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Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems, where
the number of observations is smaller than the ambient dimension of the object to be estimated. A line
of recent work has studied regularization models with various types of low-dimensional structures. In
such settings, the general approach is to solve a regularized optimization problem, which combines a
data fidelity term and some regularization penalty that promotes the assumed low-dimensional/simple
structure. This paper provides a general framework to capture this low-dimensional structure through
what we coin partly smooth functions relative to a subspace. These are convex, non-negative, closed
and finite-valued functions that will promote objects living on low-dimensional subspaces. This class of
regularizers encompasses many popular examples such as the £' norm, ¢! — £ norm (group sparsity), as
well as several others including the /> norm. We also show that the set of partly smooth functions relative
to a subspace is closed under addition and pre-composition by a linear operator, which allows to cover
mixed regularization, and the so-called analysis-type priors (e.g. total variation, fused Lasso, finite-valued
polyhedral gauges). Our main result presents a unified sharp analysis of exact and robust recovery of the
low-dimensional subspace model associated to the object to recover from partial measurements. This
analysis is illustrated on a number of special and previously studied cases, and on an analysis of the
performance of ¢*° regularization in a compressed sensing scenario.

Keywords: Convex regularization, Inverse problems, Model selection, Partial smoothness, Compressed
Sensing, Sparsity, Total variation.
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1. Introduction
1.1 Regularization of Linear Inverse Problems

Linear inverse problems are encountered in various areas throughout science and engineering. The goal is
to provably recover the structure underlying an object xy € R”, either exactly or to a good approximation,
from the partial measurements

y=Dxp+w, (1.1

where y € R€ is the vector of observations, w € R stands for the noise, and ® € R*N is a linear
operator which maps the N-dimensional signal domain onto the Q-dimensional observation domain. The
operator @ is in general ill-conditioned or singular, so that solving for an accurate approximation of xq
from (1.1) is ill-posed.

The situation however changes if one imposes some prior knowledge on the underlying object xo,
which makes the search for solutions to (1.1) feasible. This can be achieved via regularization which
plays a fundamental role in bringing back ill-posed inverse problems to the land of well-posedness. We
here consider solutions to the regularized optimization problem

x* € Argmin l||y — x|+ AJ(x), (2, (y)
xERN 2

where the first term expresses the fidelity of the forward model to the observations, and J is the regular-
ization term intended to promote solutions conforming to some notion of simplicity/low-dimensional
structure, that is made precise later. The regularization parameter A > 0 is adapted to balance between
the allowed fraction of noise level and regularity as dictated by the prior on xg. Before proceeding with
the rest, it is worth mentioning that although we focus our analysis on the penalized form (£ (y)), our
results can be extended with minor adaptations to the constrained formulation, i.e. the one where the data
fidelity is put as a constraint. Note also that though we focus our attention on quadratic data fidelity for
simplicity, our analysis carries over to more general fidelity terms of the form F o @, for F smooth and
strongly convex.

When there is no noise in the observations, i.e. w = 0 in (1.1), the equality-constrained minimization
problem should be solved

x* € Argmin J(x) subjectto Px=y. (Zo(y))
xERN

In this paper, we consider the general case where the function J is convex, non-negative and finite-
valued', hence everywhere continuous. This class of regularizers J include many well-studied ones in
the literature. Among them, one can think of the ¢ ! norm used to enforce sparse solutions [Tib96], the
discrete total variation semi-norm [ROF92], the ¢! — ¢ norm to induce block/group sparsity [YLO5], or
finite polyhedral gauges [VPF13].

Assuming furthermore that J enjoys a partial smoothness property (to be defined in Section 5) relative
to a model subspace associated to xg, our goal in this paper is to provide a unified analysis of exact and
robust recovery guarantees of that subspace by solving () (y)) from the partial measurements in (1.1).
As a by-product, this will also entail a control on the ¢>-recovery error.

1.2 Contributions

Our main contributions are as follows.

'Finite-valued means that J(x) < +oo for every x € RV.



3 of 56

1.2.1  Subdifferential Decomposability of Convex Functions. Building upon Definition 3, which
introduces the model subspace T, at x, we provide an equivalent description of the subdifferential of a
finite-valued convex function at x in Theorem 1. Such a description isolates and highlights a key property
of a regularizer, namely decomposability. In turn, this property allows to rewrite the first-order minimality
conditions of () (y)) and (£(y)) in a convenient and compact way, and this lays the foundations of
our subsequent developments.

1.2.2  Uniqueness. In Theorem 2, we state a sharp sufficient condition, dubbed the Strong Null Space
Property, to ensure that the solution of (£ (y)) or (%y(y)) is unique. In Corollary 1, we provide a
weaker sufficient condition, stated in terms of a dual vector, the existence of which certifies uniqueness.
Putting together Theorem 1 and Corollary 1, Theorem 3 states the sufficient uniqueness condition in
terms of a specific dual certificate built from (£, (y)) and (Z(y)).

1.2.3  Partly Smooth Functions Relative to a Subspace. In the quest for establishing robust recovery
of the subspace model 7,, we first need to quantify the stability of the subdifferential of the regularizer
J to local perturbations of its argument. Thus, to handle such a change of geometry, we introduce the
notion of partly smooth function relative to a subspace.

We show in particular that two important operations preserve partial smoothness relative to a subspace.
In Proposition 9 and Proposition 11, we show that it is preserved under addition and pre-composition by a
linear operator. Consequently, more intricate regularizers can be built starting from simple functions, e.g.
¢'-norm, which are known to be partly smooth relative to a subspace (see the review given in Section 7).

1.2.4  Exact and Robust Subspace Recovery. This is the core contribution of the paper. Assuming
the function is partly smooth relative to a subspace, we show in Theorem 6 that under a generalization
of the irrepresentability condition [Fuc0O4], and with the proviso that the noise level is bounded and
the minimal signal-to-noise ratio is high enough, there exists a whole range of the parameter A for
which problem (£7),(y)) has a unique solution x*, which turns out to live in the same subspace as xp.
Clearly, solving () (y)) for this regime of noise and A allows to stably recover the subspace model
underlying xo. In turn, this yields a control on £>-recovery error within a factor of the noise level, i.e.
[x* — xo]| = O(||w||). In the noiseless case, the irrepresentability condition implies that xo is exactly
identified by solving (£ (y)).

1.2.5 Compressed Sensing with (> Norm Regularization. To illustrate the usefulness of our findings,
we apply this model recovery result to the case of the £~ norm in Section 8. This regularization is known
to promote anti-sparse (flat) vectors xo. While there exists previous works on /2-stable recovery with £
regularization from random measurements, it is the first result to assess stable recovery of the anti-sparse
model associated to xp, which is an important additional information. Our result shows that stable model
recovery operates at a different regime compared to #2-stable recovery in terms of bounds on the number
of generic measurements as a function of the anti-sparsity level. This somehow contrasts with classical
results in sparse recovery where it is known that both types of stable recovery hold at comparable bounds
(up to logarithmic terms), see Section 1.4.4.
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1.3 Novelties and Limitations

Before providing a detailed comparison with the state-of-the-art in the following section, we would like
to stress why our contributions are not just unifying with an unprecedented level of generality, but they
also allow to go beyond classical sparsity-type penalties and to tackle many regularizers that are not
covered by the current literature.

First of all, it is important to note that our contributions on both subdifferential decomposability
(Section 1.2.1) and uniqueness characterization (Section 1.2.2) are generic and do not put any constraint
on the regularizer J (beside being convex and finite-valued). These results thus generalize many well-
known ones that are scattered in the literature and derived for specific sparsity-enforcing priors (such as
oY or £ — ¢% norms).

Our main contribution (Section (1.2.4)), which proves that the low-dimensional model subspace
underlying xo can be robustly recovered from noisy measurements, is only valid for convex functions
that are so-called partly-smooth at x( to a subspace. Loosely speaking, a partly smooth function behaves
smoothly along a manifold, and transverse to it, they behave sharply. Partial smoothness offers a powerful
framework in variational analysis to study sensitivity of optimization problems to perturbations of their
parameters, and in particular, stability of the partial smoothness manifold. This is exactly our setting
where the goal is to understand when the model manifold (hopefully low-dimensional) underlying the
original object xy can be stably recovered from partial and noisy measurements. Thus partial smoothness
of the regularizer appears a natural and wise assumption. In this paper, we focus on the case where the
partial smoothness manifold is actually a subspace. While this may appear restrictive, it nevertheless
allows us to provide a detailed analysis, where the constants in the stability bounds are made explicit.
These results hold similarly for the case of affine manifolds. However, considering arbitrary (possibly
curved) manifolds is more involved and not covered by our analysis here. Removing this assumption is
possible (see for instance the recent work [VPF14] and the discussion in the following section), but the
price to pay is that the stability bounds do not give access to explicit constants.

A typical novel application of our results is recovery of anti-sparse signals from partial random
measurements using ¢ regularization, i.e. ¢* compressed sensing (see Section 1.2.5), which cannot
be handled by existing previous works. This is however only the tip of the iceberg, and many more
applications could be found. Typical other illustrative examples include polyhedral regularizations, and
composition of the /! — ¢? norm with a linear operator, as is the case for instance for the isotropic total
variation which is very popular in image processing.

1.4 Related Work

1.4.1 Decomposability. In [CR12], the authors introduced a notion of decomposable norms. In fact,
we show that their regularizers are a subclass of ours that corresponds to strong decomposability in
the sense of the Definition 6, besides symmetry since norms are symmetric gauges. Moreover, their
definition involves two conditions, the second of which turns out to be an intrinsic property implied by
polarity rather than an assumption; see the discussion after Proposition 7. Typical examples of (strongly)
decomposable norms are the ¢!, ¢! — ¢2 and nuclear norms. However, strong decomposability excludes
many important cases. One can think of analysis-type semi-norms since strong decomposability is
not preserved under pre-composition by a linear operator, or the ¢~ norm among many others. The
analysis provided in [CR12] deals only with identifiability in the noiseless case. Their work was extended
in [OJF"12] when J is the sum of decomposable norms.
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1.4.2 Convergence rates. 1In the inverse problems literature, convergence (stability) rates have been
derived in [BO04] with respect to the Bregman divergence for general convex regularizations J. The
author in [Gral 1] established a stability result for general sublinear functions J. The stability is however
measured in terms of J, and ¢2-stability can only be obtained if J is coercive, which, again, excludes
a large class of functions. In [FPV*13], an ¢2-stability result for decomposable norms (in the sense
of [CR12]) precomposed by a linear operator is proved. However, none of these works deals with exact
and robust recovery of the subspace model underlying xg.

1.43 Model selection. There is large body of previous works on the problem of the model selection
properties (sometimes referred to as model consistency) of low-complexity regularizers. These previous
works are targeting specific regularizers, most notably sparsity, group sparsity and low rank. We thus
refer to Section 7 for a discussion of these relevant previous works. A distinctive feature of our analysis
is that it is generic, so it covers all these special cases, and many more. Note however that is does not
cover the nuclear norm, because its associated manifolds are not linear (they are indeed composed of
algebraic manifolds of low rank matrices). We have recently proposed an extension of our results to this
more general non-linear case in [VPF14]. Note however that this new analysis uses a different proof
technique, and is not able to provide explicit values for the constant involved in the robustness to noise.

1.4.4 Compressed sensing. Arguments based on the Gaussian width were used in [CRPW12] to
provide sharp estimates of the number of generic measurements required for exact and £-stable recovery
of atomic set models from partial Gaussian measurements by solving a constrained form of (£ (y))
regularized by an atomic norm. The atomic norm framework was then exploited in [RRN12] in the
particular case of the group Lasso and union of subspace models. This was further generalized in
[ALMT13] who developed for the noiseless case reliable predictions about the quantitative aspects of
the phase transition in convex regularized linear inverse problems with Gaussian measurements. The
location and width of the transition are controlled by the statistical dimension of the descent cone of
the regularizer at the original vector xo. When the noise is also Gaussian with a small enough variance,
[OTH13] proposes a formula for calculating the normalized squared error for the estimator provided by
solving (£, (y)) with a general convex regularizer. All these works are however restricted to a random
(compressed sensing) scenario.

A notion of decomposability closely related to that of [CR12], but different, was first proposed
in [NRWY10]. There, the authors study ¢>-stability for this class of decomposable norms with a general
sufficiently smooth data fidelity. This work however only handles norms, and their stability results require
stronger assumptions than ours (typically a restricted strong convexity which becomes a type of restricted
eigenvalue property for linear regression with quadratic data fidelity).

1.5 Paper Organization

The outline of the paper is the following. Section 2 provides a short recap on convex analysis. Section 3
fully characterizes the canonical decomposition of the subdifferential of a convex function with respect
to the subspace model at x. Sufficient conditions ensuring uniqueness of the minimizers to (£ (y))
and (P (y)) are provided in Section 4. In Section 5, we introduce the notion of a partly smooth function
relative to a subspace and show that this property is preserved under addition and pre-composition by
a linear operator. Section 6 is dedicated to our main result, namely theoretical guarantees for exact
subspace recovery in the presence of noise, and identifiability in the noiseless case. Section 7 exemplifies
our results on several previously studied priors, and a detailed discussion on the relation with respect to
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relevant previous work is provided. Section 8 delivers a bound for the sampling complexity to guarantee
exact recovery of the model subspace of antisparsity minimization from noisy Gaussian measurements.
Some conclusions and possible perspectives of this work are drawn in Section 9. The proofs of our results
are collected in the appendix.

2. A Short Tour of Convex Analysis

This sections aims to provide a short review of important tools from convex analysis that are used in this
paper. A comprehensive account can be found in [Roc96, HULO1].
In the following, if 7' is a vector space, P denotes the orthogonal projector on 7', and

XT :PT)C and (DT = q’PT.

For a subset / of {1,...,N}, we denote by I its complement, /| its cardinality. x;) is the subvector
whose entries are those of x restricted to the indices in I, and <15( ) the submatrix whose columns are
those of @ indexed by I. For any matrix A, A* denotes its adjoint matrix and A" its Moore—Penrose
pseudo-inverse. We denote the right-completion of the real line by R = RU {+o0}.

2.1 Sets

For a non-empty set C C R", we denote conv (C) the closure of its convex hull. For a non-empty convex
set C, its affine hull aff C is the smallest affine manifold containing it, i.e.
k k
affC = Zp,-x[:k>0,p;€R,x,-€C,Zp,<:l .

i=1 i=1

For instance, the affine hull of a segment in R? is the straight line containing this segment. It is a translate
of its parallel subspace parC, i.e. parC = affC — x = span(C — x) for any x € C, where spanC is the
linear hull of C.

The interior of C is denoted intC. The relative interior riC of a convex set C is the interior of C for
the topology relative to its affine full.

