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Robust Sparse Analysis Regularization
Samuel Vaiter, Gabriel Peyré, Charles Dossal and Jalal Fadili

Abstract—This paper investigates the theoretical guarantees of
`1-analysis regularization when solving linear inverse problems.
Most of previous works in the literature have mainly focused on
the sparse synthesis prior where the sparsity is measured as the
`1 norm of the coefficients that synthesize the signal from a given
dictionary. In contrast, the more general analysis regularization
minimizes the `1 norm of the correlations between the signal
and the atoms in the dictionary, where these correlations define
the analysis support. The corresponding variational problem
encompasses several well-known regularizations such as the
discrete total variation and the Fused Lasso.

Our main contributions consist in deriving sufficient conditions
that guarantee exact or partial analysis support recovery of
the true signal in presence of noise. More precisely, we give a
sufficient condition to ensure that a signal is the unique solution
of the `1-analysis regularization in the noiseless case. The same
condition also guarantees exact analysis support recovery and
`2-robustness of the `1-analysis minimizer vis-à-vis an enough
small noise in the measurements. This condition turns to be sharp
for the robustness of the sign pattern. To show partial support
recovery and `2-robustness to an arbitrary bounded noise, we
introduce a stronger sufficient condition. When specialized to the
`1-synthesis regularization, our results recover some correspond-
ing recovery and robustness guarantees previously known in the
literature. From this perspective, our work is a generalization
of these results. We finally illustrate these theoretical findings
on several examples to study the robustness of the 1-D total
variation, shift-invariant Haar and Fused Lasso regularizations.

Index Terms—sparsity, analysis regularization, synthesis regu-
larization, inverse problems, `1 minimization, union of subspaces,
noise robustness, total variation, wavelets, Fused Lasso.

I. INTRODUCTION

A. Inverse Problems and Signal Priors

This paper considers the stability of regularized inverse
problems using sparsity-promoting priors. The forward model
in many data acquisition scenarios can be formulated as the
action of a linear mapping on some unknown (sought-after)
signal contaminated by an additive noise. This takes the form

y = �x
0

+ w, (1)

where y 2 RQ are the observations, x
0

2 RN the unknown
signal to recover, w the noise supposed to be of bounded `2-
norm, and � a bounded linear operator which maps the signal
domain RN into the observation domain RQ where generally
Q 6 N . Even when Q = N , the mapping � is in general
ill-conditioned or even singular. This makes the problem of
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solving for an accurate approximation of x
0

from the system
(1) ill-posed, see for instance [1] for an introduction to inverse
problems.

However, the situation radically changes if one has some
prior information about the underlying object x

0

. Regulariza-
tion is a popular way to impose such a prior, hence making the
search for solutions feasible. The general variational problem
we consider can be stated as

min

x2RN

1

2

||y � �x||2
2

+ �R(x), (2)

where the first term is the data fidelity reflecting `2-
boundedness of the noise, and R is an appropriate (prior)
regularization term through which some regularity is enforced
on the recovered signal. The regularization parameter � > 0

should be adapted to balance between the allowed fraction of
noise level and regularity as dictated by the prior on x

0

.
For noiseless observations, i.e. w = 0, taking the limit �!

0, we end up solving the constrained problem

min

x2RN
R(x) subject to �x = y. (3)

A popular class of priors are quadratic forms R(x) =

hx, Kxi where K is a symmetric semidefinite positive kernel.
Problems (2) and (3) then correspond to Tikhonov regulariza-
tion which typically induces some kind of uniform smoothness
in the recovered signal. More advanced priors that have
received considerable interest in the recent years rely on
non-quadratic, generally nonsmooth, functionals such as those
promoting sparsity of the signal in some transform domain
(e.g. its wavelet transform or its derivatives). These sparsity
priors are at the heart of this paper. They will be discussed in
more detail after some necessary definitions and notations are
first introduced in the following section.

B. Notations

Throughout the paper, we focus on real vector spaces. The
variable x will denote a vector in RN , y will be a vector in
RQ and ↵ a vector in RP .

The sign vector sign(↵) of ↵ 2 RP is

8i 2 {1, . . . , P}, sign(↵)i =

8

>

<

>

:

+1 if ↵i > 0,

0 if ↵i = 0,

�1 if ↵i < 0.

Its support is

supp(↵) = {i 2 {1, . . . , P} \ ↵i 6= 0} .

For a subset I ⇢ E, |I| will denote its cardinality, and Ic =

E \ I its complement.
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The p, q-operator (induced) norm of a matrix M is

||M ||p,q = max

x 6=0

||Mx||q
||x||p

.

The matrix MJ for J a subset of {1, . . . , P} is the subma-
trix whose columns are indexed by J . Similarly, the vector sJ
is the restriction of s to the entries of s indexed by J .

The matrix Id is the identity matrix, where the underlying
space will be clear from the context. For any matrix M , M+ is
its Moore–Penrose pseudoinverse and M⇤ is its adjoint. M+,⇤

is the adjoint of the Moore–Penrose pseudoinverse of M .

C. Synthesis and Analysis Sparsity Priors
a) Synthesis sparsity prior: Sparse regularization is a

popular class of priors to model natural signals and images,
see for instance [2]. We recall that a dictionary D = (di)Pi=1

is a (possibly redundant, i.e. P > N ) collection of P atoms
di 2 RN . It can also be viewed as a linear mapping from RP

to RN which is used to synthesize a signal x 2 Im(D) ✓ RN

as

x = D↵ =

P
X

i=1

↵idi,

where ↵ is the coefficient vector that synthesizes x from the
dictionary D.

In its simplest form, the sparsity of coefficients ↵ 2 RP is
measured using the `0 pseudo-norm

R
0

(↵) = ||↵||
0

= | supp(↵)|.

Minimizing (2) or (3) with R = R
0

is however known to be
NP-hard, see for instance [3]. Several workarounds have been
proposed to alleviate this difficulty. A first family of methods
relies on greedy algorithms [4]. The most popular ones are
Matching Pursuit [5] and Orthogonal Matching Pursuit [6, 7].
A second family of methods, which is the focus of this paper,
relies on convex relaxation which amounts to replacing the `0
pseudo-norm by the `1 norm [8].

The sparsest set of coefficients, according to the `1 norm,
defines a signal prior which is the image of ||.||

1

under D,

RS(x) = min

↵2RP
||↵||

1

subject to x = D↵.

Therefore any solution x of (2) using R = RS can be written
as x = D↵ where ↵ is a solution of

min

↵2RP

1

2

||y � ↵||2
2

+ �||↵||
1

, (4)

where  = �D. `1 regularization was first considered in
the statistical community in [9] where it was coined Lasso.
Note that it was originally introduced as an `1-ball con-
strained optimization and in the overdetermined case. It is also
known in the signal processing community as Basis Pursuit
DeNoising [10]. Such a problem corresponds to the so-called
sparse synthesis regularization as sparsity is assumed on the
coefficients ↵ that synthesize the signal x = D↵. In the
noiseless case, the constrained problem (3) becomes

min

↵2RP
||↵||

1

subject to y =  ↵, (5)

which goes by the name of Basis Pursuit after [10]. Taking
D = Id amounts to assuming sparsity of the signal itself,
and was used for instance for sparse spike train deconvolution
in seismic imaging [11]. Sparsity in orthogonal as well as
redundant wavelet dictionaries are popular to model natural
signals and images that exhibit certain singularities [2].

b) Analysis sparsity prior: Analysis regularization cor-
responds to using R = RA in (2) where

RA(x) = ||D⇤x||
1

=

P
X

i=1

|hdi, xi|

in which case (2) reads

min

x2RN

1

2

||y � �x||2
2

+ �||D⇤x||
1

. (P�(y))

Of course, D⇤ is not in general the adjoint operator of a full
rank dictionary D. Note that the analysis problem (P�(y)) is
more general than the synthesis one (4) because the latter is
recovered by taking D = Id and  = � in the former.

As the objective in (P�(y)) is proper (i.e. not infinite
everywhere), continuous and convex, it is a classical existence
result that the set of (global) minimizers is nonempty and
compact if and only if

Ker� \KerD⇤
= {0}. (H

0

)

From now on, we suppose that this condition holds.
In the noiseless case, the `1-analysis equality-constrained

problem is

min

x2RN
||D⇤x||

1

subject to �x = y. (P
0

(y))

One of the most popular analysis sparsity-inducing regu-
larizations is the total variation, which was first introduced
for denoising (in a continuous setting) in [12]. It roughly
corresponds to taking D⇤ as a derivative operator. Typically,
for 1-D discrete signals, D can be taken as a dictionary of
forward finite differences DDIF where

DDIF =

0

B

B

B

B

B

B

@

�1 0
+1 �1

+1

. . .

. . . �10
+1

1

C

C

C

C

C

C

A

. (6)

The corresponding prior RA favors piecewise constant signals
and images. A comprehensive review of total variation regu-
larization can be found in [13].

