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ABSTRACT
In this paper, we propose a novel and rigorous framework for
region-based active contours that combines the Wasserstein distance
between statistical distributions in arbitrary dimension and shape
derivative tools. To speed-up the computation and be able to han-
dle high-dimensional features and large-scale data, we introduce
an approximation of the differential of the Wasserstein distance
between histograms. The framework is flexible enough to allow
either minimization of the Wasserstein distance to prior distribu-
tions, or maximization of the distance between the distributions of
the regions to be segmented (i.e. region competition). Numerical
results reported demonstrate the advantages of the proposed optimal
transport distance with respect to point-wise metrics.

Index Terms— Image segmentation, Optimal transport

1. INTRODUCTION

1.1. Overview of the Literature

Contour-based vs. region-based segmentation methods.
Active contours for image segmentation methods can be
broadly classified as being either edge-based or region-based.
Starting from the seminal work on the snakes model [1],
contour-based actives contours are driven towards image
edges through the minimization of an energy usually derived
from the image gradient magnitude.

In Region-Based Active Contours (RBAC) approaches,
the evolution equation is generally deduced from a general
criterion that includes both region integrals and boundary in-
tegrals; see e.g. [2, 3]. The main issue when dealing with
RBAC models is the computation of the velocity vector in
the evolution equation from the energy functional, especially
when the descriptors are region-dependent, as will be the case
in this work. To circumvent this difficulty, we here take ben-
efit from the shape derivation principles, see [4, 5].

Statistical segmentation A number of authors have pro-
posed RBAC energy functionals involving statistical region-
based terms. These are typically functions of the distribu-
tion of some image attributes within the region. The distri-
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bution can be either parametric or non-parametric, see for
instance[6, 7]. In the non-parametric approach, the energy
functional usually involves a point-wise distance between
non-parametric kernel estimates (e.g. Parzen kernel) of the
underlying densities. Such an approach requires a proper
choice of the smoothing kernel bandwidth.

Optimal transport for imaging. To avoid the drawbacks
faced with traditional statistical distances, the authors in [8]
propose to use the Wasserstein distance.

The Wasserstein distance originates from the theory of op-
timal transport [9]. It defines a natural metric between prob-
ability distributions. This Wasserstein distance has found a
wide range of applications for imaging problems such as the
comparison of histogram features for image retrieval, shape
recognition, histogram specification and color transfer [10].

1.2. Relation to Previous Work and Contributions

To the best of our knowledge, the work of [8] is the first, and
so far the only one, to clearly address the statistical segmenta-
tion problem using a Wasserstein distance. Their work clearly
emphasizes the usefulness of optimal transport methods to
deal with statistically localized features.

Our work, however, departs significantly from theirs in
many important ways. First, unlike their work which focused
on scalar features with the L1 Wasserstein distance, we con-
sider in §3 a general setting in arbitrary dimension. Secondly,
contrary to [8] which does not take into account the explicit
dependence of the Wasserstein distance to the region, the dis-
tance in our energy functional is explicitly region-dependent.
Using shape derivative tools, we also provide the exact deriva-
tive of the Wasserstein distance with respect to the domain
boundary and then deduce the active contour velocity field.
In contrast, the work [8] use a patch-based local histogram
estimation to avoid taking into account the dependence of the
statistics to the region. While this solution appears appealing
by its simplicity, and provides good results on synthetic and
natural images, it faces an important dilemma when choos-
ing the patch size, which is governed by a tradeoff between
accuracy and robustness.

We eventually propose in section 3.2 an approximation
for the computation of the Wasserstein distance between dis-



tributions in high dimension and then illustrate its practical
interest with numerical experiments (§ 4).

2. STATISTICAL SEGMENTATION

Notations In the sequel, we consider a feature map I : u ∈
Σ → Rd, where u ∈ Σ indexes the pixel location, and d is
the dimension of the feature of interest (for instance d = 3
for a color image). We also consider a histogram binning grid
Ω ⊂ Rd.

