
HAL Id: hal-04216669
https://hal.science/hal-04216669v2

Preprint submitted on 2 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SimPINNs: Simulation-Driven Physics-Informed Neural
Networks for Enhanced Performance in Nonlinear

Inverse Problems
Sidney Besnard, Frédéric Jurie, Jalal M. Fadili

To cite this version:
Sidney Besnard, Frédéric Jurie, Jalal M. Fadili. SimPINNs: Simulation-Driven Physics-Informed
Neural Networks for Enhanced Performance in Nonlinear Inverse Problems. 2023. �hal-04216669v2�

https://hal.science/hal-04216669v2
https://hal.archives-ouvertes.fr


SIMPINNS: SIMULATION-DRIVEN PHYSICS-INFORMED NEURAL NETWORKS FOR
ENHANCED PERFORMANCE IN NONLINEAR INVERSE PROBLEMS

Sidney Besnard1,2 , Frederic Jurie1, Jalal Fadili1

1Univ. Caen Normandie, ENSICAEN, CNRS 2Safran Data Systems

ABSTRACT

This paper introduces a novel approach to solve inverse prob-
lems by leveraging deep learning techniques. The objective
is to infer unknown parameters that govern a physical system
based on observed data. We focus on scenarios where the
underlying forward model demonstrates pronounced nonlin-
ear behaviour, and where the dimensionality of the unknown
parameter space is substantially smaller than that of the obser-
vations. Our proposed method builds upon physics-informed
neural networks (PINNs) trained with a hybrid loss function
that combines observed data with simulated data generated by
a known (approximate) physical model. Experimental results
on an orbit restitution problem demonstrate that our approach
surpasses the performance of standard PINNs, providing im-
proved accuracy and robustness.

Index Terms— Inverse problems, Neural Networks,
Physics-Informed, Simulation

1. INTRODUCTION

Inverse problems play a crucial role in science by allowing
to unravel the hidden properties and processes behind ob-
served data. They allow scientists to infer and understand
phenomena that are otherwise difficult or impossible to ob-
serve or measure directly. These problems involve determin-
ing the parameters of a system from some available measure-
ments. Inverse problems have far-reaching applications span-
ning a wide spectrum ranging from medical imaging to non-
destructive control or space imaging, as we will see.

Data-driven machine learning methods, and in particular
deep neural networks, have recently emerged as powerful al-
ternatives to variational model-based approaches for solving
inverse problems. These methods include supervised and un-
supervised methods, such as the Deep Inverse Prior (DIP) [1],
Unrolling [2, 3], Plug-and-play (PnP) [4, 5], and generative
models [6], to name a few. Unrolling and PnP rely on neu-
ral networks to learn the regularization from the data. See for
instance [?] for a comprehensive review.

However, these approaches only make sense if the out-
put parameter space can be equipped with a suitable notion
of regularity. This is certainly the case if the input parame-
ters are in the form of a structured signal, but is not always

the case as in our setting (think of inferring a few parameters
that are not structured on a grid). A naive technique would
then be to train a neural network using a dataset consisting of
input-output pairs, where the input is the observed data and
the output is the sought-after vector of parameters [7, 8, 9].
Clearly, the neural network learns to invert the forward model
(i.e. the mapping between the observed data and parameters),
with the hope that it would predict the unknown parameters
for new observations. This approach leverages the ability of
neural networks to capture intricate patterns and non-linear
relationships in the data. Unfortunately, this type of tech-
nique is only applicable when a large set of training pairs
is available, which is barely the case in most practical situa-
tions. Moreover, such approaches are completely agnostic to
the forward model which would produce unrealistic solutions
and may not generalize well.

Physics-informed neural networks (PINNs) were primar-
ily proposed to solve partial differential equations (PDE) [10,
11, 12, 13]. Their core idea is to supplement the neural net-
work training with information stemming from the measure-
ment formation model, e.g. the PDE model. In turn, this
allows to restrict the space of solutions by enforcing the out-
put of the trained neural network to comply with the physical
model as described by the PDE. In turn, these methods are
expected to be trained with a smaller dataset.

