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Abstract

A multiscale representation-based denoising method for spherical data contaminated with
Poisson noise, the multiscale variance stabilizing transform on the sphere (MS-VSTS), has been
recently proposed. This paper first extends this MS-VSTS to spherical 2D-1D, where the two
first dimensions are longitude and latitude, and the third dimension is a meaningful physical
index such as energy or time. Then we introduce a novel multichannel deconvolution built upon
the 2D-1D MS-VSTS, which allows to get rid of both the noise and the blur introduced by the
point spread function (PSF) in each energy (or time) band. The method is applied to simulated
data from the Large Area Telescope (LAT), the main instrument of the Fermi Gamma-Ray
Space Telescope, which detects high energy gamma-rays in a very wide energy range (from 20
MeV to more than 300 GeV), and whose PSF is strongly energy-dependent (from about 3.5� at
100 MeV to less than 0.1� at 10 GeV).
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1. Introduction

1.1. Literature overview

The gamma-ray sky is currently studied with unprecedented sensitivity and image capability
thanks to the Large Area Telescope (LAT), the main instrument of the Fermi Gamma-Ray Space
Telescope (Atwood et al. 2009), in an energy range between 20 MeV to greater than 300 GeV. The
detection of gamma-ray point sources is made difficult by two main factors : the Poisson noise
and the instrument’s point spread function (PSF). The Poisson noise is due to the weakness of
the fluxes of celestial gamma-rays, especially outside the galactic plane and far away from intense
sources. The PSF width is strongly energy-dependent, it varies from about 3.5� at 100 MeV to less
than 0.1� (68% containment) at 10 GeV. Owing to large-angle multiple scattering in the tracker,
the PSF has broad tails, the 95%{68% containment ratio may be as large as 3.

An extensive literature exists on Poisson noise removal and the interested reader may refer
to Schmitt et al. (2011); Starck et al. (2010) for a thorough review. Motivated by new X-ray and
gamma-ray data challenges, several restoration methods have been recently released in astrophysics
that are based on wavelets (Movit 2009; Starck et al. 2009; Faÿ et al. 2011; Schmitt et al. 2010)
or the Bayesian machinery (Conrad et al. 2007; Norris et al. 2011). Wavelets have also been used
for source detection in FERMI data (Abdo et al. 2010), and a first Poisson denoising algorithm for
spherical data was proposed in Schmitt et al. (2010). Starck et al. (2009) developed a denoising
approach that handles effectively multichannel data acquired on a Cartesian grid, and where the
third dimension can be any physically meaningful index such as wavelength, energy or time. While
traditional techniques would integrate all the third dimension in oder to improve the signal-to-
noise ratio (SNR) of the sources, their approach allows to detect the sources while preserving
their whole spectral information and without scarifying the sensitivity. Nonetheless, none of of
these methods take into account the point spread function (PSF) of the instrument. In the other
hand, deconvolution can prove very helpful in many situations such as sources identification or
flux estimation in the low energy bands where the resolution degrades severely. To the best of our
knowledge, no general method for both denoising and deconvolving multichannel on the sphere has
been developed in the literature.

1.2. Contributions

In this paper, we propose a general framework for denoising and deconvolution that comply
with all the above requirements: deal with (i) multichannel data, (ii) acquired on the sphere, and
(iii) contaminated by Poisson noise. Our approach builds upon the concept of variance stabilization
applied wisely to the spherical wavelet transform coefficients (Starck et al. 2006). Doing so, the
transformed and variance stabilized coefficients can be treated as if they were contaminated by
a zero-mean white Gaussian noise. The developed algorithms are validated on simulated Fermi
HEALPix multichannel cubes (nside � 256) with energy bands ranging from 50 MeV to 50 GeV.

1.3. Paper organization

The rest of the paper is organized as follows. In section 2, we present a new wavelet transform
for multichannel data on the sphere, and we show how the variance stabilization transform can be
introduced in the decomposition. Section 3 details the way this transform can be used for Gaussian
and Poisson noise removal. Section 4 describes our deconvolution algorithm on the sphere for both
mono-channel and multichannel spherical data. In Section 5, we finally draw some conclusions and
give possible perspectives of this work.