2.2 Functions

A real-valued function f : RN — R is coercive, if lmy 5 poo f (x) = +oo. The effective domain of f is
defined by dom f = {x € RV : f(x) < 4eo} and f is proper if dom f 5 0. We say that a real-valued
function f is lower semi-continuous (Isc) if liminf,_,y f(z) > f(x). A function is said sublinear if it is
convex and positively homogeneous.

Let the kernel of a function be denoted Ker f = {x eERN: f(x)= 0}. Ker f is a cone when f is
positively homogeneous.

Let C be a nonempty convex subset of RY. The indicator function ic of C is

e(x) 0, ifxeC,
X)) =
¢ +oo, otherwise.

The Legendre-Fenchel conjugate of a proper, Isc and convex function f is

fH(uw)= sup (u,x)—f(x),

x€dom f
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where f* is proper, Isc and convex, and f** = f. For instance, the conjugate of the indicator function 1¢
is the support function of C

oc(u) = sug(u7 x) .
xe

Oc is Isc and sublinear. It is non-negative if 0 € C. Moreover, we have the following.

LEMMA 1 Let C be a non-empty set.
(i) oc is Isc and sublinear.
(i1) oc is finite-valued if and only if C is bounded.
(iii) If 0 € C, then o is non-negative.
@iv) If C is convex and O € C, then o is constant along all affine subspaces parallel to parC.

(v) If C is convex and compact with 0 € riC, then o is finite-valued, Ker ¢ = (parC)J- and o¢ is
coercive on parC.

Let f and g be two proper closed convex functions from R" to R. Their infimal convolution is the
function
N . .
(fVe)x) = inf flx)+g(x2)= inf f(z)+gx—2).
X|+xX=x zERN
Let C C R" be a non-empty closed convex set containing the origin. The gauge of C is the function
Yc defined on RN by

Ye(x) =inf{A >0: x€ AC}.

As usual, ¥o(x) = +oo in case of emptiness of the set over which the infimum is computed. ¢ is a
non-negative, Isc and sublinear function. It is moreover finite everywhere, hence continuous, if, and only
if, C has the origin as an interior point, see Lemma 2 for details.

The subdifferential d f (x) of a convex function f at x is the set

Af(x)={ueRV: f(X') > f(x) + (u,x' —x), V¥’ €domf} .

An element of df(x) is a subgradient. If the convex function f is differentiable at x, then its only
subgradient is its gradient, i.e. d f(x) = {Vf(x)}.
The directional derivative f'(x,8) of a Isc function f at the point x € dom f in the direction § € RY

is
f'(x.8) = lim fatid) -/ ‘SI) S

When f is convex, then the function 8 — f’(x,-) exists and is sublinear. When f has also full domain,
then for any x € RV, 9 f(x) is a non-empty compact convex set of RY whose support function is f’(x,-),
ie.

f(x,8) = 0571)(8) = sup (n,d).
neaf(x)

We also recall the fundamental first-order minimality condition of a convex function: x* is the global
minimizer of a convex function f if, and only if, 0 € d f(x).
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2.3 Gauges

We start by collecting some important properties of gauges and their polars. A comprehensive account on
them can be found in [Roc96].

Lemma 2, in particular item (ii), is a fundamental result of convex analysis that states that there is a
one-to-one correspondence between gauge functions and closed convex sets containing the origin. This
allows to identify sets from their gauges, and vice versa.

LEMMA 2
(i) 7c is a non-negative, Isc and sublinear function.
(ii) C is the unique closed convex set containing the origin such that

C={xeR": yp(x)<1}.

(iii) 7 is finite everywhere if, and only if, O € intC, in which case ¢ is continuous.
(iv) Keryc = {0} if, and only if, C is compact.

(v) 7 is finite and coercive on dom ¥ = parC if, and only if, C is compact and O € riC. In particular,
Yc is finite everywhere and coercive if, and only if, C is compact and O € intC.

Observe that ¢ is a norm, having C as its unit ball, if and only if C is bounded with nonempty interior
and symmetric. When C is only symmetric with nonempty interior, then Y- becomes a semi-norm.
Let us now turn to the polar of a convex set and a gauge.

DEFINITION 1 (Polar set) Let C be a non-empty convex set. The set C° given by
C° = {veRN: (v,x) < 1forallx € C}
is called the polar of C.

C° is a closed convex set containing the origin. When the set C is also closed and contains the origin,
then it coincides with its bipolar, i.e. C°° = C.
We are now in position to define the polar gauge.

DEFINITION 2 (Polar Gauge) The polar of a gauge }c is the function ¥ defined by
Vo) = inf{p > 0: (x.u) < pyc(x), v} .
Observe that gauges polar to each other have the property
(o, uy < ye(xX)ve(u) V(x,u) € domye x domys ,

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best
inequalities of this type.

LEMMA 3 Let C C RY be a closed convex set containing 0. Then,
(1) ¥¢ 1is a gauge function and 2° = ¥c.
(ii) Y2 = Yce, or equivalently

CO={xeR": @) <1} ={xeR": y=(x) < 1}.
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(iii) The gauge of C and the support function of C are mutually polar, i.e.
Yc = Oce and Yco = Oc .

We here derive the expression of the gauge function of the Minkowski sum of two sets, as well as
that of the image of a set by a linear operator. These results play an important role in Section 5.

LEMMA 4 Let C; and C; be nonempty closed convex sets containing the origin. Then

+
Yo, +0,(x) = sup pye, V (1 —p)¥e, (x) -
pe(0,1]

If x is such that ¥, (x1) + Y, (x2) is continuous and finite on {(x1,x2) : x| +x2 = x}, then
Yo,+¢,(x) = inf max(¥c, (2), Y, (x—2)) -
zERN

LEMMA 5 Let C be a compact convex set containing 0, and D a linear operator. Then, for every
x € Im(D)
x)= inf D x+7).
o) (%) <cKer(D) Ye( 2)
When it is also assumed that 0 € riC, using Lemma 2(v), one can observe that the infimum is finite if
(D*x+Ker(D)) NparC # 0.

2.4  Set-valued mappings

We need in this paper some basic facts on set-valued mappings. A comprehensive account can be found
in [AF09]. A set valued-mapping F : R" = R™ is characterized by its graph, i.e. by the subset of X x Y
defined by

graph(F) = {(x,y) eX XY : ye F(x)}.

The domain of F, domF, is the set of points x € R” such that F(x) # 0.
A set-valued mapping F is Lipschitz relative to a non-empty set U in R"” if U C domF, F is closed-
valued on U and there exists § > 0 such that

F(x) CF(x')+Blz—7|B(0), forallx,x' €U,
where B(0) is the unit ball of R™.
We end by showing that Lipschitz continuity of F' transfers to that of the associated gauge.

LEMMA 6 Let F : RY = RV be B-Lipschitz on a compact set U, and assume that for every point
x € U, F(x) is a compact convex set containing the origin as a relative interior point. Then, for any x,
X' in U, and u € par(F (x)) Npar(F(x')), there exists a constant constant C < oo such that the mapping
x € U+ Yp(y)(u) is CB||ul|-Lipschitz continuous.

2.5 Operator norm

Let J; and J, be two finite-valued gauges defined on two vector spaces V) and V,, and A : V; — V, a
linear map. The operator bound ||A||;, _,,;, of A between J; and J; is given by

ANl s, = sup J2(Ax).

Jl(x)gl
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Note that [|A[[;,_,;, < +eo if, and only if AKer(J1) C Ker(J2). In particular, if J; is coercive (i.e.
KerJ; = {0} from Lemma 2(v)), then [|A[[;, _,;, is finite. As a convention, |HAH|JﬁH-\b is denoted as
llAlll,—¢r- An easy consequence of this definition is the fact that for every x € Vi,

J2(Ax) < A, - 1,1 (%)-

3. Model Subspace and Decomposability

The purpose of this section is to introduce one of the main concepts used throughout this paper, namely

the model subspace associated to a convex function. The main result, Theorem 1, proves that the

subdifferential of any convex function exhibits a decomposability property with respect to this subspace.
In the case of ¢!-norm, the following result is well-known.

FACT 1 (Decomposability of ¢!) Let x € RY. Then the subdifferential of || - ||; at x reads

- 1(x) = {n e RN : nyy =sign(xy)) and [ngelle <1},
where I = supp(x).

In plain words, this result decomposes the subdifferential of the /!-norm at a point x into a single-
valued part characterized by the sign vector of the active components of x, i.e. those indexed by its support
I, and a set-valued part corresponding to the non-active components indexed by /€. In the following
section, we show how to generalize this splitting to any finite-valued convex function.

3.1 Model Subspace Associated to a Convex Function
Let J be our regularizer, i.e. a finite-valued convex function.

DEFINITION 3 (Model Subspace) For any vector x € RY, denote S, the affine hull of the subdifferential
of Jatx
S, = aff aJ (x),

and e, the orthogonal projection of 0 onto S,
ey = argmin |le|.
e€Sy

Let
Sy =S, —ex=par(dJ(x) —e,) and T, =S,

T, is coined the model subspace of x associated to J.

When J is differentiable at x, i.e. dJ(x) = {VJ(x)}, ex = VJ(x) and T, = RY. Note that the
decomposition of RV as a sum of the two orthogonal subspaces T and S, is also the core idea underlying
the % — ¥'-decomposition/theory developed in [LOS00].

We start by summarizing some key properties of the objects e, and 7.

PROPOSITION 1 For any x € RY, one has
(i) ey € T,NS;.

(i) Sc={neRV: nz =e}.
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FIG. 1: Illustration of the geometrical elements (S, T, e;), in the particular case where x € Ty, for instance
when J is a gauge.
In general e, ¢ dJ(x), which is the situation displayed on Figure 1.

To illustrate these definitions, we now give the examples of the ¢'-¢> and the ¢/~ norms. A more
comprehensive treatment is provided in Section 7 which is completely devoted to examples.
EXAMPLE 1 (¢'-¢% norm) We consider a uniform disjoint partition % of {1,...,N},

{1,...N}=Jb, bNb'=0,Vb#0D .
beA

The ¢! — ¢2 norm of x is

J(x) = |l = ) bl

beA
The subdifferential of J at x € RY is
QI (x) = {n eRY: Vb e I(x), = ”i—”” and Vb & I1(x), |m] < 1},
b

where I(x) = {b € % : x;, # 0}. Thus, the affine hull of dJ(x) reads

Sx:{neRN: Vb € I(x), p = —2 }

sl

Hence the projection of 0 onto S, is

ex = (AN (%) )bez
where .4 (a) = a/|al| if a # 0, and .4#"(0) = 0 and

Se=Si—e={neR": vbel(x),m,=0},

and
T,=Sf={neR":vbgI(x),n,=0}.

Figure 2 shows graphically these definitions for a particular case of ¢! — /> norm in R?.
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FIG. 2: Tllustration of the geometrical elements (Sy, Ty, ex) for the £ I_ g2 regularization in dimension 3,

for J(x) = \/x3 +x3 + |x3] for x = (x1,x2,x3) € R3,

EXAMPLE 2 (¢ norm) The ¢~ norm is J(x) = ||x[|. = [max |x;|. For x =0, dJ(x) is the unit ¢! ball,

hence S, = S, = R", T, = {0} and e, = 0. For x # 0, we have
AI(x) = {n: Vi I, m=0, (,5) =1, mis; > 0 Vi € 1(x)} .

where I(x) = {i € {1,...,N}: |x;] = ||x[|}, si = sign(x;) if i € I(x), and 5; = 0 if i € I(x)°. Itis clear
that S, is the affine hull of an |I(x)|-dimensional face of the unit ¢! ball exposed by the sign subvector
S(1(x))- Thus ey is the barycenter of that face, i.e.

ex=s/[I(x)] and S,={n: Ny =0 and (M), suw)) =0} -
In turn
T, = SxL = {(X ©01(x) = PS(x)) for pe R}.
Figure 3 displays in R? these definitions.

3.2 Decomposability Property

3.2.1 The subdifferential gauge and its polar. Before providing an equivalent description of the
subdifferential of J at x in terms of the geometrical objects ey, T, and Sy, we introduce a gauge that plays
a prominent role in this description.

DEFINITION 4 (Subdifferential Gauge) Let J be a finite-valued convex function. Let x € R" and let
fx €1idJ(x). The subdifferential gauge associated to fy is the gauge J;° = Yo;()—,-
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'S,

FIG. 3: Tllustration of the geometrical elements (S, Ty, e,) for the £ regularization in dimension 3.

Note that for the examples considered so far (1, ¢! — (2 and ¢ norms), one has e, € ridJ (x), so
that one can choose f, = e, in Definition 4. This is however not the case in general, which makes the
introduction of the extra-variable f, mandatory. In the sequel, it is thus important to remind that J;ﬁ;o
actually depends on the particular choice of f,.

The following proposition states the main properties of the gauge J;X‘O.

PROPOSITION 2 The subdifferential gauge J;° is such that domJ§° = S, and is coercive on S.

We now turn to the gauge polar to the subdifferential gauge Jj’f:Y = (J;;O)O.The following proposition
summarizes its most important properties.

PROPOSITION 3 The gauge J}X is such that

(1) Itis finite everywhere.

(ii) J;C‘x (d) = chfx (de) = Sup.].);;(nsx)gl <77S,xa d>
(iii) Ker]xx =T, and J}x is coercive on S.

3.2.2  Subdifferential of a gauge. The subdifferential of a gauge ¢ at a point x is completely charac-
terized by the face of its polar set C° exposed by x. Put formally, we have [HULO1]

Irc(x)=Fco(x) ={neR": neC® and (n,x)=7rx)},

where Feo(x) is the face of C° exposed by x. The latter is the intersection of C° and the supporting
hyperplane {n € R : (n, x) = yc(x) }. The special case of x = 0 has a much simpler structure; it is the
polar set C° from Lemma 3(ii)-(iii), i.e.

Ire(x) = {n eRY: y=(n) <1} =C°.



14 of 56

The following proposition gives an equivalent convenient description of the subdifferential of the
regularizer J = Y at x in terms of a particular supporting hyperplane to C°: the affine hull S,.

PROPOSITION 4 Let J = ¢ be a finite-valued gauge. Then for x € R", one has
dJ(x) =S8,NC"°.
PROPOSITION 5 Let J = Y be a finite-valued gauge. For any x € RV, one has
(i) Forevery u € Sy, J(x) = (u, x).
(i) x e T,.

(iii) The subdifferential gauge ijf reads
J5°(n) = inf max(J°(tf+1),7) +15,(1) -
x >0

(iv) The polar of the subdifferential gauge J3 reads
J3(d) =J(ds,) = (fs,, ds,)-

We draw the attention of the reader to the fact that J O,J;;O and J;ﬁx are not the same function. The
first one is the polar of J, the second one is the subdifferential gauge and the third one is the polar of the
subdifferential gauge.

3.2.3 Decomposability of the subdifferential. Piecing together the above ingredients yields a funda-
mental pointwise decomposition of the subdifferential of the regularizer J.

