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Abstract—In this paper, we establish robustness to noise perturbations
of polyhedral regularization of linear inverse problems. We provide a
sufficient condition that ensures that the polyhedral face associated to
the true vector is equal to that of the recovered one. This criterion also
implies that the `2 recovery error is proportional to the noise level for a
range of parameter. Our criterion is expressed in terms of the hyperplanes
supporting the faces of the unit polyhedral ball of the regularization.
This generalizes to an arbitrary polyhedral regularization results that
are known to hold for sparse synthesis and analysis `1 regularization
which are encompassed in this framework. As a byproduct, we obtain
recovery guarantees for `∞ and `1 − `∞ regularization.

I. INTRODUCTION

A. Polyhedral Regularization

We consider the following linear inverse problem

y = Φx0 + w, (1)

where y ∈ RQ are the observations, x0 ∈ RN is the unknown true
vector to recover, w the bounded noise, and Φ a linear operator which
maps the signal domain RN into the observation domain RQ. The
goal is to recover x0 either exactly or to a good approximation.

We call a polyhedron a subset P of RN such that P ={
x ∈ RN | Ax 6 b

}
for some A ∈ RNH×N and b ∈ RNH , where

the inequality 6 should be understood component-wise. This is
a classical description of convex polyhedral sets in terms of the
hyperplanes supporting their (N − 1)-dimensional faces.

In the following, we consider polyhedral convex functions of the
form

JH(x) = max
16i6NH

〈x, hi〉,

where H = (hi)
NH
i=1 ∈ RN×NH . Thus, PH ={

x ∈ RN | JH(x) 6 1
}

is a polyhedron. We assume that PH
is a bounded polyhedron which contains 0 in its interior. This
amounts to saying that JH is a gauge, or equivalently that it is
continuous, non-negative, sublinear (i.e. convex and positively
homogeneous), coercive, and JH(x) > 0 for x 6= 0. Note that it is
in general not a norm because it needs not be symmetric.

In order to solve the linear inverse problem (1), we devise the
following regularized problem

x? ∈ argmin
x∈RN

1

2
||y − Φx||2 + λJH(x), (Pλ(y))

where λ > 0 is the regularization parameter. Coercivity and convexity
of JH implies the set of minimizers is non-empty, convex and
compact.

In the noiseless case, w = 0, one usually considers the equality-
constrained optimization problem

x? ∈ argmin
Φx=y

JH(x). (P0(y))

B. Relation to Sparsity and Anti-sparsity

Examples of polyhedral regularization include the `1-norm, anal-
ysis `1-norm and `∞-norm. The `1 norm reads

JH1(x) = ||x||1 =

N∑
i=1

|xi|.

It corresponds to choosing H1 ∈ RN×2N

where the columns of H1

enumerate all possible sign patterns of length N , i.e. {−1, 1}N . The
corresponding regularized problem (Pλ(y)) is the popular Lasso [1]
or Basis Pursuit DeNoising [2]. It is used for recovering sparse vec-
tors. Analysis-type sparsity-inducing penalties are obtained through
the (semi-)norm JH(x) = ||Lx||1, where L ∈ RP×N is an analysis
operator. This corresponds to using H = L∗H1 where ∗ stands for
the adjoint. A popular example is the anisotropic total variation where
L is a first-order finite difference operator.

The `∞ norm

JH∞(x) = ||x||∞ = max
16i6N

|xi|

corresponds to choosing H∞ = [IdN ,−IdN ] ∈ RN×2N . This
regularization, coined anti-sparse regularization, is used for instance
for approximate nearest neighbor search [3].

Another possible instance of polyhedral regularization is the group
`1 − `∞ regularization. Let B be a partition of {1, . . . , N}. The
`1 − `∞ norm associated to this group structure is

JH∞B (x) =
∑
b∈B

||xb||∞.

This amounts to choosing the block-diagonal matrix H∞B ∈
RN×

∏
b∈B 2|b| such that each column is chosen by taking for each

block a position with sign ±1, others are 0. If for all b ∈ B, |b| = 1,
then we recover the `1-norm, whereas if the block structure is
composed by one element, we get the `∞-norm.

