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Abstract. In this paper we study continuum limits of the discretized p-Laplacian evolution problem on sparse
graphs with homogeneous Neumann boundary conditions. This goes far beyond known results by handling much
more general class of kernels, possibly singular, and graph sequences whose limit are the so-called Lq-graphons.
More precisely, we derive a bound on the distance between two continuous-in-time trajectories defined by two
different evolution systems (i.e. with different kernels, second member and initial data). Similarly, we provide a
bound in the case that one of the trajectories is discrete-in-time and the other is continuous. In turn, these results
lead us to establish error estimates of the full discretization of the p-Laplacian problem on sparse random graphs.
In particular, we provide rate of convergence of solutions for the discrete models to the solution of the continuous
problem as the number of vertices grows.
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1 Introduction

1.1 Problem formulation

Our main goal in this paper is to study the discretization of the following nonlinear diffusion prob-
lem on graphs, which we call the nonlocal p-Laplacian problem with homogeneous Neumann boundary
conditions:{

∂
∂tu(x, t) =

∫
ΩK(x,y)

∣∣u(y, t)− u(x, t)
∣∣p−2

(u(y, t)− u(x, t))dy + f(x, t), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,
(P)

where p ∈ [1,+∞[, Ω ⊂ Rd is a bounded domain, d ≥ 1, andK : Rd ×Rd → R is the kernel function.
Since our goal is to study nonlocal graph limits through the theory of Lq graphons, we assume in the
sequel Ω = [0, 1]d. In the setting of graphons, one can even take d = 1 and it will be seen that K is
the limit object for some convergent graph sequence {Gn}n, n ∈ N, whose meaning and form will be
specified in the sequel. In terms of application, we are motivated by understanding collective dynamics
in large ensembles of interacting dynamical systems with applications ranging from biology to physics
and computer science (see later for a detailed discussion and review).

Throughout, we assume that
(H.1) K is a nonnegative measurable function.
(H.2) K is symmetric, i.e.,K(x,y) = K(y,x).
(H.3) supx∈Ω

∫
ΩK(x,y)dy < +∞ .

By (H.2), it is straightforward to see that

sup
x∈Ω

∫
Ω
K(x,y)dy = sup

y∈Ω

∫
Ω
K(x,y)dx,
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and thus, (H.3) is equivalent to
sup
y∈Ω

∫
Ω
K(x,y)dx < +∞.

When the kernel is such that K(x,y) = J(x − y), where J : Rd → R, then (H.1), (H.2) and (H.3)
read:
(H’.1) J is nonnegative and measurable.
(H’.2) J is symmetric, i.e., J(−x) = J(x).
(H’.3)

∫
Ω−Ω J(x)dx < +∞ .

Recall that Ω − Ω is the Minkowski sum of Ω and −Ω. In the case Ω = [0, 1]d, we obviously have
Ω− Ω = [−1, 1]d.

Partial differential equations (PDEs) involving the nonlocal p-Laplacian operator have become more
and more popular both in the setting of Euclidean domains and on discrete graphs, as the p-Laplacian
problem has been possessing many important features shared by many practical problems in mathemat-
ics, physics, engineering, biology, and economy, such as continuum mechanics, phase transition phe-
nomena, population dynamics, see [1, 4, 5, 15, 21, 34, 22] and references therein. As explained in [21],
when K(x,y) = J(x − y) with J radially symmetric with compact support verifying J(0) > 0 and∫
Rd J(x)dx = 1, (P) has a nice interpretation in modeling the dispersal of organisms in space. In this
case, u(x, t) can be viewed as their density at point x and time t, J(x− y) is interpreted as the proba-
bility of jumping from position y to position x. In turn, the right hand side of (P) represents transport
due to long-range dispersal mechanisms, that is the rate at which organisms are arriving to location x
from any other place. For p = 2 ad p = 1, (P) correspond respectively to the nonlocal analogues of
the heat equation and the total variation flow with homogeneous Neumann boundary conditions. The
p-Laplacian, in its version on graphs, has found many applications in data processing, computer vision
and machine learning [13, 18, 19, 28, ?, ?, ?, ?].

1.2 Contributions

In this work, our aim is to quantitatively analyze evolution problems of the form (P) driven by the
p-Laplacian when discretized on sparse graphs, and to understand their continuum limit. The setting
of sparse graphs affords great flexibility in applications where graph sequences can be of many types
(biological, physical, social, meshes, images, etc.), whose details vary widely. More precisely:
• For p ∈ [1,+∞[, we first provide a general error bound between the solutions of two evolution
problems of the form (P) governed by two kernels and two initial data (see Theorem 5.1 and
Theorem 5.2).
• This paves the way to studying consistency of numerical solutions regarded as a discretization
of (P) with space discretization of the kernel K and initial data g, and forward and backward
Euler discretization in time (see Theorems 6.3, 6.4 and 6.5).
• Equipped with these results, and combining with probabilistic deviation arguments, we prove our
main result, Theorem 7.1, which establishes an error bound that holds in probability for solution of
a fully discretized problem on sparse random graphs (i.e., those with unbounded average degree)
whose limits are the so-called Lq-graphons [10, 11]. In a nutshell, this result states that error
estimate between the discrete solution and the continuous one (that of (P)) decomposes in three
terms. The first one corresponds to the error of spatial discretization of K, g and f . The second
term comes from discretization in time (with appropriate exponents depending on p). The last term
reflects the discretization of the problem on a sparse graph with n vertices. This term behaves as
(ρnn)−β/2 for any β ∈]0, 1[, which vanishes as n→ +∞ assuming that ρnn→ +∞ (the average
graph degree tends to infinity). As ρn is the edge density parameter, and the graph is sparser as
ρn → 0, our result not only shows that discretization error degrades as the graphs becomes sparser,
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but also quantifies this precisely. Of course, our analysis recovers the result on dense graphs by
just taking ρn = 1.

1.3 Relation to prior work

Kobayashi-type estimates

Motivated by either the existence, generation of nonlinear semigroups, or the algorithmic approxi-
mation of solutions to the abstract Cauchy problem{

∂
∂tv(t) +A(t)v(t) 3 f(t),

v(0) = g,
(CP)

where A(t) is a possibly time-dependent m-accretive operator with domain in a Banach space, several
authors have considered some special implicit discretization schemes in different settings of (CP) (au-
tonomous case, non-autonomous case, with or without f ); see for instance [16, 7, ?, 12, ?, 29, ?, 8, 32].
The evolution problem (P) we deal with is a particular case of (CP) in its autonomous case, i.e. the
operator A(t) ≡ ∆K

p does not depend on time.
In particular, the work of [29] in the autonomous case with f = 0 constructed sequences of approx-

imate solutions which converge in an appropriate sense to a solution to (CP). The key argument is an
inequality (known as Kobayashi inequality) that estimates the distance between arbitrary points of two
independent sequences generated by the so called proximal iterations, from which one can derive quanti-
tative estimates to compare the continuous and discrete trajectories using the backward Euler scheme, as
well as Lipschitz continuity properties of the solution trajectory. In this respect, all above cited of works
will only capture the time discretization error, while our aim is also to establish space-discretization
bounds. For this, one may think of using the results of [?] who generalized those of [29, ?] to the non-
autonomous case as well as to the case where the trajectories are defined by two abstract Cauchy systems
driven by two m-accretive operators A1 and A2. The latter bounds, expressed in our notation, are pro-
vided only in terms of the difference between minimal norm elements of A1g and A2g.

Our work goes much further by exploiting key properties of the p-Laplacian operator to get precise
estimates in terms of the data. This is more meaningful in our context where we recall that the goal is
to study the fully discretized nonlocal p-Laplacian problem on graphs. For the time discretization error,
not only we tackle forward Euler discretization, which is much easier to implement in practice (and what
many practitioners actually use), but even for backward Euler discretization our error estimates are strictly
better than the standard results in [16, 29, 32] (see the detailed discussion after the proof of Theorem 6.5).

Non-local continuum limits

Our motivation comes from understanding collective dynamics in large ensembles of interacting
dynamical systems which is a fundamental problem in nonlinear science with applications ranging from
biology (e.g. neural and genetic networks) to physics and chemistry (e.g. interacting particle systems)
and computer science (internet, data science, multiagent systems, opinion dynamics).

In particular, the work of [27, 31] focused on a nonlinear heat equation on sparse graphs, where
Lipschitz-continuity of the operator played key role in their analysis, starting from well-posedness to
consistency and error bounds. Our work differs from those above in many crucial aspects. The non-
local p-Laplacian evolution problem considered here is much more general and cannot be covered by
the approach of those previous papers because the lack of Lipschitzianity raises several challenges (in-
cluding well-posedness and error estimates). Unlike those previous works, we also consider both the
semi-discrete and fully-discrete versions with both forward and backward Euler approximations, that
we fully characterize, and develop novel proof techniques. Moreover, while those previous results are
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asymptotic using central limit theorem-type arguments, our results on the other hand are non-asymptotic,
rely on deviation inequalities with explicit convergence rates.

In [24], the authors derived the continuum limit of the p-Laplacian Cauchy problem, but was confined
to the restrictive case of bounded kernels, bounded initial data and dense graphs. The kernels, initial data
and graphs considered here are beyond reach of the approach developed in those works. Our setting is
much more challenging and has not been considered in the literature to the best of our knowledge. We are
then able to consider unbounded initial data and most importantly a far larger class of kernels (including
singular ones). This in turn will allow to handle sparse graph sequences, and our error bounds reveal the
key role played by the average degree in the convergence rate. Our framework also allows to consider the
non-smooth case of p = 1 where the p-Laplacian is set-valued, while this case could not be addressed by
[24]. Moreover, our error bounds are directly stated in L2(Ω) and not in Lp(Ω) as done in this previous
work. Our proof is also simpler, more elegant and the argument is made more transparent.

Motivated by applications in opinion dynamics, the authors in [?] used ideas from [?] to study a
collective dynamics model with a time-varying kernel and Lipschitz continuous operator. They showed
nonlocal continuum limits as the number of agents/vertices goes to infinity. Interestingly, those authors
used such this continuum limit to derive the mean-field limit one. In fact, the graph limit approach is
more general than the mean-field limit one and this subordination of the mean-field limit to the nonlocal
continuum graph limit is natural as pointed out to in [?]. Mean-field limits of interacting particle systems
using the theory of graphons is attracting increasing interest. Studying mean field limits for problems on
graphs with the p-Laplacian is an open problem that we leave to a future work.

Local continuum limits

The literature on deriving local continuum limits of variational and evolution problems on graphs,
including with the p-Laplacian operator, is also very active; see [13, ?, ?, ?, ?] and many others. The
motivation comes essentially from data science and machine learning problems. The idea is to take
K(x,y) = ε−dJ((x − y)/ε), ε > 0, for some radially symmetric kernel J , and to study the limit (in
an appropriate topology) as the number of vertices n grows to infinity and for ε vanishing with n at an
appropriate rate. This line of work is however fundamentally different from our perspective.

1.4 Paper organization

The rest of the paper is organized as follows. In Section 2 we start by reviewing some basic nota-
tions and recall some preliminary material necessary to our exposition. In Section 3 , we provide some
prerequisites on Lq-graphons and sparse K-random graph models that we are going to deal with. Sec-
tion 4 is devoted to study the well-posedness of the problem (P). In Section 5, we study stability of the
problem (P) with respect to sequences of kernelsK, initial data g and second member f . Error bounds
for the semi-discrete (i.e., space discretization of (K, g, f)) problem are established in Section 6.1, and
those for the fully discrete (time and space discretization) problem with forward and backward Euler
time-discretization are provided in Section 6.2. Section 7 is devoted to applying these results to fully
discretized problems on sparse random graph models.

2 Preliminaries

2.1 Basic notations

For q ∈ [1,+∞], and S ⊂ Rd, Lq(S) is the standard Banach space of Lebesgue q-integrable func-
tions on S. For a function F : S × S → R, we define the L∞,q(S2)-norm as∥∥F∥∥

L∞,q(S2)

def
= sup

x∈S

∥∥F (x, ·)
∥∥
Lq(S)

.
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If F is symmetric, then ∥∥F∥∥
L∞,q(S2)

= sup
y∈S

∥∥F (·,y)
∥∥
Lq(S)

.

L∞,q(S2) is the space of functions on S2 of bounded L∞,q(S2))-norm, which is of course a Banach
space.

Throughout the paper, we will often use Fubini’s theorem without explicitly referring to it.
C([0, T ];Lq(S)) denotes the space of functions u : S × [0, T ] → R which are uniformly con-

tinuous in time with values u(t, ·) in Lp(S). C([0, T ];Lq(S)) is naturally endowed with the norm∥∥u∥∥
C([0,T ];Lq(S))

def
= supt∈[0,T ]

∥∥u(·, t)
∥∥
Lq(S)

. Moreover, L1([0, T ];Lq(S)) is the space of functions

u : S × [0, T ]→ R such that
∥∥u∥∥

L1([0,T ];Lq(S))

def
=
∫ T

0

∥∥u(·, t)
∥∥
Lq(S)

dt < +∞.
We define the q-norm on Rm, q ∈ [1,+∞[, as

∥∥v∥∥
q

=

 1

m

∑
i∈[m]

|vi|q
 1

q

,

with the usual adaptation for q = +∞. (·)+ is the positive part function on R.
For a set-valued operator A : X → 2X on a Banach space X , its domain and range are respectively

dom(A) = {u ∈ X : Au 6= ∅} and ran(A) = A(X).

2.2 Projector and injector

Letn ∈ N∗ and denote themulti-index i = (i1, i2, . . . , id) ∈ [n]d. PartitionΩ into cells (hypercubes)

Ω
(n)
i

def
=

{
d∏

k=1

]xik−1,xik ] : i ∈ [n]d

}

of size hi
def
= |Ω(n)

i |, and maximal mesh size

δn
def
= max

i∈[n]d
max
k∈[d]

(|xik − xik−1|).

When the cells are equi-spaced, then hi = 1/nd.
We consider the operator Pn : L1(Ω)→ Rnd

(Pnu)i
def
=

1

hi

∫
Ω

(n)
i

u(x)dx. (1)

This operator can be also seen as a piecewise constant projector of u on the space of discrete functions.
For simplicity, and with a slight abuse of notation, we keep the same notation for the projector Pn :
L1(Ω2)→ Rnd×nd .

Our aim is to study the relationship between solutions of discrete approximations and the solution of
the continuum model. It is then convenient to introduce an intermediate model which is the continuum
extension of the discrete solution. Towards this goal, we consider the piecewise constant injector In of a
vector v ∈ Rnd into L2(Ω) defined as

Inv(x)
def
=
∑
i∈[n]d

viχΩ
(n)
i

(x), (2)

where we recall that χC is the characteristic function of the set C, i.e., takes 1 on C and 0 otherwise.
It is immediate to see that the operator InPn is the orthogonal projector on the subspace

Span
{
χ

Ω
(n)
i

: i ∈ [n]d
}
of L1(Ω). In turn, InPnu is the the piecewise constant approximation of u.
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Lemma 2.1. For a function u ∈ Lq(Ω), q ∈ [1,+∞], we have∥∥InPnu
∥∥
Lq(Ω)

≤
∥∥u∥∥

Lq(Ω)
. (3)

For a functionK ∈ L∞,q(Ω2), q ∈ [1,+∞], we have∥∥InPnK
∥∥
L∞,q(Ω2)

≤
∥∥K∥∥

L∞,q(Ω2)
. (4)

Proof: We prove (4) as (3) is a consequence of it. Let K = PnK. We have, ∀x ∈ Ω,∫
Ω

InPn|K(x,y)|qdy =

∫
Ω

∑
i,j

|Ki,j |qχΩ
(n)
i

(x)χ
Ω

(n)
j

(y)dy

=
∑
i

∑
j

∫
Ω

(n)
j

|Ki,j |qdy

χ
Ω

(n)
i

(x)

=
∑
i

∑
j

hj

∣∣∣∣∣ 1

hihj

∫
Ω

(n)
i ×Ω

(n)
j

K(x′,y′)dx′dy′

∣∣∣∣∣
q
χ

Ω
(n)
i

(x)

≤
∑
i

∑
j

1

hi

∫
Ω

(n)
i ×Ω

(n)
j

|K(x′,y′)|qdx′dy′
χ

Ω
(n)
i

(x)

=
∑
i

 1

hi

∫
Ω

(n)
i

∑
j

∫
Ω

(n)
j

|K(x′,y′)|qdy′
 dx′

χ
Ω

(n)
i

(x)

=
∑
i

(
1

hi

∫
Ω

(n)
i

(∫
Ω
|K(x′,y′)|qdy′

)
dx′

)
χ

Ω
(n)
i

(x)

≤
∥∥K∥∥q

L∞,q(Ω2)

∑
i

χ
Ω

(n)
i

(x) =
∥∥K∥∥q

L∞,q(Ω2)
.