THEOREM 1 (Decomposability) Let J be a convex function. Let x € RV and f, € ridJ(x). Then the
subdifferential of J at x reads

2(x)={nerV: my=e. and I (Ps(n-£)) <1},

The chosen terminology of “decomposability” appears quite natural in view of the splitting of
the subdifferential entailed by the two orthogonal subspaces Ty and S,. The terminology (% — ¥")
decomposition is also used in the seminal work of Lemaréchal et al. [LOS00]. The same wording is also
employed by Candés and Recht in their paper [CR12], in which the subdifferential exhibits a similar
property, but specialized to norms. The decomposability condition used by Negahban et al. [NRWY10],
is related to that of [CR12], but is different (see our discussion in the introduction). In fact, it turns out
that decomposability is a fundamental properties of the subdifferential of any convex function, and that it
should not be a prior hypothesis for our analysis.

This decomposability property is at the heart of our results, because it enables to check whether
some vector 7 satisfies 1) € ri(dJ(x)) (see Theorem 3) and also to quantify how far is 17 from the relative
boundary of dJ(x) (see Theorem 6).

Let us derive the subdifferential gauge for a smooth function and for the the illustrative example of
the £~ norm. The case of the ¢! — ¢ norm is detailed in Section 3.3.

ExAMPLE 3 (Differentiable convex function) Let J be a convex function which is everywhere differ-
entiable. Then dJ(x) = {VJ(x)}. It is clear that S, = {0}, and thus 7, = RY and e, = f, = VJ(x).
Moreover, J¢° (1) = Y10y (1) = oy (N) = 0(N).
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EXAMPLE 4 (£~ norm) Recall from Section 3.1 that for J = || - |0, fx = ex = s/|1|, with sy = sign(x(;)),
and s(je) = 0. Let J#; = dJ(x) — e,. It can be straightforwardly shown that in this case,

Ty = {v: V(l,]) el ><]C7 Vj =0, <v<1), S(1)> =0, —|I|v,'Si < 1}

This is rewritten as
%stﬁ{vi ViEI, —‘I|V,’Si < 1}

=x!

X

Thus the subdifferential gauge reads

T2 (M) = v (n) = max(¥s, (M), v (M))-

We have y5. (1) = 15,(n) and Y+ () = max (—I]sini)+, where (-)4 is the positive part, hence we obtain
: " ic

iel

o max (—|I|s;n;)+ ifn €Sy
Ji(m) = )
~+o0 otherwise.

Therefore the subdifferential of || - || at x takes the form

aJ(x) = {n ERV:np =e, = ;—‘ and max (=H|simi)+ < 1}.
1SS
Capitalizing on Theorem 1, we are now able to deduce a convenient necessary and sufficient first-order
(global) minimality condition of (£, (y)) and (Z(y)).

PROPOSITION 6 Letx € RY, and denote for short T = T, and S = S,. The two following propositions
hold.

(i) The vector x is a global minimizer of (2, (y)) if, and only if,
®;(y—Px) = Aex and JP°(AT B5(y— Px) —Ps(fi)) < 1.
(ii) The vector x is a global minimizer of ((y)) if, and only if, there exists a dual vector @ € R2

such that
Pro=e, and J};O(dbg‘a—Pg(fx)) <1.

3.3 Strong Gauge

In this section, we study a particular subclass of regularizers J that we dub strong gauges. We start with
some definitions.

DEFINITION 5 A finite-valued regularizing gauge J is separable with respect to T = S+ if
V(,xX)eT xS, Jx+x)=J(x)+J(X).

Separability of J is equivalent to the following property on the polar J°.
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LEMMA 7 Let J be a finite-valued gauge. Then, J is separable w.r.t. to T = S if, and only if its polar J°
satisfies
Jo(x+x") =max (J°(x),J°(x)), V(xrx)eTxS.

The decomposability of dJ(x) as described in Theorem 1 depends on the particular choice of the map
x+— f €ridJ(x). An interesting situation is encountered when e, € ridJ(x), in which case, one can just
choose f, = e,, hence implying that fs5 = 0. Strong gauges are precisely a class of gauges for which this
situation occurs. B

In the sequel, for a given subspace T, we denote T the set of vectors sharing the same T,

T:{xERN: Y}C:T}.
Usinngositive homogeneity, it is easy to show that T, = T, and ey, = e, Vp > 0, see Proposition 5(i).
Thus T is a non-empty cone which is contained in 7 by Proposition 5(ii).
DEFINITION 6 (Strong Gauge) A strong gauge on T is a finite-valued gauge J such that
1. Forevery x € T, e, € 1idJ(x).
2. J is separable with respect to 7.
Moreover, if J is a norm, we say that J is a strong norm if it is a norm and a strong gauge.

The following result shows that the decomposability property of Theorem 1 has a simpler form when
J is a strong gauge.

PROPOSITION 7 Let J be a strong gauge on 7. Then, for any x € f, the subdifferential of J at x reads
dJ(x)={neRY: n;,=e, and J°(ns,) < 1}.

When J is in addition a norm, this coincides exactly with the decomposability definition of [CR12].
Note however that the last part of assertion (ii) in Proposition 3 is an intrinsic property of the polar of the
subdifferential gauge, while it is stated as an assumption in [CR12].

EXAMPLE 5 (¢!-¢2 norm) Recall the notations of this example in Section 3.1. Since e, = (A" (xp))pez €
1idJ(x), and the ¢'-¢% norm is separable, it is a strong norm according to Definition 6. Thus, its
subdifferential at x reads

dJ(x) = {n cRN - Nr, =ex = (AN (xp))pcp and I})lél]x M| < l}.

Note however that, except for N = 2, £ is not a strong gauge.

4. Uniqueness

This section derives sufficient conditions under which the solution of problem (2 (y)) (resp. (Zo(y)))
is unique.
In the case of £!-norm, [DHO1] has proved the following result.

FACT 2 Let x be a solution of () (y)) (resp. a feasible point of (%(y))). Denote I = supp(x) and
s = sign(x). If the Strong Null Space Property holds

V& € Ker(P)\ {0}, (sr), 81)) < 181)l1 (NSP®)

then the vector x is the unique minimizer of (&) (y)) (resp. (Zo(y))).
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In the following, we derive a similar statement for any convex function, which will allow us to obtain
uniqueness condition.

We start with the key observation that although () (y)) does not necessarily have a unique minimizer
in general, all solutions share the same image under .

LEMMA 8 Let x,x’ be two solutions of (7, (v)). Then,
Px = Px'.

Consequently, the set of the minimizers of (£ (y)) is a closed convex subset of the affine space
x+ Ker(®), where x is any minimizer of () (y)). This is also obviously the case for (Z(y)) since all
feasible solutions belong to the affine space xy + Ker &.

4.1 The Strong Null Space Property

The following theorem gives a sufficient condition to ensure uniqueness of the solution to (£ (y))
and (Zy(y)), that we coin Strong Null Space Property. This condition is a generalization of the Null
Space Property introduced in [DHO1] and popular in ¢! regularization.

THEOREM 2 Let J be a finite-valued convex function. Let x be a solution of (£, (y)) (resp. a feasible
point of (Zy(y))) and let f, € ri(dJ(x)). Denote T = S+ = T, the associated model subspace. If the
Strong Null Space Property holds

V6 € Ker(®)\ {0},  (ex, 6r) + (Ps(fy), 8s) < J}.(—bs), (NSP®)
then the vector x is the unique minimizer of () (y)) (resp. (% ())).

This result reduces to the one proved in [FPV*13] when J is a strong norm, i.e. decomposable in
the sense of [CR12], pre-composed by a linear operator. Note that when specializing (NSP®) to a strong
gauge J, it reads

V6 € Ker(®)\ {0}, (ex, Or,) <J(—0s,)-

4.2 Dual Certificates

In this section we derive from (NSPS) a weaker sufficient condition, stated in terms of a dual vector, the
existence of which certifies uniqueness.
For some model subspace T, the restricted injectivity of @ on T plays a central role in the sequel.
This is achieved by imposing that
Ker(@)NT = {0}. (61)

We can derive from Theorem 2 the following corollary.
COROLLARY 1 Let x be a solution of (£ (y)) (resp. a feasible point of (£y(y))). Assume that there

exists a dual vector o such that 1 = @*a € ri(dJ(x)), and (¢7) holds where T = T. Then x is the unique
solution of (£ (y)) (resp. (Zo(y))).

Piecing together Proposition 6 and Corollary 1, one can build a particular dual certificate for (7 (y)),
and then state a sufficient uniqueness explicitly in terms of the decomposable structure of the subdifferen-
tial of the regularizer J.

THEOREM 3 Let x € RV, and suppose that fy € ridJ(x). Assume furthermore that (¢7) holds for T = T,
andlet S =T+ .
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() If

Dr(y— Px) = Aey, 4.1
T (A7 @5 (y— x) = Ps(f)) < 1. 4.2)

then x is the unique solution of (£ (y)).

(i) If there exists a dual certificate o such that
Pra=e; and Ji°(P5a—Ps(fi)) <1,

then x is the unique solution of (Z(y)).

5. Partly Smooth Functions Relative to a Subspace

Until now, except of being convex and finite-valued (i.e. full domain), no other assumption was imposed
on the regularizer J. But, toward the goal of studying robust recovery by solving (2, (y)), more will
be needed. This is the main reason underlying the introduction of a subclass of finite-valued convex
functions J for which the mappings x — e, x — Pg (f;) and x — J;Z‘_ exhibit local regularity, in some
sense to be precized shortly (see Definition 8).

5.1 Partly Smooth Functions

The notion of “partly smooth” functions [Lew02] unifies many non-smooth functions known in the
literature. Partial smoothness (as well as identifiable surfaces [Wri93]) captures essential features of
the geometry of non-smoothness which are along the so-called “active/identifiable manifold”. Loosely
speaking, a partly smooth function behaves smoothly as we move on the partial smoothness manifold, and
sharply if we move normal to the manifold. In fact, the behaviour of the function and of its minimizers (or
critical points) depend essentially on its restriction to this manifold, hence offering a powerful framework
for sensitivity analysis theory. In particular, critical points of partly smooth functions move stably on the
manifold as the function undergoes small perturbations [Lew02, LZ13].

Specialized to finite-valued convex functions, the definition of partly smooth functions reads as
follows.

DEFINITION 7 A finite-valued convex function J is said to be partly smooth at x relative to a set .2 C RV
if

1. Smoothness. .# is a C2-manifold around x and J restricted to .# is CZ around x.

2. Sharpness. The tangent space of ./ at x is the model space T,

3. Continuity. The set-valued mapping dJ is continuous at x relative to ./ .

The manifold .# is coined a model manifold of x € RN. J is said to be partly smooth relative to a set M
if .# is a manifold and J is partly smooth at each point x € .Z relative to .# . If J is partly smooth and J
is a strong gauge, we say that J is strongly partly smooth.
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Since J is proper convex and finite-valued, the subdifferential dJ(x) is everywhere non-empty,
compact and convex. Therefore, by [RW9S, Corollary 8.11 and Proposition 8.12], the Clarke regularity
property [Lew02, Definition 2.7(ii)] is automatically verified. In view of [Lew02, Proposition 2.4(i)-
(iii)], our sharpness property is equivalent to that of [Lew02, Definition 2.7(iii)]. Obviously, any smooth
function J : RY — R is partly smooth relative to RY. Moreover, if .# is a manifold around x, the indicator
function 1 4 is partly smooth at x relative to .# . Remark that in the previous definition, .# needs only to
be defined locally around x, and it can be shown to be locally unique, see [HL04, Corollary 4.2]. Hence
the notation .7 is unambiguous and we can say that ./ is the model manifold.

5.2 Partial Smoothness Relative to a Subspace

Many of the partly smooth functions considered in the literature are associated to linear subspaces, i.e. in
which case the model subspace is the model manifold .#Z = T, (see the sharpness property). This class
of functions, coined partly smooth functions relative to a subspace, encompasses most of the popular
regularizers in signal/image processing, machine learning and statistics. As we will see, ¢!, ¢! — (2, ¢
norms, their composition by a linear operator, and/or positive combinations of them, to name a few, are
partly smooth relative to a subspace. However, this family of regularizers does not include the nuclear
norm, whose model manifold is obviously not linear (set of fixed rank matrices). In the reminder of the
paper, we focus our attention on the class of regularizers J which are finite-valued convex and partly
smooth at x relative to 7.

In order to derive quantitative stability bounds in Section 6, it is important to quantify precisely the
local regularity of the mappings x > ex, x + Ps, (f;) and x — J}°. This is formalized in the following
definition.

DEFINITION 8 Let I” be any gauge which is finite and coercive on T for x € RV, Let f be any mapping

T. —RN
& {x = fr € 11dJ (). (5.1

For (Vy, Uy, T, &) € Ri, we denote
J € PSELL(T, f, Vie, b, T, &x)
if J is a finite-valued convex and partly smooth functions at x relative to 7 such that
VieT, and T'(x—X)<v, =T, =Ty (5.2)

and for every x’ € T, with I'(x —x’) < vy, one has

I(ey—ey) < I (x—x), (5.3)

T2 (Ps(fi— f) < wl(x =), (5.4)
Jx’7o _JEe

sup Ty () T () <EI(x—x). (5.5)

ucs J);;O (M)
u#0 .

The following theorem shows that these regularity conditions should really be interpreted as quantita-
tive Lipschitz bounds on the variation of the subdifferential dJ.
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THEOREM 4 Let J be a partly smooth function at x relative to T, and assume that 9J : RY = RV
is Lipschitz-continuous around x relative to 7,. Then for any gauge I" which is finite and coercive
on 7, and for any Lipschitz map f of the form (5.1), there exists (Vy, Ly, Ty, &) € Ri such that J €
PSFL, (I, fv, Vx, lx, Tx, & ). Moreover, there always exists such a Lipschitz mapping f.

5.3 Operations Preserving Partial Smoothness Relative to a Subspace

The set PSFL, is closed under addition and pre-composition by a linear operator.

5.3.1 Addition. The following proposition determines the model subspace and the subdifferential
gauge of the sum of two functions
H=J+G

in terms of those associated to J and G.

PROPOSITION 8 Let J and G be two finite-valued convex functions. Denote 7” and e; (resp. T and eg)
the model subspace and vector at a point x corresponding to J (resp. G). Then the subdifferential of H
has the decomposability property with

(i) TH =T/NTC, or equivalently S = (T#)+ = span (§/ USY).
(i) ey =Pru(es+eg).
(iii) Moreover, let J°, J 7 and G denote the subdifferential gauges for the pairs (J, f € ridJ(x)) and
(G, f¢ €1idG(x )) Correspondmgly. Then, for the particular choice of
=R+ F
we have f1 € ridH(x), and for a given 1 € S, the subdifferential gauge of H reads

Hipn) = inf | max(77 (m).Gy5(m2)

Armed with this result, we show the following.

