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CMB map restoration
J.Bobin ∗ †, J.-L. Starck †, F. Sureau † and , J. Fadili ‡

Abstract

Estimating the cosmological microwave background is of utmost importance for cosmology. However, its
estimation from full-sky surveys such as WMAP or more recently Planck is challenging : CMB maps are generally
estimated via the application of some source separation techniques which never prevent the final map from being
contaminated with noise and foreground residuals. These spurious contaminations whether noise or foreground
residuals are well-known to be a plague for most cosmologically relevant tests or evaluations; this includes CMB
lensing reconstruction or non-Gaussian signatures search. Noise reduction is generally performed by applying a
simple Wiener filter in spherical harmonics; however this does not account for the non-stationarity of the noise.
Foreground contamination is usually tackled by masking the most intense residuals detected in the map, which
makes CMB evaluation harder to perform. In this paper, we introduce a novel noise reduction framework coined
LIW-Filtering for Linear Iterative Wavelet Filtering which is able to account for the noise spatial variability thanks
to a wavelet-based modeling while keeping the highly desired linearity of the Wiener filter. We further show that
the same filtering technique can effectively perform foreground contamination reduction thus providing a globally
cleaner CMB map. Numerical results on simulated but realistic Planck data are provided.

I. INTRODUCTION

In mid 2009, ESA (European Spatial Agency) put in orbit the latest space observatory Planck to investigate the
Cosmological Microwave Background (CMB). These data are of particular scientific importance as it will provide
more insight into the understanding of the birth of our Universe. Most cosmological parameters can be derived
from the study of these CMB data. After a series of successful CMB experiments (Archeops, Boomerang, Maxima,
COBE and WMAP [1]), the Planck ESA mission is providing more accurate data which will be the reference full-
sky high resolution CMB data for the next decades. More precisely, recovering useful scientific information requires
disentangling the CMB from the contribution of several astrophysical components namely Galactic emissions from
dust and synchrotron, Sunyaev-Zel’dovich (SZ) clusters, Free-Free emissions, CO emission to only name a few, see
[2]. Classically, the CMB map is estimated via the application of some source separation methods. However, the
application of very sophisticated source separation methods (see [3], [4], [5], [6]) does not prevent the final estimated
map from being contaminated with various spurious components : i) instrumental noise and ii) foreground residuals.
Dealing with these various sources of contaminations is of paramount importance for most cosmologically relevant
tests or evaluations : this includes CMB lensing reconstruction [7] or non-Gaussian signatures search. Tackling the
problem of noise and foreground residual reduction is therefore important and is at the heart of this paper.

a) Instrumental noise: The very specific scanning pattern in full-sky CMB experiments leads to an instrumental
noise closely Gaussian that exhibits significant spatial variation : Planck noise is far from being stationary. As an
illustration, Figure 1 displays the root mean square (RMS) map of Planck expected instrumental noise at 217GHz.
Furthermore, while noise is insignificant at large scale, it is largely predominant at small scale (e.g. typically for
` > 1500 for Planck).
Most source separation methods applied so far to the Planck data are linear methods : the estimated CMB map can
be expressed as a linear combination of all the pixels of the input observations. As such, the propagated instrumental
noise in the CMB maps is also typically assumed non-stationary Gaussian.
Noise can be a significant limitation for most cosmological tests or reconstructions. High noise level can hamper
non-gaussianity tests as the noisy map is likely to be “more Gaussian” than the noise-free map. The classical
approach in the field of cosmology generally consists in reducing the noise of the CMB via a Wiener filter in
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spherical harmonics. If C` stands for the theoretical power spectrum of the CMB and Cn` the power spectrum of
the noise, the Wiener filter is defined as follows :

∀`,m > 0; ax̂`m =
C`

C` + Cn`
ay`m (1)

where {ax̂`m}`,m (resp. {ay`m}`,m) stands for the spherical harmonics coefficients of the filtered map x̂ (resp. the input
map y). While this approach makes profit of some knowledge of the energy distribution of the noise in frequency,
it does not account for its spatial variations or non-stationarity. It is very likely that such a non-stationarity may
create global non-gaussian signatures at high frequency when such variations are sharp. Strong non-stationarities
are known to have a strong impact on CMB lensing reconstruction (see [8]), creating an undesired reconstruction
bias.
Another less traditional but commonly encountered noise reducing technique is the local Wiener filtering. It boils
down to apply the Wiener filter in the Fourier space on patches in the pixel domain. The main drawback of this
method is that while large patches should be favored to capture the non-stationarity of noise, they are enable to
capture correlations at scales larger than the patch size.

b) Foreground residual: The first evaluation of already sophisticated CMB-dedicated source separation meth-
ods has been performed in [3]. Since, novel very effective methods have been proposed Needlet ILC [4], Generalized
ILC [9], SMICA [10] or GMCA [6]. However, due to the very high complexity of the data, none of these very
effective methods is able to provide a CMB map that is guaranteed to be free of foreground contaminations. If
the residual contamination is generally low at large scales ( e.g. for ` < 500 for Planck), it is generally significant
at higher frequencies. It is likely that the remaining contamination mainly originates from point sources or strong
features in the galactic plane. Obviously the presence of these residuals highly biases any cosmological tests to be
performed on contaminated CMB map. The usual approach consists in masking the known spurious pixels of the
CMB prior to any post-processing (e.g. 20 to 40% of the sky are usually masked). However masking raises several
issues : i) it limits the number of samples to which any test can be applied, limiting its statistical relevance and
ii) masking generally makes any post-processing much more complicated to perform properly (e.g. inpainting of
the mask is generally needed prior to any CMB lensing reconstruction [7]). Avoiding or at least limiting the extent
of the mask to be applied should greatly help improving any cosmological test to be made on the estimated CMB
map. Furthermore, masking does not prevent from the presence of residuals of undetected point sources which are
likely be be numerous all over the sky. Further reducing the amount of foreground residuals should clearly be helpful.

c) Contribution of this paper: The contribution of this paper is twofold :
• It introduces a novel noise reduction framework that, in opposition to the classical spherical-harmonics based

Wiener filter, accounts for the non-stationarity of the noise. This new method preserves the linearity of the
filtering. In fact, linearity is crucial in this field as it makes the study of error propagation via Monte-Carlo
simulations much more convenient to carry out. In this framework, we make use of a simple, but efficient,
wavelet-based modeling of the noise that allows for the modeling of non-stationarities at different scales. This
will be discussed in Section III

• We discuss an extension of this method to further estimate an approximate contribution of the foreground
residuals per wavelet scales by means of RMS maps. Thereby contamination reduction could be tackled
within the same filtering framework.