1.4. Notations

For a real discrete-time filter whose impulse response is hris, h̄ris � hr�is, i P Z is its time-
reversed version. The discrete circular convolution product of two signals will be written �, where
the term circular stands for periodic boundary conditions. The symbol δris is the Kronecker delta.

For the wavelet representation, the low-pass analysis filter is denoted h and the high-pass is
taken as g � δ � h throughout the paper. We denote the up-sampled version of h as hÒjrls � hrls
if l{2j P Z and 0 otherwise. Define hpjq � h̄Òj�1 � � � � � h̄Ò1 � h̄ for j ¥ 1 and hp0q � δ.
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The scaling and wavelet functions used for the analysis (respectively, synthesis) are denoted φ
(with φpx2 q �

°
k hrksφpx�kq, x P R and k P Z) and ψ (with ψpx2 q �

°
k grksφpx�kq, x P R and k P

Z) (respectively, rφ and rψ).
2. Multiscale Representation for Multichannel Spherical Data with Poisson Noise

2.1. Fast Undecimated 2D-1D Wavelet Decomposition/Reconstruction on the Sphere

Our goal is to analyze multichannel data acquired on a sphere with a non-isotropic 2D-1D
wavelet, where the two first dimensions are spatial (longitude and latitude) and the third dimension
is either the time or the energy. Since the dimensions do not have the same physical meaning, it
appears natural that the wavelet scale along the third dimension (energy or time) should not be
connected to the spatial scale. Hence, we define the wavelet function as

ψpkθ, kϕ, ktq � ψpθφqpkθ, kϕqψ
ptqpktq, (1)

where ψpθφq is the spherical spatial wavelet and ψptq the 1D wavelet along the third dimension.
Similarly to Starck et al. (2009), we consider only isotropic and dyadic spatial scales, and we build
the discrete 2D-1D wavelet decomposition by first taking a spherical 2D undecimated wavelet
transform for each kt, followed by a 1D wavelet transform for each spatial wavelet coefficient along
the third dimension.

Hence for a given multichannel data set on the sphere Y rkθ, kϕ, kts, applying first the 2D
spherical undecimated wavelet transform, we have the reconstruction formula

Y rkθ, kϕ, kts � aJ1rkθ, kϕ, kts �
J 1̧

j1�1

wj1rkθ, kϕ, kts, @kt, (2)

where J1 is the number of spatial scales, aJ1 is the (spatial) approximation subband and twj1u
J1
j1�1

are the (spatial) detail subbands. To lighten the notations in the sequel, we replace the two spatial
indices by a single index kr which corresponds to the pixel index. Expression (2) reads now

Y rkr, kts � aJ1rkr, kts �
J 1̧

j1�1

wj1rkr, kts, @kt. (3)

Then, for each spatial location kr and for each 2D wavelet scale j1, we apply a 1D wavelet transform
along t on the spatial wavelet coefficients wj1rkr, �s such that

wj1rkr, kts � wj1,J2rkr, kts �
J2̧

j2�1

wj1,j2rkr, kts, @pkr, ktq, (4)

where J2 is the number of scales along t. The approximation spatial subband aJ1 is processed in a
similar way, hence yielding

aJ1rkr, kts � aJ1,J2rkr, kts �
J2̧

j2�1

wJ1,j2rkr, kts, @pkr, ktq. (5)

Inserting (4) and (5) into (3), we obtain the 2D-1D spherical undecimated wavelet representation
of Y :

Y rkr, kts � aJ1,J2rkr, kts �
J1̧

j1�1

wj1,J2rkr, kts �
J2̧

j2�1

wJ1,j2rkr, kts �
J1̧

j1�1

J2̧

j2�1

wj1,j2rkr, kts . (6)

In this expression, four kinds of coefficients can be distinguished:

– Detail-Detail coefficients (j1 ¤ J1 and j2 ¤ J2):

wj1,j2rkr, �s � pδ � h̄1Dq � ph
pj2�1q
1D � aj1�1rkr, �s � h

pj2�1q
1D � aj1rkr, �sq. (7)

– Approximation-Detail coefficients (j1 � J1 and j2 ¤ J2):

wJ1,j2rkr, �s � h
pj2�1q
1D � aJ1rkr, �s � h

pj2q
1D � aJ1rkr, �s. (8)
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– Detail-Approximation coefficients (j1 ¤ J1 and j2 � J2):

wj1,J2rkr, �s � h
pJ2q
1D � aj1�1rkr, �s � h

pJ2q
1D � aj1rkr, �s. (9)