PROPOSITION 9 Let x € RV, Suppose that
J €PSFL (I, fl.v] ], 7] ,&]) and G €PSFL(I'Y fC,vZ ul 17 EY).
Then, for the choice f7 = f/ + f& and ' = max(I'’,I"%), we have

H=J+GecPSFL (' fH yH yH 0 gH)

x o Ve oMy s Ty s
with
vl = min(v!, v%)
IJ'x = W] Ppalll s + 1 1Pt | oo

V=gl bu \IIPsHmTJIHruHN +u H|PSHQTGH|FG_>H;°

éf = max(§/,£7).
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5.3.2  Smooth perturbation. It is common in the literature to find regularizers of the form J¢(x) =
J(x) + §|x|3, such as the Elastic net [ZHO5] . More generally, we consider any smooth perturbation of
J. The following is a straightforward consequence of Proposition 8.

COROLLARY 2 Let J be a finite-valued convex function, x € RY and G a convex function which is
differentiable at x. Then,

T/7O=T and &["%=e]+PyVG(x).

Moreover, for the particular choice of
K= +VG6(),
we have f/7C € ri(J + G)(x) and for a given 1 € S/, the subdifferential gauge of J + G reads
(J+G) e () =T (1)

Hence, the model subspace 7, and the subdifferential gauge are insensitive to smooth perturbations.
Combining Proposition 9 and Corollary 2 yields the partial smoothness Lipschitz constants of smooth
perturbation.

COROLLARY 3 Let x € RY. Suppose that J € PSFL, (I, f/,v! u!,t/ &/), that G is C* on RY with
a B-Lipschitz gradient. Then for the choice f# = f/ + VG(x) and I' = max(I'"’,||-||), H=J+G €
PSEL, (%, £ v, ulf o &) with

X

vi =i, = 1Pl pn + BlIPrs 2

=g, &=¢&

5.3.3 Pre-composition by a Linear Operator. Convex functions of the form Jy o D*, where Jj is a
finite-valued convex function, correspond to the so-called analysis-type regularizers. The most popular
example in this class is the total variation where J is the ¢! or the ¢! — ¢ norm, and D* = V is a finite
difference discretization of the gradient.

In the following, we denote T = T, = S and e = ¢, the subspace and vector in the decomposition
of the subdifferential of J at a given x € RV, Analogously, Ty = Sé and ¢ are those of Jy at D*x. The
following proposition details the decomposability structure of analysis-type regularizers.

PROPOSITION 10 Let Jy be a convex finite-valued function. Then the subdifferential of J = Jy o D* has
the decomposability property with

(i) T =Ker(Dj,), or equivalently S = Im(Ds).
(ii) e = DTeQ.

(iii) Moreover, let Jé) ;;C; denote the subdifferential gauge for the pair (Jo, fo,p+x € 1i dJo(x)). Then, for

the particular choice of
f x = Df 0,D*x
we have f; € 1idJ(x), domJ;” = S and for every € §

JPmy= _inf  JP° (D} :
(1) zeK]eIrl(Dso) O,jO,D*X( 5,1 +2)

The infimum can be equivalently taken over Ker(D) N .Sp.
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Capitalizing on these properties, we now establish the following.

PROPOSITION 11 Letx € RN and u = D*x. Suppose that Jo € PSFL, (I3, fo.u, Vo.us H0.u> To.us E0.u)- Then

with the choice f, = Dfp, and I" any finite-valued coercive gauge on T, J = Jgo D* € PSFL (I, fy, Vi, l, Tx, Ex )

with

B 1
DMl

te = Hou[ID7 [l 10"l ry

T = (%M

& = SoullD™lr sy -

Vx VOo,u

)

+
DSODS‘

+
DSODS‘

+ Ho.u )IIlD*Hmro

Jos =g Io—J
0,/0,u 0,/0,u o O‘fOA,u

6. Exact Model Selection and Identifiability

In this section, we state our main recovery guarantee. This result asserts that under appropriate conditions,
and for small enough noise, (7 (y)) with a partly smooth function J at x relative to the subspace T, has
a unique solution x*, and moreover, its model subspace equals that of xo, i.e. T,» = T,. Put differently,
provided that the noise is sufficiently small, regularization by J is able to stably recover the correct model
subspace underlying xo.

6.1 Linearized Precertificate
Let us first introduce the definition of the linearized precertificate.

DEFINITION 9 The linearized precertificate o for x € RV is defined by

o = argmin || o]
¢aa:@

The subscript F is used as a salute to J.-J. Fuchs [Fuc04] who first considered this vector as a dual
certificate for #! minimization. The intuition behind it is well-understood if one realizes that the existence
of a dual certificate ¢ is equivalent to ) = @*« for some « such that nr = e, and J};"(ns —Fsf) <L
Dropping the last constraint, and choosing the minimal #>-norm solution to the first constraint recovers
the definition of of.

A convenient property of this vector, is that under the restricted injectivity condition, it has a closed
form expression.

LEMMA 9 Letx € RN and suppose that (67) is verified with T = T,. Then o is well-defined and
ap::¢£%er

Beside condition (47, ) stated above, the following Irrepresentability Criterion will play a pivotal role.

DEFINITION 10 For x € RY such that (¢7,) with T = T holds, we define the Irrepresentability Criterion
at x as

IC(x) = J3° (®5, P "ex —Ps, fr).
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A fundamental remark is that IC(x) < 1 is the analytical equivalent to the topological non-degeneracy
condition @*ay € ridJ(x). Note that if J is a strong gauge on 7, then it reads IC(x) = J°(&Pg CDTt “ey),
see Proposition 7. The Irrepresentability Criterion clearly brings into play the promoted subspace 7, and
the interaction between the restriction of @ to T, and Sy. It is a generalization of the irrepresentability
condition that has been studied in the literature for some popular regularizers, including the ¢'-norm
[Fuc04], analysis-£ 1 [VPDF13], and #'-¢% [Bac08a]. See Section 7 for a comprehensive discussion.

6.2 Exact Model Selection

We begin with the noiseless case, i.e. w =0 in (1.1). In fact, in this setting, IC(xo) < 1 is a sufficient
condition for identifiability without any any other particular assumption on the finite-valued convex
function J, such as partial smoothness. By identifiability, we mean the fact that x is the unique solution

of (Z(y)).

THEOREM 5 Letxo ¢ RN and T = T,,- We assume that (¢7) holds and IC(xo) < 1. Then xj is the
unique solution of (£ (y)).

It turns out that even in presence of noise in the measurements y according to (1.1), condition
IC(x0) < 1 is also sufficient for (&7, (y)) with PSFL,, regularizer to stably recover the model subspace
underlying xg. This is stated in the following theorem.

THEOREM 6 Letxg € RV and T = Ty, Suppose that J € PSFLy (I, Vi, lyy» Trys Exy )- Assume that (%7)
holds and IC(xg) < 1. Then there exist positive constants (A7, Br) that solely depend on T and a constant
C(xp) such that if w and A obey

Ar

_— <AL i .
T IC) [w|| < A < vy, min (Br,C(xo)) (6.1)

the solution x* of (£, (y)) with noisy measurements y is unique, and satisfies 7,» = T. Furthermore, one
has
o — "] = 0 max(w], ).

Clearly this result asserts that exact recovery of Ty, from noisy partial measurements is possible with
the proviso that the regularization parameter A lies in the interval (6.1). The value A should be large
enough to reject noise, but small enough to recover the entire subspace T,. In order for the constraint (6.1)
to be non-empty, the noise-to-signal level ||w|| /vy, should be small enough, i.e.

Il _ 1-1C(x)

in(Br,C .
v S min(Br,Cl)

See the illustrative examples detailed in Section 7 for concrete expressions of the parameter V,, and how
it relates to a minimal signal level.
The constant C(xg) involved in this bound depends on x( and has the form

1 —IC(xo) (DT [T +rx0>
H
éXO vx() éx()

where H(ﬁ):ﬁ;g2¢<(ﬁ?l)2> and @u)=vI1+u—1.

C(xo) =
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The constants (Dr,E7) only depend on T. C(xo) captures the influence of the parameters m,, =
(Mxy» Ty Exy )» Where the latter reflect the local geometry of the partly smooth regularizer J at xo. More
precisely, the larger C(xp), the more tolerant the recovery is to noise. Thus favorable regularizers are
those where C(x) is large.

It is worth noting that this analysis is in some sense sharp following the argument in [VPF14,
Proposition 1]. The only case not covered by our analysis is when IC(x) = 1.

7. Examples of Partly Smooth Functions Relative to a Subspace
7.1  Synthesis (' Sparsity

The regularized problem (2 (y)) with J(x) = |lx||; = YN, |x;| promotes sparse solutions. It goes by the
name of Lasso [Tib96] in the statistical literature, and Basis Pursuit DeNoising (or Basis Pursuit in the
noiseless case) [CDS99] in signal processing.

7.1.1  Structure of the £' norm. The norm J(x) = ||x||; is a symmetric (finite-valued) strong gauge.
More precisely, we have the following result.

PROPOSITION 12 J = ||-||; is a symmetric strong gauge with
T.={neR":Vj¢l,n;=0}, Si={neRV:vViel n =0},
ex=sign(x), fi=en JiT = fotis,

where I = I(x) = {i: x; # 0}. Moreover, it is partly smooth relative to a subspace with

F:||'||°°7 Vx:(1—5)m€i]n\xi|75€]071] and .ux:Tx:éc:O-
i

7.1.2  Relation to previous works. The theoretical recovery guarantees of /!-regularization have been
extensively studied in the recent years. There is of course a huge literature on the subject, and covering
it comprehensively is beyond the scope of this paper. In this section, we restrict our overview to those
works pertaining to ours, i.e., sparsity pattern recovery in presence of noise.

For instance, an irrepresentability criterion was introduced in [Fuc04]. Let s € {—1,0,4+1}" and 1
its support. Suppose that @;;) has full column rank, which is precisely (47) in this case. The synthesis
irrepresentability criterion IC,1 of s is defined as

ICp (5) = |90 @550l = max | (@ @550
From Definition 10 and Proposition 12, one immediately recognizes that IC (sign(x)) = IC(x). The
condition IC,: (sign(x)) < 1, also known as the irrepresentability condition in the statistical literature,
was proposed [Fuc04] for exact support (and sign) pattern recovery with ¢!-regularization from partial
noisy measurements. In this respect, this work can then be viewed as a special instance of ours, as
Theorem 6 in this case ensures recovery of the support pattern.

7.2 Analysis ' Sparsity

Let D = (d;)_, be a collection of P atoms d; € RY. The analysis semi-norm associated to D is
J(x) = ||D*x|; = XX, |(d;, x)|. Obviously, the synthesis ¢!-regularization corresponds to D = Id. Popu-
lar examples of analysis-type ¢! semi-norms include for instance the discrete (anisotropic) total varia-
tion [ROF92], the Fused Lasso [TSR*04] and shift invariant wavelets [SWB104].
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7.2.1 Structure of the analysis {' semi-norm. The semi-norm J(x) = |[D*x||; is a symmetric partly
smooth function relative to a subspace. This is formalized in the following proposition whose proof is a
straightforward application of Proposition 10, Proposition 11 and Proposition 12.

PROPOSITION 13 J = ||[D*-||; is a symmetric (finite-valued) gauge with

T = Ker(D{e)) = {n € RN : Vj €1, (dj,n;) =0}, Sc=Im(Dse),
ex = PKer(D}’}) DSlgn(D* )7 fx = DSlgn(D*x)a
J;;O(n) :zEKlrr(lf D ()M 42|, for meS,,

where I = I(x) = {i: (d;, x;) # 0}. Moreover, it is partly smooth relative to a subspace with parameters

= (1 - 6)11161}1 |<di’xi>|76 6]07 1] and [y =T, = gx =0.

7.2.2 Relation to previous works. Some insights on the relation and distinction between synthesis-
and analysis-based sparsity regularizations were first given in [EMRO07]. When D is orthogonal, and
more generally when D is square and invertible, the two forms of regularization are equivalent in the
sense that the set of minimizers of one problem can be retrieved from that of an equivalent form of the
other through a bijective change of variable. It is only recently that theoretical guarantees of £!-analysis
sparse regularization have been investigated, see [VPDF13] for a comprehensive review. Among such
a work, the authors in [NDEG13] propose a null space property for identifiability in the noiseless case
and in [KRZ14] one can find results in the gaussian setting. The most relevant work to ours here is
that of [VPDF13], where the authors prove exact robust recovery of the support and sign patterns under
conditions that are a specialization of those in Theorem 6.

More precisely, let I be the support of D*xp, and s its sign vector. Denote T = T, = St = Ker(Dj.),
ey, = sign(D*xg) = s, e = ex, = Pr Ds, f = fy, = Ds. From Definition 10 and Proposition 13, the
criterion IC(xg) in this case takes the form

IC(xo) = J;:° (D5 P, " Pr Ds —Ps Ds)

—  inf  |DF, ((D*(D+’*P —P)D 42
ZEKSII‘I(ID(IC) || ( ) $5T T § s Z”

= inf ||D+E ((1d — Pr)®@* & Pr(®;®r) ' Pr —Pg) Ds + 2|
z€Ker(Dje

= inf ||Dt (®* @ Pr(P;Pr) ' Pr —(Pr+Ps)) Ds+ 2
z€Ker(Dje

= inf (@ PPy ¢T¢T) 1PT —Id) D([)S(1)+Z||oo-

ZEKer(D(]r)
Introducing U as a matrix whose columns form a basis of 7', IC(xp) can be equivalently rewritten

_ ¢ (@roall] _
IC(0) = _int D7) (@ @A ~1d) Dy +2]-

where Al = U (U*®*®U)~'U*. We recover exactly the expression of the IC,1 _, introduced in [VPDF13].
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7.3 £~ Antisparsity Regularization
Regularization by the £*°-norm corresponds to taking J(x) = ||x[|e = [max |x;|. This regularizer promotes
<i<

flat solutions. It plays a prominent role in a variety of applications including approximate nearest neighbor
search [JFF12] or vector quantization [LV10]; see also [SYB12] and references therein.

7.3.1 Structure of the {>*-norm. The norm J(x) = ||x[|. is a symmetric partly smooth function relative
to a subspace, but unlike the £'-norm, it is not strongly so (except for N = 2). Therefore, in the following
proposition, we rule out the trivial case x = 0.