In the following, we consider Σ as a continuous domain
(equipped with the Lebesgue measure) and Ω as a finite dis-
crete grid (equipped with the counting measure). We thus
define the Hilbert spaces L2(Ω) and L2(Σ) endowed with the
inner products 〈A, B〉Ω =

∑
x∈ΩA(x)B(x) and 〈f, g〉Σ =∫

Σ
f(u)g(u)du. The set of statistical distributions on Ω is

D(Ω) = {A\A(x) > 0 and 〈A, 1〉Ω = 1} ⊂ L2(Ω) ,
where 1(x) = 1, ∀x ∈ Ω, such that 〈A, 1〉Ω =

∑
x∈ΩA(x).

2.1. Kernel Density Estimator

Given a fixed feature map I , and a non-negative weight func-
tion w ∈ L2(Σ), the kernel density estimator of the distribu-
tion underlying I is given by the mapping L2(Σ) 7→: D(Ω)

∀x ∈ Ω, P (w) =
Ψ(w)

〈Ψ∗(1), w〉Σ
(1)

where the mapping Ψ : L2(Σ) → L2(Ω) and its adjoint Ψ∗

are defined as Ψ(w) : x 7→
∫

Σ

w(u)ψs(x − I(u))du, and

Ψ∗(f) : u 7→
∑
x∈Ω

f(x)ψs(x − I(u)), using a non-negative

symmetric smooth localized window ψs which is referred
to as the kernel, and is parametrized by its bandwidth s.
Observe that the normalization map Ψ∗(1) corresponds to
[Ψ∗(1)](u) =

∑
x∈Ω ψs(x− I(u)) ∀u ∈ Σ .

A common kernel function is a Gaussian kernel, and the
corresponding estimator is termed the Parzen estimator. The
choice of s is even more crucial and results from a tradi-
tional bias-variance tradeoff, and should be adapted to the dis-
cretization grid Ω and smoothness of the underlying density.

2.2. Statistical Distance-based Segmentation

Let’s consider the problem of variational segmentation of the
image domain in two regions Σ = Γ ∪ Γc, where Γ is a reg-
ular bounded open set. Γ and its complement Γc share the
same boundary ∂Γ (denoted also C for short), with normals
pointing in opposite directions. The goal is to find a (lo-
cal) minimizer of an energy including both region (Wasser-
stein fidelity) and boundary (regularity) functionals. The key
principle is to construct a PDE from the energy criterion that
changes the shape of the current boundary curve according to

some velocity field which can be thought of as a direction of
descent of the energy criterion.

Shape derivatives of statistical distances. Let’s define the
region functional

E(Γ, B) = W (P (χΓ), B) (2)

for any fixed distributionB ∈ D(Ω), where χΓ(u) is the char-
acteristic function of Γ ⊂ Σ, i.e. χΓ(u) = 1 if u ∈ Γ, and 0
otherwise, and where W is a well chosen distance (see § 3).

Introducing the time τ for the evolution, and considering
m ∈ [0, 1] 7→ C(m, τ) to be a parametric representation of
the boundary ∂Γ at time τ , a gradient flow of this boundary
may be defined from the so-called shape gradient vΓ as

∂ C(m, τ)

∂τ
= vΓ(C(m, τ)) and C(·, 0) = C0 . (3)

Proposition 1. The shape gradient vΓ ensuring that (3) con-
verges to a stationary point of E(Γ, B) is
∀u ∈ ∂Γ vΓ(u) = GΓ,B(u)Nu

where GΓ,B = [DP (χΓ)∗] (∇1W (P (χΓ), B)) , (4)

where Nu is the unit inward normal to ∂Γ at u, and ∇1W is
the (sub)gradient of W with respect to its first variable. The
adjoint Gâteaux derivative DP ∗ of the kernel density estima-
tor in direction µ is given by

DP (w)∗ : µ ∈ L2(Ω) 7→ Ψ∗(µ)−Ψ∗(1)〈P (w), µ〉Ω
〈Ψ∗(1), w〉Σ

∈ L2(Σ).

Proof. See for instance[5, Theorem 6.1][11, Theorem 2].

Level set implementation. The minimization of (2) with
respect to the domain Γ may be obtained by introducing an
auxiliary function ϕ : Σ→ R, which is often chosen to be the
signed distance to ∂Γ. Thus Γ is represented as

Γ = {u ∈ Σ \ ϕ(u) > 0} and ∂Γ = {u ∈ Σ \ ϕ(u) = 0} .
The energy (2) is rewritten as W (P (H(ϕ)), B) where H =
χ[0,+∞) is the Heaviside function. Introducing an artificial
time variable τ , the evolution equation (3) associated to the
energy (2) then becomes

∂ϕ(u, τ)

∂τ
= −|∇ϕ(u, τ)|GΓ,B(u) . (5)

Note that the velocity function GΓ,B is computed now for
the whole image domain Σ. However, the signed distance
function ϕ is not a solution of the PDE (5), and in practice, it
must be periodically re-initialized so that it remains a distance
function. This is important to ensure numerical stability of the
method.