Taking the supremum on the left-hand side yields the bound.

2.3 Lipschitz spaces

For N ∈ N∗, let S be a compact subset of RN . We introduce the Lipschitz spaces Lip(s, Lq(S)),
q ∈ [1,+∞], which contain functions with, roughly speaking, s "derivatives" in Lq(S) [17, Ch. 2,
Section 9].

Definition 2.1. For F ∈ Lq(S), q ∈ [1,+∞], we define the (first-order) Lq(S) modulus of smoothness
by

ω(F, h)q
def
= sup

z∈Rd,|z|<h

(∫
x,x+z∈S

|F (x+ z)− F (x)|q dx
)1/q

. (5)

The Lipschitz spaces Lip(s, Lq(S)) consist of all functions F for which

|F |Lip(s,Lq(S))
def
= sup

h>0
h−sω(F, h)q < +∞.

We restrict ourselves to values s ∈]0, 1] since for s > 1, only constant functions are in Lip(s, Lq(S)).
It is easy to see that |F |Lip(s,Lq(S)) is a semi-norm. Lip(s, Lq(S)) is endowed with the norm∥∥F∥∥

Lip(s,Lq(S))

def
=
∥∥F∥∥

Lq(S)
+ |F |Lip(s,Lq(S)) .

6



The space Lip(s, Lq(S)) is the Besov space Bs
q,∞ [17, Ch. 2, Section 10] which are very popular in

approximation theory. In particular, Lip(s, L1/s(S)) contains the space BV(S) of functions of bounded
variation on S; see [17, Ch. 2, Lemma 9.2]. Thus Lipschitz spaces are rich enough to contain functions
with both discontinuities and fractal structure.

We now state the following approximation error bounds whose proofs use standard arguments from
approximation theory; see [24, Section 6.2.1] for details.

Lemma 2.2. There exists a positive constantCs, depending only on s, such that for allF ∈ Lip(s, Lq(S)),
s ∈]0, 1], q ∈ [1,+∞],

‖F − InPnF‖Lq(S) ≤ Csδ
s
n |F |Lip(s,Lq(S)) . (6)

We denote by BV([0, T ];Lq(S)) the Banach space of functions f : Ω× [0, T ]→ R such that

Varq(f)
def
= sup

0≤t0<t1<···<tN≤T

N∑
i=1

∥∥f(·, ti)− f(·, ti−1)
∥∥
Lq(S)

< +∞,

endowed with the norm
∥∥f∥∥

BV([0,T ];Lq(S))

def
=
∥∥f(0)

∥∥
Lq(S)

+ Varq(f).

3 The sparse graph model

One of our fundamental goals in this paper is to understand the behaviour of (P) when discretized on a
sequence of networks. Such networks can be of many types (biological, physical, social, data processing,
etc.), whose details vary widely, but which bear similar structural phenomena. In turn, one may wonder
whether discretization of (P) is stable to the particular realization of the network and input data. It is
then natural to consider a sequence of graphs with size tending to infinity and ask whether the solutions
of discrete forms of (P) on these graphs converge to any meaningful sort of limit. This will allow us
in turn to establish a continuum limit of the solutions to these discrete evolution problems. For this, we
need to be equipped with an appropriate theory of graph limits.

3.1 Lq graphons and graph limits

In [10, 11], the authors laid the foundations of Lq graphons, For q ≥ 1, where the term Lq graphon
refers to a symmetric function K ∈ Lq([0, 1]2). They developed a theory of limits for sequences of
sparse graphs based on such graphons, which generalizes both the existing theory of bounded graphons
that are tailored to dense graph limits [30], and its extension in [9] to sparse graphs under a no dense
spots assumptions. The latter graph model was studied in [25] in the context of continuum limits of
p-Laplacian evolution problems on graphs. Nevertheless, the boundedness assumption of the graphon
underlying these graph models is still highly restrictive. In particular, it does not allow to handle singular
graphons and corresponding network models which have statistics governed by power laws. The theory
of Lq graphons allows to analyze graphs with power law degree distributions, hence providing a broadly
applicable limit theory for sparse graphs with unbounded average degree.

3.2 Sparse K-random graph models

We consider weighted graphs, which include as a special case simple unweighted graphs. Let G =
(V (G), E(G)), be a weighted graph with vertex set V (G) and edge setE(G) ⊆ V (G)2, respectively. In
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G, every edge (i, j) ∈ E(G) (allowing loops with i = j) is given a weight βij ∈ R+
1. We set βij = 0

whenever (i, j) 6∈ E(G).
The theory of random graphs was founded in the 50’s-60’s by Erdös and Rényi [20], who started

the systematic study of the space of graphs with n labeled vertices and M = M(n) edges, with all
graphs equiprobable. The aim is to turn the set of all graphs with n vertices into a probability space.
Intuitively we should be able to generate a sequence of graphs {Gn}n∈N randomly as follows: for each
edge (i, j) ∈ [n]2, we decide by some random experiment whether or not (i, j) shall be an edge of Gn,
these experiments are performed independently.

The idea underlying the sparseK-random graph model proposed by [11] is that each Lq graphonK
gives rise to a natural random graph model, which produces a sequence of sparse graphs converging to
K in an appropriate metric. Inspired by their work, we propose the following construction.

Definition 3.1. Fix n ∈ N∗, letK be an L1 graphon and ρn > 0. Take the equi-spaced partition of [0, 1]
in intervals ]xi−1, xi], i ∈ [n], where xi = i/n. Let K ∈ Rn×n+ be a weight matrix such that:

(Hw.1)
∥∥InK−K

∥∥
L1([0,1]2)

→ 0 as n→ +∞.
(Hw.2)

∥∥InK(x, ·)−K(x, ·)
∥∥
L1([0,1])

→ 0 uniformly in x ∈ [0, 1].
Generate the random graph

Gn = (V (Gn), E(Gn))
def
= G(n,K, ρn)

as follows: join each pair (i, j) ∈ [n]2 of vertices independently, with probability

P ((i, j) ∈ E(Gn)|X) = ρn
∧
Kij , where

∧
Kij

def
= min

(
Kij , ρ

−1
n

)
. (7)

Remark 3.1. In the original sparse K-random graph model defined in [11], the xi’s are random iid
samples drawn from the uniform distribution on [0, 1]. Moreover, Kij = K(xi, xj). In this case, it
follows from [11, Theorem 2.14(a)] (which relies on [26, Theorem]) that assumptions (Hw.1) holds with
probability 1.

Another interesting case is where K = PnK. Thanks to Lemma 2.1,
∥∥InPnK

∥∥
L1(Ω2)

≤
∥∥K∥∥

L1(Ω2)

with probability 1. Thus, the Lebesgue differentiation theorem and the dominated convergence theorem
allow to assert that InPnK converges toK in L1(Ω2). In turn, assumption (Hw.1) holds.

For appropriate choices of ρn, the graph model constructed according to Definition 3.1 allows to
sample both dense and sparse graphs from the graphonK. In particular, the sparsity assumption ρn → 0
reflects the fact that ρn needs to be arbitrarily close to zero in order to see the unbounded/singular part
of K. The assumption that nρn → +∞ means the average degree tends to infinity. To check this, the
average number of edges in this graph model is

E (E(G(n,K, ρn))) = ρnn
2

n−2
∑

(i,j)∈[n]2

∧
Kij


= ρnn

2
(∥∥InK

∥∥
L1([0,1]2)

−
∥∥ (InK− ρ−1

n

)
+

∥∥
L1([0,1]2)

)
.

By assumption (Hw.1), we have
∥∥InK

∥∥
L1([0,1]2)

=
∥∥K∥∥

L1([0,1]2)
+ o(1). Moreover, since ρn → 0, we

have from (8) that
∥∥ (InK− ρ−1

n

)
+

∥∥
L1([0,1]2)

= o(1). In turn,

E (E(G(n,K, ρn))) = ρnn
2
(∥∥K∥∥

L1([0,1]2)
+ o(1)

)
.

1In [11], the weights are even allowed to be negative, but we will not consider this situation which is meaningless in our
context.
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As expected, this gives rise to a sparse graph whose edge density is ρn → 0. For the average degree of
this graph model, arguing similarly to above, and using (Hw.2), we have

E
(
degGn(i)

)
= ρnn

n−1
∑
j∈[n]

∧
Kij


= ρnn

(∥∥InK(xi, ·)
∥∥
L1([0,1])

−
∥∥ (InK(xi, ·)− ρ−1

n

)
+

∥∥
L1([0,1])

)
= ρnn

(∫ 1

0
K(xi, y)dy + o(1)

)
.

As anticipated, the average degree is indeed unbounded since ρnn→ +∞ .

The above sequence of graphs generated also enjoys the following convergence result.

Proposition 3.1. Let K be an L1 graphon and K be a weight matrix such that (Hw.1) holds. If ρn > 0
with ρn → 0 and nρn → +∞ as n → +∞, then ρ−1

n G(n,K, ρn) converges almost surely to K in the
cut distance metric (see [11, 10] for details about this metric).

Proof: We essentially adapt the arguments of in the proof of [11, Theorem 2.14(b)]. More precisely,
since (Hw.1) holds, one has to show [11, (7.1)]. For this, we invoke [11, Lemma 7.3] by checking the
condition (7.3) therein. We have by sub-linearity of (·)+ that

1

n2

∑
(i,j)∈[n]2

(
Kij − ρ−1

n

)
+

=

∫
[0,1]2

(
InK(x, y)− ρ−1

n

)
+
dxdy

≤
∫

[0,1]2
(InK(x, y)−K(x, y))+ dxdy +

∫
[0,1]2

(
K(x, y)− ρ−1

n

)
+
dxdy

≤
∥∥InK−K

∥∥
L1([0,1]2)

+

∫
[0,1]2

(
K(x, y)− ρ−1

n

)
+
dxdy.

(8)
The right-hand side in the above display goes to 0 as n → +∞ by (Hw.1) and since ρn → 0. Indeed,
for every L > 0, the limit superior of the last term is bounded by

∥∥(K − L)+

∥∥
L1([0,1]2

, and this can be
made arbitrarily small by choosing L large.

Example 3.1. For an example that cannot be handled using L∞ graphons, and thus does not enter in
the framework of [24, 25], consider a K-random graph model G(n,K, ρn) constructed according to
Definition 3.1 with K = PnK, whereK(x, y) = J(x− y), J : z ∈ [−1, 1] 7→ 2−1(1−β)(2−β)|z|−β ,
β ∈]0, 1[. First, observe that the radially symmetric kernel J is singular but fulfills all assumptions
(H’.1), (H’.2) and (H’.3). In addition, by virtue of Remark 3.1, (Hw.1)-(Hw.2) also hold with∥∥K∥∥

L1([0,1]2)
= 1 and

∫ 1

0
K(x, y)dy = 2−1(2− β)

(
x1−β + (1− x)1−β

)
∈ 2−1(2− β)[1, 2β].

We also have the following convergence result in theL∞,1 norm that will be instrumental in Section 7.
According to the construction in Definition 3.1, we let Λij , (i, j) ∈ [n]2, i 6= j, be random variables such

that ρnΛij follows a Bernoulli distribution with parameter ρn
∧
Kij . For each row i ∈ [n], (Λij)j∈[n] are

independent.

Lemma 3.1. LetK be an L∞,1 graphon, i.e. it satisfies (H.1), (H.2) and (H.3). Take the weight matrix
K = PnK. Assume that ρn → 0 and nρn = ω ((log n)γ) for some γ > 1. Then with probability 1,∥∥InΛ

∥∥
L∞,1([0,1]2)

−
∥∥In

∧
K
∥∥
L∞,1([0,1]2)

→ 0.
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If, moreover, (Hw.2) holds, then ∥∥InΛ
∥∥
L∞,1([0,1]2)

→
∥∥K∥∥

L∞,1([0,1]2)
.

with probability 1.

Proof: For any ε > 0, we have by the union bound

P
(∣∣∥∥InΛ

∥∥
L∞,1([0,1]2)

−
∥∥In

∧
K
∥∥
L∞,1([0,1]2)

∣∣ ≥ ε)

= P

∣∣max
i

∑
j

Λij −max
i

∑
j

∧
Kij

∣∣ ≥ εn


= P

∣∣max
i

∑
j

ρnΛij −max
i

∑
j

ρn
∧
Kij

∣∣ ≥ ερnn


≤ P

max
i

∣∣∑
j

ρn(Λij −
∧
Kij)

∣∣ ≥ ερnn


≤
∑
i

P

∣∣∑
j

ρn(Λij −
∧
Kij)

∣∣ ≥ ερnn
 .

Since (ρnΛij)j are independent Bernoulli variables with means
(
ρn
∧
Kij

)
j

, it follows from the variant

of the Chernoff bound in [11, Lemma 7.1], that for every ε > 0,

P
(∣∣∥∥InΛ

∥∥
L∞,1([0,1]2)

−
∥∥In

∧
K
∥∥
L∞,1([0,1]2)

∣∣ ≥ ε)

≤ 2
∑
i

exp

−1

3
min

 ερnn

ρn
∑

j

∧
Kij

, 1

 ερnn


≤ 2n exp

−1

3
min

 ε∥∥In
∧
K
∥∥
L∞,1([0,1]2)

, 1

 ερnn


≤ 2n exp

(
−1

3
min

(
ε∥∥K∥∥

L∞,1([0,1]2)

, 1

)
εω ((log n)γ)

)
≤ 2n−ω((logn)γ−1),

since γ > 1, and where we used (7) and Lemma 2.1 to show that∥∥In
∧
K
∥∥
L∞,1([0,1]2)

≤
∥∥InK

∥∥
L∞,1([0,1]2)

=
∥∥InPnK

∥∥
L∞,1([0,1]2)

≤
∥∥K∥∥

L∞,1([0,1]2)
.

Invoking the (first) Borel-Cantelli lemma, we have the first claim. On the other hand,∣∣∥∥In
∧
K
∥∥
L∞,1([0,1]2)

−
∥∥K∥∥

L∞,1([0,1]2)

∣∣ ≤ ∥∥In
∧
K−K

∥∥
L∞,1([0,1]2)

≤
∥∥In

∧
K− InPnK

∥∥
L∞,1([0,1]2)

+
∥∥InPnK −K

∥∥
L∞,1([0,1]2)
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=
∥∥(InPnK − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+
∥∥InPnK −K

∥∥
L∞,1([0,1]2)

≤
∥∥(K − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+
∥∥(InPnK −K)+

∥∥
L∞,1([0,1]2)

+
∥∥InPnK −K

∥∥
L∞,1([0,1]2)

≤
∥∥(K − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+ 2
∥∥InPnK −K

∥∥
L∞,1([0,1]2)

.

Since ρn → 0 and in view of (Hw.2), the right-hand side in the above display goes to 0 as n → +∞.
Combined with the first claim we obtain the desired conclusion.

4 Well-posedness

4.1 The case p ∈]1,+∞[

To lighten notation, for 1 < p < +∞, we define the function

Ψ : x ∈ R 7→
∣∣x∣∣p−2

x = sign(x)
∣∣x∣∣p−1

,

where we take sign(0) = 0.
The next lemma summarizes key monotonicity and continuity properties of Ψ which will be instru-

mental to us.