An aspect to keep in mind regarding PINNs is that theyr
are trained using only the reconstruction error, which reflects
constraints, including initial or boundary conditions, as im-
posed by the PDE. However, in numerous cases, achieving a
low reconstruction error does not guarantee an accurate pre-
diction of the parameters (i.e., a low parameter error). Thus, it
is essential to emphasize the network’s requirement for some
sort of induced regularization of the solution space during
training.

Contributions. In this paper, our aim is to demonstrate the
effectiveness of neural networks in dealing with non-linear
inverse problems where the space parameter is unstructured.
We propose a novel hybrid approach that leverages both
physics-informed and data-driven methods and which uses
simulated data to induce regularization of the solution. In-
deed, given the difficulty in obtaining real training pairs
(observations-parameters) for many real-world problems,
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Fig. 1. Illustrations of the architectures used in PINNs and
SimPINNs for inverse problems. The top part depicts the
PINNs approach, where a neural network is trained to learn
the inverse function of f , enabling the reconstruction of ac-
curate x values from observed y values solely based on the
observations and the underlying physics (unsupervised learn-
ing). In the bottom part, the SimPINNs (supervised) ap-
proach is shown, which utilizes the physics-based simula-
tions to complement the training set with ’annotated’ simu-
lated data and regularize the solution.

simulations offer a convenient means to complement the
training data set, though the simulated data might not be
exact but accurate enough.

2. PROPOSED METHOD

Let X ⊂ Rn be the space of parameters of the (physical)
model, and Y ⊂ Rm be the space of observations. An inverse
problem consists in reliably recovering the parameters x ∈ X
from noisy indirect observations

y = f(x) + ε, (1)

where f : X → Y is the forward operator, and ε stands for
some additive noise that captures the measurement and pos-
sibly the modeling error. Throughout, we assume that f is
smooth enough (at least continuously differentiable).

In the sequel, for a neural network with parameters
(weights and biases) θ ∈ Θ, ψ : (y, θ) ∈ Y × Θ 7→ ψ(y, θ)
denotes its output.

Finally, we also assume that we have an approximate ex-
plicit model of f , sometimes referred to as a digital twin. This
model, f̂ , is obtained by modelling the physical phenomena
involved in the observations. It will be used later to generate
simulated data.

2.1. PINNs for non-linear inverse problems

The key idea of PINNs is to incorporate the physical model
into the cost function during the training process. For a neural
network ψ and training samples {yi : i = 1, . . . , n} with n
samples, this amounts to solving the following minimization

problem with the empirical loss:

min
θ∈Θ

1

n

n∑
i=1

‖yi − f̂(ψ(yi, θ))‖2 (2)

This loss function leverages the information provided by the
physical forward model directly into the training loss. It is
also a non-supervised method that relies solely on observa-
tions, without any knowledge of the parameter vector xi cor-
responding to each yi. Unfortunately, as was observed pre-
viously in the literature (e.g. in [14]), when f is not in-
jective, there are infinitely many solutions ψ(·, θ) which at-
tain zero training error. This is because the forward model
f may map multiple input vectors to the same output vector.
For example, in the linear case, the action of f is invariant
along its null space. This suggests that training a reconstruc-
tion network as (2) only from the observed data, without any
additional assumptions or constraints, is not viable. Possi-
ble workarounds include explicitly constraining the output of
the reconstruction network through regularization (and we are
back to the variational world), or introducing invariances such
as in [14]. In the forthcoming section, we will describe an al-
ternative based on exploiting the forward model to simulate
input-output pairs. This approach will help to regularize the
training process and make it more robust to the non-injectivity
of f .

2.2. SimPINNs: Simulation aided PINNs

In many areas of science, obtaining pairs of input (parameters)-
output (observations) training data, can be a significant chal-
lenge. This can be due to various reasons, including that data
are difficult or expensive to acquire. This is for instance the
case in large instruments in physics. Furthermore, even if
such pairs of data can be acquired, they are available only
in limited quantity, which often impedes the use of data-
intensive machine learning approaches.