The noise/contamination reduction problem, recast as a quadratically regularized least square problem, is then
effectively solved using recently introduced algorithms based on proximal calculus. Extensive numerical experiments
are provided that show the effectiveness of the proposed method in reducing noise in Section II-C and foreground
residuals in Section III-C.

II. CMB MAP FILTERING WITH NON-STATIONARY NOISE

A. CMB map filtering

In a very general context and more precisely in the context of Planck, it is customary to assume that the input
noise data, denotes by y in the following, is modeled as the linear combination of the sought after noise-free signal



3

Figure 1. Instrumental noise in Planck - simulated noise root mean square map at 217GHz in mK (Antenna temperature).

x and the noise term n :
y = x+ n

Decorrelation between x and n is also classically assumed. In what follows, we will assume that each of these
signals is sampled on the sphere according to the Healpix [11] sampling grid. The sampled CMB signal x is
assumed to be composed of N samples {x[k]}k=1,··· ,N . Recovering an estimate x̂ of x can then be formulated as
an inverse problem. According to the Bayesian way of solving inverse problems, some a priori knowledge about the
signal of interest x has to be expressed. This inference framework is particularly well suited to the CMB denoising
issue as strong prior assumptions can be formulated. Indeed, since [12], it is well established that the cosmological
microwave background can be approximated as an isotropic Gaussian random field with a high accuracy. This
particularly means that it is fully characterized by its power spectrum C`.
More precisely, the CMB x can be defined by its expansion in spherical harmonics :

x =

∞∑
`=0

∑̀
m=−`

a`mY`m (2)

Assuming that the CMB is fully Gaussian with power spectrum C`, its spherical harmonics {a`m}`m are indepen-
dently distributed following a Gaussian distribution with mean 0 and variance C` :

a`m ∼ N (0, C`) (3)

The power spectrum of the CMB is generally estimated with the pseudo power spectrum defined as follows :

Ĉ` =
1

2`+ 1

∑̀
m=−`

a?`ma`m (4)

where a?`m stands for the conjugate of a`m. The a priori probability distribution P of the CMB map x is a normal
distribution with covariance matrix FHCF where F stands for the spherical harmonics basis and FH its adjoint.
The matrix C is diagonal with C = diag (C`). This yields the following CMB prior probability distribution :

P(x) ∝ exp−xTFHC−1Fx (5)

In this section, we assume that the instrumental noise can be modeled as a non-stationary but uncorrelated Gaussian
field in the pixel domain such that :

∀k = 1, · · · , N ; n[k] ∼ N
(
0, σ2k

)
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Written differently, n is a realization of a multivalued Gaussian variable with mean 0 and covariance matrix
Σ = diag

(
σ21 · · ·σ2N

)
. The case of correlated noise will be discussed later on in this section. From the Gaussian

modeling of n, the likelihood function is trivially obtained as follows :

L(y|x,Σ) ∝ exp− (y − x)T Σ−1 (y − x) (6)

Following Bayes rule, the posterior distribution for x is the following :

P (x|y) ∝ L(y|x,Σ)P(x) (7)

∝ exp−
[
xTFHC−1Fx+ (y − x)T Σ−1 (y − x)

]
(8)

The CMB map can be estimated using the maximum a posteriori (MAP) estimator with the following analytical
solution :

x̂ = Argmaxx P (x|y) (9)

=
(
Σ−1 + FHC−1F

)−1
Σ−1y (10)

The reader would here recognize a classical Wiener filter. Contrary to the classically used Wiener filter in spherical
harmonics, the solution of Equation (9) explicitly account for the non-stationarity of the noise. However, the
computational evaluation of this Wiener-like solution raises some numerical issues : the noise covariance matrix
is diagonal in the pixel domain while the CMB covariance matrix is diagonal in the spherical harmonics domain.
The solution filter that appears in Equation (9) is formulated in the pixel domain :(

Σ−1 + FHC−1F
)−1

Σ−1

In this expression, the matrix FHC−1F is the inverse covariance matrix of the CMB in the pixel domain. This
matrix is clearly not diagonal. Recalling that N2 is of the order of 1e13 for WMAP and 2e15 for Planck, storing
and handling this matrix is way too unrealistic. As an alternative, the most effective approach in this situation
would amount to solve the linear system of equations

(
Σ−1 + FHC−1F

)
x̂ = Σ−1y using a conjugate gradient

(CG - [13]) for instance. However, in the next section, we will rather make use of recently introduced proximal
algorithms. This optimization framework leads to algorithms which exhibits a lower speed of convergence than CG
but with the gain of more flexibility to handle different filtering techniques or better constrain the solution. This
will be left to future work.

1) Iterative filtering: As said clearly in the previous paragraph, computing the MAP solution requires inverting
a system of equations which turns to be intractable due to the large scale of Planck data. The most straightforward
numerical solver is the well-known conjugate gradient. However, while this solver is known to be a fast and accurate
numerical method for solving linear systems of equations, it lacks the flexibility of more modern optimization
techniques. For this reason we rather opt for the more flexible optimization framework of proximal calculus (see
[14] and references therein).

a) A flexible optimization framework - forward backward splitting: The problem in Equation (10) can be
written as minimization of the sum of two operators f1 and f2 :

x̂ = Argminx f1(x) + f2(x) (11)

= xTFHC−1Fx+ (y − x)T Σ−1 (y − x) (12)

The function f1(x) = xTFHC−1Fx is convex and lower semi-continuous and differentiable; the function f2(x) =
(y − x)T Σ−1 (y − x) is strictly convex, continuous and differentiable. Such problem as therefore a unique solution
(see [14] ).
If ∇f2(x) denotes the gradient of f2, we will also assumed that this gradient is L-Lipschitz. In the specific setting
of interest in this article, ∇f2(x) = −2Σ−1 (y − x) and L = 2‖Σ−1‖2. In this context, an effective algorithmic
framework is the forward-backward splitting (FPS) technique defined in [14]. In the paradigm of proximal calculus,
any convex lower semi-continuous function (see [14]) admits a well defined proximal operator :

proxγf (z) = Argminuγf(u) +
1

2
‖z − u‖2`2 (13)
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In the FBS framework, the solution to the problem in Equation (11) is computed via an iterative fixed point
algorithm such that at iteration k :

xk+1 = proxγf1
(
xk − γ∇f2(xk)