C. Prior Work

In the special case of `1 and analysis `1 penalties, our criterion is
equivalent to those defined in [4] and [5]. To our knowledge, there is
no generic guarantee for robustness to noise with `∞ regularization,
but [6] studies robustness of a sub-class of polyhedral norms obtained
by convex relaxation of combinatorial penalties. Its notion of support
is however completely different from ours. The work [7] studies nu-
merically some polyhedral regularizations.In [8], the authors provide
an homotopy-like algorithm for polyhedral regularization through
a continuous problem coined adaptive inverse scale space method.
The work [9] analyzes some particular polyhedral regularizations
in a noiseless compressed sensing setting when the matrix Φ is
drawn from an appropriate random ensemble. Again in a compressed
sensing scenario, the work of [10] studies a subset of polyhedral



regularizations to get sharp estimates of the number of measurements
for exact and `2-stable recovery.

II. CONTRIBUTIONS

Definition 1. We define the H-support suppH(x) of a vector x ∈ RN
to be the set

suppH(x) = {i ∈ {1, . . . , NH} | 〈x, hi〉 = JH(x)} .

This definition suggests that to recover signals with H-support
suppH(x), it would be reasonable to impose that Φ is invertible on
the corresponding subspace KerH∗suppH (x). This is formalised in the
following condition.

Definition 2. A H-support I satisfies the restricted injectivity con-
dition if

Ker Φ ∩KerH∗I = {0}, (CI )

where HI is the matrix whose columns are those of H indexed by I .

When it holds, we define the orthogonal projection ΓI on
Φ KerH∗I :

MI = (U∗Φ∗ΦU)−1 and

{
ΓI = ΦUMIU

∗Φ∗

Γ⊥I = Id− ΓI .

where U is (any) basis of KerH∗I . The symmetric bilinear form on
RN induced by Γ⊥I reads

〈u, v〉Γ⊥
I

= 〈u, Γ⊥I v〉,

and we denote its associated quadratic form || · ||2
Γ⊥
I

.

Definition 3. Let I be a H-support such that (CI ) holds. The
Identifiability Criterion of I is

ICH(I) = max
zI∈KerHI

min
i∈I

(Φ̃∗IΓ
⊥
I Φ̃III + zI)i

where II ∈ R|I| is the vector with coefficients 1, and Φ̃I = ΦH+,∗
I ∈

RQ×|I| where + stands for the Moore–Penrose pseudo-inverse.

ICH(I) can be computed by solving the linear program

ICH(I) = max
(r,zI )∈R×R|I|

r subj. to

{
∀i ∈ I, r 6 (Φ̃∗IΓ

⊥
I Φ̃III + zI)i

HIzI = 0.

A. Noise Robustness

Our main contribution is the following result.

Theorem 1. Let x0 ∈ RN \ {0} and I its H-support such that (CI )
holds. Let y = Φx0 + w. Suppose that Φ̃III 6= 0 and ICH(I) > 0.
Then there exists two constants cI , c̃I satisfying,

||w||2
T

<
c̃I
cI

where T = min
j∈Ic

JH(x0)− 〈x0, hj〉 > 0,

such that if λ is chosen according to

cI ||w||2 < λ < T c̃I ,

the vector x? ∈ RN defined by

x? = µH+,∗
I II + UMIU

∗Φ∗(y − µΦ̃III)

where U is any basis of KerH∗I and

0 < µ = JH(x0) +
〈Φ̃III , w〉Γ⊥

I
− λ

||Φ̃III ||2Γ⊥
I

(2)

is the unique solution of (Pλ(y)), and x? lives on the same face as
x0, i.e. suppH(x?) = suppH(x0).

Observe that if λ is chosen proportional to the noise level, then
||x? − x0||2 = O(||w||2). The following proposition proves that the
condition ICH(I) > 0 is almost a necessary condition to ensure
the stability of the H-support. Its proof is omitted for obvious space
limitation reasons.

Proposition 1. Let x0 ∈ RN \{0} and I its H-support such that (CI )
holds. Let y = Φx0+w. Suppose that Φ̃III 6= 0 and ICH(I) < 0. If
||w||
λ
< 1

cI
then for any solution of (Pλ(y)), we have suppH(x0) 6=

suppH(x?).

B. Noiseless Identifiability

When there is no noise, the following result, which is a straightfor-
ward consequence of Theorem 1, shows that the condition ICH(I) >
0 implies signal identifiability.

Theorem 2. Let x0 ∈ RN \ {0} and I its H-support. Suppose that
Φ̃III 6= 0 and ICH(I) > 0. Then the vector x0 is the unique solution
of (P0(y)).