There are however situations where even if such data are
unavailable, it is possible to artificially generate the input-
output pairs by leveraging knowledge of the forward model
in (1), even if the latter is only approximately known. This
involves generating a parameter/input vector x sampled from
the range of possible input values in the model or based on
the known distribution of input data. We propose to compute
the corresponding simulated observation f̂(x), i.e. without
noise. It is important to note that the forward model serves
anyway as an approximation of the underlying physical phe-
nomenon f it represents, and the simulated observation can
only be considered as a perturbed version of the unknown ob-
servation due to model imperfections.

Summarizing our discussion above, we propose to train a
neural network ψ by replacing (2) with

min
θ∈Θ

1

n

n∑
i=1

Lλ(xi, yi, θ),where (3)



Lλ(x, y, θ) = λ‖y − f̂(ψ(y, θ))‖2 + (1− λ)‖ψ(y, θ)− x‖2.

Here λ ∈]0, 1[ balances between the two terms: fidelity to the
observation and reconstruction error. The determination of an
optimal value for λ can be a challenging task. In our study,
we employed an empirical approach to estimate this value by
performing cross-validation.

In the case of real observations, the value of x is unknown,
making it impossible to calculate the second term in the loss
function in (3). Therefore, only the first term, which focuses
on reconstruction fidelity, is used for such data.

The ratio between the number of real data, denoted as No
(where only the observation is known), and the number of
simulated data, denoted as Ns, plays a significant role in the
analysis. Consequently, the influence of this ratio have to be
thoroughly examined through experimental studies.

3. EXPERIMENTAL RESULTS

We validate the proposed method by applying it to an orbit
restitution problem, where the dimension of X (n = 6) is rel-
atively smaller than that of Y (m = 642). This problem en-
compasses several intriguing aspects that make it particularly
compelling. Firstly, the underlying physics and the involved
forward operator exhibit non-linearities, which is a primary
focus in real-world research problems. Secondly, an orbit is
defined by six orbital elements, while the received data exists
in a significantly larger space, such as the image space in our
case. Consequently, the forward operator maps from a smaller
parameter space to a substantially larger image space. The
third aspect of this problem pertains to the challenging nature
of obtaining input-output pairs, as it requires integrating raw
acquisition with non-trivial evaluations and determination of
orbit parameters.

It is important to note that despite initially appearing sim-
ple due to the presence of more equations than unknown vari-
ables, this problem poses additional difficulties. The involved
physics operator is non-linear, making the problem extremely
ill-posed with non-trivial equivalence classes. This complex-
ity makes it more challenging than it may look at first glance.
In the subsequent sections, we present the details of the prob-
lem, including the experimental settings and the obtained re-
sults.

3.1. Problem and dataset

The objective is to invert an orbit propagator using images
obtained from a simulated sensor.

The forward operator performs the projection of orbits ex-
pressed in the Terrestrial Reference Frame (TRF) onto an im-
age, similar to a ground track orbit projection. Consequently,
the received data correspond to the projection of an orbit onto
a sensor positioned on the Earth (see Figures 2 and 3).

For this problem, we opt to represent each orbit using 3
Keplerian parameters: inclination, eccentricity, and periapsis.

Fig. 2. Orbit Restitution: Visualization of an orbit in multi-
ple reference frames. In this example, the depicted orbit has
an inclination of 45 degrees, an eccentricity of 0.4, and an
apogee of 42164× 103 meters.

Fig. 3. Orbit restitution: Simulation of the orbit projection,
as depicted in Figure 2. The left image exhibits the simulated
sensor exhibiting the projected orbit, while the right image
depicts the orbit projected onto the ground plane.

This choice leads to a wide range of images and results, while
avoiding trivial equivalence classes in the parameter set.

In this problem, the forward operator is the mapping:

f : [0, 1[×[0, 2π[×[0, 2π[ → I64×64(R)
e, i, ω 7→ f(e, i, ω).

(4)

This mapping simulates the entire system, encompassing
the satellite position (achieved through an orbital propagator),
the radiation pattern of the antenna, and the projection to the
final image (assumed to be 64×64 pixels). In this experiment,
it is assumed that the approximate and actual physical models
are identical, i.e. f̂ = f . To compute the satellite position
while preserving differentiability of f̂ , an analytical Keplerian
propagator is employed.