)
(14)

= proxγf1
(
xk + 2γΣ−1

(
y − xk

))
(15)

As proved in [14], the convergence of the above fixed point algorithm is guaranteed under the condition γ < 2
L ; ;

note that in the setting of CMB map recovery with uncorrelated non-stationary noise, L = 1/mink σ
2
k.

b) The proximal operator of f1: In the problem of interest in this paper, f1(x) = xTFHC−1Fx. As
this function is continuous and differentiable, it is a fortiori lower semi-continuous. Following the definition in
Equation (13), the proximal operator of f1 is defined as follows :

proxγf1(z) = Argminuγu
TFHC−1Fu+

1

2
‖z − u‖2`2 (16)

The solution to this problem has a simple closed-form expression :

proxγxTFHC−1Fx =
(
I + 2γFHC−1F

)−1
z (17)

= FH
(
I + 2γC−1

)−1Fz (18)

The proximal operator of f1 is a mere Wiener filter in the spherical harmonics space.

To sum everything up, the resulting iterative Wiener-like filtering is as follows :

1. Initialization : Set the number of iterations Imax, the step size γ = mink σ
2
k and the starting point x0

2. Main loop : apply iteratively the following steps at each iteration k :

a – Forward step of the FPS :

u = xk + 2γΣ−1
(
y − xk

)
b – Backward step of the FPS :

xk+1 = FH
(
I + 2γC−1

)−1 Fu

3. Stop when k = Imax.

c) Computational cost: The computational cost of this iterative Wiener algorithm is particularly low. The first
step (2 – a) only requires entrywise multiplications and additions of vectors. It is therefore of the order of O(N).
The second step (2 – b) is by far the most computationally demanding; it requires entrywise multiplications and
additions of vectors of the order of O(`max) (where generally `max ' 3000) and single forward/backward spherical
harmonics transforms. In the numerical experiments of Section II-C and III-C, the starting point x(0) will be chosen
as having entries equal to zero. The total number of iterations will be no greater than Imax = 250.

d) Linearity of the iterative Wiener filter: The proposed iterative filtering technique preserves the linearity of
the overall CMB map processing. In fact, in every step of the proposed algorithm, each output depends linearly
on their inputs. This property is essential as it allows for a simple way to study the propagation of errors via
Monte-Carlo simulations; each simulation then has to undergo exactly the same processing step described above.

B. The case of correlated noise

In most CMB surveys, such as WMAP or Planck to only name two, the instruments have been thoroughly
calibrated on ground thus meaning that the noise level of these instruments is accurately known. Assuming a
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perfect calibration of the data, the non-stationarities of instrumental noise mainly originate from the non-uniform
scanning of the sky. The lower the number of scanning time in one area is, the higher the noise level is and
vice versa. Figure 1 shows the RMS map of noise at channel 217GHz; mathematically this is no more than the
square root of the diagonal of Σ. However this is also well known that, contrary to what has been assumed in the
previous section, the noise is far from being uncorrelated. There are mainly two origins for the correlation of noise :

• The way the sky is scanned by Planck makes the noise correlated along the scanning direction. This means
that the noise is correlated along elongated patterns in the pixel domain; for numerical reasons, this can hardly
be accounted for in the pixelwise covariance matrix Σ.

• Most modern CMB-dedicated source separation methods Needlet ILC [4], Generalized ILC [9], SMICA [10]
or GMCA [6] rely on a local analysis of the data in the wavelet or needlet domain. Furthermore, the final
CMB map is generally obtained as the mixture of observations that do not share the same resolution. This
means that the noise that finally contaminates the CMB is, in the pixel domain, correlated.

It then seems natural to model non-stationary correlated noise : i) in the wavelet domain to capture its correlation
and ii) locally to capture its non-stationarity.

1) Wavelets - the basics: Wavelets are well known to be the tool of choice to analyze non-stationary signals
[15]. When considering spherical data, there exist several implementations of wavelets on the sphere. In this paper,
we will make use of the isotropic undecimated wavelet transform (IUWT) introduced in [16]. The IUWT can be
seen as an extension of the celebrated à trous algorithm to spherical data (see the seminal book [15] and references
therein).
As any wavelet transform, the IUWT is first defined by a scaling function φ`c(θ, ϕ) defined by a fixed frequency
cut-off `c. As emphasized in [16], this scaling function is built so that it is azimuth-invariant on the sphere (i.e. it
does not depend on ϕ). Classically, each rescaled version of the scaling function φ `c

2j
is associated to a low-pass filter

hj or equivalently Hj(`) in spherical harmonics. Traditionally, the wavelet-based multiscale analysis is performed
by computing successive smooth approximations of x. These smooth approximations are obtained by convolving
x with dyadically rescaled versions of the scaling function :

∀j = 0, · · · , J ; cj = hj ? x

where J is the total number of scales. The so-called wavelet function at scale j, ψ `c
2j

(θ, ϕ), is defined as the
difference of two consecutive rescaled scaling functions :

ψ `c
2j

(θ, ϕ) = φ `c
2j−1

(θ, ϕ)− φ `c
2j

(θ, ϕ)

The wavelet function at scale j can be equivalently associated to a high-pass filter gj or equivalently Gj(`) =
1−Hj(`) in spherical harmonics. The wavelet coefficients at scale j are then computed by convolving the smooth
approximation of x at scale j with the j-th wavelet function ψ `c

2j
(θ, ϕ).