The theoretical properties of total variation regularization
have been previously studied. A distinctive feature of this
regularization is its tendency to yield a staircasing effect,
where discontinuities not present in the original data might be
artificially created by the regularization. This effect has been
studied by Nikolova in the discrete case in a series of papers,
see e.g. [14], and in [15] in the continuous setting. The stability
of the discontinuity set of the solution of the 2-D continuous
total variation based denoising problem is investigated in [16].
Section IV-C shows how our results also shed some light on
this staircasing effect for 1-D discrete signals.
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It is also possible to use a dictionary D of shift invariant
wavelets, so that the corresponding regularization term RA

can be viewed as a multiscale (higher order) total variation
[17]. Such a prior tends to favor piecewise regular signals and
images. From a numerical standpoint, an extensive study is
reported in [18] using these redundant dictionaries to highlight
differences between synthesis and analysis sparsity priors for
inverse problems.

As a last example of sparse analysis regularization, we
would like to mention the Fused Lasso [19], where D is the
concatenation of a discrete derivative and a weighted identity.
The corresponding prior RA promotes both sparsity of the
signal and its derivative, hence favoring the grouping of non-
zero coefficients in blocks.

c) Synthesis versus analysis priors: In a synthesis prior,
the vector ↵ that synthesizes the signal x from the dictionary
D is sparse, whereas in an analysis prior, the correlation
between the signal x and the atoms in the D is sparse. Some
insights on the relation and distinction between analysis and
synthesis-based sparsity regularizations were first given in
[20]. When D is orthogonal, and more generally when D is
square and invertible, (P�(y)) and the Lasso entail equivalent
regularizations in the sense that the set of minimizers of one
problem can be retrieved from that of an equivalent form of the
other through a bijective change of variable. However, when
D is redundant, synthesis and analysis regularizations differ
significantly.

D. Union of Subspaces Model

As analysis regularization involves the sparsity of the cor-
relation vector D⇤x, it is thus natural to keep track of the
support of D⇤x. To fix terminology, we define this support
and its complement.

Definition 1. The D-support I of a vector x 2 RN is I =

supp(D⇤x) ⇢ {1, . . . , P}. Its D-cosupportJ is J = Ic =

{1, . . . , P} \ I .

A signal x such that D⇤x is sparse lives in a subspace GJ

of small dimension whose formal definition is as follows.

Definition 2. Given a dictionary D, and J a subset of
{1, . . . , P}, the cospace GJ is defined as

GJ = KerD⇤
J ,

where we recall that DJ is the subdictionary whose columns
are indexed by J .

Following the cosparse model introduced in [21], the signal
space can thus be decomposed as

RN
=

[

k2{0,...,N}

⇥k,

where

⇥k = {GJ \ J ✓ {1, . . . , P} and dimGJ = k} , (7)

which is dubbed union of subspaces of dimension k.

The union of subspaces associated to synthesis regulariza-
tion, i.e. D = Id, corresponds to ⇥k as the set of axis-
aligned subspaces of dimension k. For the 1-D total variation
prior, where D = DDIF as defined in (6), ⇥k is the set of
piecewise constant signals with k� 1 steps. Several examples
of subspaces ⇥k, including those corresponding to translation
invariant wavelets, are discussed in [21].

More general union of subspaces models (not necessarily
corresponding to analysis regularizations) have been intro-
duced in sampling theory to model various types of non-linear
signal ensembles, see for instance [22]. Union of subspaces
models have been extensively studied for the recovery from
pointwise sampling measurements [22] and compressed sens-
ing measurements [23, 24, 25, 26].

E. Organization of this Paper
The rest of the paper is organized as follows. Section

II details our main contributions. Section III draws some
connections with relevant previous work. Section IV illustrates
our results on some examples. The proofs are deferred to
Section V.

II. CONTRIBUTIONS

This paper proves the following three main results:
1) Robustness to small noise: we provide a sufficient

condition on x
0

ensuring that the solution of (P�(y))
is unique, lives in the same cospace and close to x

0

when w is small enough.
2) Noiseless identifiability: under the same sufficient con-

dition, x
0

is guaranteed to be the unique solution of
(P

0

(y)) when w = 0.
3) Robustness to bounded noise: we then give a sufficient

condition that depends on the D-cosupport of x
0

under
which the solution of (P�(y)) is unique and close to x

0

for an arbitrary bounded noise w, with the proviso that
� is large enough.

Each contribution will be rigorously described in a
corresponding subsection.

It is worth mentioning that our results will extend
previously known ones in the synthesis case, see for
instance [27, 28, 29, 30, 31]. Additionally, there are only
a few recent works that we are aware of and which give
provable guarantees using analysis regularization for exact
recovery in the noiseless case [21], or accurate and robust
recovery in the noisy case [32, 33, 34, 35, 36, 37]. We
will discuss this prior literature in detail in Section III.
Nevertheless, to the best of our knowledge, it appears that
our work is the first that addresses the above three questions
in the analysis case.

For some cosupport J , the invertibility of � on GJ will play
a pivotal role in our theory. This is achieved by imposing that

Ker� \ GJ = {0}. (HJ )

To get the gist of the importance of (HJ ), consider the
noiseless case where we want to recover a D-sparse signal
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x
0

from y = �x
0

. Let J be the D-cosupport of x
0

and
assume that it is known. As x

0

2 GJ \ {x : y = �x}, for
x
0

to be uniquely recovered from y, (HJ ) must be verified.
Conversely, if x

0

is such that (HJ ) does not hold, then any
x
0

+h, with h 2 Ker�\GJ , is also a candidate solution, i.e.
x
0

+ h 2 GJ \ {x : y = �x}. Clearly, one cannot reconstruct
such D-sparse objects.

With assumption (HJ ) at hand, we are in position to define
the following matrix whose role will be clarified shortly.

Definition 3. Let J be a D-cosupport. Suppose that (HJ )
holds. We define the operator A[J] as

A[J]
= U (U⇤

�

⇤
�U)

�1 U⇤. (8)

where U is a matrix whose columns form a basis of GJ .

It is worth noting that the action of A[J] on a vector can
be computed without explicitly constructing a basis of GJ by
solving the quadratic problem

A[J]u = argmin

D⇤
Jx=0

1

2

||�x||2 � hx, ui.

A. Robustness to Small Noise
Our first contribution consists in showing that `1-analysis

regularization is robust to a small enough noise under a
sufficient condition that depends on the sign of D⇤x

0

and
its D-cosupport. This condition will be formulated via the
following criterion.

Definition 4. Let s 2 {�1, 0,+1}P , I its support and J = Ic.
Suppose that (HJ ) holds. The analysis Identifiability Criterion
IC of s is defined as

IC(s) = min

u2KerDJ

||⌦[J]sI � u||1

where
⌦

[J]
= D+

J (�
⇤
�A[J] � Id)DI .

We have the following theorem.

Theorem 1. Let x
0

2 RN be a fixed vector of D-support I
and D-cosupport J = Ic. Let y = �x

0

+w. Assume that (HJ )
holds and IC(sign(D⇤x

0

)) < 1. Then there exist constants
cJ > 0 and c̃J > 0 satisfying

||w||
2

T
<

c̃J
cJ

and T = min

i2{1,··· ,|I|}
|D⇤

Ix0

|i,

such that if � is chosen according to

cJ ||w||2 < � < T c̃J ,

the vector

x̂?
= x

0

+A[J]
�

⇤w � �A[J]DIsign(D
⇤x

0

), (9)

is the unique solution of (P�(y)). Moreover,

x̂? 2 GJ and sign(D⇤x
0

) = sign(D⇤
I x̂

?
).

In plain words, Theorem 1 asserts that when
IC(sign(D⇤x

0

)) < 1, the support and sign pattern of
D⇤x

0

are exactly recovered by solving (P�(y)) with � wisely
chosen and provided that the non-zero entries of D⇤

Ix0

are

large enough compared to noise. In addition, if � is chosen
proportional to the noise level, (9) implies

||x̂? � x
0

||
2

= O(||w||
2

).

Remark 1. One may question the benefit of minimizing
over KerDJ in the criterion IC. First note that IC(s) is
upper-bounded by ||⌦[J]sI ||1. For D with maximally linear
independent columns, KerDJ = {0} and IC is large. On the
other hand, when KerDJ is large, minimizing the (translated)
`1-norm over KerDJ is likely to produce lower values of
IC. In a nutshell, linear dependencies among the columns of
D, in some sense, are desirable to optimize the value of IC.
This is in agreement with the observations of [21].

At this stage, one may wonder whether the sufficient con-
dition IC(sign(D⇤x

0

)) < 1 can be weakened while ensuring
both sign consistency and cospace recovery by solving (P�(y))
in presence of small noise. The following proposition provides
a first answer by proving that the condition is in some sense
necessary.

Proposition 1. Let x
0

2 RN be a fixed vector of D-
cosupport J . Let y = �x

0

+ w. Suppose that (HJ) holds
and IC(sign(D⇤x

0

)) > 1. If

1

�
||⇧[J]w||1 < IC(sign(D⇤x

0

))� 1 (10)

where ⇧[J]
= D+

J �
⇤
(�A[J]

�

⇤� Id), then for any solution x?

of (P�(y)), we have

sign(D⇤x
0

) 6= sign(D⇤x?
).

