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Abstract

In this paper, we consider a high-dimensional statistical estimation problem in which the the number of
parameters is comparable or larger than the sample size. We present a unified analysis of the performance
guarantees of exponential weighted aggregation and penalized estimators with a general class of data
losses and priors which encourage objects which conform to some notion of simplicity/complexity. More
precisely, we show that these two estimators satisfy sharp oracle inequalities for prediction ensuring their
good theoretical performances. We also highlight the differences between them. When the noise is
random, we provide oracle inequalities in probability using concentration inequalities. These results are
then applied to several instances including the Lasso, the group Lasso, their analysis-type counterparts,
the `∞ and the nuclear norm penalties. All our estimators can be efficiently implemented using proximal
splitting algorithms.
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1 Introduction

1.1 Problem statement

Our statistical context is the following. Let y = (y1,y2, · · · ,yn) be n observations with common marginal
distribution, andX ∈ Rn×p a deterministic design matrix. The goal to estimate a parameter vector θ ∈ Rp
of the observations marginal distribution based on the data y andX .

Let F : Rn×Rn → R be a loss function supposed to be smooth and convex that assigns to each θ ∈ Rp a
costF (Xθ,y). Let θ0 ∈ Argminθ∈Rp E [F (Xθ,y)] be any minimizer of the population risk. We regard θ0

as the true parameter. A usual instance of this statistical setting is the standard linear regression model based
on n pairs (yi,Xi) of response-covariate that are linked linearly y = Xθ0 +ξ, and F (u,y) = 1

2

∥∥y−u∥∥2

2
.

Our goal is to provide general oracle inequalities in prediction for two estimators of θ0: the penalized
estimator and exponential weighted aggregation. In the setting where ”p larger than n (possibly much larger),
the estimation problem is ill-posed since the rectangular matrixX has a kernel of dimension at least p−n. To
circumvent this difficulty, we will exploit the prior that θ0 has some low-complexity structure (among which
sparsity and low-rank are the most popular). That is, even if the ambient dimension p of θ0 is very large, its
intrinsic dimension is much smaller than the sample sizen. This makes it possible to build estimatesXθ̂with
good provable performance guarantees under appropriate conditions. There has been a flurry of research on
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†Normandie Univ, UNICAEN, CNRS, LMNO, France, Email: christophe.chesneau@unicaen.fr.
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the use of low-complexity regularization in ill-posed recovery problems in various areas including statistics
and machine learning.

1.2 Penalized Estimators

Regularization is now a central theme in many fields including statistics, machine learning and inverse prob-
lems. It allows one to impose on the set of candidate solutions some prior structure on the object to be
estimated. This regularization ranges from squared Euclidean or Hilbertian norms to non-Hilbertian norms
(e.g. `1 norm for sparse objects, or nuclear norm for low-rank matrices) that have sparked considerable in-
terest in the recent years. In this paper, we consider the class of estimators obtained by solving the convex
optimization problem1

θ̂
PEN

n ∈ Argmin
θ∈Rp

{Vn(θ)
def
= 1

nF (Xθ,y) + λnJ(θ)}, (1.1)

where the regularizing penalty J is a proper closed convex function that promotes some specific notion
of simplicity/low-complexity, and λn > 0 is the regularization parameter. A prominent member covered
by (1.1) is the Lasso [16, 63, 47, 26, 8, 5, 7, 36] and its variants such the analysis/fused Lasso [57, 64],
SLOPE [6, 59] or group Lasso [2, 82, 1, 79]. Another example is the nuclear norm minimization for low
rank matrix recovery motivated by various applications including robust PCA, phase retrieval, control and
computer vision [50, 10, 31, 11]. See [45, 7, 73, 70] for generalizations and comprehensive reviews.

1.3 Exponential Weighted Aggregation (EWA)

An alternative to the penalized estimator (1.1) is the aggregation by exponential weighting, which consists
in substituting averaging for minimization. The aggregators are defined via the probability density function

µn(θ) =
exp (−Vn(θ)/β)∫

Θ exp (−Vn(ω)/β)dω
, (1.2)

where β > 0 is called temperature parameter. If all θ are candidates to estimate the true vector θ0, then
Θ = Rp. The aggregate is thus defined by

θ̂
EWA

n =

∫
Rp
θµn(θ)dθ. (1.3)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning
literatures, see e.g., [23, 20, 19, 24, 46, 80, 51, 38, 32, 29] to name a few. The technique used in these
papers were initiated by Leung and Barron [40] (use of Stein’s identity to study an early version of EWA)
and Catoni [13, 14] (PAC-Bayesian theory). θ̂

EWA

n can also be interpreted as the posterior conditional mean
in the Bayesian sense if F/(nβ) is the negative-loglikelihood associated to the noise ξ with the prior density
π(θ) ∝ exp (−λnJ(θ)/β).

1.4 Oracle inequalities

Oracle inequalities, which are at the heart of our work, quantify the quality of an estimator compared to the
best possible one among a family of estimators. These inequalities are well adapted in the scenario where

1To avoid trivialities, the set of minimizers is assumed non-empty, which holds for instance if J is also coercive.
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the prior penalty promotes some notion of low-complexity (e.g. sparsity, low rank, etc.). Given two vectors
θ1 and θ2, let Rn(θ1,θ2) be a nonnegative error measure between their predictions, respectively Xθ1 and
Xθ2. A popular example is the averaged prediction squared error 1

n

∥∥Xθ1 −Xθ2

∥∥2

2
, where

∥∥ · ∥∥
2

is the `2
norm. Rn will serve as a measure of the performance of the estimators θ̂

EWA

n and θ̂
PEN

n . More precisely,
we aim to prove that θ̂

EWA

n and θ̂
PEN

n mimic as much as possible the best possible model. This idea is
materialized in the following type of inequalities (stated here for EWA)

Rn
(
θ̂

EWA

n ,θ0

)
≤ C inf

θ∈Rp

(
Rn(θ,θ0) + ∆n,p,λn,β(θ)

)
, (1.4)

where C ≥ 1 is the leading constant of the oracle inequality and the remainder term ∆n,λn,β(θ) depends on
the performance of the estimator, the complexity of θ, the sample size n, the dimension p, and the regular-
ization and temperature parameters (λn, β). An estimator with good oracle properties would correspond to
C close to 1 (ideally, C = 1, in which case the inequality is said “sharp”), and ∆n,p,λn,β(θ) is small and
decreases rapidly to 0 as n→ +∞.