Finally, the neural network used in this problem consists
of 5 dense layers, with each layer containing 784 neurons and
employing a ReLU activation function. The neural network is
then trained with the two previously defined loss functions in
(2) and (3) (see Figure 1)



ArgPer(×10−5) Number of real observations (No)
0 1000 10000 20000 40000

N
s

0 - 2.4541 1.2970 0.9947 0.9081
1000 2.0546 2.3412 1.1546 0.9731 1.1742
10000 1.1470 2.1942 0.8591 0.7854 1.0644
20000 0.8401 0.7721 0.6924 0.6571 0.6431
40000 0.4541 0.4412 0.4201 0.4121 0.4212

Eccentricity(×10−5)
Number of real observations (No)

0 1000 10000 20000 40000

N
s

0 - 1.5587 1.4424 1.1232 0.8638
1000 1.3545 1.5225 0.7542 1.1036 0.8452

10000 1.6556 1.5245 0.7054 1.1023 0.7214
20000 1.4684 1.0845 1.2781 0.6306 0.6251
40000 0.3895 0.3856 0.3776 0.3435 0.2861

Inclination Number of real observations (No)
0 1000 10000 20000 40000

N
s

0 - 0.0132 0.0021 0.0009 0.0004
1000 0.0134 0.0114 0.0017 0.0012 0.0003

10000 0.0022 0.0028 0.0024 0.0008 0.0007
20000 0.0014 0.0007 0.0007 0.0007 0.0005
40000 0.0002 0.0002 0.0002 0.0001 0.0001

Reconstruction
Number of real observations (No)

0 1000 10000 20000 40000

N
s

0 - 1.3243 1.1667 0.8742 0.3023
1000 1.4581 0.7064 0.1314 0.0989 0.0852

10000 0.2467 0.1510 0.1394 0.0920 0.0955
20000 0.0966 0.0831 0.0968 0.0750 0.0701
40000 0.0304 0.0305 0.0298 0.0271 0.0251

Table 1. Error evaluation across various parameters, using a
test set containing only observations.

3.2. Results and analysis

As shown in Table 1, the SimPINNs method effectively lever-
ages information from both real observations and simulated
data. It systematically outperforms the PINNs method in
terms of parameter reconstruction error; PINNs is the row
with Ns = 0. The most favorable results are achieved when
employing the largest number of real and generated data
points (No = Ns = 40k), with an average improvement of
a factor of 2 for the parameter error and a factor 10 for the
reconstruction error, compared to the unsupervised PINNs
method.

The impact of incorporating orbital physics in the forward
operator becomes evident in the significant benefit it provides
for image reconstruction in this particular use case. Due to the
influence of orbital dynamics, even small changes in the pa-
rameters can have a substantial impact on the satellite’s orbit
and drastically alter the resulting projection on the observed
image. As a result, two images with nearly identical param-
eters can exhibit significant differences. In this context, the
reconstruction loss plays a crucial role in assisting the net-
work in handling these high-gradient values that may not be
adequately captured by the supervised loss alone. By com-
bining both the simulated and real data and training via (3),
the approach leverages the strengths of both data types and
provides an improved solution with reduced parameter error.

Figure 4 presents a selection of projected orbits along with

their corresponding reconstructions.

Fig. 4. Reconstruction Results using the SimPINNs Method.

4. CONCLUSIONS

This paper explores a physics-informed neural network-based
framework to solve non-linear inverse problems on unstruc-
tured data. The proposed method, SimPINNs, leverages
the physics model to generate input-output training data.
The study demonstrates that simulation-aided training pro-
vides more information compared to conventional PINNs or
vanilla neural network training. By utilizing the approxi-
mated physics operator, the model achieves improved learn-
ing and generalization over test datasets. SimPINNs shows
potential for addressing challenging inverse problems with
limited training data, offering new insights into physics-
informed and simulation-aided training of neural networks
for inverse problems.
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