In plain words, for signals x
0

with IC(sign(D⇤x
0

)) > 1,
the associated sign vector and D-support cannot be simulta-
neously identified by solving (P�(y)) even with a small noise
for the range of � obeying (10).

B. Noiseless Identifiability

In the noiseless case, w = 0, the criterion IC can be used
to test identifiability. A vector x

0

is said to be identifiable if
x
0

is the unique solution of (P
0

(�x
0

)). We will prove the
following theorem.

Theorem 2. Let x
0

2 RN be a fixed vector of D-cosupport
J . Suppose that (HJ ) holds and IC(sign(D⇤x

0

)) < 1. Then
x
0

is identifiable.

The conclusions of Proposition 1 remain valid even in the
noiseless case.

Corollary 1. Let x
0

2 RN be a fixed vector of D-cosupport
J . Suppose that (HJ) holds and IC(sign(D⇤x

0

)) > 1. Then
for any � > 0 and any solution x? of (P�(�x0

)),

sign(D⇤x
0

) 6= sign(D⇤x?
).

When IC(sign(D⇤x
0

)) = 1, Proposition 1 and Corollary 1
do not allow to conclude. In Section IV-C, a family of signals
x
0

is built such that IC(sign(D⇤x
0

)) = 1, and where we
show that depending on the noise structure, recovery can be
possible or not.
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C. Robustness to Bounded Noise
Let us now turn to robustness to an arbitrary bounded noise.

To this end, we introduce the following criterion which is a
strengthened version of the IC criterion.

Definition 5. The analysis Recovery Criterion (RC) of I ⇢
{1, . . . , P} is defined as

RC(I) = max

pI2R|I|

||pI ||161

min

u2KerDJ

||⌦[J]pI � u||1.

It is clear that if I is the D-support of x
0

, RC(I) < 1

implies IC(sign(D⇤x
0

)) < 1. Moreover, RC depends solely
on the D-support while IC relies both on the D-support and
the sign vector sign(D⇤x

0

).
In Theorem 1, the assumption on T plays a pivotal role:

if T is too small, there is no way to distinguish the small
components of D⇤x

0

from the noise. If no assumption is made
on T , it turns out that one can nevertheless expect robustness to
an arbitrary bounded noise if the parameter � is large enough.
In this case, solving (P�(y)) allows to recover a unique vector
which lives in the same cospace GJ as the unknown signal x

0

,
and whose `2 distance from x

0

is within a factor of the noise
level.

Theorem 3. Let I be a fixed D-support, J = Ic its associated
D-cosupport. Let y = �x

0

+ w. Suppose that (HJ ) holds. If
RC(I) < 1 and

� = ⇢||w||
2

cJ
1�RC(I)

with ⇢ > 1,

where
cJ = ||D+

J �
⇤
(�A[J]

�

⇤ � Id)||
2,1,

then for every x
0

of D-support I , problem (P�(y)) has a
unique solution x? whose D-support is included in I and ||x

0

�
x?||

2

= O(||w||
2

). More precisely,

||x
0

�x?||
2

6 ||A[J]||
2,2||w||2

✓

||�||
2,2 +

⇢cJ
1�RC(I)

||DI ||2,1
◆

.

III. RELATED WORKS

A. Previous Works on Synthesis Identifiability and Robustness
There is an extensive literature on guarantees for identifia-

bility and robustness to noise of `1 sparse synthesis regular-
ization, i.e. Lasso in (4). In [28], Fuchs introduced a synthesis
identifiability criterion ICS which is a specialization of our
IC to the case where D = Id.

Definition 6. Let s 2 {�1, 0,+1}P , I its support and J its
cosupport. We suppose  I is full rank. The criterion ICS of
a sign vector s associated to a support I is defined as

ICS(s) = ||⌦SsI ||1 where ⌦

S
=  

⇤
J 

+,⇤
I .

Let us point out that the full rank assumption on  I is a
particularization of (HJ ) to the synthesis prior case.

The following result is proved in [28]. We restate it here
for completeness.

Theorem ([28]). Let ↵
0

2 RP be a fixed vector of support
I . If  I has full rank and ICS(sign(↵0

)) < 1, then ↵
0

is
identifiable, i.e. it is the unique solution of (4) for y =  ↵

0

.

Note that the above condition is also known as the irrepre-
sentable condition in the statistical literature.

The work of Tropp [29, 30] in the synthesis case developed
a sufficient noise robustness condition built upon the so-called
Exact Recovery Coefficient (ERC) of the support.

Definition 7. The Exact Recovery Coefficient (ERC) of I ⇢
{1 . . . P} is defined as

ERC(I) = ||⌦S ||1,1,

Note again that while ICS(s) depends both on the sign and
the support, ERC depends only on the support and we have
the inequality ICS(s) 6 ERC(I).

It is proved in [29] that ERC(I) < 1 is a sufficient
condition for partial support recovery and `2-consistency by
solving the Lasso.

Theorem ([29]). Let I be a fixed support. Suppose that  I has
full rank. If ERC(I) < 1 and � large enough, then for every
↵
0

of support I , problem (4) with y =  ↵
0

+w has a unique
solution ↵? whose support is included in I and ||↵

0

�↵?||
2

=

O(||w||
2

).

By noticing that when D = Id, KerDJ = {0}, and by
definition of the operator norm || · ||1,1, we easily conclude
that our criteria IC and RC are equivalent to ICS and ERC.

Proposition 2. If D = Id, then IC(sign(D⇤x
0

)) =

ICS(sign(D⇤x
0

)) and RC(I) = ERC(I).

There are of course many other sufficient conditions in the
literature which provably guarantee uniqueness, identifiability
and noise robustness in the `1-synthesis regularization case;
see [38] for a thorough review. Among the most popular we
have coherence-based conditions and those based on the RIP
which plays a central role in the compressed sensing theory
[31, 39].

In the inverse problems community, efforts have been under-
taken to derive results of robustness to arbitrary bounded noise
(so-called convergence rates), for `1-synthesis regularization to
solve ill-posed linear inverse problems. In the regularization
theory, the source or range condition as well as a restricted
invertibility condition on � are generally imposed, see e.g.
[40, 41, 42, 43], and [44] and references therein. For instance,
the authors in [43] have shown that a strengthened version of
the source condition generalizing ICS(s) < 1 is a necessary
and sufficient condition for noise robustness with the rate
O(||w||

2

). This source condition is detailed in (11) for the
more general analysis setting. However, these results do not
say anything about the sign and support recovery.

B. Previous Works on Analysis Identifiability and Robustness
It is only very recently that recovery and noise robustness

theoretical guarantees of `1-analysis sparse regularization have
been investigated. The previous works that we are aware of
are [32, 21, 35, 36, 33, 34, 37].

Taking a compressed sensing perspective with a general-
ization of the RIP (called D-RIP) on �, and assuming that
D is a tight frame, the authors [32] prove that `1-analysis
regularization allow accurate and robust recovery from noisy
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measurements uniformly over all signals that are (even nearly)
D-sparse. [37] also give a provable guarantee of robust re-
covery for images from compressed measurements via total
variation regularization. As usual, the RIP-based guarantees
are uniform and the (D-)RIP is satisfied for Gaussian matrices
and other random ensembles. This setting is thus quite far
from ours.

The work of [21] is much closer to ours. It studies noiseless
identifiability using `0 and `1 sparse analysis regularization.
Their result on `1-analysis noiseless identifiability is the fol-
lowing whose proof is inspired from an extension of the null
space property [45] to the `1-analysis case.

Theorem ([21]). Let x
0

be a fixed vector whose D-support is
I and D-cosupport J . Let M⇤ be any basis matrix of Ker�.
Assume that D⇤

JM
⇤ has full rank and IC

0

(sign(D⇤x
0

)) < 1,
where

IC
0

(s) = ||iIsI ||1 where iI = (MDJ)
+MDI .

Then x
0

is identifiable.

Note that IC
0

(s) < 1 does not imply IC(s) < 1 neither
the opposite. Moreover, unlike IC, IC

0

does not reduce to
ICS in the `1-synthesis case, see the discussion on their
fundamental differences in [21, Section 5.3]. In the noisy
case, IC

0

(sign(D⇤x
0

)) < 1 is not sufficient to guarantee
stability of the sign pattern to noise, even a small one. More
precisely, if IC

0

(sign(D⇤x
0

)) < 1 but IC(sign(D⇤x
0

)) > 1,
then according to Proposition 1, any solution x? of (P�(y)),
for � satisfying (10) will violate the sign agreement property,
i.e. sign(D⇤x

0

) 6= sign(D⇤x?
). Robustness guarantees of `1-

analysis regularization by an appropriate strengthening of the
analysis equivalent of the null space property remains an open
problem.