1.5 Contributions

We provide a unified analysis where we capture the essential ingredients behind the low-complexity priors
promoted by J , relying on sophisticated arguments from convex analysis and our previous work [30, 69, 71,
68, 70]. Our main contributions are summarized as follows:

• We show that the EWA estimator θ̂
EWA

n in (1.2) and the penalized estimator θ̂
PEN

n in (1.1) satisfy
(deterministic) sharp oracle inequalities for prediction with optimal remainder term, for general data
losses F beyond the usual quadratic one, and J is a proper finite-valued sublinear function (i.e. J is
finite-valued convex and positively homogeneous). We also highlight the differences between the two
estimators in terms of the corresponding bounds.

• When the observations are random, we prove oracle inequalities in probability. The theory is non-
asymptotic in nature, as it yields explicit bounds that hold with high probability for finite sample sizes,
and reveals the dependence on dimension and other structural parameters of the model.

• For the standard linear model with Gaussian or sub-Gaussian noise, and a quadratic loss, we deliver
refined versions of these oracle inequalities in probability. We underscore the role of the Gaussian
width, a concept that captures important geometric characteristics of sets in Rn.

• These results yield naturally a large number of corollaries when specialized to penalties routinely used
in the literature, among which the Lasso, the group Lasso, their analysis-type counterparts (fused
(group) Lasso), the `∞ and the nuclear norms. Some of these corollaries are known and others novel.

The estimators θ̂
EWA

n and θ̂
PEN

n can be easily implemented thanks to the framework of proximal splitting
methods, and more precisely forward-backward type splitting. While the latter is well-known to solve (1.1)
[70], its application within a proximal Langevin Monte-Carlo algorithm to compute θ̂

EWA

n with provable
guarantees has been recently developed by the authors in [29] to sample from log-semiconcave densities2,
see also [28] for log-concave densities.

2In a forthcoming paper, this framework was extended to cover the even more general class of prox-regular functions.
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1.6 Relation to previous work

Our oracle inequality for θ̂
EWA

n extends the work of [21] with an unprecedented level of generality, far beyond
the Lasso and the nuclear norm. Our prediction sharp oracle inequality for θ̂

PEN

n specializes to that of [60]
in the case of the Lasso (see also the discussion in [22] and references therein) and that of [37] for the case
of the nuclear norm. Our work also goes much beyond that in [73] on weakly decomposable priors, where
we show in particular that there is no need to impose decomposability on the regularizer, since it is rather an
intrinsic property of it.

1.7 Paper organization

Section 2 states our main assumptions on the data loss and the prior penalty. All the concepts and notions
are exemplified on some penalties some of which are popular in the literature. In Section 3, we prove our
main oracle inequalities, and their versions in probability. We then tackle the case of linear regression with
quadratic data loss in Section 4. Concepts from convex analysis that are essential to this work are gathered
in Section A. A key intermediate result in the proof of our main results is established in Section B with an
elegant argument relying on Moreau-Yosida regularization.

1.8 Notations

Vectors and matrices For a d-dimensional Euclidean space Rd, we endow it with its usual inner product
〈·, ·〉 and associated norm ‖·‖2. Idd is the identity matrix on Rd. For p ≥ 1, ‖·‖p will denote the `p norm of
a vector with the usual adaptation for p = +∞.

In the following, if T is a vector space, PT denotes the orthogonal projector on T , and

θT = PT θ and XT = X PT .

For a finite set C we denote
∣∣C∣∣ its cardinality. For I ⊂ {1, . . . , p}, we denote by Ic its complement. θI is the

subvector whose entries are those of θ restricted to the indices in I , and XI the submatrix whose columns
are those of X indexed by I . For any matrix X , X> denotes its transpose and X+ its Moore-Penrose
pseudo-inverse. For a linear operatorA,A∗ is its adjoint.

Sets For a nonempty set C ∈ Rp, we denote conv (C) the closure of its convex hull, and ιC its indicator
function, i.e. ιC(θ) = 0 if θ ∈ C and +∞ otherwise. For a nonempty convex set C, its affine hull aff(C)
is the smallest affine manifold containing it. It is a translate of its parallel subspace par(C), i.e. par(C) =
aff(C) − θ = R(C − C); for any θ ∈ C. The relative interior ri(C) of a convex set C is the interior of C for
the topology relative to its affine full.

Functions A function f : Rp → R∪ {+∞} is closed (or lower semicontinuous (lsc)) if so is its epigraph.
It is coercive if lim‖θ‖2→+∞ f(θ) = +∞, and strongly coercive if lim‖θ‖2→+∞ f(θ)/ ‖x‖2 = +∞. The
effective domain of f is dom(f) =

{
θ ∈ Rp : f(θ) < +∞

}
and f is proper if dom(f) 6= ∅ as is the

case when it is finite-valued. A function is said sublinear if it is convex and positively homogeneous. The
Legendre-Fenchel conjugate of f is f∗(z) = supθ∈Rp〈z,θ〉 − f(θ). For f proper, the functions (f, f∗)
obey the Fenchel-Young inequality

f(θ) + f∗(z) ≥ 〈z,θ〉, ∀(θ, z) ∈ Rp × Rp. (1.5)
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When f is a proper lower semicontonuous and convex function, (f, f∗) is actually the best pair for which
this inequality cannot be tightened. For a function g on R+, the function g+ : a ∈ R+ 7→ g+(a) =
supt≥0 at− g(t) is called the monotone conjugate of g. The pair (g, g+) obviously obeys (1.5) on R+×R+.

For a C1-smooth function f , ∇f(θ) is its (Euclidean) gradient. For a bivariate function g : (η,y) ∈
Rn×Rn → R that is C2 with respect to the first variable η, for any y, we will denote∇g(η,y) the gradient
of g at η with respect to the first variable.