PROPOSITION 14 J = ||+ || is @ symmetric (finite-valued) gauge with

SXZ{T]ZT](IC)ZO and <T[<1),S(]>>=O}, Y}Z{OCZOC(])ZPS(]) for pG]R},

s o
€x = mv S = ex, J;; (n) = I’IlléaIX (_|I|5ini)+ for ne Sy
where s = sign(x) and I = I(x) = {i : |xi| = | x|l }. Moreover, it is partly smooth relative to a subspace
with
=i, vi=(1-38)(||x[ frr.l%alx lxj),6 €0,1] and p, =17, =& =0.
J
7.3.2  Relation to previous work. In the noiseless case, i.e. (Zy(y)) with J = |- ||, theoretical analysis

of ¢*-regularization goes back to the 70’s through the work of [Cad71]. [LV10] provided results that
characterize signal representations with small (but not necessarily minimal) *-norm subject to linear
constraints. A necessary and sufficient condition for a vector to be the unique minimizer of (% (y)) is
derived in [MR11]. The work of [DT10] analyzes recovery guarantees by *-regularization in a noiseless
random sensing setting.

The authors in [SYB12] analyzed the properties of solutions obtained from a constrained form of
(2, (y)) with J = || - ||. In particular, they improved and generalized the bound of [LV10] on the ¢* of
the solution.

The work of [Bac10, OB12] studies robust recovery with regularization using a subclass of polyhedral
norms obtained by convex relaxation of combinatorial penalties. Although this covers the case of the
£*-norm, their notion of support is however, completely different from ours. We will come back to this
work with a more detailed discussion in Section 7.5.

7.4 Group Sparsity Regularization

Let’s recall from Section 3.1 that 4 is a uniform disjoint partition of {1,--- ,N},

{1,...N}=|Jb, bt =0,Vb#0".
beA

The ¢! — ¢? norm of x is
Jx) = vz = Y ol
be#
This prior has been advocated when the signal exhibits a structured sparsity pattern where the entries are
assumed to be clustered in few non-zero groups; see for instance [Bak99, YLOS]. The corresponding
regularized problem (£, (y)) is known as the group Lasso.
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7.4.1  Structure of the £'-(*> norm. The ¢! — ¢*> norm is a symmetric partly smooth function relative to
a subspace.

PROPOSITION 15 The ¢! — ¢ norm associated to the partition 2 is a symmetric (finite-valued) strong
gauge with

To={n:Vj¢l,n=0}, S.={n:Vviel n;=0},

ex = (N ()en, fr=exn T =] leptis,,

where I = I(x) = {b: x, #0}, and .4 (a) = a/||a|| if a # 0, and .#'(0) = 0. Moreover, it is partly
smooth relative to a subspace with

. V2
I'=|"|w2, VXZ(1—5)1})151”)6;,”,56]071] o= and 7, =& =0.

X

7.4.2 Relation to previous work. Theoretical guarantees of the group Lasso have been investigated by
several authors under different performance criteria; see e.g. [YLOS, RF08, Bac08a, CHO8, LZ09, WH10]
to cite only a few. In particular, the author in [BacO8a] studies the asymptotic group selection consistency
of the group Lasso in the overdetermined case, under a group irrepresentability condition. This condition
also appears in noiseless identifiability in the work of [CR12]. The group irrepresentability condition
is nothing but the specialization to the group Lasso of our condition based on IC(xp). Indeed, using
Definition 10 and Proposition 15, and assuming that @(;) is full column rank (i.e. (%7) is fulfilled),
IC(xo) reads

(7.1)

IC(x0) = Hd’(*]f)qj(t)’* (H%Il)bel

It is worth mentioning that the discrete isotropic total variation in d-dimension, d > 2, can be viewed
as an analysis-type ¢! — ¢ semi-norm. Partial smoothness and theoretical recovery guarantees with such
a regularization can be retrieved from those of this paper using the results on the pre-composition rule
given in Section 5.3.3.

w2

7.5 Polyhedral Regularization

The ¢' and ¢~ norms are special cases of polyhedral priors. There are two alternative ways to define a
polyhedral gauge. The H-representation encodes the gauge through the hyperplanes that support the
polygonal facets of its unit level set. The V-representation encodes the gauge through the vertices that
are the extreme points of this unit level set. We focus here on the H-representation.

7.5.1 Structure of polyhedral gauges. A polyhedral gauge in the H-representation is defined as

J(x) = 132;\(@((& hiY)+ =Jo(H*x) where Jy(u)= lgl_lgl)\(]H(ui)+,

and we have defined H = (h;)M, € RV*Nu,

Such a polyhedral gauge can also be thought as an analysis gauge as considered in Section 5.3.3
by identifying D = H. One can then characterize decomposability and partial smoothness relative to a
subspace of Jy and then invoke Proposition 10 and 11 to derive those of J. This is what we are about to
do. In the following, we denote (a);<;<n;, the standard basis of RV#.
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PROPOSITION 16 Jo(u) = max<icny (4:)+ is a (finite-valued) gauge and,
o Ifu; <0,Vie{l,--- Ny}, then

Sy = span (ai)ielo » Tu=span (ai)igélo ’

e, =0, fu:,uZai, forany O < u <1,

icly

JoM(n) = inf max (‘L’ In| + ',T) for es,,
Ju (n) T>maxi610(fm)+/# l'Ll ‘ iezlonl K '
where

I={ie{l,--- ,Ng}: uj=1Jo(u) =0} .

e If3ie {l,---,Ny} such that u; > 0, then

Su= {773 Ngey=0 and (M), s0,)) :0}7
T, = {OC DOy = M) for pe R},

N o,u
Ju = eu, Jf' (n):max (_‘I+|ni)+ for nes,,
Ju iely

A

where .
s=Y d and Iy ={ie{l,-- ,Nug}:u=Jo(u) and u;>0}.

il
Moreover, it is partly smooth relative to a subspace with parameters (assuming 7 # @)

Ve=(1-6 — ), 68 €]o,1 d =1,=§=0.
o= (1= 0) (= max ), 0 €01] and - g == G

7.5.2  Relation to previous works.  As stated in the case of £-norm, the work of of [Bac10] considers
robust recovery with a subclass of polyhedral norms but his notion of support is different from ours.
The work [PT12] studies numerically some polyhedral regularizations. Again in a compressed sensing
scenario, the work of [CRPW12] studies a subset of polyhedral regularizations to get sharp estimates of
the number of measurements for exact and ¢>-stable recovery. The closest work to ours is that reported
in [VPF13], where theoretical recovery guarantees by polyhedral regularization were provided under
similar conditions to ours and with the same notion of support as considered above. However only
finite-valued coercive polyhedral gauges were considered there.

7.6 A Counter-Example: the Nuclear Norm

The nuclear norm is the natural extension of ¢! sparsity to matrix-valued data x € R¥o*No (where
N = N3). We denote x = V, diag(A,)U; an SVD decomposition of x, where A, € RIXO. Note that this can
be extended easily to rectangular matrices. The nuclear norm imposes such a sparsity and is defined as

J(x) =[xl = Al

see [VPF14] and the reference therein. This norm can be shown to be partly smooth (in the sense of
Definition 7) at some x with respect to the set .# = {x" : rank(x) = rank(x’)} that is locally a manifold
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around x. This manifold is however not a linear space, hence one does not have .# = T,. This shows that
the nuclear norm is not in the set PSFL, of functions that are partly smooth with respect to a subspace (in
the sense of Definition 8). In particular, Theorem 6 cannot be applied to this functional.

It is however possible to show that the manifold .# associated to x is stable to small noise perturbation
in the observation under the same hypotheses as Theorem 6. This result is proved in [VPF14], which
extends the previous result of Bach [BacO8b]. Note however that these proofs do not give explicit stability
constants, in contrast to Theorem 6.

8. Case Study: Compressed Sensing with ¢/~ Regularization

In this section, based on the generalized irrepresentability condition, we provide a bound for the sampling
complexity to guarantee exact and stable recovery of the model subspace 7, of anti-sparsity minimization
from noisy Gaussian measurements.

THEOREM 7 Let x be an arbitrary vector with its saturation support 1, its model tangent subspace T, = S;-
and model vector e, as defined in Proposition 14. Let 3 > 1. For & drawn from the standard Gaussian
ensemble with

Q>N —|I]+2B|1|log(]1]/2) ,

IC(x) < 1 with probability at least 1 —2(|7]/2)~/B/!) where

2
f(ﬁ,|1|>=<,/2fl|+ﬁ_1_,/2|51|> |

The above bound and probability bears some similarities to what we get with £! minimization, except
that now the probability of success scales in a power of |I| and not N directly. The reason underlying such
a similarity is the proof technique usual in compressed sensing-type bounds and the use of the minimal
£2-norm dual certificate.

The map f(, |1]) is an increasing function of |/, so that limy;_,., f(B,|I|) = B — 1 and the probability
of success increases with increasing size of the saturation support. But this comes at the price of a
stronger requirement on the number of measurements.

For the noiseless problem (Z7(y)), it can be shown using arguments based on the statistical dimen-
sion [ALMT13] of the descent cone of the £*-norm that there is a phase transition exactly at N — |1]/2,
see also [CRPW12, Proposition 3.12]. The reason is that each face of the descent cone of the hypercube
at a point living on its k-dimensional face is the direct sum of a subspace (the subspace parallel to
the face), and of an orthant of dimension N — k (up to an isometry). The statistical dimension is then
(N—k)/2+k=(N+k)/2=N—|I|/2, observing that k = N — |I|.

9. Conclusion

In this paper, we introduced the notion of partly smooth function relative to a subspace as a generic
convex regularization framework, and presented a unified view to derive exact and robust recovery
guarantees for a large class of convex regularizations. In particular, we provided sufficient conditions
ensuring uniqueness of the minimizer to both () (y)) and (£(y)), whose by-product is to guarantee
exact recovery of the original object x¢ in the noiseless case by solving ((y)). In presence of noise,
sufficient sharp conditions were given to certify exact recovery of the model subspace underlying xg. As
shown in the considered examples, these results encompass a variety of cases extensively studied in the
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literature (e.g. ¢', analysis ¢!, ¢! — ¢2), as well as less popular ones (¢, polyhedral). We exemplified the
usefulness of this analysis by providing a sampling complexity bound for exact support recovery in £~
regularization from Gaussian measurements.

A. Proofs of Section 2

Proof of Lemma 2. (i)-(iii) are obtained from [HULOI, Theorem V.1.2.5]. (iv) is obtained by combining
[HULO1, Corollary V.1.2.6 and Proposition IV.3.2.5]. (v): the second statement follows by combining

(iii)-(iv), while the first part is the second one written in dom ¥ = aff C = parC since 0 € riC. 0
Proof of Lemma 3. (i) follows from [Roc96, Theorem 15.1]. (ii) [Roc96, Corollary 15.1.1] or [HULOI1,
Proposition V.3.2.4]. (iii) [Roc96, Corollary 15.1.2] or [HULOI1, Proposition V.3.2.5]. Il

Proof of Lemma 4. 'We have from Lemma 3 and calculus rules on support functions,

,)/(Cl +Gy)° = Gcl +C, = Gcl + GCZ .
Thus
(C1+C)° ={u:oc,(u)+oc,(u) <1} .
This yields that

Yo +c, (x) = G(C] +Gy)° ()C)
= Oc, (w)+0c, (<1 (¥)

N
oc, ()+oc, (u)<1

= sup sup (u, x)
pE(0,1] oc, (u)<p.0c, (W)<1-p
= SUp O (u)<p v Ooc, (w)<1—p (%) [HULO1, Proposition 1.3.2]
p€El0,1]
+ . :
= S1[1p ] POoc, (<1 V (1— p)cccz(u)@ (x) Positive homogeneity
pelo,1
+
= sup pocy V (1—p)ocs(x) Polarity
pelo,1]
+
= sup Py, V(1=p)¥, (%), Lemma 3
pelo,1]

which is the first assertion.
The last identity can be rewritten

Yo+¢,(x) = sup inf  pye, (x1) + (1= p)¥e,(x2) -
p€[071]x1+x27x

Under the assumptions of the lemma, the objective in the supinf is a continuous finite concave-convex
function? on [0, 1] x {(x1,x2) : x1 +x, = x}. Since the latter sets are non-empty, closed and convex, and

2A concave-convex function f on C x D is a function such that for each ¢ € C, the function d — f(c,d) is concave, and for each
d € D, the function ¢ — f(c,d) is convex.
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[0,1] is obviously bounded, we have from using [Roc96, Corollary 37.3.2]
Yo+, (x) = inf - sup pye, () +(1—p)¥e, (x—2)
z€RY pefo,1]

= inf max(yc, (), %, (x—2)) -
z€RN

O
Proof of Lemma 5. Tt is immediate to see that D(C) is a compact convex set containing the origin.
Moreover, o is finite-valued by compactness of C, and thus 6¢ o D* is finite-valued. Thus, we have

Yp(c))° = ODp(C) Lemma 3
= (ID(C>) : Legendre-Fenchel conjugacy
= ocoD* [HULO1, Theorem X.2.1.1]. (A.1)

Now, recall that by Lemma 3, yc> = o¢ which is then finite-valued owing to compactness of C. In
view of Lemma 2(iii), this is equivalent to 0 € int(C°). Therefore we have the qualification condition
Im(D*) Nint(C°) # 0. We then obtain

Yo(c)(X) = O(p(cy)° (%) By definition
= o-GCOD*(u)gl ()C) From (A])
= ( Log(w)<1© D*) " (x) Legendre-Fenchel conjugacy
=infog. (<1 (v) st Dv=x [HULO1, Theorem X.2.2.3]

v
= inf Og.n<1(DTx+2) Change of variable
zeKer(D)
= inf D" Lemma 3 .
zeIéer(D) }/C( o Z)

Proof of Proposition 4. Let x € RN. We have
dJ(x) =Fco(x) =HNC®,

where H = {n € RY : (n,x) =J(x)} is the supporting hyperplane of C° at x. By Proposition 5(i), we
have
S, =affdJ(x) CH,

which implies that
§,nC°CHNC".

The converse inclusion is true since dJ(x) = HNC® C §,. O
Proof of Proposition 5.

(i) Each element of S, can be written as u = Z;{:I piN;, for k > 0, where n; € dJ(x) and Z;{:I pi=1.
By Fenchel identity? applied to the gauge J, and using Lemma 3(iii), we have

<x7 le> :](x) +1ce (ni)7 Vi

3The Fenchel identity states that for a closed function, f(x)+ f*(s) = (s, x) if, and only if, s € 3 f(x).
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Since n; € dJ(x) C C°, we get

(M) =J(x), Vi,
Multiplying by p; and summing this identity over i and using the fact that ):le pi = 1 we obtain the
desired result.

(ii) For any v € S,, we have v+ e, € S, since e, € §,. Thus applying (i), we get (x, ey +v) = J(x)
and (x, e,) = J(x). Combining both identities implies that (x, v) = 0, Vv € S, or equivalently that
x€SH=T,.

(iii) Since f; € ridJ(x) C Sy, Proposition 1 implies that f, = Ps_(fi) + Pz, (fi) = Ps,(fx) + ex. Hence,
using Proposition 4, we get

8J(x) —fe= (CO *fx) n (Sx *fx)
=(C° = f) N (Sx = {Ps,(fx)})
=(C°—fy)NSy.