– Approximation-Approximation coefficients (j1 � J1 and j2 � J2):

aJ1,J2rkr, �s � h
pJ2q
1D � aJ1rkr, �s. (10)

2.2. Multi-Scale Variance Stabilizing Transform on the Sphere (MS-VSTS)

Schmitt et al. (2010) proposed a multiscale variance stabilizing transform adapted for spherical
data corrupted with Poisson noise. This transform was dubbed the Multi-Scale Variance Stabilizing
Transform on the Sphere (MS-VSTS). In a nutshell, the MS-VSTS consists in plugging a variance
stabilizing transform (VST) within a multi-scale transform–the Isotropic Undecimated Wavelet
Transform on the Sphere (IUWTS)– in order to get (approximately) Gaussian zero-mean multiscale
coefficients with constant variance.

The MS-VSTS scheme is defined recursively by inserting a (nonlinear) square-root VST within
the IUWTS steps. That is,

IUWTS
"
aj � hj�1 � aj�1

dj � aj�1 � aj
ùñ

MS-VSTS
(VST + IUWTS)

"
aj � hj�1 � aj�1

dj � Tj�1paj�1q � Tjpajq
, (11)

where Tj is the VST operator at scale j:

Tjpajq � bpjqsignpaj � cpjqq
b
|aj � cpjq|, (12)

with the VST constants bpjq and cpjq that depend solely on the filter h and the scale level j. It has
been shown in Zhang et al. (2008) that the MS-VSTS detail coefficients dj on locally homogeneous
parts of the underlying intensity signal follow asymptotically a zero-mean normal distribution
with an intensity-independent variance that relies only on the filter h and the current scale j.
Consequently, both the stabilized variances and the constants bpjq and cpjq can be pre-computed
once and for all for a given h (Schmitt et al. 2010).

2.3. Multichannel MS-VSTS

This section extends the MS-VSTS machinery to the multichannel case. This amounts to
wisely plugging the VST into the spherical 2D-1D undecimated wavelet transform introduced in
Section 2.1. Again, this will give rise to four types of coefficients that take the following forms:

– Detail-Detail coefficients (j1 ¤ J1 and j2 ¤ J2):

wj1,j2rkr, �s � pδ � h̄1Dq �
�
Tj1�1,j2�1

�
h
pj2�1q
1D � aj1�1rkr, �s

	
� Tj1,j2�1

�
h
pj2�1q
1D � aj1rkr, �s

		
.

(13)
– Approximation-Detail coefficients (j1 � J1 and j2 ¤ J2):

wJ1,j2rkr, �s � TJ1,j2�1

�
h
pj2�1q
1D � aJ1rkr, �s

	
� TJ1,j2

�
h
pj2q
1D � aJ1rkr, �s

	
. (14)

– Detail-Approximation coefficients (j1 ¤ J1 and j2 � J2):

wj1,J2rkr, �s � Tj1�1,J2

�
h
pJ2q
1D � aj1�1rkr, �s

	
� Tj1,J2

�
h
pJ2q
1D � aj1rkr, �s

	
. (15)

– Approximation-Approximation coefficients (j1 � J1 and j2 � J2):

aJ1,J2rkr, �s � h
pJ2q
1D � aJ1rkr, �s. (16)

In summary, all 2D-1D wavelet coefficients twj1,j2uj1¤J1,j2¤J2 are now stabilized, and the noise
on all these wavelet coefficients is zero-mean Gaussian with known variance that depends solely on
h on the resolution levels pj1, j2q. As before, these variances can be easily tabulated.
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3. Application to Multichannel Denoising

Let X be the noiseless data and Y their observed noisy version. For instance, for the additive
zero-mean white Gaussian noise we have Y � N pX,σ2q, and for the Poisson noise Y � PpXq. The
goal of denoising is to estimate X from Y .