The subdifferential ∂f(θ) of a convex function f at θ is the set

∂f(θ) =
{
η ∈ Rp : f(θ′) ≥ f(θ) + 〈η,θ′ − θ〉, ∀θ′ ∈ dom(f)

}
.

An element of ∂f(θ) is a subgradient. If the convex function f is differentiable at θ, then its only subgradient
is its gradient, i.e. ∂f(θ) = {∇f(θ)}.

The Bregman divergence associated to a convex function f at θ with respect to η ∈ ∂f(θ) 6= ∅ is

Dηf
(
θ,θ

)
= f(θ)− f(θ)− 〈η,θ − θ〉.

The Bregman divergence is in general nonsymmetric. It is also nonnegative by convexity. When f is differ-
entiable at θ, we simply write Df

(
θ,θ

)
(which is, in this case, also known as the Taylor distance).

2 Estimation with low-complexity penalties

The estimators θ̂
PEN

n and θ̂
EWA

n in (1.1) and (1.3) require two essential ingredients: the data loss term F and
the prior penalty J . We here specify the class of such functions covered in our work, and provide illustrating
examples.

2.1 Data loss

The class of loss functions F that we consider obey the following assumptions:

(H.1) F (·,y) : Rn → R is C1(Rn) and uniformly convex for all y of modulus ϕ, i.e.

F (v,y) ≥ F (u,y) + 〈∇F (u,y),v − u〉+ ϕ(‖v − u‖2),

where ϕ : R+ → R+ is a convex non-decreasing function that vanishes only at 0.

(H.2) For any θ ∈ Rp and y ∈ Rn,
∫
Rp exp (−F (Xθ,y)/(nβ))

∣∣〈∇F (Xθ,y),X(θ − θ)〉
∣∣dθ < +∞.

Recall that by Lemma A.1, the monotone conjugate ϕ+ of ϕ is a proper, closed, convex, strongly coercive
and non-decreasing function onR+ that vanishes at 0. Moreover, ϕ++ = ϕ. The functionϕ+ is finite-valued
on R+ if ϕ is strongly coercive, and it vanishes only at 0 under e.g. Lemma A.1(iii).

The class of data loss functions in (H.1) is fairly general. It is reminiscent of the negative log-likelihood
in the regular exponential family. For the moment assumption (H.2) to be satisfied, it is suffient that∫

Rp
exp

(
−ϕ
(∥∥Xθ∥∥

2

)
/(nβ)

)∥∥∇F (Xθ + u?,y)
∥∥

2

∥∥Xθ + (u? −Xθ)
∥∥

2
dθ < +∞,

where u? be a minimizer of F (·,y), which is unique by uniform convexity. We here provide an example.
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Example 2.1. Consider the case where3 ϕ(t) = tq/q, q ∈]1,+∞[, or equivalently ϕ+(t) = tq∗/q∗ where
1/q + 1/q∗ = 1. For q = q∗ = 2, (H.1) amounts to saying that F (·,y) is strongly convex for all y. In
particular, [3, Proposition 10.13] shows that F (u,y) =

∥∥u − y∥∥q
2
/q is uniformly convex for q ∈ [2,+∞[

with modulus ϕ(t) = Cqt
q/q, where Cq > 0 is a constant that depends solely on q.

For (H.2) to be verified, it is suffient that∫
Rp

exp
(
−
∥∥Xθ∥∥q

2
/(qnβ)

)∥∥∇F (Xθ + u?,y)
∥∥

2

∥∥(Xθ + u?)−Xθ
∥∥

2
dθ < +∞.

In particular, taking F (u,y) =
∥∥u − y∥∥q

2
/q, q ∈ [2,+∞[, we have

∥∥∇F (u,y)
∥∥

2
=
∥∥u − y∥∥q−1

2
, and

thus (H.2) holds since∫
Rp

exp
(
−
∥∥Xθ∥∥q

2
/(qnβ)

)∥∥y − (Xθ + u?)
∥∥q−1

2

∥∥Xθ − (Xθ + u?)
∥∥

2
dθ < +∞.

2.2 Prior penalty

Recall the main definitions and results from convex analysis that are collected in Section A. Our main as-
sumption on J is the following.

(H.3) J : Rp → R is the gauge of a non-empty convex compact set containing the origin as an interior point.

By Lemma A.3, this assumption is equivalent to saying that J def
= γC is proper, convex, positively homoge-

neous, finite-valued and coercive. In turn, J is locally Lipschitz continuous on Rp. Observe also that by
virtue of Lemma A.4 and Lemma A.2, the polar gauge J◦ def

= γC◦ enjoys the same properties as J in (H.3).

2.3 Decomposability of the prior penalty

We are now in position to provide an important characterization of the subdifferential mapping of a function
J satisfying (H.3). This characterization will play a pivotal role in our proof of the oracle inequality.

We start by defining some essential geometrical objects that were introduced in [69].

Definition 2.1 (Model Subspace). Let θ ∈ Rp. We denote by eθ as

eθ = Paff(∂J(θ))(0).

We denote
Sθ = par(∂J(θ)) and Tθ = S⊥θ .

Tθ is coined the model subspace of θ associated to J .

It can be shown, see [69, Proposition 5], that θ ∈ Tθ, hence the name model subspace. When J is
differentiable at θ, we have eθ = ∇J(θ) and Tθ = Rp. When J is the `1-norm (Lasso), the vector eθ is
nothing but the sign of θ. Thus, eθ can be viewed as a generalization of the sign vector. Observe also that
eθ = PTθ(∂J(θ)), and thus eθ ∈ Tθ ∩ aff(∂J(θ)). However, in general, eθ 6∈ ∂J(θ).

We now provide a fundamental equivalent description of the subdifferential of J at θ in terms of eθ, Tθ,
Sθ and the polar gauge J◦.

3We consider a scaled version of ϕ for simplicity, but the same conclusions remain valid if we take ϕ(t) = Ctq/q, with C > 0.
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Theorem 2.1. Let J satisfy (H.3). Let θ ∈ Rp and fθ ∈ ri(∂J(θ)).