2.3. Statistical Segmentation by Region Competition

In the same vein as [11, 6], we restrict our attention in this pa-
per to a non-parametric variational segmentation method that
seeks the maximization of the distance between the respective



distributions in Γ and Γc, i.e. region competition. Of course,
our approach can be applied to other energy functionals just
as well, e.g. those with terms that favor region homogeneity.
The energy functional to be minimized reads

min
Γ
E(Γ) = −W (P (χΓ), P (χΓc)) + λr(C) , (6)

where r(C) is a boundary regularity term, e.g. the curve
length. Written using the level set formalism, this corre-
sponds to the solution of

min
ϕ
−W (P (H(ϕ)), P (H(−ϕ))) + λR(ϕ) , (7)

where R(ϕ) is a suitable regularization associated to r(C).
For instance, if r(C) is the length, then R(ϕ) is the TV regu-
larization R(ϕ) =

∫
|∇ϕ(u)|du.

The equivalent level set evolution PDE (5) that drives an
initial contour to a stationary point (hopefully a local mini-
mizer) of (6) is
∂ϕ(u, τ)

∂τ
= −|∇ϕ(u, τ)| (−GΓ,BΓc (u) +GΓc,BΓ

(u)− λκ) ,

where Γ = {u \ ϕ(u, τ) > 0} is the domain at time τ (we
have dropped the dependency on τ for the sake of clarity),
where the histogram inside and outside Γ are

BΓ = P (H(ϕ(·, τ)) and BΓc = P (H(−ϕ(·, τ)),

whereGΓ,BΓ
is the velocity defined in (4), and κ = div

(
∇ϕ
|∇ϕ|

)
is the mean curvature of the boundary. In practice, this PDE
is discretized with a sufficiently small time step (for instance
computed using a line search).

3. THE WASSERSTEIN DISTANCE AND THE
SLICED WASSERSTEIN APPROXIMATION

3.1. Wasserstein Distance on a Non-ordered 1-D Grid

We assume here that A and B ∈ D(Ω) are two discrete dis-
tributions defined over the 1-D grid points Ω = {xi ∈ R}Ni=1

that are sorted in increasing order, s.t. xi 6 xi+1

Lp Wasserstein Distance. The Lp Wasserstein distance on
the real line for any p > 1 may then be written as follows

W (A,B) =

∫ 1

0

|R−1
A (t)−R−1

B (t)|pdt ,

where Rµ(s) =
∫ s
−∞ µ(x)dx is the cumulative distribution

function (CDF) of µ and R−1
µ (t) = inf {s \ Rµ(s) > t} its

pseudo-inverse. The latter is well defined as the CDF is non-
decreasing. When µ ∈ D(Ω) is discrete, the CDF is equal to
Rµ(s) =

∑
xi6s

µ(xi).

1-D Wasserstein distance sub-differential. The following
proposition1 gives the sub-gradients set of the Wasserstein

1The proof, given in [12], is omitted here due to the lack of space.

distance for 1-D discrete distributions. Note that when the
subdifferential is not a singleton, one can take any subgradient
of W (A,B) in lieu of∇1W (A,B) in Eq. (4).

Proposition 2. Let A,B ∈ D(Ω). For p > 1, the set of
sub-gradients of A 7→W (A,B) are written as

{∇1W (A,B) } : xi 7→
∑
j>i

|xj − x̃j |p − |xj+1 − x̃j |p (8)

where
{
x̃j = xk if RB(xk−1) < RA(xj) < RB(xk),
x̃j ∈ [xk, xk+1] if RA(xj) = RB(xk).

3.2. Sliced Wasserstein Distance for multivariate features

For large-scale and high-dimensional histograms, the com-
putation of W (A,B) and ∇1W (A,B) for the Wasserstein
distance is too demanding, both in time and memory, with a
complexity of O(|Ω|3). To speed-up the computation, we fol-
low [10] and consider an alternative distance that mimics the
Wasserstein distance, but is faster to compute.