3.1. Warm up: Gaussian noise

We start with the simple and instructive case where the noise in Y is additive white Gaussian.
As the spherical 2D-1D undecimated wavelet transform described in Section 2.1 is linear, the noise
remains Gaussian in the transform domain. Therefore, the thresholding strategies which have been
developed for wavelet Gaussian denoising can be applied to the spherical 2D-1D wavelet transform.
Denoting TH the thresholding operator, the denoised 2D-1D estimate ofX obtained by thresholding
the wavelet coefficients in (6) reads

rXrkr, kts � aJ1,J2rkr, kts�
J1̧

j1�1

THpwj1,J2rkr, ktsq�
J2̧

j2�1

THpwJ1,j2rkr, ktsq�
J1̧

j1�1

J2̧

j2�1

THpwj1,j2rkr, ktsq.

(17)
A typical choice of TH is the hard thresholding operator parametrized by the scalar threshold
τ ¥ 0, i.e.

THpxq �
"

0 if |x|   τ,

x otherwise.
(18)

The threshold τ is typically chosen between 3 and 5 times the noise standard deviation.

3.2. Poisson noise

The case of Poisson noise is much more involved than its Gaussian counterpart, the main reason
being that the noise variance is equal to its mean. This is where the MS-VSTS comes into play.
Indeed, the role of the MS-VSTS is precisely to get rid of this dependence of the variance on the
mean by ensuring that the transformed coefficients are Gaussian with constant variance (without
loss of generality, this variance can be assumed equal to 1). In other words, after the MS-VSTS,
we are brought to a Gaussian denoising problem where standard thresholding approaches apply.

Having said this, denoising is nevertheless not straightforward because there is no explicit re-
construction formula available because of the form of the non-linear stabilization equations above.
Formally, the stabilizing operators Tj1,j2 and the convolution operators along the spatial and the
third dimensions do not commute, even though the filter bank satisfies the exact reconstruction for-
mula. To circumvent this difficulty, we propose to solve this reconstruction problem by advocating
an iterative reconstruction scheme.

3.3. Iterative Reconstruction

Let W be the transform operator associated to the 2D-1D IUWTS described in Section 2.1,
and R be its inverse transform. Let’s define the multiresolution support which is determined by
the set of significant coefficients detected among WY at each scale pj1, j2q and location pkr, ktq,
i.e.

M � tpj1, j2, kr, ktq
��pWY qj1,j2rkr, kts is significantu. (19)

Let M be the orthogonal projector ontoM, i.e. @d

pMdqj1,j2rkr, kts �

"
pWY qj1,j2rkr, kts if pj1, j2, kr, ktq PM,

dj1,j2rkr, kts otherwise.
(20)

Our goal is to seek a solution rX that preserves the significant structures of the original data by
reproducing exactly the same wavelet coefficients as those of the input data Y , but only at scales
and positions where significant coefficients have been detected. Furthermore, as Poisson intensity
functions are positive by nature, a positivity constraint is imposed on the solution. It is clear
that there are many solutions satisfying the positivity and multiresolution support consistency
requirements, e.g. Y itself. Thus, our reconstruction problem based solely on these constraints
is an ill-posed inverse problem that must be regularized. Typically, the solution in which we are
interested must be sparse by involving the lowest budget of wavelet coefficients. Therefore our
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reconstruction is formulated as a constrained sparsity-promoting minimization problem over the
transform coefficients d

min
d
}d}1 subject to

"
dj1,j2rkr, kts � pWY qj1,j2rkr, kts,@pj1, j2, kr, ktq PM,

X ¥ 0.
(21)

and the intensity estimate rX is reconstructed as rX � Rd̃, where d̃ is a global minimizer of (21).
Recall that } � }1 �

°
j1,j2,kr,kt

|dj1,j2rkr, kts| is the `1-norm playing the role of regularization and
is well known to promote sparsity (Donoho 2004). This problem can be solved efficiently using
the hybrid steepest descent algorithm (Yamada 2001) (Zhang et al. 2008), and requires about 10
iterations in practice. Transposed into our context, its main steps can be summarized as follows:

Require: Input noisy data Y , a low-pass filter h, multiresolution supportM from the detection
step, number of iterations Nmax.

1: Initialize dp0q � MWY .
2: for n � 1 to Nmax do
3: d̄pnq � Mdpn�1q;
4: dpnq � WP�

�
R STβnpd̄

pnqq
�
;

5: Update the step βn � pNmax � nq{pNmax � 1q.
6: end for
7: return rX � RdpNmaxq.

where P� is the orthogonal projector onto the positive orthant, STβn is the entry-wise soft-
thresholding operator with threshold βn, i.e. for x P R, STβnpxq � maxp0, 1 � βn{|x|qx.