(i) The subdifferential of J at θ reads

∂J(θ) = aff(∂J(θ)) ∩ C◦

=
{
η ∈ Rn : ηTθ = eθ and inf

τ≥0
max

(
J◦
(
τeθ + ηSθ + (τ − 1) PSθ fθ

)
, τ
)
≤ 1
}
.

(ii) For any ω ∈ Rp, ∃η ∈ ∂J(θ) such that

J(ωSθ) = 〈ηSθ ,ωSθ〉.

Proof. (i) This follows by piecing together [69, Theorem 1, Proposition 4 and Proposition 5(iii)].

(ii) From [69, Proposition 5(iv)], we have

σ∂J(θ)−fθ(ω) = J(ωSθ)− 〈PSθ fθ,ωSθ〉.

Thus there exists a supporting point v ∈ ∂J(θ)−fθ ⊂ Sθ with normal vectorω [3, Corollary 7.6(iii)],
i.e.

σ∂J(θ)−fθ(ω) = 〈v,ωSθ〉.

Taking η = v + fθ concludes the proof.

Remark 2.1. The coercivity assumption in (H.3) is not needed for Theorem 2.1 to hold.

The decomposability of described in Theorem 2.1(i) depends on the particular choice of the mapping
θ 7→ fθ ∈ ri(∂J(θ)). An interesting situation is encountered when eθ ∈ ri(J(θ)), so that one can choose
fθ = eθ. Strong gauges, see [69, Definition 6], are precisely a class of gauges for which this situation occurs,
and in this case, Theorem 2.1(i) has the simpler form

∂J(θ) = aff(∂J(θ)) ∩ C◦ =
{
η ∈ Rn : ηTθ = eθ and J◦(ηSθ) ≤ 1

}
. (2.1)

The Lasso, group Lasso and nuclear norms are typical examples of (symmetric) strong gauges. How-
ever, analysis sparsity penalties (e.g. the fused Lasso) or the `∞-penalty are not strong gauges, though they
obviously satisfy (H.3). See the next section for a detailed discussion.

2.4 Calculus with the prior family

The family of penalties complying with (H.3) form a robust class enjoying important calculus rules. In
particular it is closed under the sum and composition with an injective linear operator as we now prove.

Lemma 2.1. The set of functions satisfying (H.3) is closed under addition4 and pre-composition by an
injective linear operator. More precisely, the following holds:

(i) Let J and G be two gauges satisfying (H.3). Then H def
= J +G also obeys (H.3). Moreover,

(a) THθ = T Jθ ∩ TGθ and eHθ = PTHθ
(eJθ + eGθ ), where T Jθ and eJθ (resp. TGθ and eGθ ) are the model

subspace and vector at θ associated to J (resp. G);
4It is obvious that the same holds with any positive linear combination.
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(b) H◦(ω) = maxρ∈[0,1] conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Let J be a gauge satisfying (H.3), and D : Rq → Rp be surjective. Then H def
= J ◦D> also fulfills

(H.3). Moreover,

(a) THθ = Ker(D>SJu
) and eHθ = PTHθ

DeJu, where T Ju and eJu are the model subspace and vector at

u
def
= D>θ associated to J;

(b) H◦(ω) = J◦(D+ω), whereD+ = D>
(
DD>

)−1.

The outcome of Lemma 2.1 is naturally expected. For instance, assertion (i) states that combining several
penalties/priors will promote objects living on the intersection of the respective low-complexity models.
Similarly, for (ii), one promotes low-complexity in the image of the analysis operator D>. It then follows
that one has not to deploy an ad hoc analysis when linearly pre-composing or combining (or both) several
penalties (e.g. `1+nuclear norms for recovering sparse and low-rank matrices) since our unified analysis in
Section 3 will apply to them just as well.

Proof. (i) Convexity, positive homogeneity, coercivity and finite-valuedness are straightforward.

(a) This is [69, Proposition 8(i)-(ii)].
(b) We have from Lemma A.4 and calculus rules on support functions,

H◦(ω) = σJ(θ)+G(θ)≤1(ω) = sup
J(θ)+G(θ)≤1

〈ω,θ〉 = max
ρ∈[0,1]

sup
J(θ)≤ρ,G(θ)≤1−ρ

〈ω,θ〉

([33, Theorem V.3.3.3]) = max
ρ∈[0,1]

conv
(
inf
(
σJ(θ)≤ρ(ω), σG(θ)≤1−ρ(ω)

))
(Positive homogeneity) = max

ρ∈[0,1]
conv

(
inf
(
ρσJ(θ)≤1(ω), (1− ρ)σG(θ)≤1(ω)

))
(Lemma A.4) = max

ρ∈[0,1]
conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Again, convexity, positive homogeneity and finite-valuedness are immediate. Coercivity holds by
injectivity ofD>.

(a) This is [69, Proposition 10(i)-(ii)].
(b) Denote J = γC . We have

H◦(ω) = sup
D>θ∈C

〈ω,θ〉

(D> is injective) = sup
D>θ∈C

〈D+ω,D>θ〉

= sup
u∈C∩Span(D>)

〈D+ω,u〉

([33, Theorem V.3.3.3] and Lemma A.4) = conv
(
inf
(
J◦(D+ω), ιKer(D)(D

+ω)
))

= J◦(D+ω).

where in the last equality, we used the fact that D+ω ∈ Span
(
D>

)
= Ker(D)⊥, and thus

ιKer(D)(D
+ω) = +∞ unlessω = 0, and J◦ is continuous and convex by (H.3) and Lemma A.4.
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2.5 Examples

2.5.1 Lasso

The Lasso regularization is used to promote the sparsity of the minimizers, see [7] for a comprehensive
review. It corresponds to choosing J as the `1-norm

J(θ) =
∥∥θ∥∥

1
=

p∑
i=1

∣∣θi∣∣. (2.2)

It is also referred to as `1-synthesis in the signal processing community, in contrast to the more general
`1-analysis sparsity penalty detailed below.