III. PROOFS

A. Preparatory Lemmata

We recall the definition of the subdifferential of a convex function
f at the point x is the set ∂f(x) is

∂f(x) =
{
g ∈ RN | f(y) > f(x) + 〈g, y − x〉

}
.

The following lemma, which is a direct consequence of the properties
of the max function, gives the subdifferential of the regularization
function JH .

Lemma 1. The subdifferential ∂JH at x ∈ RN reads

∂JH(x) = HIΣI

where I = suppH(x) and ΣI is the canonical simplex on R|I|:

ΣI =
{
vI ∈ R|I| | vI > 0, 〈vI , II〉 = 1

}
.

A point x? is a minimizer of minx f(x) if, and only if, 0 ∈
∂f(x?). Thanks to Lemma 1, this gives the first-order condition for
the problem (Pλ(y)).

Lemma 2. A vector x? is a solution of (Pλ(y)) if, and only if, there
exists vI ∈ ΣI such that

Φ∗(Φx− y) + λHIvI = 0,

where I = suppH(x).

We now introduce the following so-called source condition.
(SCx): For I = suppH(x), there exists η and vI ∈ ΣI such that:

Φ∗η = HIvI ∈ ∂JH(x).

Under the source condition, a sufficient uniqueness condition can
be derived when vI lives in the relative interior of ΣI which is

ri ΣI =
{
vI ∈ R|I| | vI > 0, 〈vI , II〉 = 1

}
.

Lemma 3. Let x? be a minimizer of (Pλ(y)) (resp. (P0(y))) and
I = suppH(x?). Assume that (SCx?) is verified with vI ∈ ri ΣI ,
and that (CI ) holds. Then x? is the unique solution of (Pλ(y))
(resp. (P0(y))).

The proof of this lemma is omitted due to lack of space. Observe
that in the noiseless case, if the assumptions of Lemma 3 hold at x0,
then the latter is exactly recovered by solving (P0(y)).



Lemma 4. Let x? ∈ RN and I = suppH(x?). Assume (CI ) holds.
Let U be any basis of KerH∗I . There exists zI ∈ KerHI such that

U∗Φ∗(Φx? − y) = 0

vI = zI +
1

λ
H+
I Φ∗(y − Φx?) ∈ ΣI ,

if, and only if, x? is a solution of (Pλ(y)). Moreover, if vI ∈ ri ΣI ,
then x? is the unique solution of (Pλ(y)).

Proof: We compute

Φ∗(Φx? − y) + λHIvI

=Φ∗(Φx? − y) + λHI

(
zI +

1

λ
H+
I Φ∗(y − Φx?)

)
=(Id−HIH+

I )Φ∗(Φx? − y) = projH∗
I

(Φ∗(Φx? − y)) = 0,

where projH∗
I

is the projection on KerH∗I . Hence, x? is a solution
of (Pλ(y)). If vI ∈ ri ΣI , then according to Lemma 3, x? is the
unique solution.

The following lemma is a simplified rewriting of the condition
introduced in Lemma 4.

Lemma 5. Let x? ∈ RN , I = suppH(x?) and µ = JH(x?).
Assume (CI ) holds. Let U be any basis of KerH∗I . There exists
z ∈ KerHI such that

vI = zI +
1

λ
Φ̃∗IΓ

⊥
I (y − µΦ̃III) ∈ ΣI ,

if, and only if, x? is a solution of (Pλ(y)). Moreover, if vI ∈ ri ΣI ,
then x? is the unique solution of (Pλ(y)).

Proof: Note that any vector x ∈ RN such that the condition (CI )
holds, where I is the H-support of x, is such that

x = µH+,∗
I II + Uα where µ = JH(x),

for some coefficients α and U any basis of KerH∗I . We obtain

UΦ∗(Φx? − y) = µUΦ∗ΦH+,∗
I II − UΦ∗y + UΦ∗ΦUα = 0

Since (CI ) holds, we have

α = (UΦ∗ΦUα)−1UΦ∗
(
y − µΦ̃III

)
.

Hence,
ΦUα = ΓI

(
y − µΦ̃III

)
.

Now since, x? = µH+,∗
I II + Uα, one has

Φx? = µΦ̃III + ΓI
(
y − µΦ̃III

)
= µΓ⊥I Φ̃III + ΓIy.

Subtracting y and multiplying by Φ̃∗I both sides, and replacing in the
expression of vI in Lemma 4, we get the desired result.

