gaussian-distributed curvature
perturbations, almost the entire statistical information is
contained in the CMB angular power spectrum. We have
investigated the sparsity of the CMB power spectrum in
two dictionaries, the DCT and WT. In both dictionaries
the CMB power spectrum can be recovered with only a
few percentages of the coefficients, meaning the spectrum
is very sparse. The two dictionaries have different char-
acteristics and can accommodate reconstructing different
features of the spectra. The DCT can help recover the
global features of the spectrum, while WT helps recover
small localized features. The sparsity of the CMB spectrum
in these two domains has helped us develop an algorithm,
TOUSI, which estimates the true underlying power spec-
trum from a given realized spectrum. This algorithm uses
the sparsity of the CMB power spectrum in both WT and
DCT domains and takes the best from both worlds to
obtain a highly accurate estimate from a single realization
of the CMB power spectrum. This could be a replacement
for CAMB if knowing the cosmological parameters is not
necessary. The developed IDL code will be released with
the next version of ISAP (Interactive Sparse astronomical
data Analysis Packages) via the web site

http://jstarck.free.fr/isap.html.
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Fig. 7. Cosmological parameters estimated from the true CMB power spectrum (black line) and the mean of the recon-
structed power spectra (red line). The dashed line is the true input parameters, i.e., those used to calculate the theoretical
power spectrum using CAMB.
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Fig. 8. Power spectrum estimate in the presence of instrumental noise. The blue dots show the empirical power spectrum
of one realization with instrumental noise. Yellow dots show the estimated power spectrum of one of the simulated noise
maps. Green dots show the the spectrum with the noise power spectrum removed. The black and red solid lines are the
input and reconstructed power spectra, respectively. The inner plots show a zoomed-in version.
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Fig. 9. TOUSI algorithm applied to the WMAP7 power spectrum. The technique works well up to ` of ∼ 800, i.e., before
the instrumental noise becomes dominant washes the features of the spectrum out.
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Fig. 10. Mean denoised spectra with wavelets (blue solid line) and averaging (red dashed line) from 100 realizations.
The inner plot shows the normalized error for both dictionaries.



P. Paykari et al.: True cosmic microwave background power spectrum estimation 15

Fig. 11. Mean error for the 100 realizations, for the realizations (black dotted line), the averaging denoising (red dashed
line) and the sparse wavelet filtering (blue solid line). The inner plot shows a zoom between l = 2000 and l = 3000.
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