We denote (ai)1≤i≤p the canonical basis of Rp and supp(θ)
def
=
{
i ∈ {1, . . . , p} : θi 6= 0

}
. Then,

Tθ = Span{(ai)i∈supp(θ)}, (eθ)i =

{
sign(θi) if i ∈ supp(θ)

0 otherwise
, and J◦ =

∥∥ · ∥∥∞. (2.3)

2.5.2 Group Lasso

The group Lasso has been advocated to promote sparsity by groups, i.e. it drives all the coefficients in one
group to zero together hence leading to group selection, see [2, 82, 1, 79] to cite a few. The group Lasso
penalty with L groups reads

J(θ) =
∥∥θ∥∥

1,2

def
=

L∑
i=1

∥∥θbi∥∥2
. (2.4)

where
⋃L
i=1 bi = {1, . . . , p}, bi, bj ⊂ {1, . . . , p}, and bi ∩ bj = ∅ whenever i 6= j. Define the group support

as suppB(θ)
def
=
{
i ∈ {1, . . . , L} : θbi 6= 0

}
. Thus, one has

Tθ = Span{(aj){j : ∃i∈suppB(θ),j∈bi
}}, (eθ)bi =


θbi
‖θbi‖2

if i ∈ suppB(θ)

0 otherwise
, and J◦(ω) = max

i∈{1,...,L}
‖ωbi‖2 .

(2.5)

2.5.3 Analysis (group) Lasso

One can push the structured sparsity idea one step further by promoting group/block sparsity through a linear
operator, i.e. analysis-type sparsity. Given a linear operator D : Rq → Rp (seen as a matrix), the analysis
group sparsity penalty is

J(θ) =
∥∥D>θ∥∥

1,2
. (2.6)

This encompasses the 2-D isotropic total variation [57]. For when all groups of cardinality one, we have the
analysis-`1 penalty (a.k.a. general Lasso), which encapsulates several important penalties including that of
the 1-D total variation [57], and the fused Lasso [64]. The overlapping group Lasso [34] is also a special
case of (2.4) by taking D> to be an operator that exactract the blocks [48, 17] (in which case D has even
orthogonal rows).
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Let Λθ =
⋃
i∈suppB(D>θ) bi and Λcθ its complement. From Lemma 2.1(ii) and (2.5), we get

Tθ = Ker(D>Λcθ
), eθ = PTθDe

‖‖1,2
D>θ

where
(
e
‖‖1,2
D>θ

)
bi

=


(D>θ)

bi∥∥∥(D>θ)
bi

∥∥∥
2

if i ∈ suppB(D>θ)

0 otherwise.
(2.7)

If, in addition,D is surjective, then by virtue of Lemma 2.1(ii) we also have

J◦(ω) =
∥∥D+ω

∥∥
∞,2

def
= max

i∈{1,...,L}

∥∥(D+ω)bi
∥∥

2
(2.8)

2.5.4 Anti-sparsity

If the vector to be estimated is expected to be flat (anti-sparse), this can be captured using the `∞ norm (a.k.a.
Tchebychev norm) as prior

J(θ) =
∥∥θ∥∥∞ = max

i∈{1,...,p}

∣∣θi∣∣. (2.9)

The `∞ regularization has found applications in several fields [35, 42, 58]. Suppose that θ 6= 0, and define
the saturation support of θ as Isat

θ
def
=
{
i ∈ {1, . . . , p} :

∣∣θi∣∣ = ‖θ‖∞
}
6= ∅. From [69, Proposition 14],

we have

Tθ =
{
θ ∈ Rp : θIsat

θ
∈ R sign(θIsat

θ
)
}
, (eθ)i =

{
sign(θi)/|Isat

θ | if i ∈ Isat
θ

0 otherwise
, and J◦ = ‖·‖1 .

(2.10)

2.5.5 Nuclear norm

The natural extension of low-complexity priors to matrices θ ∈ Rp1×p2 is to penalize the singular values of
the matrix. Let rank(θ) = r, and θ = U diag(λ(θ))V > be a reduced rank-r SVD decomposition, where
U ∈ Rp1×r and V ∈ Rp2×r have orthonormal columns, and λ(θ) ∈ (R+ \ {0})r is the vector of singular
values (λ1(θ), · · · , λr(θ)) in non-increasing order. The nuclear norm of θ is

J(θ) =
∥∥θ∥∥∗ =

∥∥λ(θ)
∥∥

1
. (2.11)

This penalty is the best convex surrogate to enforce a low-rank prior. It has been widely used for various
applications [50, 10, 9, 31, 11].

Following e.g. [68, Example 21], we have

Tθ =
{
UA>+BV > : A ∈ Rp2×r,B ∈ Rp1×r}, eθ = UV > and J◦(ω) = |||ω|||2→2 =

∥∥λ(ω)
∥∥
∞.

(2.12)

3 Oracle inequalities for a general loss

Before delving into the details, in the sequel, we will need a bit of notations.
We recall Tθ and eθ the model subspace and vector associated to θ (see Definition 2.1). Denote Sθ =

T⊥θ . Given two coercive finite-valued gauges J1 = γC1 and J2 = γC2 , and a linear operator A, we define
|||A|||J1→J2

the operator bound as
|||A|||J1→J2

= sup
θ∈C1

J2(Aθ).

10



Note that |||A|||J1→J2
is bounded (this follows from Lemma A.3(v)). Furthermore, we have from Lemma A.4

that

|||A|||J1→J2
= sup
θ∈C1

sup
ω∈C◦2
〈A>ω,θ〉 = sup

ω∈C◦2
sup
θ∈C1
〈A>ω,θ〉 = sup

ω∈C◦2
J◦1 (A>ω) =

∣∣∣∣∣∣A>∣∣∣∣∣∣
J◦2→J◦1

.

In the following, whenever it is clear from the context, to lighten notation when Ji is a norm, we write the
subscript of the norm instead of Ji (e.g. p for the `p norm, ∗ for the nuclear norm, etc.).

Our main result will involve a measure of well-conditionedness of the design matrix X when restricted
to some subspace T . More precisely, for c > 0, we introduce the coefficient

Υ(T, c) = inf{
ω∈Rp : J(ωS)<cJ(ωT )

} |||PT |||2→J
∥∥Xω∥∥

2

n1/2(J(ωT )− J(ωS)/c)
. (3.1)

This generalizes the compatibility factor introduced in [74] for the Lasso (and used in [21]). The experi-
enced reader may have recognized that this factor is reminescent of the null space property and restricted
injectivity that play a central role in the analysis of the performance guarantees of penalized estimators (1.1);
see [30, 69, 71, 68, 70]. One can see in particular that Υ(T, c) is larger than the smallest singular value ofXT .