We therefore obtain

TE (M) = Yeo-pyns, (M)
=max(Yco—r, (1), ¥s5.(N))
=max(Yco—£, (1), 1s,(1))
= Yo, (N) +1s5.(M) -

At this stage, Lemma 4 does not apply straightforwardly since O € C° but f; # 0 in general. However,
proceeding as in the proof of that lemma, we arrive at

o T
Yeor (-3 (M) = sup pJ°V (1=p)oy_ gy (M)
pel0,1]

where, from Definition 1, {—f;}° = {n: (n, fi) > —1}, which indeed contains the origin as an
interior point. Continuing from the last equality, we get using Lemma 3,

o T
Yeor {—f3 (M) = sup pJ°V (1 —=p)¥_p1e=(N)
pel0,1]

o T
= sup pJ \/(1_p))conv({ffx}u{0})(n)
pelo,1]

° +
= sup pJ°V (1=P)Yppe peoay(n) -
pel0,1]

It is easy to see that

T ifnetfi,7teRy,
Vi-ufi uefo 1) (1) = { n e ’

+oo  otherwise .

Thus

Yeor(-£3 (M) = sup infpJ°(zfitm)+(1-p)T.
pE[O,l] >0
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Recalling that J° is a finite-valued gauge, hence continuous, the objective in the supinf fulfills the
assumption of the second assertion of Lemma 4, whence we get

Yeos - (M) = inf max(F° (2 -+ 1), )

(iv) Using some calculus rules with support functions and assertion (ii), we have

Ji(d) = J} (ds,) = O(cos{—f.1)ns. (ds,) By definition of J;*
= conv (inf(0co (1, (ds,), Os,(ds,))) [HULO1, Theorem 3.3.3(iii)]
= conv (inf(0co 1y (ds,), 17, (ds,))) Conjugacy rule on subspaces
= 0o (1} (ds,) ds, €S, =T
= oco(ds,) — (Ps, (f2), ds,) [HULO1, Theorem 3.3.3(i)]
=J(ds,) — (Ps,.(fx), ds,) Lemma 3 and definition of J .

Proof of Lemma 1. To lighten the notation, denote V = parC.
(i) [HULO1, Proposition V.2.1.2].
(ii)) [HULOI, Proposition V.2.1.3].

(iii) Immediate from the definition and 0 € C.

(iv) As 0 € C we have
0 < oc(d) < Ouic(d) = oy (d) .

Thus o¢(d) =0, Vd € V+, or equivalently, V- C Ker o¢, whence we get that ¢ (d) = oc(dy).

(v) The fact that o is finite-valued is a consequence of (ii) since C is assumed bounded. Now, in view
of [HULOI1, Theorem V.2.2.3], we have the equivalent characterization

0€riC e oc(d) >0 Vd such that oc(d) + oc(—d) > 0.
By definition of the support function and closedness of C, o¢(d) + oc(—d) > 0 if and only if there
exists two points x and x’ in C satisfying (x —x, d) > 0, or equivalently d ¢ (C—C)* =V*. We
then conclude that 0 € riC < o¢(d) > 0, ¥d ¢ V. Combining this with (iv), the claim follows.

O
Proof of Lemma 6. Lipschitz continuity of F on U means that for any pair x,x’ in U, we have

F(x) CF(x')+Blx—xB(0) and F(x')CF(x)+Blx—x[B(0),
which in turn is equivalent to

O (v) (1) < OF (x)4 | —+|B(0) = OF(x) (1) + Blox —x'|||u|

O () () < O (v)4 v —x|B0) = OF(v) (1) + Bllx— x| [[u] ,
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and thus

|0 () (1) = O ()| < B = x][Ju].
By assumption, for any x € U, F(x) is compact, and thus OF(y) 1s everywhere finite by Lemma 1(ii).
Moreover, since 0 € i F(x), we have from Lemma 1(v) that o(,) is coercive on par(F (x)). Moreover,
dom(¥g(y)) = par(F(x)) and ¥ (y is coercive on par(F(x)); see Lemma 2(v). It follows from this
coercivity and finiteness that for any u € par(F(x)), one has

Oty (1) < Wl . 3, Hri () < (325||1d|||(,FWF(X))ym)(u) (A2)
Caay

(o) () < 1, . sy O (1) < (325||1d|||m)%m)) O (1) (A3)
Cyac

where Cs_,y < +o0 and Cy,5 < +oo. Clearly, 0z () and ¥g(y) are equivalent on par(F (x)) uniformly over
x € U. Therefore, there is a constant C, that can be easily expressed in terms of Cs_,y and Cy_.5, such
that for any u € par(F(x)) Npar(F(x'))

[V () () = Vi) ()] < Clop ) (1) = O () ()| < CBu |l — x|

B. Proofs of Section 3

Proof of Proposition 1.

(1) This is due to the fact that e, is the orthogonal projection of 0 on the affine space S,. It is therefore
an element of S, N (S, —e, ), ie. e, €S, NT;.

(ii) This is straightforward from the fact that S, = {n eRV: nr, = 0}, Sy =S8,+ecand e, € T, from
®.
O
Proof of Proposition 2. 1t follows from Lemma 2(v) since 0 € ri(dJ(x) — f3). O
Proof of Proposition 3. The gauge Jj‘cx is the support function of the compact convex set

H )~ fi={neRV: e <1} s,

where the inclusion follows from Proposition 2. Observe that O € ri.%;. We then invoke Lemma 1 to get
the desired claims.

O
Proof of Theorem 1. Invoking Proposition 1, we get that for every 1) € dJ(x), Ny, = ex, and P, (f) = ey.
It remains now to uniquely characterize the part of the subdifferential lying in Sy, i.e. dJ(x) — ex. Since
fx €11dJ(x), we have from the one-to-one correspondence of Lemma 2(i) and the definition of the
subdifferential gauge,

ne{nerY: (s, ~Ps,(£) <1} <= ns, ~Ps,(£) € ()~ o
< ns, € dJ(x) —ey
= nedllx).
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O
Proof of Proposition 6. This is a convenient rewriting of the fact that x is a global minimizer if, and
only if, 0 is a subgradient of the objective function at x.

(i) For problem (22, (y)), this is equivalent to

%@*(y — ) € dU(x).

Projecting this relation on 7 and S yields the desired result.
(ii) Let’s turn to problem (Z(y)). We have at any global minimizer x
(Px)

0e€dJ(x)+ (p*N{a: a=y}

where Nyy. g—y) (%) is the normal cone of the constraint set {o : & = y} at x, which is obviously the
whole space R. Thus, this monotone inclusion is equivalent to the existence of o € R such that

P o€ dJ(x) .
Projecting again this on 7 and S proves the assertion.
Proof of Lemma 7. LetJ =yc,x€ T and x' €S.
= We recall that C = {u: J(u) < 1}. By virtue of Lemma 3(iii), we have

Jo(x+x') = sup(x+x', u)

ueC
= sup {(x+x,u)
J(u)<1
= sup (x,ur)+ (', us)
J(uT+uS)<1
= sup  (x,ur) + (¥, us) by separability of J.
J(uy)+J(ug)<1
= sup sup {(x, ur) + (X, us)

p€l0,1]J(ur)<p J(us)<1—p
= sup p sup (v,ur)+(1—p) sup (¥,us)

pel0,1]  J(ur)<1 J(ug)<1
— sup p sup (x,v)+(1—p) sup (¥,w)
pelo,1] veCnT welns
= sup pocnr(x)+ (1—p)ocns(x')
pelo,1]

= max(O'cmT (x), ocns (x’)) .
Using [HULO1, Theorem V.3.3.3(iii)], we have
ocnr (x) = conv (inf(oc(x), 15(x))) = oc(x) = J°(x)

and
Gmg(x/) = m(inf(ot(x’),lf(x’))) = O'C(x’) =J°(x’) ,
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the implication follows.
«: Using again Lemma 3, we get
J(x+x) = sup (x+x, u)

ueC°

= sup {(x,ur)+ X, us)
Jo(u7+us)<1

= sup (x, ur) + (X', us)
max(J° (ur),J° (ug)) <1

= sup (x, ur) + (X', us)
Jo(ur ) <17 (ug)<1

— sup (x,v)+ sup (¥,w)
veC°NT weC°NS

= oconr (x) + ocons(x')

— conv (inf(0c (x), 15(x))) +conv (inf(oc= (), 17 (+'))
— o (¥) + 0= (¥)

=J(x)+J() .

This concludes the proof. O
Proof of Proposition 7.
LetJ = Y. We only need to show that J;,°(1)s,) = J°(7s, ). This follows from Proposition 2, Lemma 7
and Lemma 3(ii). Indeed,
J3°(ms,) = igg max(J°(Tex+Ms,), T) from Proposition 2,
>

= ir>1gmax(f]°(ex),J°(nsx), T) from Lemma 7,
™

= inf max(J°(ns,), ) from e, € dJ(x) C C°,

720

=J°(ns,) -

C. Proofs of Section 4

Proof of Lemma 8. Let x1,x; be two (global) minimizers of (22, (y)). Suppose that ®x! # ®x?. Define
x; = tx; + (1 —1)xp for any ¢ € (0,1). By strict convexity of u — ||y — u/|3, one has

1 t 1—1¢
EH)’— P[5 < §||y— x5+ THy— D f3.
Since J is convex, we get

J(x) <td(x1)+ (1 —1)J (x2).

Combining these two inequalities contradicts the fact that x|, x; are global minimizers of (27, (y)). O
Proof of Theorem 2. To prove this theorem, we need the following lemmata.

LEMMA 10 Let C be a non-empty closed convex set and f a proper Isc convex function. Let x be a
minimizer of min,ec f(z). If
f(x,z—x)>0 VzeC,z#x,
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then, x is the unique solution of f on C.

Proof.  We first show that t — (f(x+17(z—x)) — f(z)) /¢ is non-decreasing on (0,1]. Indeed, let
g:[0,1] — R a convex function such that g(0) = 0. Let (¢,s) € (0,1]> with s > ¢. Then,

8(1) =g(s(t/s)) = g(s(t/s)+ (1 —1/5)0)

< t@ +(1—1/5)g(0)

which proves that ¢ € (0,1] — gi—t) is non-decreasing on (0, 1]. Since f is convex, applying this result

shows that the function
t€(0,1] = g(t) = fx+t(z—x)) — f(2)

is such that g(0) = 0 and g(¢) /¢ is non-decreasing.
Assume now that that f'(x,z —x) > 0. Then, for every x € C,

g(l):f(z)—f(x)Ef/(x,z—x)>0, VZ€C,Z7£X7

which is equivalent to x being the unique minimizer of f on C. U
We now compute the directional derivative of a finite-valued convex function J.

LEMMA 11 The directional derivative J’(x, §) at point x € RY in the direction § reads
J'(x,8) = (ex, 0r,) + (Ps,(fv), 85,) + 7, (8s,)-

Proof. This comes directly from the structure of J;‘CX. Indeed, one has

J3.(0s,) = J7.(8) Using Proposition 3(ii)
= _sup  (n,9)
neds(x)—{fi}

=—(8, f)+ sup (1,d)
nea(x)

= _<6a fx> +J/(x7 6)
= _<eX7 5Tx> - <PSx(fX)7 5Sx> +J/(X, 6) .
O
We are now in position to show Theorem 3. We provide the proof for () (y)). That of (Z(y)) is
similar.

Let x be a solution of () (y)). According to Lemma 8, the set of minimizers of (&) (y)) reads
M C x+ Ker(®), which is a closed convex set. We can therefore rewrite (27 (y)) as

minJ(z).
zEM (Z)

Invoking Lemma 10 with C =M, x is thus the unique minimizer if

V5 € Ker(®)\ {0}, J'(x,8) > 0.
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Using Lemma 11 and the fact that Ker(®) is a subspace, this is equivalent to
V6 € Ker(P)\{0}, (ex, 8r) + (Ps(fx), bs) < Jf,(—0s).
which is (NSPS). O
Proof of Corollary 1. Using [HULO1, Theorem V.2.2.3] and the fact that J'(-; §) is the support function
of dJ(x), we know that
n eri(dJ(x)) < J'(x,8) > (n,8) V3 such thatJ (x,8)+J (x,—8) > 0.
Applying this with 1 = ®*a € ri(dJ(x)), and using Lemma 11, we obtain
@ o €1i(dJ(x)) & J'(x,8) > (o, PS) V8 such that J§ (8) +J5 (=) > 0.

Moreover, since Jjﬁx and Ker(]}x) = T, = T from Proposition 3(iii), and (é7) holds, we get

D a €1i(dJ(x)) & J'(x,8) > (o, PS) V¢ T
=J(x,6) >0 V& € Ker(P).

We conclude using Theorem 2. O
Proof of Theorem 3.
(i) Let the dual vector be @ = (y — ®x)/A, and 1 = ®*« € dJ(x) by Theorem 1(i). We then observe
that

ne{neR: I (ns—Ps(f)) <1} < ns—Ps(f) €1i(J(x) — {f})
<= neri(dJ(x)).

Thus, applying Corollary 1 with such a dual vector yields the assertion.

(i1) The proof is similar to (i) except that we invoke Theorem 1(ii).

D. Proofs of Section 5
Proof of Theorem 4. Without loss of generality, we show this result for I" = | - || since for every x € RY,
I (x) < ([l g2 1]l

Recall that J is partly smooth at x relative to Ty, and dJ : RY = R" is Lipschitz-continuous around x
relative to 7.

e Existence of fy. Such a mapping exists according to [AF09, Theorem 9.4.3].

o v-stability. Using [Lew02, Proposition 2.10] the sharpness property Definition 7(ii) is locally stable.
Hence, for x' € T, in a neighbourhood of x, 7, (x") = T, = Ty. The radius of this neighbourhood
can be taken as V.
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o -stability. Using [HULO1, Corollary VI.2.1.3], we write for any h € T
J(x+1th) =J(x)+t{s,h) +o(t) = J(x) +t{ex, h) +0(t),

where s € Fj;()(h). Since J restricted to T, NU is C? according to the smoothness property,

repeating this argument at order 2 allows to conclude that the mapping z € T, NU + e. is C!, when
local Lipschitz continuity follows immediately.

e T-stability. One has
5 Ps(fe = f) < IPs Ml el o = foll < wlle =,
where 7, = ||Ps, || e _ 2B and B is the Lipschitz constant associated to f,, proving (5.4).

o E-stability. By assumption, there exists a neighbourhood of x, say U, such that dJ is k-Lipschitz
on UNT, and x — f is B-Lipschitz. Hence, the mapping x — (dJ(x) — f) is (k + 8)-Lipschitz
on U NT. Moreover, from the v-stability, we have S, = par(d(x)) = par(d(x’)) for all X' in U N T,.
In view of Lemma 6, we get that for any u € S, there is a constant C < +oo such that

Tp 7 () = T3 () < C(B + k)l — x|

Since |u| < |||Id|Hé24J}X’°J;{LO (u), we get the desired bound by setting & = C( + K)H|Id|||£zﬁjjx€;o.