Turning to the inverse problems literature, some authors
have established linear convergence rates. For instance, in [36],
convergence (robustness) rates for convex regularizations R
have been derived with respect to the Bregman divergence
under a source condition. The Bregman divergence measures
the distance between the regularization term R and its affine
approximation at the true solution. Analysis-type regulariza-
tions where D⇤ is not necessarily injective, such as the total
variation, fall within the class of regularization functionals they
considered. The author in [35] derived more general linear
convergence rates for a large class of positively homogeneous
convex sparsity promoting regularization functionals R, in-
cluding analysis-type ones, under a source condition and a
suitable restricted injectivity condition on �. The convergence
was established with respect to the error in the solution
measured in terms of the regularization functional. Specialized
to the case of `1-analysis regularization, this result reads.

Theorem ([35]). Let x
0

2 RN of D-support I and y = �x
0

+

w such that ||w|| = ". Assume also that there exist ↵ such that

↵ 2 @|| · ||
1

(D⇤x
0

) and D↵ 2 Im�

⇤ (11)

(source condition). Let J ✓ Ic such that ||↵J ||1 < 1. Suppose
that (HJ ) holds with such J . Then, for � proportional to ",

there exists C independent of " such that

||D⇤
(x? � x

0

)||
2

6 C" .

Interestingly, for J = Ic, if (HJ ) is satisfied,
IC(sign(D⇤x

0

)) < 1 implies that the source and restricted
injectivity conditions stated in the previous theorem are in
force. More precisely, the following holds.

Proposition 3. Let x
0

2 RN of D-cosupport J such that
(HJ ) holds and IC(sign(D⇤x

0

)) < 1. Then, the source and
restricted injectivity conditions of Theorem ([35]) hold. The
claimed convergence is therefore also valid.

However, in none of these works in the inverse problem
literature, robustness with respect to the `2-norm, i.e. `2-
distance of the solution from the true one, was established
for general D. Of course, if D⇤ were injective, `2-robustness
would follow immediately from [35]. In addition, their results
do not allow to conclude anything about the sign and D-
support recovery unless there is no noise.

IV. EXAMPLES

This section details algorithms to compute the criteria IC
and RC, together with a detailed study of three `1-analysis
regularizations: total variation, that when D is the shift-
invariant Haar dictionary, and the Fused Lasso. The source
code used to produce the numerical results is available online
at github.com/svaiter/robust sparse analysis regularization.

A. Computing Sparse Analysis Regularization
It is not the main scope of this paper to give a comprehen-

sive treatment of provably convergent minimization schemes
that can be used to solve (P�(y)). We describe one possible
efficient algorithm to do so which originates from the realm
of nonsmooth convex optimization theory, and more precisely,
proximal splitting.

In the case where � = Id (denoising), (P�(y)) is strictly
(actually strongly) convex, and one can compute its unique
solution x? by solving an equivalent Fenchel-Rockafellar dual
problem [46]

x?
= y +D↵? where ↵? 2 argmin

||↵||16�

||y +D↵||2
2

.

The dual problem can be solved using e.g. projected gradient
descent or a multi-step accelerated version of it.

In the general case, we advocate the use of a primal-dual
algorithm such as the relaxed Arrow-Hurwicz scheme recently
revitalized in [47]. This algorithm is designed to minimize the
sum of two proper lower semicontinuous convex functions,
one of which is composed by a linear bounded operator. To
put problem (P�(y)) in a form amenable to apply this scheme,
we can rewrite it as follows

min

x2RN
F (K(x)) where

⇢

F : (g, u) 7! 1

2

||y � g||2
2

+ �||u||
1

K : x 7! (�x,D⇤x).

The primal-dual algorithm requires the computation of the
proximity operator of F which is a separable and simple
function, i.e. its proximity operator is easy to compute. Recall
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that the proximity operator proxf of a proper lower semicon-
tinuous function and convex f is defined as

8x 2 RN , proxf (x) = argmin

z2RN

1

2

||z � x||2
2

+ f(z).

Computing proxF involves applying a soft-thresholding (the
`1-part) and a diagonal Wiener filtering (the separable
quadratic part).

B. Computing the Criteria

In the case where KerDJ 6= {0}, computing
IC(sign(D⇤x

0

)) entails solving a convex minimization
problem. The latter can be cast as

IC(sign(D⇤x
0

)) = min

u2RN
||⌦[J]

sign(D⇤x
0

)I � u||1

+ ◆
KerDJ (u),

where ◆
KerDJ is the indicator function of KerDJ , i.e.

◆
KerDJ (u) =

(

0 if u 2 KerDJ

+1 otherwise.

The objective above is the sum of a translated `1-norm
and the indicator function of KerDJ . It can then be solved
efficiently with the Douglas-Rachford splitting algorithm [48].
This will necessitate to compute the proximity operator of
◆
KerDJ which is the orthogonal projector on KerDJ , and
prox||⌦[J]

sign(D⇤x0)I�·||1 can be computed with standard prox-
imal calculus rules such as Moreau-identity

prox�||·||1(x) = x� P||·||1

✓

x

�

◆

, 8� > 0

where P||·||1 is the projection onto the unit `1 ball. This
projector can be computed through sorting and soft-
thresholding, see [49] for details.

Unfortunately, computing RC (see Definition 5) is not as
easy since it necessitates to solve a difficult maxi-minimization
optimization problem which is nonsmooth, and convex in both
u and pI (while concavity in pI would have been desirable).
A stronger criterion, which is easy to compute, is obtained by
taking u = 0 in KerDJ

wRC(I) = ||⌦[J]||1,1.

One can easily see that for every vector x
0

with D-support
I = supp(D⇤x), the following inequalities hold

IC(sign(D⇤x
0

)) 6 RC(I) 6 wRC(I).

For many cases, wRC(I) might be strictly greater than 1.
However, there are situations where wRC(I) < 1, such as
when the associated cospace GJ is close to the whole space,
i.e. high D-cosparsity or equivalently very small D-sparsity.

C. Total Variation Denoising

The discrete 1-D total variation (TV) corresponds to taking
D = DDIF as defined in (6). We recall that the TV union
of subspaces model is formed by

S

k ⇥k where ⇥k is the
subspace of piecewise constant signals with k � 1 steps. We
now define a subclass of such signals.

Definition 8. A signal is said to contain a staircase subsignal
if there exists i 2 {1 . . . |I|� 1} such that

sign(D⇤
Ix)i = sign(D⇤

Ix)i+1

= ±1.

Figure 1 shows examples of signals with (left) and without
(right) staircase subsignals.

i

xi

k

mk
i

xi

k

mk

+1

�1

Fig. 1: Top row: Two examples of signals x having 2 jumps.
Bottom row: Associated dual vector m.

The following result will allow to characterize robustness
of TV regularization when � = Id, i.e. TV denoising.

Proposition 4. We consider the case where � = Id. If x
0

does
not contain a staircase subsignal, then IC(sign(D⇤x

0

)) < 1.
Otherwise, IC(sign(D⇤x

0

)) = 1.

Proof: Let x? be the unique solution of (P�(y)) with
D-cosupport J and I = Jc. Using Lemma 1, there exists
� 2 ⌃y,�(x?

) ⇢ R|J|. Since D+

J A
[J]

= 0, we have ⌦[J]
=

�D+

J DI . We denote the vector m defined as

m :

⇢

mI = sI = sign(D⇤
Ix)

mJ = � = ⌦

[J]sI .

The vector � satisfies (D⇤
JDJ)� = �(D⇤

JDI)sI . One can
show that this implies that m is the solution of a discrete
Poisson equation

8 j 2 J, (�m)j = 0 and
⇢

8 i 2 I, mi = si,
m

0

= mN = 0.

where � = DD⇤ is a discrete Laplacian operator. This implies
that for i

1

< k < i
2

where i
1

, i
2

are consecutive indices of
I , m is obtained by linearly interpolating (see Figure 1) the
values mi1 and mi2 , i.e

mk = ⇢mi1 + (1� ⇢)mi2 where ⇢ =

k � i
1

i
2

� i
1

.

Hence, if x
0

does not contain a staircase subsignal, one has
||⌦[J]sI ||1 < 1. On the contrary, if there is i

1

such that
si1 = si2 , where i

1

and i
2

are consecutive indices of I , then
for every i

1

< j < i
2

,mj = si1 = ±1 which implies that
IC(sign(D⇤x

0

)) = 1.
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This proposition together with Theorem 1 shows that if
a signal x

0

does not have a staircase subsignal, then TV
denoising from y = x

0

+ w is robust to a small noise.
This means that if w is small enough, for � proportional to
the noise level, the TV denoised version of y contains the
same jumps as x

0

. However, the presence of a staircase in a
signal, i.e. IC(sign(D⇤x

0

)) = 1, does not comply with the
assumptions of neither Theorem 1 nor Proposition 1. This
prevents us from drawing positive or negative robustness
conclusions.