Lemma 4.1. (i) Monotonicity: assume that the constant β satisfies β ∈ [max(p, 2),+∞[. Then for
all x, y ∈ R,

(Ψ(y)−Ψ(x)) (y − x) ≥ C1

∣∣y − x∣∣β (|y|+ |x|)p−β , (9)

where the constant C1 is sharp and given by

C1 = 22−p min(1, p− 1). (10)

In particular,

(Ψ(y)−Ψ(x)) (y − x) ≥ C1

{∣∣y − x∣∣p p ∈ [2,+∞[,∣∣y − x∣∣2 (|y|+ |x|)p−2 p ∈]1, 2].
(11)

(ii) Continuity: assume that the constant α satisfies α ∈ [0,min(1, p− 1)]. Then for all x, y ∈ R,∣∣Ψ(y)−Ψ(x)
∣∣ ≤ C2

∣∣y − x∣∣α (|y|+ |x|)p−1−α , (12)

where the constant C2 is sharp and given by

C2 = max(22−p, (p− 1)22−p, 1). (13)

In particular,

∣∣Ψ(y)−Ψ(x)
∣∣ ≤ C2

{∣∣y − x∣∣ (|y|+ |x|)p−2 p ∈ [2,+∞[,∣∣y − x∣∣p−1
p ∈]1, 2],

(14)

Proof:
(i) For (9), see [14, Theorem 2.2]. For (11), set β = p for p ≥ 2 and β = 2 otherwise in (9); see also

the seminal results of [23, Lemma 5.1 and Lemma 5.2].
(ii) For (12), see [14, Theorem 2.1]. For (14), set α = 1 for p ≥ 2 and α = p − 1 otherwise in (12);

see also the seminal results of [23, Lemma 5.3 and Lemma 5.4].
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We now collect some preliminary properties of the nonlocal p-Laplacian, an operator on L1(Ω) that
we denote for short as

∆K
p u(x, t) = −

∫
Ω
K(x,y)

∣∣u(y, t)− u(x, t)
∣∣p−2

(u(y, t)− u(x, t))dy.

Proposition 4.1. Assume thatK satisfies (H.1), (H.2) and (H.3).
(i) ∆K

p is positively homogeneous of degree p− 1.
(ii) If p > 2, Lp−1(Ω) ⊂ dom(∆K

p ) .
(iii) If 1 < p ≤ 2, dom(∆K

p ) = L1(Ω) and ∆K
p is closed in L1(Ω)× L1(Ω).

(iv) Let h : R→ R. Then for every u, v ∈ Lp(Ω),

0 ≤
∫

Ω

(
∆K
p u(x)−∆K

p v(x)
)
h(u(x)− v(x))dx

=
1

2

∫
Ω2

K(x,y) (Ψ(u(y)− u(x))−Ψ(v(y)− v(x))) (h(u(y)− v(y))− h(u(x)− v(x))) dydx.

(15)

If h is bounded, then this holds for any u, v ∈ dom(∆K
p ).

(v) For every u, v ∈ Lp(Ω),∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥

C

2

(∫
Ω2

K(x,y)
∣∣(u(y)− u(x))− (v(y)− v(x))

∣∣pdydx)max(1,2/p)

where

C =

C1 p ∈ [2,+∞[,

22p−5C1

∥∥K∥∥1−2/p

L∞,1(Ω2)

(∥∥u∥∥
Lp(Ω)

+
∥∥v∥∥

Lp(Ω)

)p−2
p ∈]1, 2[.

and C1 is the constant in (10). If u, v ∈ L∞(Ω), then∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥

C

2

(∫
Ω2

K(x,y)
∣∣(u(y)− u(x))− (v(y)− v(x))

∣∣2dydx)max(1,p/2)

,

where

C =

C1 p ∈ [2,+∞[,

2p−2C1

(∥∥u∥∥
L∞(Ω)

+
∥∥v∥∥

L∞(Ω)

)p−2
p ∈]1, 2[.

(vi) For p ∈]1, 2] and every u, v ∈ L2(Ω),∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥ C

∥∥∆K
p u−∆K

p v
∥∥p/(p−1)

L2(Ω)

where

C = 2
p−2

2(p−1)

(
C

1/2
2

∥∥K∥∥
L∞,1(Ω2)

) 1
1−p

(1− 1/p), and C2 is the constant in (13).
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(vii) For p ∈]1,+∞[, ∆K
p is completely accretive and satisfies the range condition

Lp(Ω) ⊂ ran(I + ∆K
p ). (16)

Consequently, the resolvent Jλ∆K
p

def
=
(
I + λ∆K

p

)−1, λ > 0, is single-valued on Lp(Ω) and non-
expansive in Lq(Ω) for all q ∈ [1,+∞].

Proof: (i), (ii) and (iii) follow from [2, Remark 2.2] which still holds for our larger class of kernelsK.
For (iv), see [24, Lemma A.2]. Monotonicity is immediate since h is non-decreasing.
The proof of (vii) is the same as that of [2, Theorem 2.4], where we invoke the monotonicity claim (i).
We now show (v)2. The case p ∈ [2,+∞[ is immediate by inserting Lemma 4.1(i) into (15) with

h(x) = x. For p ∈]1, 2], to lighten notation, denote the nonlocal gradient ∇NLu(x,y) = u(y)− u(x).
We then have by Lemma 4.1(i) that

C1|∇NL(u− v)(x,y)|2 ≤(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
(∇NLu(x,y)−∇NLv(x,y))

(
|∇NLu(x,y)|+ |∇NLv(x,y)|

)2−p
.
(17)

Taking the power p/2, multiplying byK and integrating, we get

C
p/2
1

∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy ≤∫
Ω2

(
K(x,y)

(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
(∇NLu(x,y)−∇NLv(x,y))

)p/2
(
K(x,y)1/p(|∇NLu(x,y)|+ |∇NLv(x,y)|)

)(2−p)p/2
dxdy.

It is easily seen that(
K ·

(
Ψ(∇NLu)−Ψ(∇NLv)

)
(∇NLu−∇NLv)

)p/2 ∈ L2/p(Ω2)(
K1/p · (|∇NLu|+ |∇NLv|)

)(2−p)p/2
∈ L2/(2−p)(Ω2).

It then follows from Hölder inequality and (15) that

C
p/2
1

∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy ≤

2

(∫
Ω

(
∆K
p u(x)−∆K

p v(x)
)

(u(x)− v(x))dx

)p/2
·(∫

Ω2

K(x,y)(|∇NLu(x,y)|+ |∇NLv(x,y)|)pdxdy
)(2−p)/2

.

We have by Jensen’s inequality∫
Ω2

K(x,y)(|∇NLu(x,y)|+ |∇NLv(x,y)|)pdxdy

≤ 4p−1

∫
Ω2

K(x,y)(|u(x)|p + |u(y)|p + |v(x)|p + |v(y)|p)dxdy

2This can be seen as a nonlocal analogue of [23, Proposition 5.1 and Proposition 5.2].
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≤ 22p−1
∥∥K∥∥

L∞,1(Ω2)

(∥∥u∥∥p
Lp(Ω)

+
∥∥v∥∥p

Lp(Ω)

)
,

whence we obtain

C1

(∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy
)2/p

≤

25−2p

(∫
Ω

(
∆K
p u(x)−∆K

p v(x)
)

(u(x)− v(x))dx

)
∥∥K∥∥(2−p)/p

L∞,1(Ω2)

(∥∥u∥∥
Lp(Ω)

+
∥∥v∥∥

Lp(Ω)

)2−p
.

Rearranging proves the bound. For u, v ∈ L∞(Ω) and p ∈ [2,+∞] we use that Lp(Ω) ⊂ L2(Ω). For
p ∈]1, 2], we embark from (17) and use that for all (x,y) ∈ Ω2,

|∇NLu(x,y)|+ |∇NLv(x,y)| ≤ 2
(∥∥u∥∥

L∞(Ω)
+
∥∥v∥∥

L∞(Ω)

)
.

Multiplying (17) byK, integrating and using (15), we conclude.
To prove (vi), we start by showing that ∆K

p is Hölder continuous with exponent p− 1 on L2(Ω). We
have by Jensen inequality (twice) and (14),

∥∥∆K
p u−∆K

p v
∥∥2

L2(Ω)
=

∫
Ω

∣∣∣∣∫
Ω
K(x,y)

(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
dy

∣∣∣∣2 dx
≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

K(x,y)
(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)2
dxdy

≤ C2

∥∥K∥∥
L∞,1(Ω2)

∫
Ω2

K(x,y)
(
∇NL(u− v)(x,y))

)2(p−1)
dxdy

≤ 2pC2

∥∥K∥∥
L∞,1(Ω2)

∫
Ω2

K(x,y) (u(x)− v(x))2(p−1) dxdy

≤ 2pC2

∥∥K∥∥2

L∞,1(Ω2)

(∫
Ω

(u(x)− v(x))2 dx

)p−1

= 2pC2

∥∥K∥∥2

L∞,1(Ω2)

∥∥u− v∥∥2(p−1)

L2(Ω)
. (18)

We are now in position to invoke [6, Corollary 18.14(i)⇒(v)] to show that the claimed inequality holds.

Solutions of (P) will be understood in the following sense:

Definition 4.1. Let p ∈]1,+∞[. A solution of (P) in [0, T ] is a function

u ∈ C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω)),

that satisfies u(x, 0) = g(x) a.e. x ∈ Ω and

∂

∂t
u(x, t) = −∆K

p u(x, t) + f(x, t) a.e. in Ω×]0, T [.

Such a solution is also a strong solution (see [3, Definition A.3]).

Themain result of existence and uniqueness of a global solution, that is, a solution on [0, T ] for T > 0
is stated in the following theorem.

Theorem 4.1. Suppose that p ∈]1,+∞[ and assumptions (H.1), (H.2) and (H.3) hold. Let g ∈ Lp(Ω)
and f ∈ L1([0, T ];Lp(Ω)).
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(i) For any T > 0, there exists a unique strong solution in [0, T ] of (P).
(ii) Moreover, for q ∈ [1,+∞], if gi ∈ Lq(Ω) and fi ∈ L1([0, T ];Lq(Ω)), i = 1, 2, and ui is the

solution of (P) with data (fi, gi), then∥∥u1(·, t)− u2(·, t)
∥∥
Lq(Ω)

≤
∥∥g1 − g2

∥∥
Lq(Ω)

+
∥∥f1 − f2

∥∥
L1([0,T ];Lq(Ω))

, ∀t ∈ [0, T ]. (19)

Proof: The proof follows the same lines as that of [2, Theorem 1.2] extended to the case where f 6≡ 0
thanks to the results of [7], where we invoke Proposition 4.1(ii), (iii) and (vii).

Remark 4.1. In [2] (see also [3, Chapter 6]), the authors impose the following stringent assumptions:
K(x,y) = J(x − y), where J is nonnegative, continuous, radially symmetric, compactly supported,
J(0) > 0 and

∫
Rd J(x)dx < +∞. Actually, these assumptions are not needed for existence and unique-

ness. The particular form J(x − y) of the kernel is not needed. Continuity with radial symmetry and
support compactness play a pivotal role to study convergence to the local p-Laplacian problem in [2,
Theorem 1.5]. In addition, J(0) > 0 was mandatory to prove a Poincaré-type inequality in [2, Proposi-
tion 4.1]. Even for the form J(x− y), our assumptions (H’.1), (H’.2) and (H’.3) are weaker than those
of [2]. This discussion remains true also for the case p = 1.

4.2 The case p = 1

We will need to define subdifferential of the absolute value function on R, which is the well-known
set-valued mapping ∂| · | : R→ 2R,

∂| · |(x) =


1 x > 0

[−1, 1] x = 0

−1 x < 0.

It will be convenient to denote the 1-Laplacian ∆K
1 . This is a set-valued operator in L1(Ω)×L1(Ω) such

that η ∈ ∆K
1 u if and only if

η(x) = −
∫

Ω
K(x,y)w(x,y)dy a.e. in Ω,

for a subgradient function w satisfying
∥∥w∥∥

L∞(Ω2)
≤ 1, w(x,y) = −w(y,x), and

w(x,y) ∈ ∂| · |(u(y)− u(x)).

Solutions of (P) will be understood in the following sense.

Definition 4.2. A solution of (P) for p = 1 in [0, T ] is a function

u ∈ C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω)),

that satisfies u(x, 0) = g(x) for a.e. x ∈ Ω and

∂

∂t
u(x, t) = −η(x, t) + f(x, t) a.e. in Ω×]0, T [,

where η(·, t) ∈ ∆K
1 u(·, t).
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Observe that for p = 1, the evolution problem (P) reads{
∂
∂tu(x, t) =

∫
ΩK(x,y) sign(u(y, t)− u(x, t))dy + f(x, t), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

where

sign(x) =

{
x
|x| x 6= 0

0 x = 0.

Thus, it satisfies
∂

∂t
u(·, t) ∈ −∆K

1 u(·, t).

In the same vein as Proposition 4.1, the 1-Laplacian enjoys the following properties.

Proposition 4.2. Assume thatK satisfies (H.1), (H.2) and (H.3).
(i) dom(∆K

1 ) = L1(Ω) and (the graph of) ∆K
1 is closed in L1(Ω)× L1(Ω).

(ii) Let h ∈ C1(R) be a nondecreasing function. Then for every ui ∈ L1(Ω) and any ηi ∈ ∆K
1 ui,

i = 1, 2,

0 ≤
∫

Ω
(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

=
1

2

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y)) (h(u1(y)− u2(y))− h(u1(x)− u2(x))) dxdy.

(20)

where wi are the corresponding subgradient functions defined above. In particular,∫
Ω2

K(x,y)wi(x,y)ui(x)dxdy = −1

2

∫
Ω2

K(x,y)
∣∣ui(y)− ui(x)

∣∣dxdy.
(iii) ∆K

1 is completely accretive and satisfies the range condition

L∞(Ω) ⊂ ran(I + ∆K
1 ). (21)

Proof: For (i), see [2, Remark 2.8] which still holds for our class of kernelsK.
The proof of (iii) is again the same as that of [2, Theorem 2.9], where we invoke the monotonicity

claim (ii) to which we turn now.
For any v ∈ L1(Ω), we have the integration by parts formula∫

Ω2

K(x,y)wi(x,y)(v(y)− v(x))dxdy (22)

= −
∫

Ω2

K(y,x)wi(y,x)v(y)dydx−
∫

Ω2

K(x,y)wi(x,y)v(x)dxdy (23)

= −2

∫
Ω2

K(x,y)wi(x,y)v(x)dxdy. (24)

Taking v(x) = h(u1(x)− u2(x)) in (24) with w1 and w2, and then taking the difference, we arrive at

− 2

∫
Ω

(∫
Ω
K(x,y)(w1(x,y)− w2(x,y))dy

)
h(u1(x)− u2(x))dx

= 2

∫
Ω

(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

16



=

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y)) (h(u1(y)− u2(y))− h(u1(x)− u2(x))) dxdy.

By the mean-value theorem applied to h, we get

= 2

∫
Ω

(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

=

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y))h′(ζ(x,y)) ((u1(y)− u2(y))− (u1(x)− u2(x))) dxdy

=

∫
Ω2

K(x,y)h′(ζ(x,y)) (w1(x,y)− w2(x,y)) ((u1(y)− u1(x))− (u2(y)− u2(x))) dxdy,

where ζ(x,y) is an intermediate value between u1(y)−u2(y) and u1(x)−u2(x). Since h is increasing,
that wi(x,y) ∈ ∂| · |(ui(y)−ui(x)), and ∂| · | is a monotone operator, we get the claimed monotonicity.

To get the particular identity, we specialize (24) by taking v = ui, which entails

−
∫

Ω2

K(x,y)wi(x,y)(ui(y)− ui(x))dxdy = 2

∫
Ω2

K(x,y)wi(x,y)ui(x)dxdy.