O
Proof of Proposition 8.

(i) First, we have (recall that H and G are everywhere finite)
dH(x) = dJ(x)+dG(x),

Let §/ = span(dJ(x) —n’) and S¢ = span(dG(x) — n°), for any pair n’ € 9J(x) and n¢ € IG(x).
Choosing nf! = n’/ + 1% € dH(x) we have

sH span(dH (x) —n')
= span ((8J(x) — ') +(9G(x) —n9))
—  span (span(9J(x) — n7)+span(9G(x) — %))

= span(s’ USY).
As a consequence we have T# = (S#)+ =T/NTC.
(ii) Moreover, since T7 1§/ US® we have from Proposition 1(iii) that

e =P (JH()) = Ppur(3J(x)+IGX))
= Pru(ej+Pgy a](x)+€G+PSG dG(x))
= PTH (eJJreg).
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(iii) As f! €ridJ(x) and fC € 1i dG(x), it follows from [Roc96, Corollary 6.6.2] that
= fl 4 9 €riad(x) +1idG(x) =i (dJ(x) + IG(x)) = ri dH (x) .

The subdifferential gauge associated to H is then

it = Yo = Nosw-17) + (26119

which is coercive and finite on S¥ according to Proposition 2. Invoking Lemma 4, we get the
desired result since for any p > 0,

wir pI 5 () + (1= p)G g (N —u) = PYayge— g2 (1) + (1= P)Yago) - po (M — 1)

is finite and continuous on &/ N (8¢ + 1), for € S7 = span($’ + 5Y) by ().

0
Proof of Proposition 9. In the following, all operator bounds that appear are finite owing to the coercivity
assumption on the involved gauges in Definition 8 of a partly smooth regularizer.

It is straightforward to see that the function I'! = max(I"/,I"%) is indeed a gauge, which is finite and
coercive on TH = T/ N TC. Moreover, given that both J and G are partly smooth relative to a subspace at
x with corresponding parameters v; and v¥, we have with the advocated choice of I'* and v/,

MHx—x)<v! and IS(x—x)<vo,
for every Vx' € TH such that ' (x —x') < v It follows that:

e Since J and G are both partly smooth relative to a subspace, then we have T/ = T and T,¢ =T,
and thus by Proposition 8(i)

TH=T/Nn1¢ =TInTS =T/ =T".
o ! -stability: we have from Proposition 8(ii)
(e —ef)y =" (Pru(el +e% — e, —¢5))
' (Pru(el —el)) + I (Pru (el —e9))
Pl s s T (e - ) +IPrll o pn T (e *EG)

(Pl o+ 118 1Pl ) T (= 2')

INCININ

where we used g - and u&-stability of J and G in the last inequality.
e t!l_stability: the fact that §/ C ¥ and S C S¥ and subadditivity of gauges lead to
Hy (P (£ = 1))
= Hyy; (Py (] — 1)+ Psa (f7 = 1) +Pgu(ef — ) +Pgu (el — &)
<Hy, Py (F = £2)) +Hyy (Psa (£ = £7))
+HH(PSH( ))+HH(PSH( “—e9) . (A1)
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According to Proposition 8(iii), we have

Hy, (P (fl = £0) = inf max (/55" (M), GG (m2)) -
e ( 1) Mm+m=Pg (fI-1)) fG
Since dome, =87, (m,m) = Py (f! = f7),0) is a feasible point of the last problem, and we
get

Hyyy (Psr (f = 12)) <357 (Por (= £2)).

Moreover, as e 6 T/ (see Proposition 1(ii)) and S/ C SH, we have
min I+ 12— (ef — el
MET! s’ ni+mesH
= min Im = (ef = el)[* + [m2 ]
ThETj’TIzS M +mest
2 2
= min I — (et — el [* + 2|

mer! ms’ nest

: 2
= min n e, —e,
T]]ESHPIZ‘]” b ( )”

That is
Pgu (ei - E/{/) =Poupngs (ei - Ei/) .
Thus
Hyyy (Poi (el —e})) < \||PSHQTJ||\FMH;;;FJ (el—el) .

Similar reasoning leads to the following bounds

H;; (PSG (fo - xc’;)) GfG (PSG (fx X )) )
H;g; (PSH(ef—efj)) |||PSHﬂTGH|F’—>H;OF ( _eG) :
Having this, we can continue to bound (A.1) as
HfH (PSH (f _f;/{))
<T (Por(F = 1)) + Glig (Psa (£ = £7))
+ |HPSHOTJ|||FJ%H;};FJ (ex—ep) + |HPsHmTG|HrJaH;;3FG (ef —ed)

<t (x—x) + 10T (x—x') + 1] |||PS”mTfH|r1aH;§FJ (x—x)

0 IPsrcrollro s, ¢ (v
< < 4204 ! WPt s, + B |||P5HWG||rcﬁH;o) ey,

where the last two inequalities J and G follow from -, /-, u%- and t¢- stability of J and G.
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e & stability: Proposition 8(iii) again yields that for any n € S¥
cy ()= infmax(7%, (m). Gog (1m2)

m+m=n
< max(J;j, (fll);G;G,(ﬁl))

for any feasible (71,72) € S/ x S°N{(N1,M2: M1 + M2 =1n}. Now both J and G are partly smooth
relative to a subspace, hence respectively &/- and £C-stable. Therefore, with the form of I'*! we
have

(M) < (14 G (x =) () < BI3; (M)
7o) < (1+87T (x=x)) Gl (M) < PGig(Ma)

where B = 1+ max (§],£¢) ' (x —x'). Whence we get

X,0

max(J5, (), G () < Bmax(J57 (1), G (7))

Taking in particular

(7717772) € Argmln max( fj (771) fG(nZ))
Mm+m=n

we arrive at

Hiy(n) < B int max(7j,(m). Gia(me)) = BHju(n)

This completes the proof.

O
Proof of Corollary 2.  Differentiability entails that dG(x) = {VG(x)}, whence we obtain 7¢ = RV and
¢Y = VG(x) (see Example 3). Applying Proposition 8, we get the result. It is sufficient to remark that the
smooth perturbation G translates the subdifferential dJ(x) by VG(x). Hence, using our choice of f/C,
we find the same subdifferential gauge. 0
Proof of Corollary 3. Since G is C* on RY, it is obviously partly smooth relative to T = RY according
to [Lew02, Example 3.1]. We now exhibit the constants involved.

e v-stability. For every ¥’ € RV, ¥ € T, and thus v¥ = +oo, implying that v/ = v/.

e u-stability. Using the p-stability of J and the fact that VG is B-Lipschitz, we get that
H_ J
' =t 1Prollps o+ BlIPrslll 2y -
e 7- and &-stability. Since S = {0}, ¢ = £¢ = 0, and we get from Proposition 9
=1/ and EF=¢/.

X

O
Proof of Proposition 10.

(i) AsJ is finite-valued, we have dJ = Do dJyo D*, hence S = DSy = Im(Ds,) and T = S+ = Ker(Dj, ).
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(i) As S = DSy = Dej+ S, we get from Proposition 1

e € argmin |z|| = argmin | z|| = Deg + argmin ||z + Deo|
z€§ z=Depe hes

= Dey+Pg(—Dey) = (Id — Ps)Dey = Py Deg = Drey .

(iii) With such a choice of f;, we have
Jopx €Tl dJo(D*x) = Dfy p+x € Dri dJo(D*x)

< fy €1iDIJy(D*x) < f, €r1idJ(x) .

We follow the same lines as in the proof of Lemma 5, where we additionally invoke Proposition 3(ii)
to get

J5.(d) = 6501, (d)
= OD(0do(D*x)~ fo.pry ) (d)
= 0Jo(D*x)—fo e (D7)
= JEp e (D7d)
5 e (D5d) -

= O!f()‘D*x

Note that J} is indeed constant along affine subspaces parallel to Ker(Dgo) =S5t =T. We now get
that for every n € S = Ker(Dy, )"

Jr(m) = GJ;‘.x(d)gl(Tl)

= O;p*x (Dgod)gl(n)

0o
N (l’f??ém(w)él °D§°> ()
=infopn  (a () st Dsv=T
= inf JO (D{n+z).

z€Ker(Ds,)) 0:o.0x

The infimum is finite and is attained necessarily at some z € Ker(Ds,) NSy # 0 since domJé)_ Z;* =
So and Im(Dy, ) = Im(Dj, ) C So. Moreover, Ker(Ds,) N So = Ker(D) N Sp.

O
Proof of Proposition 11.  In the following, all operator bounds that appear are finite owing to the
coercivity assumption on the involved gauges in Definition 8 of a partly smooth regularizer.

e Let x' be such that .

Fr—x)< —
=< I

VO,D*x-
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Hence,
I(D*x— DY) < ||D* || pp I'(x —x') < Vo.pex

As Jp is a partly smooth relative to a subspace at D*x, we have Tp p«x = Tj p+v = T and conse-
quently, using Proposition 10(i), T = Ker(D§, )= Ker(D§0 . )=T,=T=S5"

*x

o [,-stability: we now have

I'(ex—eé\) = (PrD(egprx— ey pex)) Proposition 10(ii)
<|ID7lll - rIo(eo,pex — e prv)
< ool Dr |l r I (D™ x — D*X') using o p+,-stability of Jo
< oo llDrllgy s Dl T = ).

o 7.-stability: since fop+, € dJo(D*x) and fy p+v € dJo(D*x’), one has

fo.orx — fo.prx = Psy (fo,prx — fopew) +€0.0x — €0, pry -
Thus, subadditivity yields
TS ®s(fi— i) = T (Ds(fo.nms — fonre)
< I (DsPsy(fo,prx = fopar) +J5 (Ds(eo,px — eo.pr))-
Using Proposition 10(iii) and Ty p+,-stability of Jo, we get the following bound on the first term
J5* (DsPs, (fo.orx — fopwr)

. D*x,0 +
= inf J D¢ DgP oy — w) 2z
zeKer(D)NSp O’fo,D*x( So™8 50 (foprs = forw) +2)

D*x,0
<0y e D5, DsPsq (fo.prx = foprrr)

<[l

D*x,0
JD*x.o HJD*)(A,O JoﬂfO.D*x (PS() (fO,D*X - fO,D*x’))
0.fo,0%x " 0fo, p*x

< 0.0%||[Ds,Ds ||| prve  prre T0(D*x—=D'X)
JO’fO,D*X*)JO’-/U‘D*X
< 0.0 [ D5, Ds||| e e MNP lpsp —x).

0.fo.0xx " 0:fo,p*x

Now, combining Proposition 10(iii) and o p+«-stability of Jy, we obtain the following bound on
the second term

JD*x,o

J;};O (DS(eO,D*x — eO’D*x/)) < 0.fo.prs (D;‘FODS(eO,D*x — eO!D*x/))

<lans

peve To(€0.0%x — €0 pey)
Io—J, f
»JO,D* x
+
DSODS

S Ho.pwx Dx0 |||D*||‘F_>1~0F(xfxl).

FOa]OJo,D*x
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Combining these inequalities, we arrive at

2 Ps(f= £0) < (00| [DEDs || pree e
. o.f, *.%JOJ- .
0,D*x 0,D*x

+ " D+D ‘ ) D* I'(x— /

o[855 g JIP el (=),

whence we get 7,-stability.

&,~stability: from Proposition 10(iii), we can write for any n € §

/ *
J°(m)y= inf Jor° (Dg
fx’ (n) z€Ker(D)NSy O»fO‘D*x'( SOn +Z>
< J}X;°(DS+O n+2z)

for any 7 € Ker(D) N Sp.
Owing to &y p+,-stability of Jo, and since D;On € So, we have for any feasible Z € Ker(D) NSy

D*x o
07f0.D*x/

— * * D* ,0 —
(Dg,n +2) < (1+ &0 l5(D*x — DY) Jo)ng*x(Dgon +2).
Taking in particular

Z€ Argmin Jg ;g’;x (Dg, M +2)
z€Ker(D)NSy ’

we get the bound

AJ.,O * x_/ . D*x,0 +
J; < (1 «To(D*x—D inf ; D
o (M) < (14800 Io(D"x x))ZEKer(D)mSO 0.fp e Py +2)

— (14 &6 (D= D)) I} ()
= (1 +éO!D*XlHD*H|F—>1—(‘)F(x_x/)> J;X;o(n) 7

where we used again Proposition 10(iii) in the first equality.

E. Proofs of Section 6

Proof of Theorem 5. This is a straightforward consequence of Theorem 3(ii) by constructing an
appropriate dual certificate from IC(xo). Denote e = ey, f = fy, and § = T+. Taking the dual vector
o= @}L *e, we have on the one hand

;D Te=e

since e € Im(P}).
On the other hand,

JR° (@5 e —Ps f) =1C(xo) < 1.
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Proof of Theorem 6. To lighten the notation, we let € = ||w||, Vv = Vy, l = Uy, T = Tgy, & = Exyo [ = fo-

The strategy is to construct a vector which, by (%7), is the unique solution to
. 2 T
min S|y — ®x|”+ A7 (x) , (2, )

and then to show that it is actually the unique solution to (£, (y)) under the assumptions of Theorem 6.
The following lemma gives a convenient implicit equation satisfied by the unique solution to ( 9{ ).

LEMMA 12 Let xg € RY and denote T = Ty,. Assume that (¢7) holds. Then (9{ (y)) has exactly one
minimizer X, and the latter satisfies

£=x0+@fw—A(Pjdr)~'é where &< Pr(dJ(%)). (A.1)

Proof. Assumption (47) implies that the objective in (QZ{ (v)) is strongly convex on the feasible set 7T,
whence uniqueness follows immediately. By a trivial change of variable, (9{ (v)) be also rewritten in
the unconstrained form

1
£ = argmin iHy— @rx||* + AJ(Prx) .

x€RN

Thus, using Proposition 6(i), £ has to satisfy
P (y— Prx)+1e=0,

for any € € Py (dJ(%)). Owing to the invertibility of @ on 7, i.e. (67), we obtain (A.1). O
We are now in position to prove Theorem 6. This is be achieved in three steps:

Step 1: We show that in fact T; = T.
Step 2: Then, we prove that £ is the unique solution of (£ (y)) using Theorem 3.

Step 3: We finally exhibit an appropriate regime on A and &€ for the above two statements to hold.