∀j = 0, · · · , J ; wj+1 = gj ? cj

In spherical harmonics, this amounts to a simple multiplication of the signal’s spherical harmonic coefficients with
the wavelet filter Gj .
The decomposition being redundant, several strategies can be designed to reconstruct x from the wavelet coefficients
and the coarse resolution cJ . The simplest is the one advocated by the à trous algorithm :

x = cJ +

J∑
j=1

wj

In the following, noise modeling will be performed in each wavelet scale; i.e. on each set of coefficients {wj}j=1,··· ,J .
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2) Wavelet-based statistical modeling of correlated noise: As emphasized previously, one elegant way to model
the instrumental noise is to consider the distribution of its expansion coefficients in the spherical wavelet domain.
The basic idea consists in assuming that the wavelet coefficients of noise are approximately decorrelated. This idea
takes its roots in the field of multiscale statistical modeling : it has been shown that wavelets exhibit (almost)-
decorrelating properties for some classes of non-stationary stochastic processes. To give only one example, this
is the case for fractional Brownian motion [17] which has been extensively used to model power-law following
stochastic processes. In the following, wnj [k] will denote the wavelet coefficient of the noise term n in scale j at
pixel k with the convention : j = 1 corresponds to the finest scale and j = J − 1 to the coarse resolution. From
this definition, we will assume that these wavelet coefficients verify :

E
{
wnj [k]wnj [i]

}
= σnj [k]2δk,i (19)

where σnj [k]2 stands for the local variance of the noise at pixel k and δk,i for the kronecker delta function. This
entails that the covariance matrix of the noise in wavelet scale j is diagonal and equal to :

Σn,j = diag
(
σnj [k]2

)
(20)

The local standard deviation of the noise, Σn,j , has to be estimated from the data beforehand. In the numerical
experiments in Section II-C, these parameters are estimated from a single noise realization. Within Planck, it is
common to compute the so-called jack-knife map defined as the difference between consecutive scanning rings;
provided that the instrument calibration do not vary from one ring to the other, it gives a noise realization.
Assuming that the local variances σnj [k]2 of the noise vary slowly from one pixel to another, it can be approximated
at pixel k by the empirical estimate of the variance in a fixed surrounding neighborhood; in the following this
neighborhood will be a patch of size

√
P ×

√
P centered about the pixel k :

σ̂nj [k]2 =
1

P

∑
i∈N [k]

wnj [i]2 (21)

Where N [k] stands for the indices of the pixels that compose the patch that surrounds the pixel k. Note that the
patch size

√
P will highly depend on how fast the noise variance varies spatially. This particularly means that√

P should be smaller in the finest scale and larger when j increases. Following the natural dyadic scaling of the
wavelet transform, the patch size in scale j will scale as follows : Pj = 4jP1 where P1 stands for the patch size
at the finest scale.

C. Numerical experiments

In this section, we particularly focus on the noise reduction aspect of the proposed method. The reference
denoising method in the field of astrophysics and more specifically CMB data analysis is the global Wiener filter
applied in spherical harmonics. In opposition to this classical filtering technique, the proposed iterative filtering
approach accounts for the non-stationarity of the noise; thereby, it should particularly provide better solution that
global Wiener.
As detailed in the previous section, the modeling of the noise contribution is performed in the wavelet domain :
the noise is assumed to be non-stationary but decorrelated at each wavelet scale j. In each wavelet scale, the noise
covariance matrix is estimated locally from a single noise realization. The noise covariance per wavelet scale is
evaluated locally on patches of size 4(j+1) where, by convention, j = 1 is defined as the finest wavelet scale. As
an illustration, Figure 8 displays the estimated noise RMS map at scale j = 1.
The global Wiener solution is computed by filtering the original CMB map y with the linear filter defined in
spherical harmonics by Equation (9). The CMB power spectrum C` is a WMAP7 best-fit estimate; the noise power
spectrum Cn` is estimated via the pseudo power spectrum of the noise realization.
Iterative Wiener has been applied to the original noisy CMB map y. The single parameter to be tuned is the
number of iterations Imax; in the following experiments, it has been fixed to 250. Figure 2 shows the noisy map,
the LIW-Filtering solution and the noise realization used to estimate the noise local variance in the finest wavelet
scale. Figure 3 displays the residual maps of the global Wiener and LIW-Filtering solution. As expected the non-
stationarity footprint of the noise appears clearly on the residual LIW-Filtering map where more noise seems to
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have been removed.
Figure 4 features the power spectra of the original and filtered maps. We would like to point out that these power
spectra have been computed from the raw maps; no masking has been applied. This particularly means that these
estimates are likely to be biased by strong foreground from the galactic plane. The first observation is that the
global Wiener filter does not fully remove the noise at high ` contrary to the iterative filtering technique. This
can be explained by the presence of significant non-stationarities at high ` which can produce a substantial bias at
high frequency. Interestingly, the iterative technique succeed in largely reducing noise at high ` thus supporting the
significant contribution of the noise non-stationarities in producing a bias on the power spectrum. More technically,
it is worth noting that the power spectrum of a stochastic process is properly defined as long as this process is wide
sense stationary [18]. Obviously, the non-stationarities of the noise make it depart from this assumption; thereby
the power spectrum has no rigorous statistical meaning in this context. Said differently, the power spectrum of the
noise Cn` does not contain all the information that a non-stationary noise does in the pixel domain.
It is well known that the Wiener filter provides a CMB map that has a biased power spectrum. Thereby the Wiener
filter - in red in Figure 4 - yield a power spectrum that is negatively biased at high ` when the noise highly
predominates upon the CMB - typically for ` > 2500.
Figure 5 shows the power spectrum of the residual : x − x̂. This quantity is particularly well suited to visualize
the power discrepancy in frequency between the original CMB map x and its estimate x̂. As expected, the global
Wiener filtering reduces the contribution of noise at high ` (see the blue line in Figure 5). Still, the filtered map
largely departs from the original map. Interestingly, the proposed iterative filtering technique (in red in Figure 5)
largely outperforms the classical Wiener filter from ` = 900 to ` = 3000. More precisely, the residual power is
reduced by up to an order of magnitude for ` > 2500.
A more complete measure of discrepancy between the original map x and one of its estimate x̂ consists in evaluating
the mean squared error (MSE) in the wavelet domain. To that end, Figure 6 displays the MSE of different estimators
of the CMB map in 5 wavelet scales in logarithmic scale. The normalized MSE between some CMB map estimate
x̂ and the “true” CMB map is computed as follows :

∑
k(x̂[k]−x[k])2∑

k x[k]
2 . Again, this figure shows that the iterative

technique which directly account for the non-stationarity of the noise, performs better than the global Wiener filter.
The impact of the noise tends to vanish for larger scales (typically for ` < 1500).
To better illustrate the differences between the global Wiener filter and its iterative counterparts, Figure 7 displays
the MSE of the different estimators of the CMB map which has been computed in the wavelet domain per bands of
latitude of width 10◦. By convention, the galactic plane is centered around the latitude 0◦. The figure on the right
displays the MSE which has been evaluated from the finest wavelet scale j = 1; this corresponds to an analysis
window that ranges from ` = 1500 to ` = 3000. Again, taken globally, one can point out the clear improvement
between the global Wiener filter and its iterative version. As expected the Wiener filter is optimal in the sense of
the MSE. More interestingly, the MSE of the two filtering techniques seems to be rather constant for high latitudes
and sharply increases in the range [−15◦, 15◦]. As already emphasized, the impact of any of these linear filtering
techniques is the more significant when the signal to noise ratio (SNR) decrease. This is obviously the case at
smaller scales. At larger scales, the SNR increases and the impact of the filtering is much less significant. This is
exactly what can be observed on the plot on the right of Figure 7 : the MSE of any of the filtered CMB maps at
scale j = 2, which grossly correspond to an analysis window ranging from ` = 750 to ` = 1500, are approximately
the same.