We finally use the equivalent characterization of ∂
∣∣ · ∣∣, which originates from the Fenchel’s identity since∣∣ · ∣∣ is positively homogeneous,

∂
∣∣ · ∣∣(x) =

{
ξ ∈ R :

∣∣ξ∣∣ ≤ 1 and ξx =
∣∣x∣∣} .

Applying this identity with x = ui(y)− ui(x) and ξ = wi(x,y) gives the claim.

Theorem 4.2. Suppose that p = 1, and assumptions (H.1), (H.2) and (H.3) hold. Let g ∈ L1(Ω) and
f ∈ L1([0, T ];L1(Ω)). For any T > 0, there exists a unique solution in [0, T ] of (P) in the sense of
Definition 4.2.

Proof: The proof is an adaptation of [2, Theorem 1.4] to the case where f 6≡ 0 thanks to the results
of [7], where we invoke Proposition 4.2(i) and (iii).

5 Continuous-continuous estimates

In this section, we provide an estimate that compares solutions of two p-Laplacian evolution problems
of the form (P) with two different kernels and initial data. This estimate will be instrumental to derive
error bounds in the totally discrete case.

5.1 The case p ∈]1,+∞[

We have the following error bounds and convergence result.

Theorem 5.1. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K and data (f, g).
Let un be a sequence of solutions to (P) with kernels Kn and data (fn, gn). Assume that K and Kn

satisfy (H.1), (H.2) andK,Kn ∈ L∞,2(Ω2), and that either one of the following holds:
(a) p ∈]1, 2[, g, gn ∈ L2(Ω), and f, fn ∈ L1([0, T ];L2(Ω));
(b) p ≥ 2, g, gn ∈ L2(p−1)(Ω) and f, fn ∈ L1([0, T ];L2(p−1)(Ω));
(c) g, gn ∈ L∞(Ω) and f, fn ∈ L1([0, T ];L∞(Ω)).

Then, the following hold.
(i) u and un are the unique solutions (P) with respectively data (f, g) and (fn, gn).
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(ii) We have the error estimate

∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT

{∥∥Kn −K
∥∥
L∞,2(Ω2)

, under (a) or (b)∥∥Kn −K
∥∥
L2(Ω2)

, under (c)
(25)

where C is positive constant that may depend only on p, g and f .
(iii) Moreover, if (c) holds, supn∈N

∣∣gn(x)
∣∣ < +∞ a.e. on Ω and gn → g pointwise a.e. on Ω,

supn∈N
∣∣fn(x, t))

∣∣ < +∞ a.e. on Ω × [0, T ] and fn → f pointwise a.e. on Ω × [0, T ], and the
sequence

{
|Kn|2

}
n∈N is uniformly integrable over Ω2 andKn → K pointwise a.e. on Ω2. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Remark 5.1. Observe that since L∞(Ω) ⊂ L2(Ω) and L2(p−1)(Ω) ⊂ L2(Ω) for p ≥ 2, then the first
two terms involved in (25) provide a non-trivial bound. Similarly, since L∞,2(Ω2) ⊂ L2(Ω2), the last
term in the bound for case (c) is also non-trivial. In fact, both bounds in (25) can be summarized in one
bound; the first one. However, the second bound for case (c) is obviously sharper.

Proof: In the proof, C is any positive constant that may depend solely on p and g.
(i) Since L∞,2(Ω2) ⊂ L∞,1(Ω2), assumption (H.3) holds for both K and Kn. We also have the

embeddings
• L2(Ω) ⊂ Lp(Ω) under (a),
• L2(p−1)(Ω) ⊂ Lp(Ω) under (b), and
• L∞(Ω) ⊂ Lp(Ω) under (c) .

Thus g, gn ∈ Lp(Ω) and f, fn ∈ L1([0, T ];Lp(Ω)). Existence and uniqueness of the solutions u
and un in the sense of Definition 4.1 is a consequence of Theorem 4.1.

(ii) Denote the error function ξn(x, t) = un(x, t)− u(x, t), then from (P), we have a.e.

∂ξn(x, t)

∂t
= −

(
∆Kn
p (un(x, t))−∆K

p (u(x, t))
)

+ fn(x, t)− f(x, t)

= −
(
∆Kn
p (un(x, t))−∆Kn

p (u(x, t))
)
−
(
∆Kn
p (u(x, t))−∆K

p (u(x, t))
)

+ fn(x, t)− f(x, t).

(26)

Multiplying both sides of (26) by ξn(x, t) and integrating, we get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Kn
p un(x, t)−∆Kn

p u(x, t)
)

(un(x, t)− u(x, t))dx

+

∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy

+

∫
Ω

(fn(x, t)− f(x, t)) ξn(x, t)dx.

(27)

Since g, gn ∈ Lp(Ω) and f, fn ∈ L1([0, T ];Lp(Ω)), un(·, t), u(·, t) ∈ Lp(Ω) for any t ∈ [0, T ]
thanks to (19). We can then apply Proposition 4.1(iv) with h(x) = x to assert that the first term
on the right-hand side of (27) is nonpositive. Let us now bound the second term.
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• Case (c): in this case
∥∥u∥∥

C([0,T ];L∞(Ω))
≤
∥∥g∥∥

L∞(Ω)
+
∥∥f∥∥

L1([0,T ];L∞(Ω))
thanks to (19),

and we get from Cauchy-Schwartz inequality that∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L∞(Ω)

∫
Ω2

∣∣Kn(x,y)−K(x,y)
∣∣∣∣ξn(x, t)

∣∣dxdy
≤ 2p−1

(∥∥g∥∥
L∞(Ω)

+
∥∥f∥∥

L1([0,T ];L∞(Ω))

)p−1 ∥∥Kn −K
∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

= C
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

(28)

• Case (a) or (b): applying again Cauchy-Schwartz inequality we obtain∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤
(∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2(∫
Ω2

|Kn(x,y)−K(x,y)|2|ξn(x, t)|2dxdy
)1/2

=

(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2(∫
Ω

(∫
Ω
|Kn(x,y)−K(x,y)|2dy

)
|ξn(x, t)|2dx

)1/2

=

(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2 ∥∥Kn −K
∥∥
L∞,2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

On the one hand, under (a), Jensen’s inequality applied to the concave function x ∈ R+ 7→
xp−1 entails(∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2

≤
(∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2dxdy)(p−1)/2

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L2(Ω)
≤ 2p−1

(∥∥g∥∥
L2(Ω)

+
∥∥f∥∥

L1([0,T ];L2(Ω))

)p−1
,

where we used (19) in the last inequality. On the other hand, under (b), we have(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L2(p−1)(Ω)

≤ 2p−1
(∥∥g∥∥

L2(p−1)(Ω)
+
∥∥f∥∥

L1([0,T ];L2(p−1)(Ω))

)p−1
.

In turn, under either (a) or (b), we have the bound∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤ C
∥∥Kn −K

∥∥
L∞,2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.
(29)

Inserting (28) and (29) into (27), ignoring the first term which is non-positive as argued above, and
using Cauchy-Schwartz inequality on the last term, we obtain

∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

+

{
C
∥∥Kn −K

∥∥
L∞,2(Ω2)

, under (a) or (b)
C
∥∥Kn −K

∥∥
L2(Ω2)

, under (c).

Integrating this inequality on [0, t] and taking the supremum over t ∈ [0, T ], we get (25).
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(iii) By assumptions on {Kn}n∈N, we are in position to apply the Vitali convergence theorem [33,
p. 133] in L2(Ω2) to get that

∥∥Kn − K
∥∥
L2(Ω2)

→ 0 as n → +∞. We have by assumption that
the sequence {gn}n∈N is dominated by a constant function. The latter is obviously in L2(Ω) since
|Ω| < +∞. It then follows from the dominated convergence theorem that

∥∥gn − g∥∥L2(Ω)
→ 0 as

n→ +∞. We now turn to the sequence fn. We have∥∥fn − f∥∥L1([0,T ];L2(Ω))
≤ T 1/2

∥∥fn − f∥∥L2([0,T ];L2(Ω))
= T 1/2

∥∥fn − f∥∥L2(Ω×[0,T ])
.

Arguing as for gn, using our assumptions, entails again that
∥∥fn − f∥∥L1([0,T ];L2(Ω))

→ 0 as n →
+∞. Passing to the limit in the second inequality of (25), the claim follows.

In the case where the kernel takes the formK(x,y) = J(x−y), we have the following consequence
of Theorem 5.1.

Corollary 5.1. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K(x,y) = J(x− y)
and data (f, g). Let un be a sequence of solutions to (P) with kernels Kn(x,y) = Jn(x − y) and
data (fn, gn). Assume that J and Jn satisfy (H’.1), (H’.2) and J, Jn ∈ L2(Ω − Ω), and that either one
of (a), (b) or (c) in Theorem 5.1 holds. Then, the following hold.

(i) u and un are the unique solutions of the corresponding evolution problems.
(ii) We have the error estimate∥∥un−u∥∥C([0,T ];L2(Ω))

≤
∥∥gn−g∥∥L2(Ω)

+
∥∥fn−f∥∥L1([0,T ];L2(Ω))

+CT
∥∥Jn−J∥∥L2(Ω−Ω)

, (30)

where C is positive constant that may depend only on p, g and f .
(iii) Moreover, if the sequence

{
|Jn|2

}
n∈N is uniformly integrable over Ω−Ω, Jn → J pointwise a.e.

on Ω − Ω, gn → g pointwise a.e. on Ω, fn → f pointwise a.e. on Ω × [0, T ], and either one of
the following holds:
(a’) p ∈]1, 2[,

{
|gn|2

}
n∈N (resp.

{
|fn|2

}
n∈N) is uniformly integrable over Ω (resp. Ω× [0, T ]);

(b’) p ≥ 2,
{
|gn|2(p−1)

}
n∈N (resp.

{
|fn|2(p−1)

}
n∈N) is uniformly integrable over Ω (resp. Ω ×

[0, T ]);
(c’) supn∈N

∣∣gn(x)
∣∣ < +∞ a.e. on Ω and supn∈N

∣∣fn(x, t)
∣∣ < +∞ a.e. on Ω× [0, T ].

Then
lim

n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Proof:
(i) We argue in the same way as in the proof Theorem 5.1 since L2(Ω − Ω) ⊂ L1(Ω − Ω) implies

that assumption (H’.3) holds for both J and Jn.
(ii) The error bound (30) is a specialization of (25) since∫

Ω
|Kn(x,y)−K(x,y)|2dy =

∫
Ω−x
|Jn(z)− J(z)|2dz ≤

∥∥Jn − J∥∥2

L2(Ω−Ω)
.

Thus ∥∥Kn −K
∥∥
L2(Ω2)

≤
∥∥Kn −K

∥∥
L∞,2(Ω2)

≤
∥∥Jn − J∥∥L2(Ω−Ω)

.

(iii) Case (a’) follows from the Vitali convergence theorem applied to Jn, gn and fn. The latter argu-
ment also applies to case (b’) since L2(p−1)(Ω − Ω) ⊂ L2(Ω − Ω), L2(p−1)(Ω) ⊂ L2(Ω) and
L2(p−1)(Ω × [0, T ]) ⊂ L1([0, T ];L2(Ω)). Case (c’) uses the Vitali convergence theorem on Jn
and the dominated convergence theorem on gn and fn as argued in the proof of Theorem 5.1(iii).
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Remark 5.2. At this stage, we only relied on the monotonicity property of ∆K
p in Proposition 4.1(iv)

to get our bounds. One may then wonder if the stronger notions of monotonicity established in Propo-
sition 4.1(v) can yield bounds better than (30). We answer this question positively by (slightly) improv-
ing the dependence on T for p ∈]1, 2] but at the price of more stringent assumptions on J . For this,
we embark from (27), bound all terms as in the proof of Theorem 5.1, use Proposition 4.1(v) and that
L2(Ω) ⊂ Lp(Ω) in this case to get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+ C1

∫
Ω2

J(x− y)
∣∣∇NLξn(x,y)

∣∣2dydx ≤(
C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

,

for two positive constants C,C1 (in the following Ci is a positive constant). Assume in addition that J is
compactly supported and J(0) > 0. One can then invoke the Poincaré inequality [2, Proposition 4.1] to
show that

C2

∥∥ξn(·, t)−
∫

Ω
ξn(x, t)dx

∥∥2

L2(Ω)
≤
∫

Ω2

J(x− y)
∣∣∇NLξn(x,y)

∣∣2dydx.
Thus

1

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤
∥∥ξn(·, t)−

∫
Ω
ξn(x, t)dx

∥∥2

L2(Ω)
+

(∫
Ω
ξn(x, t)dx

)2

.

Altogether, we arrive at

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+
C1C2

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤(

C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

+ C1C2

(∫
Ω
ξn(x, t)dx

)2

.

By integrating (P), it is easy to see by applying Proposition 4.1(v) and (iv) with h(x) = 1 that the
solution of (P) preserves the total mass in Ω, whence we deduce∫

Ω
ξn(x, t)dx =

∫
Ω

(gn(x)− g(x)) +

∫ t

0

∫
Ω

(fn(x, s)− f(x, s))dxds.

If (f, g) and (fn, gn) have the same mass, we get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+
C1C2

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤(

C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

,

and therefore
∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

+
C1C2

2

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
(
C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)
.

Applying Gronwall’s lemma yields the estimate∥∥un(x, t)− u(x, t)
∥∥
L2(Ω)

≤
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ exp(−C1C2t/2)
∥∥gn − g∥∥L2(Ω)

+
2C

C1C2
(1− exp(−C1C2t/2))

∥∥Jn − J∥∥L2(Ω−Ω)
.

This bound is clearly better than (30). In turn,∥∥un−u∥∥C([0,T ];L2(Ω))
≤
∥∥fn−f∥∥L1([0,T ];L2(Ω))

+max

(∥∥gn − g∥∥L2(Ω)
,

2C

C1C2

∥∥Jn − J∥∥L2(Ω−Ω)

)
.

The same reasoning as above can be carried out to sharpen the error bounds for the discrete problems
in Section 6. Nevertheless, this will not be detailed further in this work.
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5.2 The case p = 1

We now turn to the case p = 1.
Theorem 5.2. Let u be a solution of (P) for p = 1 with kernelK and data (f, g). Let un be a sequence
of solutions to (P) for p = 1 with kernels Kn and data (fn, gn). Assume that K and Kn satisfy (H.1)
and (H.2), that K,Kn ∈ L∞,2(Ω2), g, gn ∈ L2(Ω) and f, fn ∈ L1([0, T ];L2(Ω)). Then, the following
hold.

(i) u and un are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ T
∥∥Kn −K

∥∥
L2(Ω2)

. (31)

(iii) Moreover, if Kn → K pointwise a.e. on Ω2, gn → g pointwise a.e. on Ω, fn → f pointwise
a.e. on Ω × [0, T ], and

{
|Kn|2

}
n∈N is uniformly integrable over Ω2,

{
|gn|2

}
n∈N is uniformly

integrable on Ω, and
{
|fn|2

}
n∈N is uniformly integrable on Ω× [0, T ]. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Proof:
(i) Existence and uniqueness of u and un follow from Theorem 4.2 where we argue as in Theo-

rem 5.1(i) since g, gn ∈ L2(Ω) ⊂ L1(Ω) andK,Kn ∈ L∞,2(Ω2) ⊂ L∞,1(Ω2).
(ii) Denote the error function ξn(x, t) = un(x, t)− u(x, t), then from Definition 4.2, we have a.e.