B. Proof of Theorem 1

Let I be the H-support of x0. We consider the restriction
of (Pλ(y)) to the H-support I .

x? = argmax
x∈RN

suppH (x)⊆I

1

2
||y − Φx||22 + JH(x). (Pλ(y)I )

Thanks to (CI ), the objective function is strongly convex on the set
of signals of H-support I. Hence x? is uniquely defined. The proof is
divided in five parts: We give (1.) an implicit form of x?. We check
(2.) that the H-support of x? is the same as the H-support of x0.
We provide (3.) the value of JH(x?). Using Lemma 5, we prove (4.)
that x? is the unique minimizer of (Pλ(y)).

1. Expression of x?. One has x? = µH+,∗
I II + Uα where µ =

JH(x?). Hence,

U∗Φ∗(Φx− y) = µU∗Φ∗ΦH+,∗
I II + (U∗Φ∗ΦU)α− U∗Φ∗y = 0.

Thus,
Uα = UMIU

∗Φ∗(y − µΦH+,∗
I II).

Now, since y = Φx0 + w, with suppH(x0) = I , then

x? = µH+,∗
I II + UMIU

∗Φ∗(y − µΦH+,∗
I II)

= µH+,∗
I II + UMIU

∗Φ∗((µ0 − µ)ΦH+,∗
I II + w) + Uα0

= x0 − (µ0 − µ)H+,∗
I II + UMIU

∗Φ∗((µ0 − µ)ΦH+,∗
I II + w),

where µ0 = JH(x0). Hence, x? is satisfying

x? = x0 +(µ0−µ)[UMIU
∗Φ∗Φ−Id]H+,∗

I II+UMIU
∗Φ∗w. (3)

2. Checking that the H-support of x? is I . To ensure that the
H-support of x? is I we have to impose that

∀i ∈ I, 〈hi, x?〉 = JH(x?) = µ

∀j ∈ Ic, 〈hj , x?〉 < JH(x?) = µ.

The components on I of x? are satisfying H∗I x
? = µII . Since JH

is subadditive, we bound the components on Ic by the triangular
inequality on (3) to get

max
j∈Ic
〈hj , x?〉 6max

j∈Ic
〈hj , x0〉

+ (µ0 − µ)||H∗Ic [UMIU
∗Φ∗Φ− Id]H+,∗

I II ||∞
+ ||H∗IcUMIU

∗Φ∗w||∞.

Denoting

C1 = ||H∗Ic [UMIU
∗Φ∗Φ− Id]H+,∗

I II ||∞,
C2 = ||H∗IcUMIU

∗Φ∗||2,∞,
T = µ0 −max

j∈Ic
〈hj , x0〉,

we bound the correlations outside the H-support by

max
j∈Ic
〈hj , x?〉 6 µ0 − T + (µ0 − µ)C1 + C2||w||.

There exists some constants c1, c2 satisfying c1||w|| < c2T + λ such
that

0 6 µ0 − T + (µ0 − µ)C1 + C2||w|| < µ (4)

Under this condition, one has

max
j∈Ic
〈hj , x?〉 < µ,

which proves that suppH(x?) = I .
3. Value of µ = JH(x?). Using Lemma 5 with H = U∗H , since

x? is a solution of (Pλ(y)I ), there exists zI ∈ KerHI such that

vI = zI +
1

λ
Φ̃∗IΓ

⊥
I (y − µΦ̃III) ∈ ΣI . (5)

We decompose x0 as

x0 = µ0H
+,∗
I II + Uα0.

Since y = Φx0 + w, we have

Γ⊥I y = Γ⊥I (µ0Φ̃III + ΦUα0 + w).

Now since

ΓIΦUα0 = ΦU(U∗Φ∗ΦU)−1U∗Φ∗ΦUα0 = ΦUα0,



one obtains
Γ⊥I y = µ0Γ⊥I Φ̃III + Γ⊥I w.

Thus, equation (5) equivalently reads

vI = zI +
1

λ
Φ̃∗IΓ

⊥
I

(
(µ0 − µ)Φ̃III + w

)
.

In particular, 〈vI , II〉 = λ. Thus,

λ = 〈λvI , II〉 = 〈λz̃I , II〉+ 〈Φ̃∗IΓ⊥I ((µ0 − µ)Φ̃III + w, II〉.

Since z̃I ∈ KerHI , one has 〈zI , II〉 = 0.

λ = 〈Φ̃∗IΓ⊥I ((µ0 − µ)Φ̃III + w, II〉
= (µ0 − µ)||Φ̃III ||2Γ⊥

I
+ 〈Φ̃III , w〉Γ⊥

I
.