The oracle inequalites will provided in terms of the loss

Rn
(
θ,θ0

)
= 1

nDF (Xθ,Xθ0).

3.1 Oracle inequality for θ̂
EWA

n

We are now ready to establish our first main result: an oracle inequality for the EWA estimator (1.3).

Theorem 3.1. Consider the EWA estimator θ̂
EWA

n in (1.3) with the density (1.2), where F and J satisfy
Assumptions (H.1)-(H.2) and (H.3). Then, for any τ > 1 such that λn ≥ τJ◦

(
−X>∇F (Xθ0,y)

)
/n, the

following holds,

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)
|||PTθ |||2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
+ pβ. (3.2)

Remark 3.1.

1. It should be emphasized that Theorem 3.1 is actually a deterministic statement for a fixed choice of
λn. Probabilistic analysis will be required when the result is applied to particular statistical models
as we will see later. For this, we will use concentration inequalities in order to provide bounds that
hold with high probability over the data.

2. The oracle inequality is sharp. The remainder in it has two terms. The first one encodes the complexity
of the model promoted by J . The second one, pβ, captures the influence of the temperature parameter.
In particular, taking β sufficiently small of the order O

(
(pn)−1

)
, this term becomes O(n−1).
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3. When ϕ(t) = νt2/2, i.e. F (·,y) is ν-strongly convex, then ϕ+(t) = t2/(2ν), and the reminder term
becomes

λ2
n

(
τJ◦(eθ) + 1

)2|||PTθ |||22→J
2τ2νΥ

(
Tθ,

τJ◦(eθ)+1
τ−1

)2 . (3.3)

If, moreover,∇F is also κ-Lipschitz continuous, then it can be shown that Rn
(
θ,θ0

)
is equivalent to

a quadratic loss. This means that the oracle inequality in Theorem 3.1 can be stated in terms of the
quadratic prediction error. However, the inequality is not anymore sharp in this case as a constant
factor equal to the condition number κ/ν ≥ 1 naturally multiplies the right-hand side.

4. If J is such that eθ ∈ ∂J(θ) ⊂ C◦ (typically for a strong gauge by (2.1)), then J◦(eθ) ≤ 1 (in fact an
equality if θ 6= 0). Thus the term J◦(eθ) can be omitted in (3.2).

5. A close inspection of the proof of Theorem 3.1 reveals that the term pβ can be improved to the smaller
bound

pβ +
(
Vn(θ̂

EWA

n )− Eµn [Vn(θ)]
)
,

where the upper-bound is a consequence of Jensen inequality.

Proof. By convexity of J and assumption (H.1), we have for any η ∈ ∂Vn(θ) and any θ ∈ Rp,

DηVn
(
θ,θ

)
≥ 1

n
ϕ
(∥∥Xθ −Xθ∥∥

2

)
.

Since ϕ is non-decreasing and convex, ϕ ◦ ‖·‖2 is a convex function. Thus, taking the expectation w.r.t. to
µn on both sides and using Jensen inequality, we get

Vn(θ) ≥ Eµn [Vn(θ)] + Eµn
[
〈η,θ − θ〉

]
+

1

n
Eµn

[
ϕ
(∥∥Xθ −Xθ∥∥

2

)]
≥ Vn(θ̂

EWA

n ) + Eµn
[
〈η,θ − θ〉

]
+

1

n
ϕ
(∥∥Xθ −Xθ̂EWA

n

∥∥
2

)
.

This holds for any η ∈ ∂Vn(θ), and in particular at the minimal selection
(
∂Vn(θ)

)0 (see Section B for
details). It then follows from the pillar result in Proposition B.15 that

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= −pβ.

We thus deduce the inequality

Vn(θ̂
EWA

n )− Vn(θ) ≤ pβ − 1

n
ϕ
(∥∥Xθ̂EWA

n −Xθ
∥∥

2

)
, ∀θ ∈ Rp. (3.4)

By definition of the Bregman divergence, we have

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
=

1

n

(
F (Xθ̂

EWA

n ,y)− F (Xθ,y) + 〈−X>∇F (Xθ0,y)), θ̂
EWA

n − θ〉
)

=
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
1

n
〈−X>∇F (Xθ0,y), θ̂

EWA

n − θ〉

− λn
(
J(θ̂

EWA

n )− J(θ)
)
.

5In the appendix, we provide a self-contained proof based on a novel Moreau-Yosida regularization argument. In [21, Corollary 1
and 2], an alternative proof is given using an absolute continuity argument since µn is locally Lipschitz, hence a Sobolev function.

12



By virtue of the duality inequality (A.1), we have

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
1

n
J◦
(
−X>∇F (Xθ0,y)

)
J(θ̂

EWA

n − θ)

− λn
(
J(θ̂

EWA

n )− J(θ)
)

≤
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
λn
τ

(
J(θ̂

EWA

n − θ)− τ
(
J(θ̂

EWA

n )− J(θ)
))
.

Denote ω = θ̂
EWA

n − θ. By virtue of (H.3), Theorem 2.1 and (A.1), we obtain

J(ω)− τ
(
J(θ̂

EWA

n )− J(θ)
)
≤ J(ωTθ) + J(ωSθ)− τ〈eθ,ωTθ〉 − τJ(ωSθ)

≤ J(ωTθ) + J(ωSθ) + τJ◦(eθ)J(ωTθ)− τJ(ωSθ)

=
(
τJ◦(eθ) + 1

)
J(ωTθ)− (τ − 1)J(ωSθ)

≤
(
τJ◦(eθ) + 1

)(
J(ωTθ)− τ−1

τJ◦(eθ)+1J(ωSθ)
)
.

This inequality together with (3.4) (applied with θ = θ) and (3.1) yield

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤ pβ − 1

n
ϕ
(∥∥Xω∥∥

2

)
+
λn
(
τJ◦(eθ) + 1

)
|||PTθ |||2→J

∥∥Xω∥∥
2

n1/2τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
≤ pβ +

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)
|||PTθ |||2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
,

where we applied Fenchel-Young inequality (1.5) to get the last bound. Taking the infimum over θ ∈ Rp
yields the desired result.