∂ξn(x, t)

∂t
=

∫
Ω

(Kn(x,y)wn(x,y, t)dy −K(x,y)w(x,y, t)) dy + fn(x, t)− f(x, t)

=

∫
Ω
Kn(x,y) (wn(x,y, t)− w(x,y, t)) dy +

∫
Ω

(Kn(x,y)−K(x,y))w(x,y, t)dy

+ fn(x, t)− f(x, t),

(32)
where w (resp. wn) is the subgradient function associated to u (resp. un) as in Definition 4.2.
Multiplying both sides of (32) by ξn(x, t) and integrating, we get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
=

∫
Ω2

Kn(x,y) (wn(x,y, t)− w(x,y, t)) ξn(x, t)dxdy

+

∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξn(x, t)dxdy

+

∫
Ω

(fn(x, t)− f(x, t)) ξn(x, t)dx.

(33)

In view of the monotonicity claim in Proposition 4.2(ii), we have∫
Ω2

Kn(x,y) (wn(x,y, t)− w(x,y, t)) ξn(x, t)dxdy ≤ 0.

Let us turn to bounding the second term. We have by the Cauchy-Schwartz inequality and that∥∥w∥∥
L∞(Ω2×]0,T [)

≤ 1,∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξn(x, t)dxdy
∣∣

≤
∫

Ω2

∣∣Kn(x,y)−K(x,y)
∣∣∣∣ξn(x, t)

∣∣dxdy
≤
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

(34)
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Inserting (34) into (33), ignoring the first term which is non-positive as argued above, and using
Cauchy-Schwartz inequality on the last term, we obtain

∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

+
∥∥Kn −K

∥∥
L2(Ω2)

.

Integrating this inequality on [0, t] and taking the supremum over t ∈ [0, T ], we get (31).
(iii) We argue again using the Vitali convergence theorem since K,Kn ∈ L∞,2(Ω2) ⊂ L2(Ω2) and

L1([0, T ];L2(Ω)) ⊂ L2(Ω× [0, T ]).

The following corollary is immediate in the same vein as Corollary 5.1.

Corollary 5.2. Let u be a solution of (P) for p = 1 with kernel K(x,y) = J(x − y) and data (f, g).
Let un be a sequence of solutions to (P) for p = 1 with kernels Kn(x,y) = Jn(x − y) and data
(fn, gn). Assume that J and Jn satisfy (H’.1), (H’.2) and J, Jn ∈ L2(Ω − Ω), that g, gn ∈ L2(Ω) and
f, fn ∈ L1([0, T ];L2(Ω)). Then, the following hold.

(i) u and un are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ T
∥∥Jn − J∥∥L2(Ω−Ω)

. (35)

(iii) Moreover, if Jn → J pointwise a.e. on Ω − Ω, gn → g pointwise a.e. on Ω, fn → f pointwise
a.e. on Ω× [0, T ], and

{
|Jn|2

}
n∈N is uniformly integrable over Ω− Ω,

{
|gn|2

}
n∈N is uniformly

integrable on Ω, and
{
|fn|2

}
n∈N is uniformly integrable on Ω× [0, T ]. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

6 Error bounds for the discrete problem

Let K ∈ Rnd×nd and g ∈ Rnd be discrete approximations of, respectively, the kernel K and initial
data g in (P), on a regular mesh of size δn. Typically, one can take K = PnK and g = Png. For
1 < p <∞, the discrete p-Laplacian operator with kernel K is

∆̂
K

p : u ∈ Rn
d 7→ −

∑
j∈[n]d

hjKij

∣∣uj − ui

∣∣p−2
(uj − ui) = −

∑
j∈[n]d

hjKijΨ(uj − ui).

In the same way, we define the discrete 1-Laplacian operator as the set-valued operator ∆̂
K

1 : Rnd →
2R

nd such that η ∈ ∆̂
K

1 u if and only if

ηi = −
∑

j∈[n]d

hjKijwij ,

where
∥∥w∥∥∞ ≤ 1, wij = −wji, and

wij ∈ ∂| · |(uj − ui).

By construction, we have the following simple lemma whose proof is immediate.

Lemma 6.1. For any K ∈ Rnd×nd and u ∈ Rnd , the following holds:
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(i) If 1 < p < +∞,
In∆̂

K

p (u) = ∆InK
p (Inu).

(ii) If p = 1,

Inη(x) = −
∫

Ω
InK(x,y)Inw(x,y)dy, where Inw(x,y) ∈ ∂| · |(Inu(y)− Inu(x)).

Moreover,
∥∥Inw

∥∥
L∞(Ω2)

≤ 1 and Inw(x,y) = −Inw(y,x).

6.1 The semi-discrete problem

Case p ∈]1,+∞[: We start with the case 1 < p < +∞ and consider the space semi-discretization
of (P), {

∂
∂tu(t) = −∆̂

K

p u(t) + f(t), t > 0,

u(0) = g.
(PSD

p )

where u : t ∈ R+ 7→ u(t) ∈ Rnd and similarly for f .
Our aim is to compare the solutions of problems (P) and (PSD

p ). The solution of (PSD
p ) being discrete

in space, we consider its continuum space extensions of u and f on Ω for any t > 0 as

un(x, t) = (Inu(t))(x) and fn(x, t) = (Inf(t))(x). (36)

Theorem 6.1. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernelK and data (f, g), and
u that of (PSD

p ) with K = PnK, g = Png and f(t) = Pnf(·, t) for t ∈ [0, T ]. Let un and fn as defined
in (36). Assume thatK satisfies (H.1), (H.2) andK ∈ L∞,2(Ω2), and that g and f satisfy either one of
the conditions (a), (b) or (c) in Theorem 5.1. Then, the following hold.

(i) u and un are the unique solutions of (P) with data respectively (f, g) and (fn, InPng).
(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))

≤
∥∥InPng − g

∥∥
L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT

{∥∥InPnK −K
∥∥
L∞,2(Ω2)

, under (a)-(b)∥∥InPnK −K
∥∥
L2(Ω2)

, under (c)
(37)

where C is positive constant that depends only on p, g and f .
(iii) If, moreover, g ∈ L∞(Ω)∩Lip(s, L2(Ω)),K ∈ Lip(s, L2(Ω2)) and f(·, t) ∈ L∞(Ω)∩Lip(s, L2(Ω))

for every t ∈ [0, T ], then ∥∥un − u∥∥C([0,T ];L2(Ω))
≤ C(1 + T )δsn, (38)

where C is positive constant that depends only on p, g, f ,K, s.

Proof:
(i) Existence and uniqueness of u were proved in Theorem 5.1(i). We also see that InK verifies (H.1)

and (H.2). Using Lemma 2.1, we have Ing ∈ Lp(Ω), fn ∈ L1([0;T ], Lp(Ω)) and InK ∈
L∞,2(Ω2) ⊂ L∞,1(Ω2), and thus InK fulfills (H.3). In view of Lemma 6.1(i), it follows from (PSD

p )
that the function un satisfies (P) with kernel InK and data (fn, Ing). Existence and uniqueness of
un then follow from Theorem 4.1.

(ii) The claim is a specialization of (25) in Theorem 5.1(ii).
(iii) AsK ∈ L∞,2(Ω2) ⊂ L2(Ω2), we insert the estimate (6) (see Lemma 2.2) in the second bound of

(37).

24



Case p = 1: We now turn to the case p = 1, and consider the evolution problem{
∂
∂tu(t) = −η(t) + f(t), t > 0,

u(0) = g,
(PSD

1 )

where
ηi(t) = −

∑
j∈[n]d

hjKij sign(uj − ui), and thus η(t) ∈ ∆̂
K

1 u(t).

Theorem 6.2. Let u be a solution of (P) for p = 1 with kernelK and data (f, g), and u is that of (PSD
1 )

with K = PnK, g = Png and f(t) = Pnf(·, t) for t ∈ [0, T ]. Let un and fn as defined in (36). Assume
thatK satisfies (H.1), (H.2) andK ∈ L∞,2(Ω2), and that g ∈ L2(Ω) and f ∈ L1([0, T ];L2(Ω)). Then,
the following hold.

(i) u and un are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.

(ii) We have the error estimate∥∥un−u∥∥C([0,T ];L2(Ω))
≤
∥∥InPng− g

∥∥
L2(Ω)

+
∥∥fn− f∥∥L1([0,T ];L2(Ω))

+T
∥∥InPnK −K

∥∥
L2(Ω2)

.

(39)
(iii) If, moreover, g ∈ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)) and f(·, t) ∈ Lip(s, L2(Ω)) for every

t ∈ [0, T ], then ∥∥un − u∥∥C([0,T ];L2(Ω))
≤ C(1 + T )δsn, (40)

where C is positive constant that depends only on p, g, f ,K and s.

Proof:
(i) Existence and uniqueness of u were proved in Theorem 5.2(i). In addition, InK verifies (H.1)

and (H.2). Using Lemma 2.1, Ing ∈ L2(Ω) ⊂ L1(Ω), fn ∈ L1([0, T ];L2(Ω)) ⊂ L1([0, T ];L1(Ω))
and InK ∈ L∞,2(Ω2) ⊂ L∞,1(Ω2), and thus InK fulfills (H.3). By virtue of Lemma 6.1(ii), un,
the space continuum extension of u, will satisfy (P) with kernel InK and data (fn, Ing). Existence
and uniqueness of un in the sense of Definition 4.2 follow from Theorem 4.2.

(ii) This claim is a specialization of (31) in Theorem 5.2(ii).
(iii) Insert the estimate (6) in (39).

6.2 The totally discrete problem

We establish in this section error bounds for fully discrete (in time and space) approximations of (P).
For that, let 0 < t1 < t2 < · · · < tN−1 < tN = T be a partition (not necessarily equispaced) of [0, T ].
Let τk−1

def
=
∣∣tk − tk−1

∣∣ and denote τ = max
k∈[N ]

τk.

6.2.1 Forward/Explicit Euler discretization

Case p ∈]1, 2]: We start with p ∈]1, 2] and consider a totally discrete problem with forward/explicit
Euler scheme in time, 

uk − uk−1

τk−1
= −∆̂

K

p uk−1 + f , k ∈ [N ],

u0 = g,

(PTDF
p )

where uk, f ∈ Rnd . We have implicitly assumed that f does not depend on time, which is a standard
assumption in the context of explicit discretization.
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Since our aim is to compare the solutions of problems (P) and (PTDF
p ), we introduce the following

continuum extensions in space and/or time of
{
uk
}
k∈[N ]

as

ukn = Inu
k, k ∈ [N ], and fn = Inf ,

ǔn(x, t) =
tk − t
τk−1

uk−1
n (x) +

t− tk−1

τk−1
ukn(x), (x, t) ∈ Ω×]tk−1, tk], k ∈ [N ],

ūn(x, t) =

N∑
k=1

uk−1
n (x)χ]tk−1,tk](t), (x, t) ∈ Ω×]0, T ].

Then, in the same vein as Lemma 6.1, it is easy to see that (PTDF
p ) is equivalent to the following

evolution problem {
∂
∂t ǔn(x, t) = −∆InK

p ūn(x, t) + fn(x), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω.
(41)

Before turning to the consistency result, we collect some useful estimates.

Lemma 6.2. Consider problem (PTDF
p )with kernelK, data (f ,g) and variable step-size τk ≤ 2C

∥∥∆InK
p ukn−

fn
∥∥ 2−p
p−1

L2(Ω)
, where C is the constant in Proposition 4.1(vi). Assume that Ing ∈ L2(Ω) and InK satis-

fies (H.1), (H.2) and (H.3). Suppose also that for each n ∈ N, f is such that (PTDF
p ) has a stationary

solution u? and that supn∈N
∥∥Ing − Inu

?
∥∥
L2(Ω)

< +∞. Then

ūn(·, t) ∈ L2(Ω),∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu
?
∥∥
L2(Ω)

< +∞.

Remark 6.1.
(1) Condition on the time-step τk can be seen as an abstract non-linear CFL condition. It is better

than the one in [24] since we here exploit the Hölder continuity of ∆InK
p on L2(Ω) for p ∈]1, 2],

see Proposition 4.1(vi). For p = 2, where ∆InK
2 is linear Lipschitz continuous operator on L2(Ω),

the condition reads τk ≤ 2C. Such condition for explicit time-discretization of evolution problems
with accretive and Lipschitz-continuous operators is known, see e.g., [32]. It is also consistent
with known convergence results for finding zeros of co-called co-coercive operators on Hilbert
spaces [6].

(2) The assumption on f and K imply that fn ∈ L2(Ω). Indeed, (18) entails∥∥fn∥∥L2(Ω)
=
∥∥∆InK

p (Inu
?)
∥∥
L2(Ω)

≤ 2pC2

∥∥K∥∥2

L∞,1(Ω2)

∥∥Inu
?
∥∥p−1

L2(Ω)
.

(3) The assumption made on f is trivially true when f = 0 since 0 is a stationary solution int this
case. In turn, using Lemma 2.1, one can see that the uniform boundedness conditions on g and K
are fulfilled if g = Png and K = PnK, where g ∈ L2(Ω) andK satisfies (H.1)-(H.3).

Proof: We show the claim by an induction argument. Since ∆InK
p (Inu

?) = fn, we have∥∥u1
n − Inu

?
∥∥2

L2(Ω)

=
∥∥Ing − Inu

?
∥∥2

L2(Ω)
− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)− fn(x)

)
(Ing(x)− Inu

?) dx

+ τ2
0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)
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=
∥∥Ing − Inu

?
∥∥2

L2(Ω)
− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)−∆InK

p (Inu
?)(x)

)
(Ing(x)− Inu

?) dx

+ τ2
0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)
.

By assumption on g, u? and τk, we can invoke Proposition 4.1(vi) to get∥∥u1
n − Inu

?
∥∥2

L2(Ω)

≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
− 2Cτ0

∥∥∆InK
p (Ing)− fn

∥∥p/(p−1)

L2(Ω)
+ τ2

0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)

≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
+ τ0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)

(
2C
∥∥∆InK

p (Ing)− fn
∥∥(2−p)/(p−1)

L2(Ω)
− τ0

)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
.

Suppose now that, for any k > 1,∥∥ukn − Inu
?
∥∥2

L2(Ω)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
,

and thus ukn ∈ L2(Ω). We can then use Proposition 4.1(vi) as above to see that∥∥uk+1
n − Inu

?
∥∥2

L2(Ω)

≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
− τk

∥∥∆InK
p (ukn)− fn

∥∥2

L2(Ω)

(
2C
∥∥∆InK

p (ukn)− fn
∥∥(2−p)/(p−1)

L2(Ω)
− τk

)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
.

Thus the sequence
{∥∥ukn∥∥L2(Ω)

}
k∈N

is bounded, and so is
∥∥ūn(·, t)

∥∥
L2(Ω)

for t ∈ [0, T ] by its definition.
We also have

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu
?
∥∥
L2(Ω)

= sup
(n,N)∈N2,k∈[N ]

∥∥ukn − Inu
?
∥∥
L2(Ω)

≤ sup
n∈N

∥∥Ing − Inu
?
∥∥
L2(Ω)

< +∞.

Lemma 6.3. In addition to the assumptions of Lemma 6.2, suppose that supn∈N
∥∥InK

∥∥
L∞,1(Ω2)

< +∞.
Then

sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).

Proof: It is easy to see that for t ∈]tk−1, tk], k ∈ N,∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

= (t− tk−1)
∥∥ukn − uk−1

n

τk−1

∥∥
L2(Ω)

= (t− tk−1)
∥∥∆InK

p uk−1
n − fn

∥∥
L2(Ω)

= (t− tk−1)
∥∥∆InK

p uk−1
n −∆InK

p Inu
?
∥∥
L2(Ω)

≤ τ
∥∥∆InK

p uk−1
n −∆InK

p Inu
?
∥∥
L2(Ω)

= τ
∥∥∆InK

p ūn(·, t)−∆InK
p Inu

?
∥∥
L2(Ω)

.

As ∆InK
p is Hölder continuous on L2(Ω) with exponent p− 1, see (18), we get∥∥ǔn(·, t)− ūn(·, t)

∥∥
L2(Ω)

≤ τ2p/2C
1/2
2

∥∥K∥∥
L∞,1(Ω2)

∥∥ūn(·, t)− Inu
?
∥∥p−1

L2(Ω)
.