Thus the value of µ is given by

µ = µ0 +
〈Φ̃III , w〉Γ⊥

I
− λ

||Φ̃III ||2Γ⊥
I

> 0. (6)

4. Checking conditions of Lemma 5. Consider now the vector
ṽI defined by

ṽI = z̃I +
1

λ
Φ̃∗IΓ

⊥
I

(
(µ0 − µ)Φ̃III + w

)
,

where

z̃I =
1

µ− µ0

(
argmax
zI∈KerHI

min
i∈I

(Φ̃∗IΓ
⊥
I Φ̃III + zI)i

)
Under condition (4), the H-support of x? is I , hence we only have
to check that ṽI is an element of ri ΣI . Since 〈z̃I , II〉 = 0, one has

〈ṽI , II〉

=〈zI +
1

λ
Φ̃∗IΓ

⊥
I

(
(µ0 − µ)Φ̃III + w

)
, II〉+ 〈z̃I − zI , II〉

=〈vI , II〉+ 0 = λ.

Plugging back the expression (6) of (µ0−µ) in the definition of ṽI ,
one has

ṽI = z̃I +
1

λ

Φ̃∗IΓ
⊥
I w +

〈Φ̃III , w〉Γ⊥
I
− λ

||Φ̃III ||2Γ⊥
I

Φ̃∗IΓ
⊥
I Φ̃III

 .

For some constant c3 such that c3||w|| − ICH(I) · λ > 0, one has

∀i ∈ I, vi > 0.

Combining this with the fact that 〈ṽI , II〉 = λ proves that ṽI ∈ ri ΣI .
According to Lemma 5, x? is the unique minimizer of (Pλ(y)).

C. Proof of Theorem 2

Taking w = 0 in Theorem 1, we obtain immediately

Lemma 6. Let x0 ∈ RN \ {0} and I its H-support such that (CI )
holds. Let y = Φx0. Suppose that Φ̃III 6= 0 and ICH(I) > 0. Let
T = min

j∈Ic
JH(x0)− 〈x0, hj〉 > 0 and λ < T c̃I . Then,

x? = x0 +
λ

||Φ̃III ||2Γ⊥
I

[UMIU
∗Φ∗Φ− Id]H+,∗

I II ,

is the unique solution of (Pλ(y)).

The following lemma shows that under the same condition, x0 is
a solution of (P0(y)).

Lemma 7. Let x0 ∈ RN \ {0} and I its H-support such that (CI )
holds. Let y = Φx0. Suppose that Φ̃III 6= 0 and ICH(I) > 0. Then
x0 is a solution of (P0(y)).

Proof: According to Lemma 6, for every 0 < λ < T c̃I ,

x?λ = x0 +
λ

||Φ̃III ||2Γ⊥
I

[UMIU
∗Φ∗Φ− Id]H+,∗

I II ,

is the unique solution of (Pλ(y)).
Let x̃ 6= x0 such that Φx̃ = y. For every 0 < λ < T c̃I , since x?λ

is the unique minimizer of (Pλ(y)), one has

1

2
||y − Φx?λ||22 + JH(x?λ) <

1

2
||y − Φx̃||22 + JH(x̃).

Using the fact that Φx̃ = y = Φx0, one has JH(x?λ) < JH(x̃). By
continuity of the mapping x 7→ JH(x), taking the limit for λ → 0
in the previous inequality gives

JH(x0) 6 JH(x̃).

It follows that x0 is a solution of (P0(y)).
We now prove Theorem 2.

Proof of Theorem 2: Lemma 7 proves that x0 is a solution
of (P0(y)). We now prove that x0 is in fact the unique solution. Let
z̃I be the argument of the maximum in the definition of ICH(I).
We define

ṽI =
1

||Φ̃III ||2Γ⊥
I

(
z̃I + Φ̃∗IΓ

⊥
I Φ̃III

)
.

By definition of ICH(I), for every i ∈ I, ṽI > 0 and 〈ṽI , II〉 = 1.
Thus, HI ṽI ∈ ri(∂JH(x0)). Moreover, since z̃I ∈ KerHI , one has

HIvI = HIH
+,∗
I Φ∗Γ⊥I Φ̃III = Φ∗η where η = Γ⊥I Φ̃III .

Thanks to Lemma 3, x0 is the unique solution of (P0(y)).
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