E.0.1 Step 1: Subspace equality. By construction of £ in (@{ (), it is clear that £ € T. The key
argument now is to use that J is partly smooth relative to a subspace at xp, and to show that

I'(xo—%) < v, (A.2)

which in turn will imply subspace equality, i.e. Tz = T (see Definition 8).
We have from (A.1) and subadditivity that

I'(xo—%) <T(—@fw)+AC((Prr) " 'e)

< |l @r@r) |, AL (~P7w) + AT (&)}

<|[(@7r) Y| @7l ooy + 02} (A3)
where o = I'(¢). Consequently, to show that (A.2) is verified, it is sufficient to prove that

Ae+BA <V, (C1)
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where we set the positive constants

A= H|((p;(pT)_l H|F_>F|H¢;H|€2—>Fa

B = ao||[(@®r) [

Suppose for now that (Cy) holds and consequently, 7; = 7. Then decomposability of J on T
(Theorem 1) implies that
¢ =Pr(dJ(£)) =Pr(dJ(£)) =&

where we have denote é = e;. Thus (A.1) yields the following implicit equation

t=x0+ Pfw—A(DpPr) e (A.4)

E.0.2 Step 2: £ is the unique solution of (%25 (y)). Recall that under condition (C}), J is decomposable
at X and xo with the same model subspace 7. Moreover, (A.4) is nothing but condition (4.1) in Theorem 3
satisfied by £. To deduce that £ is the unique solution of (£ (y)), it remains to show that (4.2) holds i.e.,

J;’"()ﬁl DL (y— dF) — fs) < 1. (A5)

where we use the shorthand notations f = f; and fg = Py f.
Under condition (Cy), the &-stability property (5.5) of J at xo yields

TP 05 (v = @8) — f5) < (18T (00— )10 (A7 D5 (3 — 2) = f).- (A6)
Furthermore, from (A.4), we can derive
AN D5 (v — PF) — fs = BsPr e+ AT D50rw — i, (A7)

where Oy =1d — &7 @} = Pier(a;)- Inserting(A.7) in (A.6), we obtain

(AT Dy (y— DR) — fs) < (14 E (w0 — £)) TR (D5 D e+ A7 D5 01w — ).

\%é%

Moreover, subadditivity yields
T (@507 o+ A7 D5 0w — f5) TR (B e — f5) + 0 (D5 D (6 —e))
I (Ps(f = 1)) + T (A7 @5 0rw). (A8)
We now bound each term of (A.8). In the first term, one recognizes
TR0 (D5 P, e — fs) <IC(xo). (A.9)

Appealing to the p-stability property, we get

T @5 df - e)) < || - b5

o Te=d
0

-0y

F%f;g_of(xo—x). (A.10)
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From 7-stability, we have
TR°(fs— fs) < (x0 — %) (A.11)
Finally, we use a simple operator bound to get
19 (7 050rw) < 19501l e (A1)
Following the same steps as for the bound (A.3), except using é = é here, gives
I (x0—2)) < ||(@7r) ||| {7l oy e+ AT (2)} - (A.13)
Plugging inequalities (A.9)-(A.13) into (A.6) we get the upper-bound

J;‘;°(<p;q>;=*é+ A7 DEQrw — fs)

< (14+&0(x0 —9) (IC(x0) + T (v0 ) (1|~ @507 . +7)
F%Ifo
1 *
ol esorlla oee)
1
< (1+E(c1e+Ac)) (IC(xo)+(c1£+lcz)ﬂ+IC4£) <1,
where we have introduced
fA=pc3+7t and oy =I'(ée)=TI(é)=0p
and
ca = A o = al|(@rer) |
* ATk _ *
a = ‘H_d’s‘pr o0 G = H’quQTWﬁaJ;g""
If is then sufficient that
1
(1+E(cre+Ac2)) (IC(x0)+(cle+xcz)a+ IC4.s) <1, (A.14)

for (4.2) in Theorem 3 to be in force.
In particular, if
Ce< A

holds for some constant C > 0O to be fixed later, then inequality (A.14) is true if

a=—Ef(c1/C+e)
P(A)=aA?+bA+c>0 where b=—(c1/C+eca) (EIC(x0) +Ecy/CH ) . (AD5)
c=1-IC(xp) —ca/C

Let us set the value of C to
26‘4

€= To1C)
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which, for 0 < IC(xp) < 1, it ensures that ¢ = #(W is bounded and positive, and thus, the polynomial

P has a negative and a positive root Ap,x equal to

b aey [ A= —ER1-ICE)e/(2e) +co)?
I = 500 (=473 )« b= —((1 1C(0))er/ (2es) +2) (B -+ (1-+1C(x0))6/2)
c=(1-1IC(xp))/2

A+ (14+1C(x))¢ /2 ( 2E(1 - IC(x))) R )

= ER((1 - IC(x0))cr /es +262) * \ (@ + (1 1 1C(x0) & /2)°
> 1“?““”}1@/&»

where

- B X _ B+1/2 2p
¢(B)=V1+B—1, and H<ﬁ>—3(CI/C4+zcz>"’(<ﬁ+1>2>'

To get the above lower-bound on Ap,y, we used that @ is increasing (in fact strictly) and concave on R
with (1) =0, and that IC(xy) € [0, 1]. Consequently, we can conclude that the bounds

1— IC()C()

2 s Jr(aye) ()

78 X X

1 —IC(xp) 13
imply condition (A.14), which in turn yields (A.5).
E.0.3 Step 3: (Cy) and (Cy) are in agreement. It remains now that show the compatibility of (C;)

and (), i.e. to provide appropriate regimes of A and € such that both conditions hold simultaneously.
We first observe that (C;) and the left-hand-side of (C) both hold for A fulfilling

A -1 o/1-1C -
A<Cyv where Cy=|-—+B < JA—;—B .
26‘4 2()4

This updates (C5) to the following ultimate range on A

26‘4

1— IC(X())
1 —IC(X())

3

Now in order to have an admissible non-empty range for A, the noise level € must be upper-bounded as

£ <A <min (Cov,

H(ﬁ/é)) .

11— IC()C())

< 1300 i (o, ).

€
= 26‘4

Finally, the constants provided in the statement of the theorem (and subsequent discussion) are as follows
Ar =2c4, Br =Co, Dr =c3,and Er = ¢ /ca+2¢2

which completes the proof.
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F. Proofs of Section 7
Proof of Proposition 12.  The subdifferential of | - ||| reads
-l (x) = {n e RY: nyy =sign(xy)) and [|[Nge)fe <1}

The expressions of Sy, Ty, ey and f; follow immediately. Since e, € rid||- ||;(x) and || - ||; is separable, it
follows from Definition 6 that the ¢! -norm is a strong gauge. Therefore J =J= |- ||, and Proposition 7
specializes to the stated subdifferential. ‘

Turning to partial smoothness, let X' € T, i.e. I(x') C I(x), and assume that
[ = Jo < Ve = (1— S)miln |xi|,0 €]0,1] .
IS

This implies that Vi € I(x), |x}| > vy — [x — x/||e = 0, which in turn yields /(x) = I(x), and thus Ty = T,.
Since the sign is also locally constant on the restriction to T of the ¢*-ball centred at x of radius vy, one
can choose (U, = 0. Finally 7, = &, = 0 because f; = e,. Il
Proof of Proposition 14. The proof of the first part was given Section 3.1 and Section 3.2 where the
£*-norm example was considered.

It remains to show partial smoothness. Let x’ € T, and assume that

x =X <ve=(1—- 5)(Hx||oo —mga;( |Xj|),6 €]o,1] .
J
This means that X’ lies in the relative interior of the ¢!-ball (relatively to T) centred at x of radius
[lx/|e0 — m¢ax |xj|. Within this ball, the support and the sign pattern restricted to the support are locally
gl

constant, i.e. I(x) = I(x') and sign(x((y))) = sign(x’(](x/))). Thus Ty = T, = T and ey = ey, and from the
latter we deduce that u, = 0. As f, = e, we also conclude that 7, = &, = 0, which completes the proof.
O

Proof of Proposition 15.  Again, the proof of the first part was given Section 3.1 and Section 3.3 where
the ¢! — /?-norm example was handled.

Letx' € T,ie. I(xX') CI(x),and vy = (1 — 5)121%1 [xs]l, & €]0, 1]. First, observe that the condition
e
e =&l eo 2 = max lx, — xj || < Vi
beA

ensures that forall b €
511 =l | = llxe — x4 > vie = [lx = x'[|e 2 > O,

and thus I(x') = I(x), i.e. Ty = T,. Moreover, since the gauge is strong, one has 7, = &, = 0. To establish
the u,-stability we use the following lemma.

LEMMA 13 Given any pair of non-zero vectors u and v where, ||u —v| < p|lul|, for 0 < p < 1, we have

where Cp = ¥24/1—/T—pZ €]1,v2[.

u v lu—v|

el vl

S Cp

)

o]
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Proof. Letd=v—uand = HEAMH7||dd>H € [—1,1]. We then have the following identities

2 2
d
T T 131 A
lall v eV leell/Tual> + T1d]> + 2[[u][[|]| B
for non-zero vectors u and d, the unique maximizer of (A.1) is f* = —||d||/||u. Note that the assumption

Id||/|lu]l < p < 1 assures B* to comply with the admissible range of 8 and further, the argument of the
square root will be always positive. Now, inserting §* in (A.1), using concavity of 1/~ on R, and that
ld|l/llu|| < p, we can deduce the following bound

d]? ( Hdll2 I
=2-2,/(1- + (1-p2)
‘ [lufl? 2HMH2 P2 ul?

nd2> ] f>
<2-2((1— + 1—p2
(( 2ul?) " p2TulP

—p2 2
:2_2<L_ ~ V1 pMH)

u

el (V1

p> |l

—V1-p?|ld|?

P2 (/e

/N O

By definition of vy, we have (1 —8)|xs| > v, for 8 €]0,1], Vb € I, and thus ||lx, — x| < v,
(1 —8)||xp||- Lemma 13 then applies, and it follows that, Vb € I

X, —X X, —X
HJV(Xb)—/V(XZ)”<Cp || b b” <Cp || b b”7
[l | Vi

and therefore we get

C
1A (%) = A ()02 < 7"\\)/ = X|eo 2,

X

which implies pi,-stability for p, = Cp /vy.
Proof of Proposition 16. In general, the subdifferential of Jy reads
{1} ifu; >0
dJo(u) =< Y pisia - pe X5 € [0,1] ifu;=0 p,
el {0} ifu; <0
where X is the canonical simplex in R/, and I = {i € {1,--- Ny} : (x;)4 =Jo(x)}.
o Ifu; <0,Vie{l,---,Ny}, the above expression becomes

aJO {Zplsl P 62[07*91‘ € [071]} ’

i€ly
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where Ip = {i € {1,--- Ny } : u; = Jo(u) = 0}. Equivalently, dJo(u) is the intersection of the unit
¢! ball and the positive orthant on R/l The expressions of S, T, and e, then follow immediately.
dJo(u) then contains e, = 0, but not in its relative interior. Choosing any f, as advocated, we have
fu €1idJy(u). To get the subdifferential gauge, we use some calculus rules on gauges and apply
Lemma 2 to get

Je = inf T ,T),
o M) = o inf L max(lefu+nlh,7)

where the extra-constraints on T come from the fact that dJy(u) is in the positive orthant, and the
¢' norm is the gauge of the unit £!-ball. We then have

J° = inf T tn),t
Su (n(IO)) 730, 'ur;?na)(ie[() i max( iezlo (l’La + nl) ’ )
= inf max(tull|+ Y M, 7).
T2maxiefy (—Mi)4 /1 ,-;;, v
e Assume now that u; > 0 for at least one i € {1,--- ,Ng}. In such a case, Jo(u) = ||u||-, and the

subdifferential becomes
dh(u) =%, ,

where I, {i € {1,--- ,Ng}: u;=Jo(u) and wu; > 0}. The forms of S, 7, e,, f, and the subdif-
ferential gauge can then be retrieved from those of the £*-norm with s(;, ) = 1 and S(g) = 0.

For partial smoothness, the parameters are derived following the same lines as for the ¢*-norm. Let
u' € T, and assume that

lu—u'|; <vy=(1-0) <max ui— max uj> :
iely JEl4uji>0

for § €]0, 1]. This means that x’ lies in the relative interior of the ¢!-ball (relatively to T') centred at x of
radius

max u; — max u;=|ul.— max |u;

icly j€1+,uj>0 j€1+,uj>0
Within this set, one can observe that the set I associated to u is constant. Moreover, the sign pattern is also

constant leading to the fact that 7,; = T, = T. Hence, we deduce as in the £*-case that u, = 7, = £, = 0.
]

G. Proofs of Section 8

Proof of Theorem 7. To lighten the notation, we drop the dependence on x of 7', S and e. Without of
loss of generality, by symmetry of the norm, we will assume that the entries of x are positive.

We follow the same program as in the compressed sensing literature, see e.g. [CR12]. The key
ingredient of the proof is the fact that owing to the isotropy of the Gaussian ensemble, oz and @5 are
independent. Thus, for some 7 > 0

Pr(IC(x) > 1) < Pr (IC(x) > 1‘\\apu < 1) +Pr (o] > 1) -
As soon as Q > dim(T) = N — |I| + 1, &y is full-column rank. Thus

* -1
loe|* = (e, (PFPr) " e) .
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(P <15T)7] is an inverse Wishart matrix with Q degrees of freedom. To estimate the deviation of this
quadratic form, we use classical results on inverse y> random variables with Q — N + |I| degrees of
freedom and we get the tail bound

1 o
Pr o] > | =] | < F@ NI
(n 1>\ ||>

for t > 0. Now, conditionally on o, the entries of aig = Ps @* o are i.i.d. 47(0, |0t ||*) and so are those
of —ag by trivial symmetry of the centred Gaussian. Thus, using a union bound, we get

Pr (1609 > 1] < 7)< r (max (~(as.) > 111 e < <)

<P (max (@) > 111 < 7)

<IPr((2)+ > 1/(<]1)))

< UIPr (2> 1/(xl1]))
_1

< |fle 2P0

Observe that (ag); = 0 for all i € I°. Choosing

1
T:%u@mur)

where we used that ||e|| = 1/+/1, and inserting in the above probability terms, we get

t2
Pr (o > 1) < e F@ NI

(QNHI=t
Pr (IC(x) > 1‘\|ap\|<z) <e (S5 -t ))_

Equating the arguments of the exponentials and solving

12 t q 1]
Pyl (4 jog()) =0
49 T <2|1| Og(Z)

for ¢ to get equal probabilities, we get

r=L1 l1+2 |1 22\1\1og<%) 1
] a ’
where ¢ = Q — N + |I| > 1 by the restricted injectivity assumption. Setting

-9
2|I|log (%‘)
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we get under the bound on Q that 8 > 1, and

t =2Blog (‘;J) <‘/1+2’|ﬁ¢§1_1> .

Inserting ¢ in one of the probability terms, and after basic algebraic rearrangements, we get the probability
of success with the expression of the function (8, |1]). O
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