We then take the supremum over t and n, and use Lemma 6.2 to conclude.
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We are now in position to state the error bound for the totally discrete problem (PTDF
p ).

Theorem 6.3. Suppose that p ∈]1, 2]. Let u be a solution of (P) with kernel K and data (f, g) where
f is time-independent, and

{
uk
}
k∈[N ]

is the sequence generated by (PTDF
p ) with K = PnK, g = Png,

f = Pnf and τk as prescribed in Lemma 6.2. Assume thatK satisfies (H.1), (H.2) andK ∈ L∞,2(Ω2),
and that f, g belong either to L2(Ω) or L∞(Ω). Then, the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely defined and
{∥∥Inu

k
∥∥
L2(Ω)

}
k∈[N ]

is bounded
(uniformly in n when f = 0).

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−1 − u(·, t)

∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng − g
∥∥
L2(Ω)

+ CT 1/2

(
τ1/(3−p) +

∥∥fn − f∥∥L2(Ω)
+

{∥∥InPnK −K
∥∥
L∞,2(Ω2)

g ∈ L2(Ω)∥∥InPnK −K
∥∥
L2(Ω2)

, g ∈ L∞(Ω)

))
. (42)

for τ sufficiently small, where C is positive constant that depends only on p, g, f andK.
(iii) If, moreover, f, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)) andK ∈ Lip(s, L2(Ω2)), then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−1 − u(·, t)

∥∥
L2(Ω)

≤ C exp(T/2)
(

(1 + T 1/2)δsn + T 1/2τ1/(3−p)
)
, (43)

for τ sufficiently small, where C is positive constant that depends only on p, g, f ,K and s.

Proof: In the proof, C is any positive constant that may depend only on p, g, f , K and/or s, and that
may be different at each line.

(i) Existence and uniqueness of u were proved in Theorem 5.1(i). The claimed well-posedness of the
sequence

{
uk
}
k∈[N ]

is a consequence of Lemma 6.2 and Remark 6.1(3).
(ii) Denote ξ̌n(x, t) = ǔn(x, t) − u(x, t), ξ̄n(x, t) = ūn(x, t) − u(x, t), gn = InPng and Kn =

InPnK. We thus have a.e.

∂ξ̌n(x, t)

∂t
= −

(
∆Kn
p (ūn(x, t))−∆K

p (u(x, t))
)

+ (fn(x)− f(x))

= −
(
∆Kn
p (ūn(x, t))−∆Kn

p (u(x, t))
)
−
(
∆Kn
p (u(x, t))−∆K

p (u(x, t))
)

+ (fn(x)− f(x)).

Multiplying both sides by ξ̌n(x, t), integrating and rearranging the terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ūn(x, t)− u(x, t))dx

−
∫

Ω

(
∆Kn
p u(x, t)−∆K

p u(x, t)
)
ξ̌n(x, t)dx

−
∫

Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx

+

∫
Ω

(fn(x)− f(x)) ξ̌n(x, t)dx.

(44)

Since f, g ∈ Lp(Ω) in both cases, so is u(·, t) thanks to (19). We also have ūn(·, t) ∈ L2(Ω) ⊂
Lp(Ω) by Lemma 6.2. We are then in position to use Proposition 4.1(iv) with h(x) = x to assert
that the first term on the right-hand side of (44) is nonpositive. Let us now bound the second term.
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Similarly to the estimates (29) and (28) in the proof of Theorem 5.1, and using Young inequality,
we have ∣∣ ∫

Ω

(
∆Kn
p u(x, t)−∆K

p u(x, t)
)
ξ̌n(x, t)dx

∣∣
≤

{
C
∥∥Kn −K

∥∥
L∞,2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

, g ∈ L2(Ω)

C
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

, g ∈ L∞(Ω),

≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+

{
C
∥∥Kn −K

∥∥2

L∞,2(Ω2)
, g ∈ L2(Ω)

C
∥∥Kn −K

∥∥2

L2(Ω2)
, g ∈ L∞(Ω).

For the third term in (44), we invoke Lemma 6.3 to get∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤
∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ C
∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

τ.

We then use the fact that ∆InK
p is Hölder continuous on L2(Ω) with exponent p − 1, see (18), to

obtain∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥
L2(Ω)

≤ C
∥∥ξ̄n(·, t)

∥∥p−1

L2(Ω)
≤ C

(∥∥ξ̌n(·, t)
∥∥p−1

L2(Ω)
+ τp−1

)
,

where we used Lemma 6.3 to go from ξ̄n to ξ̌n, and that p ∈]1, 2]. It then follows by Cauchy-
Schwartz inequality that∣∣ ∫

Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤ C
(∥∥ξ̌n(·, t)

∥∥p−1

L2(Ω)
τ + τp

)
≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ C(τ2/(3−p) + τp).

Using Young inequality to bound the last term in (44), and combining the bounds on the three other
terms, we have shown that

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2/(3−p) + τp +

∥∥fn − f∥∥2

L2(Ω)

+

{∥∥Kn −K
∥∥2

L∞,2(Ω2)
, g ∈ L2(Ω)∥∥Kn −K

∥∥2

L2(Ω2)
, g ∈ L∞(Ω)

)
.

Using the Gronwall’s lemma and taking the square-root, we get

∥∥ǔn − u∥∥C([0,T ];L2(Ω))
≤ exp (T/2)

(∥∥InPng − g
∥∥
L2(Ω)

+CT 1/2

(
τ1/(3−p) + τp/2 +

∥∥fn − f∥∥L2(Ω)
+

{∥∥InPnK −K
∥∥
L∞,2(Ω2)

g ∈ L2(Ω)∥∥InPnK −K
∥∥
L2(Ω2)

, g ∈ L∞(Ω)

))
.

(45)
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Since 1/2 < 1/(3 − p) ≤ p/2 for p ∈]1, 2] the dependence on τ scales as O(τ1/(3−p)) for τ
sufficiently small (or N large enough). Inserting (45) into

sup
k∈[N ],t∈]tk−1,tk]

∥∥uk−1
n − u(·, t)

∥∥
L2(Ω)

=
∥∥ūn − u∥∥C([0,T ];L2(Ω))

≤
∥∥ǔn − u∥∥C([0,T ];L2(Ω))

+ Cτ,

(46)

completes the proof of the error bound.
(iii) Plug (6) into (42).

Remark 6.2. Error bounds in Lp(Ω) were derived in [24] for forward Euler discretization with bounded
data (kernel and initial condition) and f = 0. Their rate is provided for the range p ∈]1,+∞[. However,
we believe that their proof contains an invalid argument for p ≥ 2.

Case p = 1: We now turn to the case p = 1, and consider the discrete system
uk − uk−1

τk−1
= −ηk−1 + f , k ∈ [N ],

u0 = g.

(PTDF
1 )

where
ηk = −

∑
j∈[n]d

hjKij sign(ukj − uki ), and thus ηk ∈ ∆̂
K

1 uk.

We consider the continuum extensions in space and/or time of
{
uk
}
k∈[N ]

as before, namely ukn, ǔn and
ūn, fn = Inf , and the space-time continuum extension of

{
ηk
}
k∈[N ]

η̄n(x, t) =
N∑
k=1

(Inη
k−1)(x)χ]tk−1,tk](t) = −

∫
Ω

InK(x,y) sign(ūn(y, t)−ūn(x, t)), (x, t) ∈ Ω×]0, T ].

In view of Lemma 6.1, these extensions satisfy the evolution problem{
∂
∂t ǔn(x, t) = −η̄n(x, t) + fn(x), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω,
(47)

and
η̄n(x, t) ∈ ∆InK

1 ūn(x, t).

We have the following counterpart estimates of Lemma 6.2.

Lemma 6.4. Consider problem (PTDF
1 ) with kernel K, data (f ,g) and variable step-size

τk =
αk

max
(∥∥Inηk − fn

∥∥
L2(Ω)

, 1
) , where

∑
k∈N

α2
k < +∞.

Assume that Ing ∈ L2(Ω) and InK satisfies (H.1)-(H.2) and (H.3). Suppose also that for each n ∈ N,
f is such that (PTDF

p ) has a stationary solution u? and that supn∈N
∥∥Ing − Inu

?
∥∥
L2(Ω)

< +∞. Then

ūn(·, t) ∈ L2(Ω),∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu
?
∥∥
L2(Ω)

< +∞.
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Remark 6.3. The condition on the time-step τk is reminiscent of subgradient descent and has been used
in [24]. The assumptions on (f ,g,K) are again verified when f = 0, g = Png and K = PnK, where
g ∈ L2(Ω) andK satisfies (H.1)-(H.3).

Proof: Define the series sk
def
=
∑k

i=0 α
2
i . As in Lemma 6.2, we proceed by induction using the

monotonicity of the 1-Laplacian (Proposition 4.2(ii)). Indeed, since fn ∈ ∆InK
p (Inu

?), we have

∥∥u1
n − Inu

?
∥∥2

L2(Ω)
=
∥∥Ing − Inu

?
∥∥2

L2(Ω)

− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)−∆InK

p (Inu
?)(x)

)
(Ing(x)− Inu

?) dx+ α2
0.

By assumption on g, u?, we can invoke Proposition 4.2(ii) to get∥∥u1
n − Inu

?
∥∥2

L2(Ω)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
+ s0.

Suppose now that, for any k > 1,∥∥ukn − Inu
?
∥∥2

L2(Ω)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
+ sk−1,

and thus ukn ∈ L2(Ω). We can then invoke again Proposition 4.2(ii) to see that∥∥uk+1
n − Inu

?
∥∥2

L2(Ω)

=
∥∥ukn − Inu

?
∥∥2

L2(Ω)
− 2τk

∫
Ω

(
∆InK
p (ukn)(x)−∆InK

p (Inu
?)(x)

)(
ukn(x)− Inu

?
)
dx+ α2

k

≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
+ sk.

This shows that for all k ∈ N,∥∥ukn − Inu
?
∥∥2

L2(Ω)
≤
∥∥Ing − Inu

?
∥∥2

L2(Ω)
+ s∞,

and thus
{∥∥Inu

k
∥∥
L2(Ω)

}
k∈[N ]

is bounded. In turn, so is
∥∥ūn(·, t)

∥∥
L2(Ω)

for t ∈ [0, T ] by its definition.
Moreover,

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu
?
∥∥
L2(Ω)

= sup
(n,N)∈N2,k∈[N ]

∥∥ukn − Inu
?
∥∥
L2(Ω)

≤ sup
n∈N

∥∥Ing − Inu
?
∥∥
L2(Ω)

+ s1/2
∞ < +∞.

We also have the following analogue of Lemma 6.3.

Lemma 6.5. In addition to the assumptions of Lemma 6.4, suppose that supn∈N
∥∥InK

∥∥
L∞,1(Ω2)

< +∞.
Then

sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).

Proof: Arguing as the beginning of Lemma 6.3, we get for any t ∈]tk−1, tk], k ∈ N,∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ τ
∥∥η̄n(x, t)− fn

∥∥
L2(Ω)

.
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By Hölder inequality, we have∥∥η̄n(x, t)
∥∥2

L2(Ω)
=

∫
Ω

∣∣∣∣∫
Ω

InK(x,y) sign(ūn(y, t)− ūn(x, t))dy

∣∣∣∣2 dx
≤
∫

Ω

(∫
Ω

InK(x,y)dy

)2

dx ≤
∥∥InK

∥∥2

L∞,1(Ω2)
.

Thee same bound also holds on
∥∥fn∥∥L2(Ω)

. We then take the supremum over t and n to conclude.

Theorem 6.4. Let u be a solution of (P)with kernelK and data (f, g) where f is time-independent, and{
uk
}
k∈[N ]

is the sequence generated by (PTDF
1 )withK = PnK, g = Png, f = Pnf and τk as prescribed

in Lemma 6.4. Assume that K satisfies (H.1), (H.2) and K ∈ L∞,2(Ω2), and that f, g ∈ L2(Ω). Then,
the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely defined and
{∥∥Inu

k
∥∥
L2(Ω)

}
k∈[N ]

is bounded
(uniformly in n when f = 0).

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−1 − u(·, t)

∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng − g
∥∥
L2(Ω)

+ CT 1/2
(
τ1/2 +

∥∥fn − f∥∥L2(Ω)
+
∥∥InPnK −K

∥∥
L2(Ω2)

))
(48)

where C is positive constant that depends only onK.
(iii) If, moreover, f, g ∈ Lip(s, L2(Ω)) andK ∈ Lip(s, L2(Ω2)), then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−1 − u(·, t)

∥∥
L2(Ω)

≤ C exp(T/2)
(

(1 + T 1/2)δsn + T 1/2τ1/2
)
, (49)

where C is positive constant that depends only on g, f ,K and s.
Proof: C is any positive constant that may depend only on g, f ,K and s, and that may be different at
each line. We use the same notation as in the proof of Theorem 6.3.

(i) Existence and uniqueness of u were proved in Theorem 5.1(i). Well-posedness of
{
uk
}
k∈[N ]

follows from Lemma 6.4 and Remark 6.1(3).
(ii) We have

∂ξ̌n(x, t)

∂t
=

∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) dy

+

∫
Ω

(Kn(x,y)−K(x,y))w(x,y, t)dy + (fn(x)− f(x)),

wherew is the subgradient function associated tou (seeDefinition 4.2), and w̄n(x,y, t) = sign(ūn(y, t)−
ūn(x, t)). Multiplying both sides by ξ̌n(x, t), integrating and rearranging the terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
=

∫
Ω2

Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ūn(x, t)− u(x, t))dxdy

+

∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξ̌n(x, t)dxdy

+

∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ǔn(x, t)− ūn(x, t)) dxdy

+

∫
Ω

(fn(x)− f(x)) ξ̌n(x, t)dx.

(50)

32



As u(·, t) ∈ L1 and ūn(·, t) ∈ L2(Ω) ⊂ L1(Ω) by Lemma 6.4, the monotonicity claim in Propo-
sition 4.2(ii) yields that the first term in (50) is nonpositive. The second and third terms can be
easily bounded as∣∣ ∫

Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξ̌n(x, t)dxdy
∣∣ ≤ ∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

≤ 1

4

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+
∥∥Kn −K

∥∥2

L2(Ω2)
.

and the third term using Lemma 6.5∣∣ ∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ǔn(x, t)− ūn(x, t)) dxdy

∣∣ ≤ 2
∥∥K∥∥2

L∞,2(Ω2)
τ.

Bounding the last term by Young inequality, we obtain

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ 2
∥∥fn − f∥∥2

L2(Ω)
+ 2
∥∥Kn −K

∥∥2

L2(Ω2)
+ Cτ.

Using the Gronwall’s lemma and (46), we get the claimed bound.
(iii) Insert (6) into (48).

6.2.2 Backward/Implicit Euler discretization

Forward Euler discretization was able to deal only with p ∈ [1, 2]. For backward Euler discretization,
we will tackle p ∈]1,+∞[.

We consider the fully discrete problem with backward Euler time scheme
uk − uk−1

τk−1
= −∆̂

K

p uk + fk, k ∈ [N ],

u0 = g,

(PTDB
p )

where uk, fk ∈ Rnd . This can also be written equivalently as

uk = J
τk−1∆̂

K
p

(uk−1 + τk−1f
k).

This is known as the proximal iteration, and is at the heart of so-called mild solutions as well as existence
and uniqueness of solutions to (P) through the theory of nonlinear semigroups [16, 7, 29, 8]. Denoting
as before ukn = Inu

k and fkn = Inf
k the space continuum extensions of uk and fk, we also have

ukn = J
τk−1∆InK

p
(uk−1
n + τk−1f

k
n).

We also let the time-space continuum extensions

ǔn(x, t) =
tk − t
τk−1

uk−1
n (x) +

t− tk−1

τk−1
ukn(x), (x, t) ∈ Ω×]tk−1, tk], k ∈ [N ],

ūn(x, t) =
N∑
k=1

ukn(x)χ]tk−1,tk](t) and f̄n(x, t) =
N∑
k=1

fkn(x)χ]tk−1,tk](t), (x, t) ∈ Ω×]0, T ].