As a brief conclusion for these experimental results, it appears clearly that the non-stationarity of the noise has
an impact on the CMB estimate. The most classical noise reducing technique in the field, i.e. the global Wiener
filter, only relies on the power spectra of the CMB C` and the noise Cn` . Obviously, the behavior of the noise power
spectrum contains almost no information about its spatial behavior. These experiments have shown that the noise
non-stationary has a clear impact on the CMB. Further accounting for the spatial variations of the noise variance
helps improving the noise reduction process by a dramatic amount.

III. FROM NOISE REDUCTION TO CONTAMINATION REDUCTION

As stated in the introduction in Section I, one of the purposes of this paper is to tackle the problem of post-
separation contamination reduction. In this setting, contamination generally means instrumental noise and residuals
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Figure 2. CMB maps - Top-left : Noisy image. Top-right : LIW-Filtering solution. Bottom-Left : Noise realization in the finest wavelet
scale. Bottom-Right : Noise realization on the LIW-Filtering solution in the finest wavelet scale. Units in mK.

Figure 3. Residual maps - Left : Residual CMB with the global Wiener filter in the finest wavelet scale. Right : Residual CMB with
LIW-Filtering in the finest wavelet scale. The residual map correspond to what has been filtered in the data. Units in mK.

of galactic foregrounds. In the case of Planck, CMB maps are generally obtained by applying sources separation
methods. Most of these methods provide a solution that can be formulated as a linear combination of the original
Planck multichannel observations. Therefore, it is relevant to assume that these contaminants essentially contribute
additively to the CMB map :

y = x+ f + n (22)

where f stands for the foreground contamination and n for the instrumental noise. Furthermore, it is also natural
to assume that these three components x, f and n are mutually uncorrelated. The filtering technique introduced in
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Figure 4. Power spectra - Left : linear scale. Right : log-scale. In abscissa : spherical harmonics coefficient. In ordinate : CMB power
in mK2. Dashed line show the power spectra of the noise for the different maps.

Figure 5. Residual power spectra - Left : linear scale. Right : log-scale. In abscissa : spherical harmonics coefficient. In ordinate : CMB
power in mK2. Dashed line show the power spectra of the noise for the different maps.

the previous sections mainly relies on the fact that the contaminants are characterized by their covariance matrix
Σ. The questions that we aim at tackling in this paragraph is : How far do we know Σ and how can it be estimated
from the data ?

A. Foreground residuals modeling

Unlike noise, the foreground residual are generally non-Gaussian, with the exception of the CIB (see [19]). We
further restrict the modeling of residuals to their second order statistics thus opting for a Gaussian approximation
of their contribution. The contribution of foreground residuals are obviously not known in advance; this means
that their covariance matrix has to be estimated from the data directly. From the uncorrelation of the different
components, the additive contamination model in Equation (22) then reads at the level of second statistics :

Σ = Σx + Σf + Σn

In this equation, the correlation of foreground pixels implies that Σf is non-diagonal. Similarly to the noise, second
order dependencies of foreground pixels are way too complex to be modeled in the pixel domain.
So as to capture the correlation of foreground pixels, a natural and simple strategy boils down to adopting the
wavelet-based statistical modeling used to model correlated noise in the previous Section II-B2. To this end, wfj [k]
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Figure 6. MSE per wavelet scale. In abscissa : wavelet scale - 0 corresponds to j = 1. In ordinate : normalized mean squared error.
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Figure 7. MSE per latitude at wavelet scale j = 1 and j = 2. In abscissa : latitude. The galactic plane corresponds to 0◦. In ordinate :
normalized mean squared error.

will denote the wavelet coefficient of f in scale j at pixel k with the convention : j = 1 corresponds to the finest
scale and j = J − 1 to the coarse resolution. From this definition, we will assume that these wavelet coefficients
verify :

E
{
wfj [k]wfj [i]

}
= σfj [k]2δk,i (23)

where σfj [k]2 stands for the local variance of the foreground at pixel k. The covariance matrix of the foreground
residual in wavelet scale j is diagonal and equal to :

Σf,j = diag
(
σfj [k]2

)
(24)

In practical situations, Σf,j has to be estimated from the data y themselves. Similarly to the modeling of noise,
the local noise variance of the foreground will be approximated by the empirical estimate of the variance in a
surrounding neighborhood of size

√
P ×

√
P centered about the pixel k :

σ̂fj [k]2 =
1

P

∑
i∈N [k]

wfj [i]2 (25)
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B. Contamination filtering

In the remaining of this paper, we will generally use the term contamination for the contribution of both the
foreground residuals and the instrumental noise. In the following, as suggested previously, we also opt for exactly
the same model to capture the pixel dependencies of the instrumental noise. Therefore, we will now define locally
at pixel k and scale j the variance of contamination (noise and foreground) as σ̂cj [k]2 = σ̂fj [k]2 + σ̂nj [k]2. The joint
contribution of noise and foreground residuals will be evaluated jointly from the data.