The final multichannel MS-VSTS Poisson noise removal algorithm is summarized in the follow-
ing steps:

Require: Input noisy data Y , a low-pass filter h, threshold level τ .
1: Multichannel spherical MS-VST: Apply the 2D-1D MS-VSTS to Y using (13)-(16).
2: Detection: Detect the significant coefficients that are above τ , and get the multiresolution

supportM.
3: Reconstruction: Apply the above algorithm withM to get the denoised data rX.

3.4. Experiments

The multichannel MS-VSTS algorithm has been applied to a simulated Fermi data set, with 14
energy bands between 50 MeV and 1.58 GeV. Figures 1 and 2 depict the denoising results on two
energy bands. The algorithm is able to recover most of the sources, even the faint ones, on each
energy band. Even more importantly, the 2D-1D MS-VSTS denoising algorithm allows to recover
the spectral information for each spatial position, as it can be seen from Figure 3.

4. Deconvolution of Spherical Data with Poisson Noise

In this section, we introduce a wavelet deconvolution approach for monochannel and multichan-
nel data on the sphere with Poisson noise. The main idea underlying the method is to capitalize
on the MS-VSTS described above. We first introduce the deconvolution problem and then describe
how the MS-VSTS can be used to solve the deconvolution problem.

4.1. Problem statement

Many problems in signal and image processing can be cast as inverting the linear system:

Y � HX � ε , (22)

where X P X is the data to recover, Y P Y is the degraded noisy observation, ε is an additive
noise, and H : X Ñ Y is a bounded linear operator which is typically ill-behaved since it models
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Figure 1. Result of the multichannel Poisson denoising algorithm on simulated Fermi data over
the energy band 220 MeV - 360 MeV. Top: Simulated intensity skymap. Middle: Simulated noisy
skymap. Bottom: denoised skymap. Maps are in logarithmic scale.

an acquisition process that encounters loss of information. When H is the identity, it is just a
denoising problem which can be treated with the previously described methods. Inverting (22) is
usually an ill-posed problem. This means that there is no unique and stable solution.

Our objective is to remove the effect of the instrument’s PSF. In our case, H is the convolution
operator by a blurring kernel (i.e. PSF) whose consequence is that Y lacks the high frequency
content of X. Furthermore, since the noise is Poisson, ε has a variance profile HX. The problem
at hand is then a deconvolution problem in the presence of Poisson noise.
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Figure 2. Result of the multichannel Poisson denoising algorithm on simulated Fermi data over
the energy band 589 MeV - 965 MeV. Top: Simulated intensity skymap. Middle: Simulated noisy
skymap. Bottom: denoised skymap. Maps are in logarithmic scale.

Therefore, we need to both regularize the solution and handle the Poisson statistics of the
noise. In order to regularize such an inversion problem and reduce the space of candidate solutions,
one has to add some prior knowledge on the typical structure of the original data X. This prior
information accounts for the smoothness of the solution and can range from the uniform smoothness
assumption to more complex knowledge of the geometrical structures of X.
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Figure 3. Spectrum of a single gamma-ray point source recovered using the multichannel MS-
VSTS denoising algorithm. Top: Single gamma-ray source from simulated Fermi data integrated
along the energy axis (left: simulated source; middle: noisy source; right: denoised source). Bottom:
Spectrum of the center of the point source: intensity as a function of the energy band with 14 energy
bands between 50 MeV and 50 GeV (black: true simulated spectrum; cyan: restored spectrum from
our denoising algorithm.

In our LAT realistic simulations, the PSF width depends strongly on the energy, from 6.9� at
50 MeV to better than 0.1� at 10 GeV and above. Figure 4 shows the normalized profiles of the
PSF for different energy bands.

4.2. Monochannel Deconvolution

Let’s start with the single-channel case. In the literature, several algorithms have been proposed
for image deconvolution on the Cartesian grid. The Richardson-Lucy algorithm is certainly the
most famous in astrophysics. In this paper, we propose a regularized Richardson-Lucy algorithm
for deconvolving data on the sphere data.