To gain a better understanding of the latter situation, we
build an instructive family of signals for which the IC criterion
saturates at 1. It will turn out that depending on the structure of
the noise w, the D-support of x

0

can be either stably identified
or not.
For N a multiple of 4, we split {1, . . . , N} into 4 sets lk =

{(k� 1)M +1, ..., kM} of cardinality M = N/4. Let 1lk be
the boxcar signal whose support is lk . Consider the staircase
signal x

0

= �1l1 + 1l4 degraded by a deterministic noise w
of the form w = "(1l3 � 1l2), where " 2 R. The observation
vector y = x

0

+ w reads

y = �1l1 � "1l2 + "1l3 + 1l4 .

Suppose that " > 0, then the solution x?
� of (P�(y)) is

x?
� =

✓

�1 +

�

M

◆

1l1 � "1l2 + "1l3 +

✓

1� �

M

◆

1l4 ,

if 0 6 � 6 �
1

= M(1� "), and

x?
� =

✓

�"+ �� �
1

2M

◆

(1l1+1l2)+

✓

"� �� �
1

2M

◆

(1l3+1l4),

if �
1

6 � 6 �
2

= �
1

+ 2"M , and 0 if � > �
2

. Similarly, if
" < 0, the solution x?

� reads

x?
� =

✓

�1 +

�

M

◆

1l1�
✓

"+ 2

�

M

◆

(1l2�1l3)+

✓

1� �

M

◆

1l4 ,

if 0 6 � 6 ¯�
1

= �"M
2

, and

x?
� =

✓

�1 +

�

M

◆

1l1 +

✓

1� �

M

◆

1l4 ,

if ¯�
1

6 � 6 ¯�
2

= M , and 0 if � > ¯�
2

. Figure 2 displays
plots of the the coordinates’ path for both cases. It is worth
pointing out that when " > 0, the D-support of x?

� is always
different from that of x

0

whatever the choice of �, whereas
in the case " < 0, for any ¯�

1

6 � 6 ¯�
2

, the D-support of x?
�

and sign of D⇤x?
� are exactly those of x

0

.

D. Shift-Invariant Haar Deconvolution
Sparse analysis regularization using a 1-D shift invariant

Haar dictionary is efficient to recover piecewise constant
signals. This dictionary is built using a set of scaled and dilated
Haar filters

 (j)
i =

1

2

⌧(j+1)

8

>

<

>

:

+1 if 0 6 i < 2

j

�1 if � 2

j 6 i < 0

0 otherwise,

x?
�[i]

�

0

1

¯�
2

�"

¯�
1

x?
�[i]

�

0

1

�
1

"

�
2

y[i]

i

0

2✏

y[i]

i

0

Fig. 2: Top row: Signals y for " < 0 (left) and " > 0

(right). Bottom row: Corresponding coordinates’ path of x?
� as

a function of �. The solid lines correspond to the coordinates
in l

1

and l
4

, and the dashed ones to the coordinates in l
2

and
l
3

.
where ⌧ > 0 is a normalization exponent. For ⌧ = 1,
the dictionary is said to be unit-normed. For ⌧ = 1/2, it
corresponds to a Parseval tight-frame. The action on a signal
x of the analysis operator corresponding to the translation
invariant Haar dictionary DH is

D⇤
Hx =

⇣

 (j) ? x
⌘

06j6Jmax

,

where ? stands for the discrete convolution (with appropriate
boundary conditions) and Jmax < log

2

(N), where N is the
size of the signal. The analysis regularization ||D⇤

Hx||
1

can also
be written as the sum over scales of the TV semi-norms of
filtered versions of the signal. As such, it can be understood as
a sort of multiscale total variation regularization. Apart from a
multiplicative factor, one recovers Total Variation when Jmax =

0.
We consider a noiseless convolution setting (for N = 256)

where � is a circular convolution operator with a Gaussian
kernel of standard deviation �. We first study the impact of �
on the identifiability criterion IC. The original signal x⌘ is a
centered boxcar signal with a support of size 2⌘N

x⌘ = 1{bN/2�⌘Nc,...,bN/2+⌘Nc}, ⌘ 2 (0, 1/2] .

Figure 3 displays the evolution of IC(sign(D⇤
Hx

0

) as a
function of � for three dictionaries: the total variation dictio-
nary and the Haar wavelet dictionary with two normalization
exponents ⌧ = 1 and ⌧ = 0.5. In this experiment, we chose
⌘ = 0.2. One can observe that the three curves pass through
1 for the same value of � (near 1 here). In addition, in the
identifiability regime, IC(sign(D⇤

Hx
0

) appears smaller in the
case of the unit-normed normalization (i.e. ⌧ = 1). However,
one should avoid to infer stronger conclusions since a detailed
computation of the constants involved in Theorem 1 would
be necessary to completely and fairly compare the stability
performance achieved with each of these three dictionaries.

E. Fused Lasso Compressed Sensing
Fused Lasso was introduced in [19]. It corresponds to taking

D =

⇥

DDIF "Id
⇤

,
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Fig. 3: Behavior of IC for a noiseless deconvolution scenario
with a Gaussian blur and `

1

-analysis sparsity regularization
in a shift invariant Haar dictionary with J

max

= 4. IC is
plotted as a function of the Gaussian blurring kernel size � 2
[0.5, 3.0] for the total variation dictionary and the Haar wavelet
dictionary with two normalization exponents ⌧ . Dash-dotted
line: ⌧ = 1 (unit-normed). Dashed line: ⌧ = 1/2 (tight-frame).
Solid line: total variation.
in (P�(y)), where " > 0. The associated union of subspaces
(7) is

S

k ⇥k, where ⇥k is the set of signals that are the sum
of k boxcars of disjoint supports, i.e a signal x 2 ⇥k can be
written as

x =

k
X

i=1

�i1
[ai,bi],

where �i 2 R and ai 6 bi < ai+1

.
We consider a noiseless compressed sensing setting (with

the signal size N = 256) and examine the behavior of IC
with respect to the undersampling ratio Q/N and the true
signal properties. � is drawn from the standard Gaussian
ensemble, i.e. �i,j ⇠i.i.d. N (0, 1). The sampled signal x⌘,⇢ is
the superposition of two boxcars distant from each other by
2⇢N and each of support size ⌘N

x⌘,⇢ = 1{b( 1
2�⌘�⇢)Nc,...,b( 1

2�⇢)Nc}+1{b( 1
2+⇢)Nc,...,b( 1

2+⌘+⇢)Nc}.

In our simulations, we fixed ⇢ = 0.1.
Figure 4 depicts the evolution of the empirical probability

with respect to the sampling of � of the event IC < 1 as a
function of the sampling ratio Q/N 2 [0.5, 1] and the boxcar
support size ⌘ 2 [0.025, 0.15]. This probability is computed
from 1000 Monte-Carlo replications of the sampling of �.
With no surprise, one can clearly see that the probability
increases as more measurements are collected. This probability
profile also seems to be increasing as ⌘ decreases, but this is
likely to be a consequence of the choice of the Fused Lasso
parameter ", and the conclusion may be different for other
choices.

This is indeed confirmed in our last experiment whose
results are displayed in Figure 5. It shows the evolution of
the empirical probability of the event IC < 1 as a function of
the Fused Lasso parameter " 2 [1/N, 200/N ] and the support
size ⌘ 2 [0.025, 0.15]. This probability is again computed from
1000 Monte-Carlo replications. Depending on the choice of ",

Fig. 4: Behavior of IC for a compressed sensing scenario
matrix with a Gaussian measurement matrix and the Fused
Lasso regularization. Empirical probability of the event IC <
1 as a function of the sampling ratio Q/N 2 [0.5, 1] and the
support size ⌘ 2 [0.025, 0.15] with " = 50/N .
the probability profile does not necessarily exhibit a monotonic
behavior as a function of ⌘. For large values (more weight on
Id in the Fused Lasso dictionary), the probability decreases
monotonically as ⌘ increases which can be explained by the
fact that higher ⌘ corresponds to less sparse signals. As " is
lowered, higher weight is put on the TV regularization, and
the behavior is not anymore monotonic. Now, the probability
reaches a peak at intermediate values of ⌘ and then vanishes
quickly. The peak probability also decreases with decreasing
".

Fig. 5: Behavior of IC for a compressed sensing scenario
matrix with a Gaussian measurement matrix and the Fused
Lasso regularization. Empirical probability of the event IC <
1 as a function of the parameter " 2 [1/N, 200/N ] and the
support size ⌘ 2 [0.025, 0.15] with Q/N = 0.8.

V. PROOFS

This section details the proofs of our main results in
Theorems 1-3. Throughout, we use the shorthand notation
Ly,� for the objective function in (P�(y))

Ly,�(x) =
1

2

||y � �x||2
2

+ �||D⇤x||
1

.
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We remind the reader that condition (H
0

) is supposed to hold
true in all our statements.

A. Preparatory lemmata
We first need some key lemmata that will be central in our

proofs.
The first one gives the first order optimality conditions for

the analysis variational problem (P�(y)).