From the estimation of the estimation of the local variance σ̂yj [k]2; one has to recall that the contaminants’
variance is not directly accessible but is equal to :

σ̂cj [k]2 =
[
σ̂yj [k]2 − σ̂2j

]
+

(26)

where σ̂2j stands for the variance of the CMB and [x]+ = max(0, x). Let use note that, from the stationarity of
the CMB map, σ̂2j does not explicitly depend on k; this holds as long as the patch size at scale j is large enough
compared to the CMB fluctuations (i.e. correlation length) in the j-th wavelet scale. The value of the CMB variance
at scale j-th is directly related to the CMB power within this scale; its value can be derived from the CMB power
spectrum C` and the wavelet analysis filters. To that end, let us denote by ψj,` the spherical harmonics filter from
which the wavelet scale j is defined. As emphasized in Section I the spherical harmonics coefficients of the CMB
map should be mutually uncorrelated. This particularly entails that the power of the CMB in the j-th wavelet scale
is exactly :

σ2j =
1

4π

∑
`

(2`+ 1)ψ2
j,`C`

It follows that the variance of the contamination at pixel k is approximately equal to :

σ̂cj [k]2 =

[
σ̂yj [k]2 − 1

4π

∑
`

(2`+ 1)ψ2
j,`C`

]
+

(27)

Thereby, from the a priori knowledge of the CMB power spectrum C`, an approximate contribution of the residual
can be evaluated at each pixel and each wavelet scale. The reader has to keep in mind that the measurement of this
contribution is only approximate and has to be considered under the light of the following assumptions : 1) the
contribution of the residual is modeled as a non-stationary Gaussian field where the covariance matrix is diagonal
in each wavelet scales and 2) its variance being evaluated on small patches of size

√
P ×
√
P , it is assumed to be

approximately stationary in a given analysis patches. However, even with these approximations, our model offers
a much more realistic modeling of the complexity of the data than the traditional Wiener method. Improvements
of this modeling will be discussed in Section IV-A.
Let Σf,j = diag(σ̂cj [k]2). Then, in the algorithm introduced in Section II, the noise matrix Σ is substituted with
the following covariance matrix :

Σ = W T

 Σf,1 0 0

0
. . . 0

0 0 Σf,J

W
where W stands for the isotropic wavelet transform and WT its adjoint. Along with the iterative technique
introduced in Section II, the resulting wavelet-based filtering will be coined LIW-Filtering for Linear Iterative
Wiener Filtering in the following.

C. Contamination reduction on Planck simulated data

As emphasized in Section III, the wavelet-based noise/contamination variance modeling used so far makes it
possible to account for the contribution of the foreground contamination in the filtering process. Estimating the
contribution of the foreground contamination, as detailed in Section III, makes the reduction of contamination
possible. In the following experiments, the contamination, which includes the contribution of the noise and an
approximate contribution of the foreground residuals, has been modeled in the wavelet domain [16] using 6 scales.
Within each wavelet scale, with the exception of the coarsest scale to which no filtering is applied, the contribution
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Figure 8. Estimated noise covariance map at wavelet scale j = 1 : this covariance map has been estimated from a single realization of
the simulated Planck noise that contaminates the CMB estimated by GMCA. Units in mK2.

of the contamination is assumed to be Gaussian and locally stationary on patches of size
{

4j+1
}
j=1,··· ,5. Figure 9

features the estimated variance map in logarithmic scale. As a remark, if the morphology of this contaminant
variance map resembles at first glance the noise-only variance map, the dynamic range of the former is clearly
larger by 3 orders of magnitudes. These differences are mostly significant on the galactic plane and on local features
that are likely point sources or residuals of SZ clusters.
The proposed Wiener based iterative method has been applied on the aforementioned Planck simulated data.
Figure 10 shows the difference map between the noise-only LIW-Filtering solution and the proposed contamination-
aware LIW-Filtering solution in the finest wavelet scale. It appears clearly that the difference between the map are
mainly concentrated on the galactic plane and on likely point sources at high latitude.
Figure 11 displays the power spectra of the original and filtered CMB maps along with the theoretical power
spectrum of the simulated map in black dash-dotted line. At first glance, accounting for the contribution of the
foreground residuals, even approximately, yields improvements from ` = 750. Perhaps more interesting, Figure 12
shows the power spectrum of the residual maps x−x̂ : the contaminant-aware filtering technique clearly outperforms
the previous methods from ` = 250 to ` = 3000 with a dramatic improvement in the range [750, 1500].
Figure 13 displays the wavelet-based MSE we described in the previous paragraph. The results of the contaminant-
aware filtering technique have been further added to the plot in Figure 6. Let us recall that the noise reducing
techniques described in the previous section mainly help reducing the noise in the noise-dominant regime. This
particularly explained why the MSE remains almost unaltered in wavelet scales j > 1. Interestingly, accounting for
an approximate contribution of the foregrounds helps reducing their impact in larger scales, typically for j < 3.
Figure 14 presents the MSE computed at different latitudes in the finest wavelet scale j = 1 - plot on the left -
and j = 2 -plot on the right. Accounting for the contaminant contribution improves the MSE of the filtered map at
all latitudes. Interestingly, the MSE is decreased by a large amount - a factor of approximately 5 - on the galactic
(latitude 0◦). The same holds in a slighter amount in wavelet scale j = 2.
Assuming that the Planck instrumental noise is Gaussian is widely considered as a reasonable assumption. This is
obviously not the case for foreground residuals the presence of which is likely to largely distort the search for non-
gaussian features in the CMB. Thereby, reducing the amount of contaminant should help preventing non-gaussianity
test from the non-Gaussian impact of foreground residuals. In the field of CMB non-gaussianity evaluation, a
classical technique boils down to measuring higher order statistics in the wavelet domain [20]. One of the statistics
of choice is the statistics of order 4, denoted κ4, a.k.a. the kurtosis. The kurtosis of the wavelet coefficients of
the estimated CMB map has been evaluated in 5 scales; non-gaussianity test results are shown in Figure 15. The
first observation is that the proposed method helps reducing non-gaussian contamination even when only the noise
is modeled as a spurious component. This suggests that the non-stationary behavior of the noise can generate
undesired non-gaussian signatures. Thereby, accounting for the non-stationary behavior of the noise in the noise
reduction process decreases the kurtosis of the filtered map by an order of magnitude in the finest wavelet scale.
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The red dashed line in Figure 15 shows a clear reduction of the kurtosis of the filtered map when the contribution
of the foreground residuals is modeled. More precisely, the value of κ4 is grossly reduced by 4 orders of magnitude
for j = 1, 2 orders of magnitude for j = 2 and 1 order of magnitude for j = 3. While noise-only filtering yields
map that departs from the Gaussian assumption for J < 2, the contamination-aware filtered map is now compatible
with the Gaussian assumption in all wavelet scales with κ4 < 1.
Figure 16 presents more detailed non-gaussianity tests; the three plots that this figure displays show the evolution of
κ4, in the three finest wavelet scales j = 1, · · · , 3, which has been evaluated in bands of latitude of width 10◦. The
galactic plane is centered about the point 0◦. The non-Gaussian contamination mainly originates from the presence
of galactic foreground residuals which are mainly concentrated on the galactic plane. This explains the very large
value of κ4 in the range of latitude [−15◦, 15◦]. The second well-known source of non-Gaussian signatures at
spatial high frequency are the radio and infrared point sources. These foregrounds are roughly uniformly scattered
all over the sky. Point sources are likely to be the predominant source of non-Gaussian signatures at high latitude
thus explaining the relatively large value of κ4 in this range of latitudes. As shown in the top-left plot of Figure 16,
further filtering the contamination (see the red dashed line) yields a dramatic reduction of κ4 up to 5 orders of
magnitude on the galactic plane. The filtered CMB map is likely to be compatible with the Gaussian assumption at
every latitude, even on the galactic plane. In the second wavelet scale j = 2, the same reduction of non-Gaussian
signatures is also visible by a lesser extent, mainly on the galactic plane in the range [−15◦, 15◦]. In the third wavelet
scale, the proposed filtering is likely to reduce the non-Gaussian signatures in the galactic plane; in this range of
scales (i.e. the third wavelet scale roughly corresponds to an analysis window that spans the range [375, 750]), the
CMB is largely predominant which entails that : i) the input map is already quite compatible with the Gaussian
assumption and ii) the impact of the filtering may be less visible when non-Gaussianity is measured.