Sliced Distance Approximation We define the sliced dis-
tance as SW (A,B) =

∑
θ∈Θ

W (Aθ, Bθ) (9)

where Θ is a finite subset of the unit sphere in Rd, and Aθ ∈
D(Ωθ) is the projected distribution in the direction θ, defined
on 1-D grid points Ωθ = {xθ = 〈x, θ〉}x∈Ω, that has the
same values as A, i.e. ∀x ∈ Ω, Aθ(xθ) = A(x). The sliced
Wasserstein distance is thus a sum of 1-D Wasserstein dis-
tances between the projected distributions. Note that the grid
Ωθ that supports these distributions is non-uniform, thus re-
quiring the sorting of bins after projection (see § 3.1). This
step, which is achieved inO(|Ω| log(|Ω|)) operations, may be
precomputed for a fixed set of orientations Θ, or parallelized.

Sliced Wasserstein sub-differential The following propo-
sition1 enables us to compute efficiently the gradient of the
considered distance using Formula (8).

Proposition 3. The function A 7→ SW (A,B) is closed and
convex and its subdifferential at A is such that

∀x ∈ Ω, ∂1SW (A,B)(x) =
∑
θ∈Θ

∂1W (Aθ, Bθ)(xθ)θ.

4. NUMERICAL RESULTS AND CONCLUSION

Wasserstein distance vs. KL divergence We first illus-
trate the difficulty of point-wise statistical metrics for im-
age segmentation, as already reported in [8] with a different
method, in comparison with the Wasserstein distance. We
consider here a toy-example with 1-D features and the Kul-
lback-Leibler symmetrized divergence. Figure 1, left, shows
an example of a gray-scale image with three regions delimited
by two circles of increasing radii r0 < r1. The distribution



of the intensity values within each region is a Gaussian with
a mean value in {0.05, 0.8, 0.95} and small variances, so that
the resulting image is a mixture of three localized and barely
overlapping Gaussians. As can be seen from the histograms
in Figure 1 top-right, the correct segmentation should group
together the two outer regions which have close means.
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Fig. 1. Left: gray-scale image example with 3 regions delimited by
2 circles with radii r0 < r1. Right: estimated densities of the dark
region Γr0 (in blue) and its complement Γc

r0
(in green) using P (χΓ)

from Eq. (1) and bandwidth s = 10−2 (top) and s = 0.2 (bottom).

Figure 2, shows the energy landscape for circular regions
Γr of radius r. The leftmost figure shows this energy for the
Wasserstein distance, which provides the proper segmenta-
tion. Indeed, circle of radius r0 is the only local, and hence
global, maximum of the L2 (p = 2) Wasserstein distance
between the inside and outside regions. The situation is rad-
ically different with the KL divergence (rightmost figure),
where a spurious local minimum for r = r1 persists, unless
an extremely large kernel bandwidth is used. The weakness
of point-wise statistical metrics is thus apparent when local-
ized feature histograms come into play, and the smoothing
impacts significantly the spatial localization.
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Wasserstein Kullback-Leibler

Fig. 2. Energy W (P (χΓr
), P (χΓc

r
)) for a centered circle Γr of

radius r as a function of r. Each curve corresponds to a different
smoothing bandwidth s in the Parzen kernel estimator.

Natural image segmentation We illustrate now the inter-
est of our approach for multi-dimensional features, here us-
ing color distributions2. The results are displayed in Figure 3
where the initial contour C0 is drawn in red and the final one
C(,̇∞) in blue. For these examples we use |Θ| = 12 ran-
dom directions in 3-D for the computation of the sliced L2

Wasserstein distance (9). Experiments show that the color
distribution is split into two distinctive parts as expected.

2A more in-depth study is proposed in [12].

P (χΣ) P (χΓ) P (χΓc) P (χΣ) P (χΓ) P (χΓc)

Fig. 3. Top: color image segmentation results. Bottom: color dis-
tributions of respectively the whole image, the inside and the outside
of the region delimited by the final (blue) contour (only the two first
PCA components are displayed here).

Conclusion We have proposed a mathematically grounded
way to handle the statistical segmentation problem in ar-
bitrary dimension. Our framework combines wisely the
Wasserstein statistical distance and shape derivative tools.
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