Observe that the difference with the explicit Euler case lies in the definition of ūn. From (PTDB
p ) one

clearly sees that ǔn and ūn then satisfy again (41) with f̄n(x, t) replacing fn(x).
The following estimates holds.
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Lemma 6.6. Consider problem (PTDB
p ) with kernel K and data (f ,g) and step-sizes τk > 0 for all k.

Assume that InK satisfies (H.1)-(H.2) and (H.3), that Ing ∈ Lmax(p,q)(Ω), for some q ∈ [1,+∞], and
supn∈N

∥∥Ing
∥∥
Lq(Ω)

< +∞, and that f̄n ∈ L1([0, T ];Lmax(p,q)(Ω)) and supn∈N
∥∥f̄n∥∥L1([0,T ];Lq(Ω))

<

+∞. Then

ūn(·, t) ∈ Lmax(p,q)(Ω), ∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)
∥∥
Lq(Ω)

< +∞.

Proof: Recall from Proposition 4.1(vii) that J
λ∆InK

p
, λ > 0, is single-valued on Lp(Ω) and non-

expansive on Lq(Ω) for all q ∈ [1,+∞]. Therefore, by induction, we have that for any k ∈ [N ],

∥∥ukn∥∥Lp(Ω)
≤
∥∥Ing

∥∥
Lp(Ω)

+
k∑
i=0

τi
∥∥f in∥∥Lp(Ω)

≤
∥∥Ing

∥∥
Lp(Ω)

+
N∑
i=0

τi
∥∥f in∥∥Lp(Ω)

=
∥∥Ing

∥∥
Lp(Ω)

+
∥∥f̄n∥∥L1([0,T ];Lp(Ω))

.

Thus ukn ∈ Lp(Ω), for all k ∈ [N ]. In turn, J
τk∆InK

p
(ukn) is single-valued for all k, and arguing as above,

its non-expansiveness yields∥∥ukn∥∥Lq(Ω)
≤
∥∥Ing

∥∥
Lq(Ω)

+
∥∥f̄n∥∥L1([0,T ];Lq(Ω))

.

Taking the supremum over k and n and using the definition of ūn and the assumptions on g and f , we
conclude.

Lemma 6.7. Suppose that the assumptions of Lemma 6.6 are satisfied with q = 2 when p ∈]1, 2], q =
2(p−1)when p ≥ 2. Assume in addition that supn∈N

∥∥InK
∥∥
L∞,1(Ω2)

< +∞ and supn∈N
∥∥f̄n∥∥BV([0,T ];L2(Ω))

<

+∞. Then
sup

t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).

Proof: For t ∈]tk−1, tk], k ∈ N, we have

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

= (tk − t)
∥∥uk−1

n − ukn
τk−1

∥∥
L2(Ω)

= (tk − t)
∥∥∆InK

p ukn − fkn
∥∥
L2(Ω)

≤ τ
∥∥∆InK

p ukn − fkn
∥∥
L2(Ω)

= τ
∥∥∆InK

p ūn(·, tk)− f̄n(·, tk)
∥∥
L2(Ω)

≤ τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+
k∑
i=1

∥∥f̄n(·, ti)− f̄n(·, ti−1)
∥∥
L2(Ω)

+
∥∥f̄n(·, 0)

∥∥
L2(Ω)

)
≤ τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+ Varq(f̄n) +
∥∥f̄n(·, 0)

∥∥
L2(Ω)

)
= τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+
∥∥f̄n∥∥BV([0,T ];L2(Ω))

)
. (51)

For p ∈]1, 2], we have from (18) that∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

≤ 2p/2C
1/2
2

∥∥K∥∥
L∞,1(Ω2)

∥∥ūn(·, t)
∥∥p−1

L2(Ω)
.
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For p ≥ 2, it is easy to to show with simple arguments as before that∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

≤ 2p−3/2
∥∥K∥∥

L∞,1(Ω2)

∥∥ūn(·, t)
∥∥p−1

L2(p−1)(Ω)
.

Inserting the last two estimates in (51), taking the supremum over t and n over both sides, and applying
Lemma 6.6, we conclude.

Remark 6.4. As observed in the case of explicit time-discretization the uniform (over n) boundedness as-
sumption made in the last two lemmas hold true if g = Png, K = PnK and fk = τ−1

k

∫ tk
tk−1

Pnf(·, t)dt,
where g, f andK verify simple assumptions. Indeed, in this case, we have thanks to Lemma 2.1 that for
any q ∈ [1,+∞],

sup
n∈N

∥∥Ing
∥∥
Lq(Ω)

≤
∥∥g∥∥

Lq(Ω)
, sup

n∈N

∥∥InK
∥∥
L∞,q(Ω2)

≤
∥∥K∥∥

L∞,q(Ω2)
,

sup
n∈N

∥∥f̄n∥∥L1([0,T ];Lq(Ω))
≤
∥∥f∥∥

L1([0,T ];Lq(Ω))
and sup

n∈N

∥∥f̄n∥∥BV([0,T ];Lq(Ω))
≤
∥∥f∥∥

BV([0,T ];Lq(Ω))
.

In fact, the condition f ∈ BV([0, T ];Lq(Ω)) is sufficient to ensure that

sup
n∈N

∥∥f̄n∥∥L1([0,T ];Lq(Ω))
< +∞ and sup

n∈N

∥∥f̄n∥∥BV([0,T ];Lq(Ω))
< +∞.

Indeed, arguing as in [12, Lemma A.1], this conditions implies f ∈ L∞([0, T ];Lq(Ω)). In turn, using
Lemma 2.1, we get∥∥f̄n∥∥L1([0,T ];Lq(Ω))

≤
∥∥f∥∥

L1([0,T ];Lq(Ω))
≤
∥∥f∥∥

L∞([0,T ];Lq(Ω))

≤
∥∥f(·, 0)

∥∥
Lq(Ω)

+ Varq(f) =
∥∥f∥∥

BV([0,T ];Lq(Ω))
.

We are now in position to state the error bound for the fully discrete problem with backward/implicit
Euler time discretization.

Theorem 6.5. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernelK and data (f, g), and{
uk
}
k∈[N ]

is the sequence generated by (PTDB
p ) with K = PnK, g = Png, fk = τ−1

k

∫ tk
tk−1

Pnf(·, t)dt.
Assume that K satisfies (H.1), (H.2) and K ∈ L∞,2(Ω2), and that f, g satisfy either one of the condi-
tions (a), (b) or (c) in Theorem 5.1, and that f ∈ BV([0, T ];L2(Ω)). Then, the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely defined and
{∥∥Inu

k
∥∥
L2(Ω)

}
k∈[N ]

is bounded
uniformly in n.

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−u(·, t)

∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng−g
∥∥
L2(Ω)

+
∥∥f̄n−f∥∥L1([0,T ];L2(Ω))

+ CT 1/2


τ1/(3−p) +

∥∥InPnK −K
∥∥
L∞,2(Ω2)

under (a)
τp/(2p−1) +

∥∥InPnK −K
∥∥
L∞,2(Ω2)

under (b)
τ1/(3−p) +

∥∥InPnK −K
∥∥
L2(Ω2)

under (c) when p ∈]1, 2]

τ +
∥∥InPnK −K

∥∥
L2(Ω2)

under (c) when p ≥ 2.

)
, (52)

for τ sufficiently small, where C is positive constant that depends only on p, g, f andK.
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(iii) If, moreover, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)), and f ∈ L1([0, T ];L∞(Ω)) ∩
Lip(s, L2(Ω× [0, T ])) then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k − u(·, t)

∥∥
L2(Ω)

≤ C exp(T/2)

(
(1 + T 1/2)δsn

+ T 1/2

({
τmin(s,1/(3−p)) when p ∈]1, 2]

τ s when p ≥ 2

))
. (53)

for τ sufficiently small, where C is positive constant that depends only on p, g, f , K and s. The
term τ s in the dependence on τ disappears when f is time-independent.

Proof: In the proof, C is any positive constant that may depend solely on p, g, f ,K and/or s, and that
may be different at each line.

(i) Existence and uniqueness of u were proved in Theorem 5.1(i). Well-posedness of the sequence{
uk
}
k∈[N ]

is a consequence of Lemma 6.6 and Remark 6.4.
(ii) For p ∈]1, 2], the proof of the error bound is exactly the same as that of (42) in Theorem 6.3 using

the modified definition of ūn and that now f is time-dependent, and thus we replace fn there by
f̄n. We also denote gn = InPng andKn = InPnK.
For the p ≥ 2, the argument is also similar, and the main change consists in bounding appropriately
the third term in (44). We then invoke Lemma 6.7 to show that∣∣ ∫

Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣ ≤ C∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

τ,

where C is indeed a finite constant owing to the assumption on f and Remark 6.4. We now use
Lemma 4.1(ii) to get the bound∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥2

L2(Ω)

=

∫
Ω

∣∣ ∫
Ω
Kn(x,y) (Ψ(ūn(y, t)− ūn(x, t))−Ψ(u(y, t)− u(x, t))) dy

∣∣2dx
≤
∫

Ω

(∫
Ω
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣ (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)p−2 dy

)2

dx.

(54)

For case (c), we infer from Lemma 6.6 (with q = +∞) and Lemma 2.1 that∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)

≤
(

4
(∥∥g∥∥

L∞(Ω)
+
∥∥f∥∥

L1([0,T ];L∞(Ω))

))2(p−2)
∫

Ω

(∫
Ω
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣dy)2

dx

≤
(

4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥
L∞,2(Ω2)

∫
Ω2

Kn(x,y)
∣∣ξ̄n(y, t)− ξ̄n(x, t))

∣∣2dxdy
= 4

(
4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥
L∞,2(Ω2)

∫
Ω2

Kn(x,y)
∣∣ξ̄n(x, t)

∣∣2dxdy
≤ 4

(
4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥2

L∞,2(Ω2)

∥∥ξ̄n(·, t)
∥∥2

L2(Ω)
. (55)

It then follows by Cauchy-Schwartz inequality that∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣
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≤ C
∥∥ξ̄n(·, t)

∥∥
L2(Ω)

τ

≤ C
(∥∥ξ̌n(·, t)

∥∥
L2(Ω)

τ + τ2
)

≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ Cτ2.

Inserting this in (44), using again Young inequality for the last term, we have shown that when
p ≥ 2 and (c) holds,

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2 +

∥∥f̄n(·, t)− f(·, t)
∥∥2

L2(Ω)
+
∥∥Kn −K

∥∥2

L2(Ω2)

)
.

Using the Gronwall’s lemma, taking the square-root and using (46), we get the error bound in this
case.
It remains to consider the case (b), when p ≥ 2. For this, we embark from (54), and use the
continuity of Ψ in Lemma 4.1 (i) (see (12)) with α = 1/p. Combining this with Jensen and
Hölder inequalities, we get∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥2

L2(Ω)

≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

(
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣2/p)

(|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2(p−1)−2/p dxdy

≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

(
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣2)1/p

(
(Kn(x,y))(p−1)/p (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2(p−1)−2/p

)
dxdy

≤
∥∥K∥∥

L∞,1(Ω2)

(∫
Ω2

Kn(x,y)
∣∣ξ̄n(y, t)− ξ̄n(x, t))

∣∣2dxdy)1/p

(∫
Ω2

Kn(x,y) (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2p−2/(p−1) dxdy

)(p−1)/p

≤
∥∥K∥∥

L∞,1(Ω2)

(
4

∫
Ω2

Kn(x,y)
∣∣ξ̄n(x, t))

∣∣2dxdy)1/p

(
22p−2/(p−1)

∫
Ω2

Kn(x,y)
(∣∣ūn(x, t)

∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

.

≤ 4
∥∥K∥∥2

L∞,1(Ω2)

(∫
Ω2

∣∣ξ̄n(x, t))
∣∣2dxdy)1/p

(∫
Ω2

(∣∣ūn(x, t)
∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

.

Observe that L2p−2/(p−1)(Ω) ⊂ L2(p−1)(Ω), hence by Hölder inequality and Lemma 6.6 with
q = 2(p− 1) and Lemma 2.1, the last term in the above display can be bounded as(∫

Ω2

(∣∣ūn(x, t)
∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

≤
∥∥∣∣ūn(x, t)

∣∣+
∣∣u(x, t)

∣∣∥∥2(p−1)−2/p

L2(p−1)(Ω)

≤
(∥∥g∥∥

L2(p−1)(Ω)
+
∥∥f∥∥

L1([0,T ];L2(p−1)(Ω))

)2(p−1)−2/p
.
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We then arrive at∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)
≤ C

∥∥K∥∥2

L∞,1(Ω2)

∥∥ξ̄n∥∥2/p

L2(Ω)
.

Hence ∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤ C
∥∥ξ̄n(·, t)

∥∥1/p

L2(Ω)
τ

≤ C
(∥∥ξ̌n(·, t)

∥∥1/p

L2(Ω)
τ + τ (p+1)/p

)
≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ C(τ2p/(2p−1) + τ (p+1)/p).

Inserting this into (44), using again Young inequality for the last term,

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2p/(2p−1) + τ (p+1)/p +

∥∥f̄n(·, t)− f(·, t)
∥∥2

L2(Ω)

+
∥∥Kn −K

∥∥2

L2(Ω2)

)
.

Hence, using the Gronwall’s lemma, taking the square-root and using (46), we get the error bound
in this case, after observing that the dependence on τ scales asO(τp/(2p−1)) for τ sufficiently small
(or N large enough) since 1/2 < p/(2p− 1) ≤ (p+ 1)/(2p) for p ≥ 2.

(iii) Plug (6) into (52) after observing that∥∥f̄n−f∥∥L1([0,T ];L2(Ω))
≤ T 1/2

∥∥f̄n−f∥∥L2([0,T ];L2(Ω))
= T 1/2

∥∥f̄n−f∥∥L2(Ω×[0,T ])
≤ CT 1/2 max(τ s, δsn).

For the scaling in τ , we use that s ∈]0, 1].

Another way to derive error bounds for (PTDB
p ) is as follows. To lighten notation, denote gn = InPng,

fn(·, t) = InPnf(·, t) for t ∈ [0, T ], and Kn = InPnK. Let un be a solution to (P) with data (fn, gn)
and kernelKn. Under the assumptions of Theorem 6.5 on (f, g,K), un is unique. Then one has∥∥ǔn − u∥∥C([0,T ];L2(Ω))

≤
∥∥ǔn − un∥∥C([0,T ];L2(Ω))

+
∥∥un − u∥∥C([0,T ];L2(Ω))

.

Theorem 5.1 provides a bound on the last term of the right-hand side in the above display, which captures
the space-discretization error. Bounds for the first term, which corresponds to the time-discretization
error, were derived in C([0, T ];Lp(Ω)) by Crandall and Liggett in their seminal paper [16] for constant
time step-size and f = 0, and then extended to non-uniform time partitions in [29], see also [32]. More
precisely, using [32, Theorem 1] and the fact that ǔn(·, 0) = un(·, 0) = gn, the following bound holds∥∥ǔn−un∥∥C([0,T ];Lp(Ω))

≤
∥∥f̄n−fn∥∥L1([0,T ];Lp(Ω))

+2T 1/2
(∥∥f1

n −∆Kn
p gn

∥∥
Lp(Ω)

+ Varp(f̄n)
)
τ1/2.

The first term can be bounded as follows (for constant step-size to simplify)

∥∥f̄n − fn∥∥L1([0,T ];Lp(Ω))
=

N∑
k=1

∫ tk

tk−1

∥∥τ−1
k

∫ tk

tk−1

fn(·, s)ds− fn(·, t)
∥∥
Lp(Ω)

dt

≤ τ−1
N∑
k=1

∫ tk

tk−1

∫ tk

tk−1

∥∥f(·, s)− f(·, t)
∥∥
Lp(Ω)

dsdt

38



≤ τ−1

∫ τ

−τ

(∫ T

0

∥∥f(·, t+ s)− f(·, t)
∥∥
Lp(Ω)

dt

)
ds

≤ τ−1

∫ τ

−τ
sVarp(f)ds = τVarp(f),

where we used Lemma 2.1 in the first inequality and [12, Lemma A.1] in the last one. Overall, this shows
that the time discretization error

∥∥ǔn− un∥∥C([0,T ];Lp(Ω))
scales as O

(
(Tτ)1/2

)
for τ sufficiently small.