Stratifiable functions Theorem 3.1 has a nice instanciation when Rp can be partitioned into a collection
of subsets {Mi}i that form a stratification of Rp. That is, Rp is a finite disjoint union ∪iMi such that the
partitioning setsMi (called strata) must fit nicely together and the stratification is endowed with a partial
ordering for the closure operation. For example, it is known that a polyhedral function has a polyhedral
stratification, and more generally, semialgebraic functions induce stratifications into finite disjoint unions of
manifolds; see, e.g., [18]. Another example is that of partly smooth convex functions thoroughly studied in
[69, 71, 68, 70] for various statistical and inverse problems. These functions induce a stratification into strata
that areC2-smooth submanifolds of Rp. In turns out that all popular penalty functions discussed in this paper
are partly smooth (see [68, 70]). Let’s denote M the set of strata associated to J . With this notation at hand,
the oracle inequality (3.2) now reads

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
M∈M
θ∈M

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)
|||PTθ |||2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
+ pβ. (3.5)

3.2 Oracle inequality for θ̂
PEN

n

The next result establishes that θ̂
PEN

n satisfies a sharp prediction oracle inequality that we will compare to
(3.2).
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Theorem 3.2. Consider the penalized estimator θ̂
PEN

n in (1.1), where F and J satisfy Assumptions (H.1)
and (H.3). Then, for any τ > 1 such that λn ≥ τJ◦

(
−X>∇F (Xθ0,y)

)
/n, the following holds,

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)
|||PTθ |||2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
. (3.6)

Proof. The proof follows the same lines as that of Theorem 3.1 except that we use the fact that θ̂
PEN

n is a
global minimizer of Vn, i.e. 0 ∈ ∂Vn(θ̂

PEN

n ). Indeed, we have for any θ ∈ Rp

Vn(θ) ≥ Vn(θ̂
PEN

n ) +
1

n
ϕ
(∥∥Xθ −Xθ̂PEN

n

∥∥
2

)
. (3.7)

Continuing exactly as just after (3.4), replacing θ̂
EWA

n with θ̂
PEN

n and invoking (3.7) instead of (3.4), we
arrive at the claimed result.

Remark 3.2.

1. Observe that the penalized estimator θ̂
PEN

n does not require the moment assumption (H.2) for (3.6) to
hold. The convexity assumption on ϕ in (H.1), which was important to apply Jensen’s inequality in the
proof of (3.2), is not needed either to get (3.6).

2. As we remarked for Theorem 3.1, Theorem 3.2 is also a deterministic statement for a fixed choice of
λn that holds for any minimizer θ̂

PEN

n , which is not unique in general. The condition on λn is similar
to the one in [45] where authors established different guarantees for θ̂

PEN

n .

3.3 Discussion of θ̂
EWA

n vs θ̂
PEN

n

One clearly sees that the difference between the prediction performance of θ̂
EWA

n and θ̂
PEN

n lies in the term
pβ (or rather its lower-bound in Remark 3.1-5). In particular, for β = O

(
(pn)−1

)
, this term is on the order

O(n−1). This choice can be refined in most situations. In particular, for the case of quadratic loss, one can
take β = O

(
λ2
n

∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J/p

)
, hence leading to remainder terms in (3.2) and (3.6) of the same order.

In view of this discussion, one may wonder what are the actual benefits of using θ̂
EWA

n instead of θ̂
PEN

n .
Generalizing the arguments of [21], we will show that θ̂

EWA

n enjoys one main advantage compared to θ̂
PEN

n .
To simplify the discussion, we will focus on the case of linear regression (4.1) with Gaussian noise ξ ∼
N (0, σ2Idn) and F is the quadratic loss.
The chief advantage of θ̂

EWA

n is its stability as a function of the data and hyperparameters. It has been shown
that for a large class of penalties J , including those studied here, the predictionXθ̂

PEN

n is a smooth function
of y outside a set of Lebesgue measure zero; see [68, Theorem 2]. Those authors also provided in [68,
Theorem 3] an expression of the Stein unbiased risk estimator (SURE). For instance, when J is the gauge of
a polytope, the SURE is given by∥∥y −Xθ̂PEN

n

∥∥2

2
+ σ2 dim

(
T
θ̂

PEN
n

)
− nσ2.

The SURE was advocated as an automatic and objective way to choose λ. However, one can see that
dim

(
T
θ̂

PEN
n

)
is a non-smooth function of λ, which may lead to numerical instabilities in practice. In contrast,
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the SURE of θ̂
EWA

n , whose closed-form is given in [21, (10)], is such thatXθ̂
EWA

n is a continuous function
of (λ, β) ∈]0,+∞[2 and y ∈ Rn. This better regularity suggests that it would be wiser to use the SURE
associated to θ̂

EWA

n for an automatic choice of λ.

3.4 Oracle inequalities in probability

It remains to check when the event E = {λn ≥ τJ◦
(
−X>∇F (Xθ0,y)

)
/n} holds with high probability

when y is random. We will use concentration inequalities in order to provide bounds that hold with high
probability over the data. Toward this goal, we will need the following assumption.

(H.4) y = (y1,y2, · · · ,yn) are independent random observations, and F (u,y) =
∑n

i=1 fi(ui,yi),
fi : R× R→ R. Moreover,

(i) E
[∣∣fi((Xθ0)i,yi)

∣∣] < +∞, ∀1 ≤ i ≤ n ;

(ii)
∣∣f ′i((Xθ0)i, t)

∣∣ ≤ g(t), where E [g(yi)] < +∞, ∀1 ≤ i ≤ n;

(iii) Bernstein moment condition: ∀1 ≤ i ≤ n and all integers m ≥ 2, E
[∣∣f ′i((Xθ0)i,yi)

∣∣m] ≤
m!κm−2σ2

i /2 for some constants κ > 0, σi > 0 independent of n.

Let σ2 = max1≤i≤n σ
2
i .