Lemma 1. A vector x? is a solution of (P�(y)) if, and only
if, there exists � 2 R|J|, where J is the D-cosupport of x?,
such that

� 2 ⌃y,�(x
?
) (12)

⌃y,�(x
?
) =

n

� 2 R|J| \ �⇤
(�x? � y)

+ �DIsI + �DJ� = 0

and ||�||1 6 1

o

(13)

where I = Jc is the D-support of x? and s = sign(D⇤x?
).

Proof: The subdifferential of a real-valued proper convex
function F : RN ! R [ {1} is denoted @F . From standard
convex analysis, we recall the definition of @F at a point x in
the domain of F

@F (x) =
�

g 2 RN \8z 2 RN, F (z)>F (x)+hg, z � xi
 

.

It is clear from this definition that x? is a (global) minimizer
of F if, and only if, 0 2 @F (x). By classical subdifferential
calculus, the subdifferential of Ly,� at x is the non-empty
convex compact set

@Ly,�(x) = {�⇤
(�x� y) + �Du \ u 2 U(x)} ,

where

U(x) = (@|| · ||
1

)(D⇤x)

=

�

u 2 RN \ uI = sign(D⇤x)I and ||uJ ||1 6 1

 

.

where I and J are respectively the D-support and D-cosupport
of x. Therefore 0 2 @Ly,�(x?

) is equivalent to the existence
of u 2 RN such that uI = sign(D⇤x?

)I and ||uJ ||1 6 1

satisfying
�

⇤
(�x? � y) + �Du = 0.

Letting � = uJ , this is equivalent to � 2 ⌃y,�(x?
).

The following lemma is a key to prove uniqueness state-
ments. It characterizes the normal cone at zero to the subdif-
ferential of Ly,� at a minimizer x?. By definition, this normal
cone is

N@Ly,�(x?
)

(0) =

�

z 2 RN \ hz, di 6 0, 8d 2 @Ly,�(x
?
)

 

.

Lemma 2. Let x? be a solution of (P�(y)) whose D-support
is I?. Suppose there exist J ✓ (I?)c and � 2 ⌃y,�(x?

) with
||�J ||1 < 1. Then,

N@Ly,�(x?
)

(0) ✓ (ImDJ)
?
= GJ .

Moreover, if J is the D-cosupport of x?, then

N@Ly,�(x?
)

(0) = GJ .

Proof: Let I = Jc. We decompose I such that I = I?[J?

where J?
= (I?)c \ I . Since ||�J ||1 < 1, it follows that ū

defined by

ū :

8

>

<

>

:

ūI?
= sign(D⇤

I?x?
)

ūJ?
= �J?

ūJ = �J

is such that ||ūJ ||1 < 1 and therefore from Lemma 1

�

⇤
(�x? � y) + �Dū = 0.

Let 0 < " < 1 such that ||�J ||1 = 1� ". Consider the set

U =

�

u 2 RP \ ||uJ � ūJ ||1 6 " and uI = ūI

 

.

For every u 2 U , we define

du = �

⇤
(�x? � y) + �Du,

and we denote
D = {du}u2U .

We therefore have

du = �D(u� ū) = �DI(uI � ūI) + �DJ(uJ � ūJ)

= �DJ(uJ � ūJ)

since uI = ūI .
Let z 2 N@Ly,�(x?

)

(0) and u 2 U . By construction of u,
we have that

||uJ ||1 6 ||uJ � ūJ ||1 + ||ūJ ||1 6 1,

and
uI?

= sign(D⇤
I?x?

) and ||uJ? ||1 6 1.

Clearly, du 2 @Ly,�(x?
). In view of the definition of

N@Ly,�(x?
)

(0), we know that

hz, di 6 0, 8d 2 @Ly,�(x
?
).

In particular,
hz, dui 6 0, 8u 2 U .

Now, observe that 8u 2 U , 2ū � u 2 U and d
2ū�u = �du.

Indeed, (2ū� u)I = 2ūI � uI = ūI and

||(2ū� u)J � ūJ ||1 = ||ūJ � uJ ||1 6 ".

Moreover,

d
2ū�u = �

⇤
(�x? � y) + �D(2ū� u)

= �

⇤
(�x? � y) + �Dū

| {z }

=0

��D(u� ū)

= �du.

This implies that

8u 2 U , hz, dui 6 0 and hz, �dui = hz, d
2ū�ui 6 0.

That is,
8u 2 U , hz, dui = 0.

Let v 2 ImDJ \ {0}. Then there exist µv 2 R⇤ and �v 2
R|J| such that

µvv = DJ�v and ||�v||1 6 ".
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Let the vector u defined as

u :

(

uI = ūI

uJ = ūJ + �v.

u is by construction an element of U since ||uJ � ūJ ||1 =

||�v||1 6 ". Therefore, the associated vector du is

du = �DJ(uJ � ūJ) = �DJ�v =

�

µv
v,

i.e. Im(DJ) ✓ Im(D). Since Im(D) ✓ Im(DJ), we get
Im(DJ) = Im(D). This together with the fact that hz, dui = 0

imply
hz, vi = µv

�
hz, dui = 0.

We conclude that N@Ly,�(x?
)

(0) ✓ (ImDJ)
?
= GJ .

Suppose now that J is the D-cosupport of x?, i.e. J =

(I?)c. We prove that

N@Ly,�(x?
)

(0) = GJ .

To this end, we show that @Ly,�(x?
) ✓ ImDJ . Indeed, let

d 2 @Ly,�(x?
). We write d = �

⇤
(�x? � y) + �Du with

uI = sign(D⇤
Ix)I and ||uJ ||1 6 1. Since 0 2 @Ly,�(x?

), one
has

d = �D(u� ū) = �DJ(uJ � ūJ)

since uI = ūI . This implies that (ImDJ)
? ✓ N@Ly,�(x?

)

(0).
In view of the assertion in the first part, we conclude.

The following lemma gives a sufficient condition which
guarantees that (P�(y)) has exactly one minimizer.

Lemma 3. Let x? be a vector of D-support I?. Suppose that
there exist J ✓ (I?)c such that (HJ ) holds and � 2 R|(I?

)

c|

such that

� 2 ⌃y,�(x
?
) and ||�J ||1 < 1.

Then, x? is the unique solution of (P�(y)).

Proof: For notational convenience, we write Ly,� as

Ly,�(x) = q(x) + �||D⇤x||
1

where q(x) =
1

2

||y � �x||2
2

.

Let h 2 RN \ {0}. Two different cases occur:
1) If h 62 GJ , then using Lemma 2, h 62 N@Ly,�(x?

)

(0). This
negation means that hd, hi > 0 for some d 2 @Ly,�(x?

),
whence it follows immediately that

Ly,�(x
?
+ h) > Ly,�(x

?
) + hd, hi > Ly,�(x

?
).

2) Let’s turn to the case h 2 GJ . Since (HJ ) holds, q, hence
Ly,�, is strongly convex on GJ with some modulus c >
0. Consequently, for any v 2 @||D⇤·||1(x

?
), we have

Ly,�(x
?
+ h) > Ly,�(x

?
) + hrq(x?

) + �v, hi+ c

2

||h||2
2

> Ly,�(x
?
) + hrq(x?

) + �v, hi.

x? is a minimizer if, and only if, 9v 2 @||D⇤·||1(x
?
) such

that
�v +rq(x?

) = 0.

This yields,

Ly,�(x
?
+ h) > Ly,�(x

?
).

Altogether, we have proved that for any h 2 RN \ {0},
Ly,�(x?

+h) > Ly,�(x?
), or equivalently that x? is the unique

minimizer of (P�(y)).

The following lemma gives an implicit equation satisfied by
any (non necessarily unique) minimizer x? of (P�(y)).

Lemma 4. Let x? be a solution of (P�(y)). Let I be the D-
support and J the D-cosupport of x? and s = sign(D⇤x?

).
We suppose that (HJ ) holds. Then, x? satisfies

x?
= A[J]

�

⇤y � �A[J]DIsI . (14)

Proof: Owing to the first order necessary and sufficient
minimality condition (Lemma 1), there exists � 2 ⌃y,�(x?

)

satisfying

�

⇤
(�x? � y) + �DIsI + �DJ� = 0. (15)

By definition, x? 2 GJ = (ImDJ)
?. We can then write x?

=

U↵ for some ↵ 2 Rdim(GJ ). Since U⇤DJ = 0, multiplying
both sides of (15) on the left by U⇤, we get

U⇤
�

⇤
(�U↵� y) + �U⇤DIsI = 0.

Since U⇤
�

⇤
�U is invertible, the implicit equation of x?

follows immediately.

Suppose now that a vector satisfies the above implicit equa-
tion. The next lemma derives two equivalent necessary and
sufficient conditions to guarantee that this vector is actually a
(possibly unique) solution to (P�(y)).