Figure 9. Estimated contamination covariance map at wavelet scale j = 1 : this covariance map has been estimated from the CMB
estimated by GMCA. Units in mK2.

IV. DISCUSSION, PROSPECTS AND CONCLUSION

A. Discussion and prospects

a) Filtering the maps, for what use ?: Important cosmological tests and evaluations are performed on estimated
CMB maps; this is particularly the case for CMB lensing reconstruction [7] and non-Gaussian signature detection
to only name two. These tests are particularly sensitive to spurious components that contaminate the estimated
CMB map, whether it is noise or foreground residuals. This is therefore crucial to estimate a CMB map that is the
less contaminated possible. The second point we would like to emphasize is that the aforementioned cosmological
tests or evaluations are generally performed on the full-sky data; prior to any post-processing the estimated map is
masked to get rid of the impact of galactic foregrounds and point sources. This has two major consequences : i) it
limits the size of the samples to which these tests/evaluations are performed thus increasing the statistical variance
of these tests and ii) any of these tests has to dealing with this mask (e.g. via an inpainting procedure in [7]) thus
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Figure 10. CMB and residual maps Difference map between the noise-only LIW-Filtering solution and the contamination-aware LIW-
Filtering solution in the finest wavelet scale. Units in mK.

Figure 11. Power spectra - Left : linear scale. Right : log-scale. In abscissa : spherical harmonics coefficient. In ordinate : CMB power
in mK2. Dashed line show the power spectra of the noise for the different maps.

making the analysis of the CMB map generally more complex.
As shown in the previous experiments, the proposed filtering clearly limits the impact of noise by taking into
account its non-stationary behavior. Furthermore, results are presented that clear show that modeling the contribution
of foreground residuals make contamination reduction effective even on the galactic plane. This has two major
consequences : i) it makes it possible the use of a much smaller mask prior to any analysis of the estimated CMB
map and ii) it helps reducing the non-Gaussian features that originate from the presence of foreground residuals.

b) Beyond the proposed methods: Whether noise or foreground residual is at stake, the central assumption that
is at the heart of the modeling of contamination is the decorrelation hypothesis we made in Section III. It is assumed
that the contaminants have potentially non-stationary but decorrelated samples in each wavelet scales. The basic
idea that supports this assumption is the well-known decorrelating property of wavelets bases. If this assumption
almost holds for rather theoretical stochastic processes (e.g. fractional Brownian motion [17] to only name one),
this is only roughly approximate for more general signals such as galactic foreground or complex correlated noise.
The basic idea behind this assumption is that the multiscale analysis basis is able to capture the correlation
morphology of the component to be modeled. In the context of Planck, it is well understood that instrumental noise
will be highly correlated along the scanning direction. This means that the correlation of the Planck instrumental
noise be better modeled as a decorrelated stochastic process in a multiscale signal representation that best represent
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Figure 12. Residual power spectra - Left : linear scale. Right : log-scale. In abscissa : spherical harmonics coefficient. In ordinate :
CMB power in mK2. Dashed line show the power spectra of the noise for the different maps.
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Figure 13. Normalized MSE per wavelet scale. In abscissa : wavelet scale - 0 corresponds to j = 1. In ordinate : normalized mean
squared error.

elongated structures such as the Curvelet tight frame [16]. We can extrapolate the same argument to the modeling
of foreground residuals.
The contamination modeling used so far in this article makes profit of the decorrelation assumption; it particularly
help simplifying the filtering process by only requiring the handling of diagonal matrices (i.e. root mean squared
maps). Departing from the decorrelation assumption will largely increase the complexity of the proposed filtering
techniques. However, a straightforward way of extending the proposed methods is to choose multiscale signal
representations which are better adapted to the morphology or structure of the signal to be modeled.

c) Potential impact of contamination reduction on CMB non-gaussianities: It is important to wonder whether
the contamination reduction filtering introduced in Section III might affect or reduce potential CMB-related non-
Gaussianities. One important point is that the way the local variance of the contamination is estimated in Section III
leads, in practice, to an estimation of foreground contaminations that largely exceeds the average CMB power in
each wavelet scale. Therefore, the filtering should have a much lesser impact on non-gaussianities whose magnitude
is of the order or lower than the magnitude of the CMB. It is worth pointing out that the rule in Equation 27 to
estimate the local contamination variance can also be chosen differently to only account for non-gaussianities
that are guaranteed to largely exceed the magnitude of the CMB thus avoiding for sure any effect on potential
CMB-related non-gaussianities. Future work will focus on evaluating the potential impact of the proposed filtering
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Figure 14. Normalized MSE per latitude at wavelet scale j = 1 and j = 2. In abscissa : latitude. The galactic plane corresponds to 0◦.
In ordinate : normalized mean squared error.
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Figure 15. Kurtosis κ4 per wavelet scale. In abscissa : wavelet scale - 0 corresponds to j = 1. In ordinate : value of the kurtosis κ4.

technique on CMB lensing reconstruction and non-gaussianity detection.