The rate O(τ1/2) is known to be optimal for general accretive operators in Banach spaces (see [32]). In
turn, by standard comparisons of Lq(Ω) norms (assuming that (c) holds so that boundedness of ǔn and
un is in force), this strategy gives us a bound which scales as∥∥ǔn − un∥∥C([0,T ];Lp(Ω))

=

{
O
(
τ1/2

)
p ≥ 2,

O
(
τp/4

)
p ∈]1, 2].

This is strictly worse than the rates in τ obtained from (52). There is however no contradiction in this
and the reason is that the strategy outlined above is too general and does not exploit all properties of the
operator ∆K

p among which its continuity that was a key to derive better rates in τ . In this sense, our
present results are optimal. We also remark that our rates are consistent with those in [24] for p ≥ 2.

7 Application to random graph sequences

In this section, we study continuum limits of fully discrete problems on the random graph model of
Definition 3.1 with backward/implicit Euler time discretization. Explicit discretization can also be treated
following our results in Section 6.2.1, but we will not elaborate further on it for the sake of brevity.

Recall the notations in Section 3, in which case we now set Ω = [0, 1]. Recall also the the construc-
tion of the random graph model in Definition 3.1 where each edge (i, j) is independently set to 1 with
probability (7). This entails that the random matrix Λ is symmetric. However, it is worth emphasizing
that the entries of Λ are not independent, but only the entries in each row are mutually independent3.
This observation will be instrumental in deducing our error bound.

We consider the fully discrete onK-random graphs G(n,K, ρn) with backward Euler time scheme
uk − uk−1

τk−1
=

1

ρnn

∑
j:(i,j)∈E(G(n,K,ρn))

Ψ(ukj − uki ) + fk, k ∈ [N ],

u0 = g,

(PTDB,G
p )

where uk, fk ∈ Rn. It is important to keep in mind that, since G(n,K, ρn) is a random variable taking
values in the set of simple graphs, the evolution problem (PTDB,G

p ) must be understood in this sense,
the uk’s are random variables. Observe that the normalization in (PTDB,G

p ) by ρnn corresponds to the
average degree (see Section 3.2 for details).

Problem (PTDB,G
p ) can be equivalently written as

uk − uk−1

τk−1
= −∆̂

Λ

p uk + fk, k ∈ [N ],

u0 = g.

We define the time-space continuum extensions ǔn and ūn and as in Section 6.2.2. One then sees
that they satisfy {

∂
∂t ǔn(x, t) = −∆InΛ

p ūn(x, t) + f̄n(x, t), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω.
(56)

3This feature was already used in the proof of Lemma 3.1
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Toward our goal of establishing error bounds, we define v as the solution of the fully discrete prob-

lem (PTDB
p ) with data (f ,g) and discrete kernel

∧
K. Its time-space continuum extensions, v̌n and v̄n,

defined similarly as above, fulfill ∂
∂t v̌n(x, t) = −∆In

∧
K

p v̄n(x, t) + f̄n(x, t), (x, t) ∈ Ω×]0, T ],

v̌n(x, 0) = Ing(x), x ∈ Ω.
(57)

We have ∥∥ǔn − u∥∥C([0,T ];L2(Ω))
≤
∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))

+
∥∥v̌n − u∥∥C([0,T ];L2(Ω))

. (58)

This bound is composed of two terms: the first one captures the error of random sampling, and the second
that of (space and time) discretization. We start by bounding the first term by comparing (56) and (57).

Lemma 7.1. Assume that (fk,g,K, f, g,K) verify the assumptions of Theorem 6.5. Assume also that
ρn → 0 and nρn = ω ((log n)γ) for some γ > 1. Then, for any β ∈]0, 1[,

∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(
(ρnn)−β/2 +

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (59)

with probability at least 1− (ρnn)−(1−β). In particular,

∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(
o
(

(log n)−γβ/2
)

+

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (60)

with probability at least 1− o
(

(log n)−γ(1−β)
)
.

Proof: Denote ξ̌n(x, t) = v̌n(x, t)−ǔn(x, t), ξ̄n(x, t) = v̄n(x, t)−ūn(x, t), gn = InPng,
∧
Kn = In

∧
K

and Λn = InΛ. We thus have from (56) and (57) that a.e.

∂ξ̌n(x, t)

∂t
= −

(
∆
∧
Kn
p (v̄n(x, t))−∆Λn

p (ūn(x, t))

)
= −

(
∆
∧
Kn
p (v̄n(x, t))−∆Λn

p (v̄n(x, t))

)
−
(
∆Λn
p (v̄n(x, t))−∆Λn

p (ūn(x, t))
)
.

Multiplying both sides by ξ̌n(x, t), integrating and rearranging the terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Λn
p v̄n(x, t)−∆Λn

p ūn(x, t)
)

(v̄n(x, t)− ūn(x, t))dx

−
∫

Ω

(
∆
∧
Kn
p v̄n(x, t)−∆Λn

p v̄n(x, t)

)
ξ̌n(x, t)dx

−
∫

Ω

(
∆Λn
p v̄n(x, t)−∆Λn

p ūn(x, t)
)

((v̌n(x, t)− v̄n(x, t))− (ǔn(x, t)− ūn(x, t))) dx.

(61)

Under our condition on nρn, Lemma 3.1 tells us that with probability 1,∥∥Λn
∥∥
L∞,1(Ω2)

=
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

+ o(1) ≤
∥∥InPnK

∥∥
L∞,1(Ω2)

+ o(1) ≤
∥∥K∥∥

L∞,1(Ω2)
+ o(1),

so in particular
∥∥Λn

∥∥
L∞,1(Ω2)

is uniformly bounded with probability 1. Λn is also positive and symmet-
ric. Since g ∈ Lq(Ω) and f ∈ L1([0, T ];Lq(Ω)) ∩ BV([0, T ];L2(Ω)), q ∈ {2, 2(p − 1),+∞}, the
conclusions of Lemma 6.6 and Lemma 6.7 remain true which shows that with probability 1,

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)
∥∥
Lq(Ω)

< +∞ and sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ.
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The same claim holds for v̌n and v̄n since
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

≤
∥∥K∥∥

L∞,1(Ω2)
< +∞ and

∧
Kn is positive

and symmetric, i.e.
∧
Kn obeys (H.1)-(H.3). Thus Proposition 4.1(iv) entails that the first term on the

right-hand side of (61) is nonpositive with probability 1. Let us now bound the second term. Denote the

random variables Zi
def
= 1

n

∑
j∈[n]

(
Λij −

∧
Kij

)
Ψ(vj − vi). By Cauchy-Schwartz inequality, we have∣∣ ∫

Ω

(
∆Λn
p ūn(x, t)−∆

∧
Kn
p ūn(x, t)

)
ξ̌n(x, t)dx

∣∣ ≤ C∥∥InZ
∥∥
L2(Ω)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

.

For the last term in (61), we argue as in the proof of Theorem 6.5 to show that, with probability 1,

∣∣ ∫
Ω

(
∆Λn
p ūn(x, t)−∆Λn

p v̄n(x, t)
)

((ǔn(x, t)− ūn(x, t))− (v̌n(x, t)− v̄n(x, t))) dx
∣∣

≤ C

{∥∥ξ̌n(·, t)
∥∥p−1

L2(Ω)
τ + τp p ∈]1, 2],∥∥ξ̌n(·, t)

∥∥
L2(Ω)

τ + τ2 p ≥ 2.

Collecting all these bounds, after using Young inequality, we have shown that (again with probability 1),

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(∥∥InZ
∥∥2

L2(Ω)
+

{
τ2/(3−p) + τp p ∈]1, 2],

τ2 p ≥ 2.

)
Using the Gronwall’s lemma and taking the square-root, we get for τ sufficiently small

∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(∥∥InZ
∥∥
L2(Ω)

+

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (62)

It remains to bound the random variable
∥∥InZ

∥∥
L2(Ω)

. For this purpose, we have by Markov inequality
that for ε > 0

P
(∥∥InZ

∥∥
L2(Ω)

≥ ε
)

= P

(
n−1

∑
i

Z2
i ≥ ε2

)
≤ ε−2n−1

∑
i

E
(
Z2
i

)
.

By independence of (Λij)j∈[n], for each i ∈ [n], we get

E
(
Z2
i

)
= (ρnn)−2

∑
j∈[n]

V (ρnΛij) (Ψ(vj − vi))
2 = (ρnn)−2

∑
j∈[n]

ρn
∧
Kij(1− ρn

∧
Kij) (Ψ(vj − vi))

2

≤ (ρnn
2)−1

∑
j∈[n]

∧
Kij

∣∣vj − vi
∣∣2(p−1)

.

In turn,

P
(∥∥InZ

∥∥
L2(Ω)

≥ ε
)
≤ (ε2ρnn)−1 1

n2

∑
i,j∈[n]

∧
Kij

∣∣vj − vi
∣∣2(p−1)

= (ε2ρnn)−1

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx.

If the condition (a) holds, then by the symmetry of the kernel, Jensen inequality and Hölder inequality,
one gets ∫

Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 4

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(x)
∣∣2(p−1)

dydx
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≤ 4
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∫
Ω

∣∣v̄n(x)
∣∣2(p−1)

dx

≤ 4
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L2(Ω)
.

Under the condition (b), by the symmetry of the kernel and Jensen inequality again, we have∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 22(p−1)

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(x)
∣∣2(p−1)

dydx

≤ 22(p−1)
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L2(p−1)(Ω)
.

Similarly, under condition (c), we have∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 22(p−1)
∥∥v̄n∥∥2(p−1)

L∞(Ω)

∥∥ ∧Kn

∥∥
L1(Ω2)

≤ 22(p−1)
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L∞(Ω)
.

Since
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

≤
∥∥K∥∥

L∞,1(Ω2)
(see (4) in Lemma 2.1), we have

P
(∥∥InZ

∥∥
L2(Ω)

≥ ε
)
≤ C(ε2ρnn)−1

∥∥K∥∥
L∞,1(Ω2)

,

where

C =


4 supn

∥∥v̄n∥∥2(p−1)

L2(Ω)
, under (a),

22(p−1) supn
∥∥v̄n∥∥2(p−1)

L2(p−1)(Ω)
, under (b),

22(p−1) supn
∥∥v̄n∥∥2(p−1)

L∞(Ω)
, under (c),

and C < +∞ thanks to Lemma 6.6. Taking ε =

(
C
∥∥K∥∥

L∞,1(Ω2)

(ρnn)β

)1/2

, we get

P
(∥∥InZ

∥∥
L2(Ω)

≥ ε
)
≤ 1

(ρnn)1−β .

Plugging the latter into (62) completes the proof.

Remark 7.1. Lemma 7.1 gives a deviation bound which holds with a controlled probability. On may
ask whether almost sure convergence could be afforded. A naive and straightforward approach would
be to invoke the Borel-Cantelli lemma as done in [25, Remark 3.4(iv)] for the case of graphons. But this
argument does not apply to the more complex setting ofLq-graphons given that the probability of success
in the statement Lemma 7.1 does not converge sufficiently fast. This is not even possible to make faster
as ρn has to converge to 0. Thus, it is not clear at this stage whether this is even possible to achieve or
not. We leave this to a future research.

Remark 7.2. One can also derive from Lemma 7.1 a bound in expectation. Let En be the event on which
(59) holds, and denote 1En = 1 if En holds and 0 otherwise. We then have, for any β ∈]0, 1[∥∥E (ǔn)− v̌n

∥∥
C([0,T ];L2(Ω))

≤ E
(∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))

)
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= E
(∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))

1En

)
+ E

(∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
1Ecn

)
≤ C exp (T/2)T 1/2

(
(ρnn)−β/2 +

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
+O((ρnn)−(1−β)),

where we have used the bound (59) and that ǔn and v̌n are bounded inC([0, T ];L2(Ω)) with probability
one. We then conclude that

∥∥E (ǔn)− v̌n
∥∥
C([0,T ];L2(Ω))

→ 0 as n→ +∞.

We finally obtain the following error bound on fully discretized problems on sparse random graphs.

Theorem 7.1. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernelK and data (f, g), and{
uk
}
k∈[N ]

is the sequence generated by (PTDB,G
p )withK = PnK, g = Png, fk = τ−1

k

∫ tk
tk−1

Pnf(·, t)dt.
Assume that (f, g,K) satisfy the assumptions of Theorem 6.5, and that those of Lemma 7.1 also hold.

1. For any β ∈]0, 1[, with probability at least 1− (ρnn)−(1−β),

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k−u(·, t)

∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng−g
∥∥
L2(Ω)

+
∥∥f̄n−f∥∥L1([0,T ];L2(Ω))

+CT 1/2(ρnn)−β/2

+CT 1/2


τ1/(3−p) +

∥∥(K − ρ−1
n )+

∥∥
L∞,2(Ω2)

+
∥∥InPnK −K

∥∥
L∞,2(Ω2)

under (a)
τp/(2p−1) +

∥∥(K − ρ−1
n )+

∥∥
L∞,2(Ω2)

+
∥∥InPnK −K

∥∥
L∞,2(Ω2)

under (b)
τ1/(3−p) +

∥∥(K − ρ−1
n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K

∥∥
L2(Ω2)

under (c) when p ∈]1, 2]

τ +
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K

∥∥
L2(Ω2)

under (c) when p ≥ 2.

)
.

(63)

for τ sufficiently small, where C is positive constant that depends only on p, g, f andK.
2. If, moreover, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)), and f ∈ L1([0, T ];L∞(Ω)) ∩

Lip(s, L2(Ω× [0, T ])) then, for any δ ∈]0, 1[, with probability at least 1− (ρnn)−(1−β),

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inu
k − u(·, t)

∥∥
L2(Ω)

≤ C exp(T/2)

(
(1 + T 1/2)n−s + T 1/2

∥∥(K − ρ−1
n )+

∥∥
L2(Ω2)

+ T 1/2(ρnn)−β/2 + T 1/2

({
τmin(s,1/(3−p)) when p ∈]1, 2]

τ s when p ≥ 2

))
. (64)

for τ sufficiently small, where C is positive constant that depends only on p, g, f , K and s, and∥∥(K − ρ−1
n )+

∥∥
L2(Ω2)

= o(1). The term τ s in the dependence on τ disappears when f is time-
independent.

Following the discussion in Remark 7.2, one can easily derive an error bound in expectation, on
supk,t

∥∥InE
(
uk
)
− u(·, t)

∥∥
L2(Ω)

. We omit the details for the sake of brevity.

Proof: In view of (58), we shall use Theorem 6.5 to bound the second term, and a bound on the first
term is provided by Lemma 7.1. Since In

∧
K(x, y) ≤ InK(x, y) = InPnK(x, y), the assumptions on K

transfer to
∧
K, and the second term of (58) can then be bounded using (52), replacing InPnK there by

In
∧
K. Observing that∥∥In

∧
K−K

∥∥
L2(Ω2)

=
∥∥min(InPnK, ρ

−1
n )−K

∥∥
L2(Ω2)

≤
∥∥min(InPnK, ρ

−1
n )− InPnK

∥∥
L2(Ω2)

+
∥∥InPnK −K

∥∥
L2(Ω2)
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=
∥∥(InPnK − ρ−1

n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K

∥∥
L2(Ω2)

≤
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

+ 2
∥∥InPnK −K

∥∥
L2(Ω2)

,

and similarly for the L∞,2 norm. The fact that
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

= o(1) is because ρn → 0 by the
same argument as the end of the proof of Proposition 3.1. This completes the proof.
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