Lemma 5. Let y 2 RQ and let J a D-cosupport such that
(HJ ) holds, and I = Jc. Suppose that x̂? satisfies

x̂?
= A[J]

�

⇤y � �A[J]DIsI .

where s = sign(D⇤x̂?
). Then, x̂? is a solution of (P�(y))

if, and only if, there exists � 2 R|J| satisfying one of the
following equivalent conditions

� � ⌦[J]sI +
1

�
⇧

[J]y 2 KerDJ and ||�||1 6 1, (16)

or

˜

⇧

[J]y � �˜⌦[J]sI + �DJ� = 0 and ||�||1 6 1, (17)

where ˜

⌦

[J]
= (�

⇤
�A[J] � Id)DI , ˜

⇧

[J]
= �

⇤
(�A[J]

�

⇤ � Id),
⌦

[J]
= D+

J
˜

⌦

[J] and ⇧[J]
= D+

J
˜

⇧

[J].
Moreover, if ||�||1 < 1 then x̂? is the unique solution of
(P�(y)).

Proof: First, we observe that x̂? 2 GJ . According to
Lemma 1, x̂? is a solution of (P�(y)) if, and only if, there
exists � 2 ⌃y,�(x̂?

). Since (HJ ) holds, A[J] is properly
defined. We can then plug the assumed implicit equation in
(13) to get

�

⇤
(�A[J]

�

⇤y � ��A[J]DIsI � y) + �DIsI + �DJ� = 0.

Rearranging the terms multiplying y and sI , we arrive at

�

⇤
(�A[J]

�

⇤ � Id)y � �(�⇤
�A[J] � Id)DIsI + �DJ� = 0.



12

This shows that x? is a minimizer of (P�(y)) if, and only if

˜

⇧

[J]y � �˜⌦[J]sI + �DJ� = 0 and ||�||1 6 1.

To prove the equivalence with (17), we first note that
U⇤

˜

⌦

[J]
= 0 implying that Im(

˜

⌦

[J]
) ✓ Im(DJ), and thus

˜

⌦

[J]
= DJ⌦

[J]. With a similar argument, we get ˜

⇧

[J]
=

DJ⇧
[J]. Hence, the existence of � 2 ⌃y,�(x̂?

) such that
||�||1 6 1 is equivalent to

DJ� = DJ⌦
[J]sI �

1

�
DJ⇧

[J]y where ||�||1 6 1,

which in turn is equivalent to

� � ⌦[J]sI +
1

�
⇧

[J]y 2 KerDJ where ||�||1 6 1.

Replacing the inequality by a strict inequality condition gives
the uniqueness of x? by virtue of Lemma 3.

B. Proof of Theorem 1
Recall the analysis identifiability criterion IC from Defini-

tion 4.
Proof: The proof is divided in three steps.

1) We give a first condition on � to ensure sign(D⇤x̂?
) =

sign(D⇤x
0

).
2) We then derive another condition on ||w||2

� to guarantee
that the minimality conditions are satisfied at x̂?, and
assuming IC(sign(D⇤x

0

)) < 1 that x̂? is the unique
solution to (P�(y)).

3) We finally prove that these two conditions are compati-
ble.

Let’s consider the vector

x̂?
= x

0

+A[J]
�

⇤w � �A[J]DIsI ,

where s = sign(D⇤x
0

). Obviously, x̂? 2 GJ .
1) We first give a condition on � to ensure sign consistency,

i.e.
sign(D⇤x̂?

) = sign(D⇤x
0

)

def.
= s.

The two vectors have the same sign if

8i 2 I, |D⇤
Ix0

|i > |D⇤
I (x̂

? � x
0

)|i
= |D⇤

IA
[J]
�

⇤w � �D⇤
IA

[J]DIsI |i.
(18)

Let’s upper-bound ||D⇤
I (x̂

? � x
0

)||1 as follows

||D⇤
I (x̂

? � x
0

)||1
6||D⇤

IA
[J]||1,1 (||�⇤w||1 + �||DIsI ||1)

6||D⇤
IA

[J]||1,1 (||�⇤||
2,1||w||

2

+ �||DI ||1,1) .

Introducing

T = min

i2{1,··· ,|I|}
|D⇤

Ix0

|i > 0,

the condition

T > ||D⇤
IA

[J]||1,1 (||�⇤||
2,1||w||

2

+ �||DI ||1,1) ,
(19)

is sufficient for (18) to hold true.

2) We now turn to the second step of the proof. Observe
that ˜

⇧

[J]y =

˜

⇧

[J]w since x
0

2 GJ . Let ū 2 KerDJ a
minimizer of ||⌦[J]sI � u||1 over KerDJ . We consider
the following candidate vector � 2 R|J| defined by

� = �ū+ ⌦

[J]sI �
1

�
⇧

[J]w.

We have

||�||1 6 ||⌦[J]sI � ū||1 +

1

�
||⇧[J]||

2,1||w||
2

.

By definition of ū,

||�||1 6 IC(s) +
1

�
||⇧[J]||

2,1||w||
2

.

Thus, since IC(sign(D⇤x
0

)) < 1 and provided that

||⇧[J]||
2,1

||w||
2

�
< 1� IC(sign(D⇤x

0

)), (20)

we have ||�||1 < 1. Appealing to Lemma 5, it follows
that x̂? is the unique solution of (P�(y)).

3) Let us show that (19) and (20) are in agreement. We
introduce the constants cJ and c̃J ,

cJ =

||⇧[J]||
2,1

1� IC(sign(D⇤x
0

))

,

and

c̃J =



||D⇤
IA

[J]||1,1

✓

||�⇤||
2,1

cJ
+ ||DI ||1,1

◆��1

.

On the one hand, if

� < T c̃J ,

then

T > �||D⇤
IA

[J]||1,1

✓

||�⇤||
2,1

cJ
+ ||DI ||1,1

◆

.

On the other hand, if

cJ ||w||2 < �.

then

T > ||D⇤
IA

[J]||1,1 (||�⇤||
2,1||w||

2

+ �||DI ||1,1)

which is condition (19). Moreover, cJ ||w||2 < � also
implies that

||⇧[J]||
2,1

1� IC(sign(D⇤x
0

))

||w||
2

�
< 1,

which is condition (20).
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C. Proof of Proposition 1

Proposition 1 is a simple consequence of Lemmata 4 and 5.
Proof: Let x? be a solution of (P�(y)). Suppose that

sign(D⇤x
0

) = sign(D⇤x?
). As a consequence, J is the D-

cosupport of x?. According to Lemmata 4 and 5, there exists
� such that ||�||1 6 1 and

� � ⌦[J]sI +
1

�
⇧

[J]w 2 KerDJ where s = sign(D⇤x
0

),

or equivalently, there exists �u 2 KerDJ such that

� = ⌦

[J]sI � u� 1

�
⇧

[J]w.

It follows that

||�||1 >
�

�

�

�

||⌦[J]sI � u||1 � 1

�
||⇧[J]w||1

�

�

�

�

Since ||⌦[J]sI � u||1 > IC(s) and 1

� ||⇧
[J]w||1 < IC(s)� 1

by assumption, we have

||⌦[J]sI � u||1 � 1

�
||⇧[J]w||1 > IC(s)� 1

�
||⇧[J]w||1 > 1

This implies
||�||1 > 1,

which is a contradiction.

D. Proof of Theorem 2

Theorem 2 is proved in three steps.
1) First, we specialize Theorem 1 to the case w = 0.
2) Then, we show that under the condition

IC(sign(D⇤x
0

)) < 1, the vector x
0

is a solution
of (P

0

(y)).
3) Finally, we prove Theorem 2 by considering another

feasible vector of (P
0

(y)).

Corollary 2. Let x
0

2 RN be a fixed vector, I be its
D-support, and y = �x

0

. Suppose that (HJ ) holds and
IC(sign(D⇤x

0

)) < 1. Let T = mini2{1,··· ,|I|} |D⇤
Ix0

|i. Then
for � < T c̃J ,

x̂?
= x

0

� �A[J]DIsI where s = sign(D⇤x
0

).

is the unique solution of (P�(y)).

Proof: Take w = 0 in Theorem 1.

Lemma 6. Let x
0

2 RN be a fixed vector, I be its
D-support, and y = �x

0

. Suppose that (HJ ) holds and
IC(sign(D⇤x

0

)) < 1. Then x
0

is a solution of (P
0

(y)).

Proof: According to Corollary 2, (P�(y)) has a unique
solution for � < T c̃J ,

x?
�

def.
= x̂?

� = x
0

� �A[J]DIsI ,

where s = sign(D⇤x
0

). Let x
(1)

6= x
0

such that �x
(1)

= y.
For every � > 0, one has Ly,�(x?

�) < Ly,�(x
(1)

) by definition
of x�. Then,

||D⇤x?
�||1 < ||D⇤x

(1)

||
1

.

By continuity of the norm, and taking the limit as � ! 0 in
the last inequality yields

||D⇤x
0

||
1

6 ||D⇤x
(1)

||
1

,

whence it follows that x
0

is a solution of (P
0

(y)).
Proof of Theorem 2: Using Lemma 6, x

0

is a solution
of (P

0

(y)). We shall prove that x
0

is actually unique. Let

x
(1)

= x
0

+ �A[J]DIsI .