The Richardson-Lucy algorithm originates from a fixed-point equation obtained by maximizing
the Poisson likelihood with respect to X while preserving positivity. This entails a multiplicative
update rule, starting at n � 0 and Xp0q � 1 and iterating

Xpn�1q � Xpnq b
�
HT pY cHXpnqq

	
, (23)

where b (resp. c) stands for the element-wise multiplication (resp. division) between two vectors.
HT is the transpose of H whose action on an image consists in convolving it with the time-
reversed version of the PSF associated to H. However, it is well-known that because of the lack of
regularization, the Richardson-Lucy algorithm tends to amplify the noise after a few iterations.

Let’s define Rpnq as the residual at iteration n

Rpnq � Y �HXpnq. (24)

Rpnq can be written as the sum of its IUWTS detail subband tdju1¤j¤J and the last approximation
subband aJ . That is,

Rpnqrkrs � aJ rkrs �
J̧

j�1

djrkrs, @kr. (25)
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Figure 4. Normalized profile of the PSF for different energy bands as a function of the angle in
degree. Black: 50 MeV - 82 MeV. Cyan: 220 MeV - 360 MeV. Orange: 960 MeV - 1.6 GeV. Blue:
4.2 GeV - 6.9 GeV. Green: 19 GeV - 31 GeV.

The wavelet transform provides a mean to extract only the significant structures from the
residual at each iteration. In fact, with increasing iteration, a large part of the residual becomes
statistically insignificant. The regularized significant residual is then, for a location kr,sRpnqrkrs � aJ rkrs �

¸
pj,krqPM

djrkrs , (26)

whereM is the multiresolution support defined similarly to (19). The regularized Richardson-Lucy
scheme then becomes

Xpn�1q � P�

�
Xpnq b

�
HT

�
pHXpnq � sRpnqq cHXpnq

			
. (27)

This algorithm is similar to Murtagh et al. (1995), except that the à trous wavelet transform is
replaced by the undecimated wavelet transform. Next section shows how the same algorithm can
be extended to multi-channel case.

4.3. Multichannel Deconvolution

As the PSF is channel-dependent, the convolution observation model is now

Y r�, kts � Hkt
Xr�, kts � εr�, kts

in each channel kt, where Hkt
is the (spatial) convolution operator in channel kt with known PSF.

The same recipe as in the monochannel case applies with the notable difference that the spherical
2D-1D MS-VSTS is used instead of its monochannel counterpart. The multichannel multiresolution
supportM is obtained after thresholding these coefficients.

Let now H be the multichannel convolution1 operator, which acts on a 2D-1D multichannel
spherical data set X by applying Ht on each channel Xr�, kts independently2. The regularized

1 Strictly speaking, this is a slight abuse of terminology since the kernel is not channel-invariant.
2 If X were to be vectorized by stacking the channels in a long column vector, H would be a block-diagonal

matrix whose blocks are the circulant matrices Hkt .
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multichannel Richardson-Lucy scheme is then

Xpn�1q � P�

�
Xpnq b

�
HT

�
pHXpnq � sRpnqq cHXpnq

			
, (28)

where sRpnq is the regularized (significant) residual

sRpnqrkr, kts � aJ1,J2rkr, kts �
¸

pj1,j2,kr,ktqPM

wj1,j2rkr, kts . (29)

4.4. Experiments

The algorithm was applied to the 7 energy bands (50 MeV-1.58 GeV) of our simulated Fermi
data set. Figures 5 to 8 display the deconvolution results on 4 energy bands. Figure 9 shows the
performance of the multichannel MS-VSTS deconvolution algorithm on a single point source. The
deconvolution not only removes effectively the blur and recovers sharply localized point sources,
but it also allows to restore the whole spectral information. To get a better visual impression of
the performance of the deconvolution algorithm, Figure 10 depicts the result on a single HEALPix
face covering the galactic plane. The effect of the deconvolution is strikingly good. Our MS-VSTS
multichannel deconvolution algorithm manages to remove a large part of the blur introduced by
the PSF.

Software

The software related to this paper, MRS/Poisson, and its full documentation will be included
in the next version of ISAP (Interactive Sparse astronomical data Analysis Packages) via the web
site:

http://jstarck.free.fr/isap.html

5. Conclusion

This paper extends the MS-VSTS framework to deal with monochannel deconvolution, multi-
channel denoising and multichannel deconvolution. Unlike the monochannel MS-VSTS, the multi-
channel MS-VSTS fully exploits the information in the 2D-1D data set and allows to recover the
spectral information on the sources. As the PSF is strongly dependent on the energy, it is very
important to have a multichannel method for deconvolution. Multichannel deconvolution using
MS-VSTS removes a large part of the PSF blur and significantly improves the sharpness of the
spatial localization of point sources.