B. Conclusion

Cosmological microwave background maps estimated from full-sky surveys such as WMAP or more recently
Planck generally suffers from various sources of contaminations : i) instrumental noise is generally non-stationary
which may generate non-gaussian signatures and ii) foreground residuals generally remain even after the application
of state-of-the-art source separation methods. In this context, the most classical denoising technique, aka. global
Wiener filter; despite its simplicity, it is not able to account for the non-stationarity of the instrumental noise.
To that end, we introduce a novel noise reduction technique coined LIW-Filtering for Linear Iterative Wavelet
Filtering which combines the linearity of the global Wiener filter while accounting for the potential non-stationarity
of the noise. In this framework, the noise is modeled as a non-stationary but decorrelated process in the wavelet
domain. The denoising problem then takes the very simple form of a quadratically regularized least square where
the noise covariance matrix is diagonal in the wavelet domain and the signal covariance matrix is also diagonal
in the spherical harmonic domain (i.e. CMB power spectrum). The solution is computed using recently introduced
proximal algorithms. When noise reduction is at stake, we showed that the proposed iterative technique succeeds in
reducing the mean squared error (MSE) of the filtered solution with respect to the global Wiener filter classically
applied in the field. Moreover, the modeling/estimation framework introduced in this articles makes the reduction of
foreground contamination possible. Similarly to the non-stationary instrumental noise, foreground contamination are
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Figure 16. Kurtosis κ4 per latitude at wavelet scale j = 1 and j = 2. In abscissa : latitude. The galactic plane corresponds to 0◦. In
ordinate : value of the kurtosis κ4.

modeled as a non-stationary but decorrelated process in the wavelet domain. Numerical experiments show that : i)
the MSE of the filtered map is improved; specifically on the galactic plane and 2) very interestingly, non-Gaussian
signatures are also dramatically reduced. This particularly provides arguments supporting the application of the
proposed filtering technique as post-processing step to be applied to the CMB with the crucial aim of reducing
noise and perhaps more importantly foreground contamination. It is also important to point out that, similarly to
the global Wiener filter, LIW-Filtering is - at this acronym indicates - a linear filtering technique. This means that
LIW-Filtering is also relevant when studying errors and their propagation on the estimated CMB map via Monte-
Carlo simulations are unavoidable.
Future work will focus on refining the modeling of noise and foreground residuals. Without losing the simplicity
of this approach, we will more specifically focus on studying more adapted signal representation to better model
the noise/foreground contamination spatial behavior.

REFERENCES

[1] C. Bennett and et al., “First year wilkinson microwave anisotropy probe (wmap) observations : preliminary maps and basic results,”
ApJ. Suppl., vol. 148, no. 1, 2003.

[2] R. Bouchet and R. Gispert, “Foregrounds and cmb experiments: I. semi-analytical estimates of contamination,” New Astronomy, vol. 4,
no. 443, 1999.

[3] S.M.Leach and et al., “Component separation methods for the planck mission,” Astronomy & Astrophysics, vol. 491, no. 597-615, 2008.
[4] J. Delabrouille, J.-F. Cardoso, M. L. Jeune, M. Betoule, G. Fay, and F. Guilloux, “A full sky, low foreground, high resolution cmb map

from wmap,” Astronomy and Astrophysics, vol. 493, no. 3, pp. 835–857, 2009.
[5] J. Bobin, J.-L. Starck, M. J. Fadili, and Y. Moudden, “Sparsity and morphological diversity in blind source separation,” IEEE Transactions

on Image Processing, vol. 16, no. 11, pp. 2662 – 2674, November 2007.



19

[6] J. Bobin, F. Sureau, and J.-L. Starck, “Source separation in cosmology: from global to local models,” in Proc. of IEEE International
Conference on Image Processing (ICIP), 2011.

[7] L. Perotto, J. Bobin, S. Plaszczynski, J.-L. Starck, and L. A., “Reconstruction of the cosmic microwave background lensing for planck,”
Astronomy and Astrophysics, vol. 519, 2010.

[8] H. Duncan, G. Rocha, and K. Gorski, “Lensing reconstruction from planck sky maps: inhomogeneous noise,” Monthly Notices of the
Royal Astronomical Society, vol. 400, no. 4, pp. 2169–2173, 2009.

[9] M. Remazeilles, J. Delabrouille, and J.-F. Cardoso, “Foreground component separation with generalised ilc,” Monthly Notices of the
Royal Astronomical Society, 2011.

[10] J. Delabrouille, J.-F. Cardoso, and G. Patanchon, “Multi–detector multi–component spectral matching and applications for CMB data
analysis,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 4, pp. 1089–1102, Dec. 2003, to appear, also available as
http://arXiv.org/abs/astro-ph/0211504.

[11] K. Gorski, E. Hivon, A. J. Banday, B. Wandelt, F. Hansen, M. Reinecke, and M. Bartelmann, “Healpix – a framework for high resolution
discretization, and fast analysis of data distributed on the sphere,” ApJ, vol. 622, no. 2, 2005.

[12] E. Komatsu and et al, “Five-year wilkinson microwave anisotropy probe (wmap) observations: Cosmological interpretation,” ApJ. Suppl.,
vol. 180, pp. 330–376, 2009.

[13] G. Golub and C. Van-Loan, Matrix Computations, 3rd ed. Johns Hopkins Pub., 1996.
[14] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” SIAM Journal on Multiscale Modeling and

Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.
[15] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1998.
[16] J.-L. Starck, P. Abrial, Y. Moudden, and M. Nguyen, “Wavelets, ridgelets and curvelets on the sphere,” Astronomy and Astrophysics,

vol. 446, pp. 1191–1204, 2006.
[17] P. Flandrin, “Wavelet analysis and synthesis of fractional brownian motion,” IEEE Trans. on Information Theory, vol. 38, pp. 910–916,

1992.
[18] T. Chonavel, Statistical Signal Processing: Modelling and Estimation. Springer, 2002.
[19] F. R. Bouchet, R. Gispert, and J. Puget, “Unveiling the cosmic infrared background,” in IP Conference Proceedings, E. Dwek, Ed.,

1995, pp. 255–258.
[20] J.-L. Starck, N. Aghanim, and O. Forni, “Detecting cosmological non-gaussian signatures by multi-scale methods,” Astronomy and

Astrophysics, vol. 416, pp. 9–17, 2004.