For � small enough, one has sign(D⇤x
(1)

) = sign(D⇤x
0

).
Then if IC(sign(D⇤x

0

)) < 1, it follows from Corollary 2
that x

0

is the unique solution of (P�(y1)) where y
1

= �x
(1)

.
Let x

(2)

2 RN be another feasible point of (P
0

(y)), i.e.
�x

(2)

= y = �x
0

with x
(2)

6= x
0

. Since x
0

is the unique
solution of (P�(y1)), we obtain
1

2

||y
1

� �x
0

||2
2

+ �||D⇤x
0

||
1

<
1

2

||y
1

� �x
(2)

||2
2

+ �||D⇤x
(2)

||
1

which implies that

||D⇤x
0

||
1

< ||D⇤x
(2)

||
1

.

This proves that indeed x
0

is the unique solution of (P
0

(y)).

E. Proof of Theorem 3
Recall the Recovery Criterion RC from Definition 5.

Proof: Consider the following restricted problem

min

x2GJ

1

2

||y � �x||2
2

+ �||D⇤x||
1

. (PJ
� (y))

Our strategy is to construct a solution of (PJ
� (y)), and to show

that it is the unique solution of (P�(y)). To achieve this goal,
we split the proof into four steps:

1) We exhibit p?I 2 R|I| such that

U⇤
[�

⇤
(�x? � y) + �DIp

?
I ] = 0.

2) We prove that x? satisfies an implicit equation of the
form

x?
= A[J]

�

⇤y � �A[J]DIp
?
I .

3) We prove that x? satisfies the first-order minimality
conditions of Lemma 1 using the construction of p?I .

4) Finally, we derive the `2-robustness bound.
By a simple change of variable x = U↵, we rewrite (PJ

� (y))
in an unconstrained form

argmin

↵2RdimGJ

1

2

||y � �U↵||2
2

+ �||D⇤
IU↵||1.

1) Applying Lemma 1 with �U and D⇤
IU instead of �

and D⇤, ↵? is a solution of (PJ
� (y)) if, and only if,

there exists �? with ||�?||1 6 1 such that

U⇤
�

⇤
(�U↵?�y)+�(U⇤DI)I?sI?

+�(U⇤DI)J?�?
= 0,

where I? ✓ I is the (U⇤DI)-support of U↵? and J?
=

I \ I?. We introduce p?I 2 R|I| defined as

8i 2 I, (p?I)i =

(

si if i 2 I?

�?
i if i 2 J?,
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which satisfies

DIp
?
I = DI?sI?

+DJ?�?.

The above first-order optimality condition then takes the
compact form

U⇤
[�

⇤
(�U↵? � y) + �DIp

?
I ] = 0. (21)

2) Owing to condition (HJ ), U⇤
�

⇤
�U is invertible, and

we obtain

↵?
= (U⇤

�

⇤
�U)

�1U⇤
�

⇤y � �(U⇤
�

⇤
�U)

�1U⇤DIp
?
I .

Multiplying both sides by U recovers x?
= U↵? as

x?
= A[J]

�

⇤y � �A[J]DIp
?
I . (22)

3) We now prove that x? is a solution of (P�(y)), i.e. there
exists � such that

�

⇤
(�x?�y)+�DI?sI?

+�DJ[J?� = 0 and ||�||1 6 1.

Take ū such that

ū 2 argmin

u2KerDJ

||⌦[J]p?I � u||1,

and
�̄ = ⌦

[J]p?I � ū� 1

�
⇧

[J]w. (23)

We recall from Lemma 5 that

˜

⌦

[J]
= (�

⇤
�A[J] � Id)DI , ˜

⇧

[J]
= �

⇤
(�A[J]

�

⇤ � Id),

⌦

[J]
= D+

J
˜

⌦

[J], ⇧

[J]
= D+

J
˜

⇧

[J].

Plugging (22), we get

�

⇤
(�x? � y) + �DIp

?
I + �DJ �̄

= �

⇤
(�(A[J]

�

⇤y � �A[J]DIp
?
I)� y)

+ �DIp
?
I + �DJD

+

J
˜

⌦

[J]p?I

� �DJ ū
| {z }

=0

�DJD
+

J
˜

⇧

[J]y

= (Id�DJD
+

J )(
˜

⇧

[J]y � �˜⌦[J]p?I)

= (Id�DJD
+

J ) [�
⇤
(�x? � y) + �DIp

?
I ] .

Let’s denote v = �

⇤
(�x? � y) + �DIp?I . From (21),

we have v 2 ker(U⇤
) = Im(U)

?
= G?

J . Since (Id �
DJD

+

J ) is the orthogonal projector on Im(DJ)
?
= GJ ,

we conclude that (Id � DJD
+

J )v = 0. It then follows
that

�

⇤
(�x? � y) + �DIp

?
I + �DJ �̄ = 0.

We can then write the bound

||�̄||1 6 ||⌦[J]p?I � ū||1 +

1

�
||⇧[J]||

2,1||w||
2

.

From (23), and by definition of ū we get the bound

||�̄||1 6 min

u2KerDJ

||⌦[J]p?I � u||1 +

1

�
||⇧[J]||

2,1||w||
2

6 RC(I) +
1

�
||⇧[J]||

2,1||w||
2

.

Let � defined by

8j 2 {1, . . . , P} \ I, �j =

(

�?
j if j 2 J?

�̄j if j 2 J,

Since by assumption RC(I) < 1 and

� > ||w||
2

cJ
1�RC(I)

where cJ = ||⇧[J]||
2,1,

we get ||�̄||1 < 1 and ||�||1 = max(||�̄||1, ||�?||1) 6 1.
Invoking Lemma 1, we conclude that x? is a solution of
(P�(y)). Moreover, since ||�̄||1 < 1 and (HJ ) holds, x?

is the unique solution of (P�(y)) according to Lemma 3.
4) We now bound the `2-distance between x

0

and x?.

||x? � x
0

||
2

= ||A[J]
�

⇤y � �A[J]DIp
?
I � x

0

||
2

.

Since x
0

2 GJ , we have A[J]
�

⇤y = x
0

+ A[J]
�

⇤w.
Consequently

||x? � x
0

||
2

= ||A[J]
(�

⇤w � �DIp
?
I)||2

6 ||A[J]||
2,2||w||2

✓

||�⇤||
2,2 +

⇢cJ
1�RC(I)

||DI ||2,1
◆

.

This concludes the proof.

CONCLUSION

In this paper, we provided theoretical guarantees for accu-
rate and robust recovery with `1-analysis sparse regularization.
We derived a sufficient condition under which the D-support
and sign of the true signal can be exactly identified in
presence of a small enough noise (and a fortiori without
noise). We showed that this condition for support recovery
is in some sense sharp. We proposed a stronger condition
to ensure a partial support recovery for arbitrary noise if
the regularization parameter is sufficiently large. As a by
product, these conditions also guarantee robustness in `2-error.
Some examples were provided and discussed to illustrate our
results. For discrete 1-D total variation regularization, we show
that staircasing induces an instability of the D-support, i.e.
jumps are not preserved. We believe that these contributions
will allow to gain a better understanding of the behavior of
sparse analysis regularizations. We would like to emphasize
that a distinctive feature of our approach with respect to the
literature is that we have guarantees on the robustness of the
cospace associated to the true signal. This approach often has
a meaningful interpretation (such as the conservation of jumps
for total variation regularization).
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APPENDIX
PROOF OF PROPOSITION 3

Let s = sign(D⇤x
0

) and J the D-cosupport of s. Let ū 2
KerDJ such that

||⌦[J]sI � ū||1 = IC(s).

Let ↵ be such that ↵I = sI and ↵J = ⌦

[J]sI � ū. Since
IC(s) < 1, we have ||↵||1 = max(||sI ||1, ||↵J ||1) 6 1, which
shows that ↵ 2 @|| · ||

1

(D⇤x
0

), and therefore that D↵ 2 ||D⇤ ·
||
1

(x
0

).
Now, as ⌦[J]

= D+

J
˜

⌦

[J] and Im

˜

⌦

[J] ✓ ImDJ , we have

DJ⌦
[J]

= DJD
+

J
˜

⌦

[J]
= P

ImDJ
˜

⌦

[J]
=

˜

⌦

[J], (24)

where P
ImDJ is the orthogonal projection on ImDJ . Since

ū 2 KerDJ and owing to (24), we get

DJ↵J = DJ(⌦
[J]sI � ū) = DJ⌦

[J]sI =

˜

⌦

[J]sI .

Using the expression of ˜

⌦

[J]
= (�

⇤
�A[J]� Id)DI , we obtain

DJ↵J = �

⇤
�A[J]DIsI �DIsI = �

⇤
�A[J]DIsI �DI↵I .

Choosing ⌘ = �A[J]DIsI , and since D↵ = DI↵I +DJ↵J ,
we arrive at

�

⇤⌘ = D↵ ,

or equivalently that D↵ 2 Im�

⇤. This concludes the proof.
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