Acknowledgements. Some of the results in this paper have been derived using the Healpix (Górski et al. 2005) and
the MR/S software (Starck et al. 2006). This work was supported by the French National Agency for Research
(ANR-08-EMER-009-01) and the European Research Council grant SparseAstro (ERC-228261).

References
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJS, 188, 405
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Conrad, J., Scargle, J., & Ylinen, T. 2007, in American Institute of Physics Conference Series, Vol. 921, The First

GLAST Symposium, ed. S. Ritz, P. Michelson, & C. A. Meegan, 586–587
Donoho, D. 2004, For Most Marge Underdetermined Systems of Linear Equations, the minimal l1-norm solution is

also the sparsest solution, Tech. rep., Department of Statistics of Stanford University
Faÿ, G., Delabrouille, J., Kerkyacharyan, G., & Picard, D. 2011, ArXiv e-prints
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, Astrophysical Journal, 622, 759–771
Movit, S. 2009, in Bulletin of the American Astronomical Society, Vol. 41, American Astronomical Society Meeting

Abstracts, 332.06
Murtagh, F., Starck, J.-L., & Bijaoui, A. 1995, Astronomy and Astrophysics, Supplement Series, 112, 179–189
Norris, J. P., Gehrels, N., & Scargle, J. D. 2011, in Bulletin of the American Astronomical Society, Vol. 43, American

Astronomical Society Meeting Abstracts, 108.03
Schmitt, J., Starck, J. L., Casandjian, J. M., Fadili, J., & Grenier, I. 2010, Astronomy and Astrophysics, 517
Schmitt, J., Starck, J.-L., Fadili, J., & Digel, S. 2011, in Advances in Machine Learning and Data Mining for

Astronomy, ed. M. Way, J. Scargle, K. Ali, & A. Srivastava (Chapman and Hall)
Starck, J., Fadili, J. M., Digel, S., Zhang, B., & Chiang, J. 2009, A&A, 504, 641
Starck, J.-L., Moudden, Y., Abrial, P., & Nguyen, M. 2006, Astronomy and Astrophysics, 446, 1191



12 Schmitt et al .: Poisson Deconvolution on the Sphere
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skymap. Energy band : 82 MeV - 134 MeV. Maps are in logarithmic scale.
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Figure 6. Result of the multichannel deconvolution algorithm on different energy bands. Top:
Simulated (blurred) intensity skymap. Middle: Blurred and noisy skymap. Bottom: Deconvolved
skymap. Energy band : 220 MeV - 360 MeV. Maps are in logarithmic scale.
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Figure 7. Result of the multichannel deconvolution algorithm on different energy bands. Top:
Simulated (blurred) intensity skymap. Middle: Blurred and noisy skymap. Bottom: Deconvolved
skymap. Energy band : 360 MeV - 589 MeV. Maps are in logarithmic scale.
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Figure 8. Result of the multichannel deconvolution algorithm on different energy bands. Top:
Simulated (blurred) intensity skymap. Middle: Blurred and noisy skymap. Bottom: Deconvolved
skymap. Energy band : 589 MeV - 965 MeV. Maps are in logarithmic scale.
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Figure 9. Profile of a single gamma-ray point source recovered using the multichannel MS-VSTS
deconvolution algorithm. Top: Single gamma-ray point source on simulated (blurred) Fermi data
(energy band: 360 MeV - 589 MeV) (left: simulated blurred source; middle: blurred noisy source;
right: deconvolved source). Bottom: Profile of the point source (cyan: simulated spectrum; black:
restored spectrum from the deconvolved source.
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Figure 10. View on a single HEALPix face. Result of the deconvolution algorithm on the galactic
plan. Top Left: Simulated Fermi Poisson intensity. Top Right: Simulated Fermi noisy data. Bottom:
Fermi data deconvolved with multichannel MS-VSTS. Energy band: 360 MeV - 589 MeV. Pictures
are in logarithmic scale.