Observe that under (H.4), and by virtue of Lemma A.4(iv) and [33, Proposition V.3.3.4], we have

J◦
(
−X>∇F (Xθ0,y)

)
= σC

(
−X>∇F (Xθ0,y)

)
= sup
z∈X(C)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi. (3.8)

Thus, checking the event E amounts to establishing a deviation inequality for the supremum of an empirical
process6 above its mean under the weak Bernstein moment condition (H.4)(iii), which essentially requires
that the f ′i((Xθ0)i,yi) have sub-exponential tails, We will first tackle the case where C is the convex hull of
a finite set (i.e. C is a polytope).

3.4.1 Polyhedral penalty

We here suppose that J is a finite-valued gauge of C = conv (V), where V is finite, i.e. C is a polytope with
vertices [54, Corollary 19.1.1]. Our first oracle inequality in probability is the following.

Proposition 3.1. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assumptions (H.1),

(H.2), (H.3) and (H.4), and C is a polytope with vertices V . Suppose that rank(X) = n and let s(X) =
maxv∈V

∥∥Xv∥∥∞. Choose

λn ≥ τσs(X)

√
2δ log(|V|)

n

(
1 +
√

2κ/σ

√
δ log(|V|)

n

)
,

for some τ > 1 and δ > 1. Then (3.2) and (3.6) hold with probability at least 1− 2|V|1−δ.
6As X(C) is compact, it has a dense countable subset.
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Proof. In view of Assumptions (H.1) and (H.4), one can differentiate under the expectation sign (Leibniz
rule) to conclude that E [F (X·,y)] is C1 at θ0 and ∇E [F (Xθ0,y)] = X>E [∇F (Xθ0,y)]. As θ0

minimizes the population risk, one has∇E [F (Xθ0,y)] = 0. Using the rank assumption onX , we deduce
that

E
[
f ′i((Xθ0)i,yi)

]
= 0, ∀1 ≤ i ≤ n.

Moreover, (3.8) specializes to

J◦
(
−X>∇F (Xθ0,y)

)
= sup
z∈X(V)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi.

Let t′ = λnn/τ and t = t′/s(X). By the union bound and (3.8), we have

P
(
J◦
(
−X>∇F (Xθ0,y)

)
≥ t′

)
≤ P

(
max
z∈X(V)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi ≥ t′
)

≤ |V| max
z∈X(V)

P

(∣∣ n∑
i=1

f ′i((Xθ0)i,yi)zi
∣∣ ≥ t′)

≤ |V|P

(
s(X)

∣∣ n∑
i=1

f ′i((Xθ0)i,yi)
∣∣ ≥ t′)

= |V|P

(∣∣ n∑
i=1

f ′i((Xθ0)i,yi)
∣∣ ≥ t) .

Owing to assumption (H.4)(iii), we are in position to apply the Bernstein inequality to get

P
(
J◦
(
−X>∇F (Xθ0,y)

)
≥ t
)
≤ 2|V| exp

(
− t2

2(κt+ nσ2)

)
.

Every t such that
t ≥

√
δ log(|V|)

(
κ
√
δ log(|V|) +

√
κ2δ log(|V|) + 2nσ2

)
,

satisfies t2 ≥ 2δ log(|V|)(κt+ nσ2). Applying the trivial inequality
√
a+ b ≤

√
a+
√
b to the bound on t,

we conclude.

Remark 3.3. In the monograph [7, Lemma 14.12], the authors derived an exponential deviation inequality
for the supremum of an empirical process with finite V and possibly unbounded empirical processes under a
Bernstein moment condition similar to ours (in fact ours implies theirs). The very last part of our proof can
be obtained by applying their result. We detailed it here for the sake of completeness.

Lasso To lighten the notation, let Iθ = supp(θ). From (2.3), it is easy to see that

|||PTθ |||2→1 =
√
|Iθ| and J◦(eθ) = ‖sign(θIθ)‖∞ ≤ 1,

where last bound holds as an equality whenever θ 6= 0. Further the `1 norm is the gauge of the cross-polytope
(i.e. the unit `1 ball). Its vertex set V is the set of unit-norm one-sparse vectors (±ai)1≤i≤p, where we recall
(ai)1≤i≤p the canonical basis. Thus

|V| = 2p and s(X) = max
v∈V
‖Xv‖∞ = max

1≤i≤p
‖Xi‖∞.

Inserting this into Proposition 3.1, we obtain the following corollary.
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Corollary 3.1. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where where J is the Lasso penalty and F satisfies
Assumptions (H.1), (H.2) and (H.4). Suppose that rank(X) = n and take

λn ≥ τσs(X)

√
2δ log(2p)

n

(
1 +
√

2κ/σ

√
δ log(2p)

n

)
,

for some τ > 1 and δ > 1. Then, with probability at least 1− 2(2p)1−δ, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
Rn
(
θ,θ0

)
+ 1

nϕ
+

(
λn
√
n(τ+1)

√
|I|

τΥ
(

Span{ai}i∈I ,
τ+1
τ−1

)
))

+ pβ, (3.9)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
Rn
(
θ,θ0

)
+ 1

nϕ
+

(
λn
√
n(τ+1)

√
|I|

τΥ
(

Span{ai}i∈I ,
τ+1
τ−1

)
))

. (3.10)

For θ̂
PEN

n , we recover a similar scaling for λn and the oracle inequality as in [72], though in the latter the
oracle inequality is not sharp unlike ours. Note that the above oracle inequality extends readily to the case of
analysis/fused Lasso

∥∥D> · ∥∥
1

whereD is surjective. We leave the details to the interested reader (see also
the analysis group Lasso example in Section 4).

Anti-sparsity From Section 2.5.4, recall the saturation support Isat
θ of θ. From (2.10), we get

|||PTθ |||2→∞ = 1 and J◦(eθ) =
∥∥ sign(θIsat

θ
)
∥∥

1
/|Isat

θ | ≤ 1,

with equality whenever θ 6= 0. In addition, the `∞ norm is the gauge of the hypercube whose vertex set is
V = {±1}p. Thus

|V| = 2p.

We have the following oracle inequalities.

Corollary 3.2. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where where J is anti-sparsity penalty (2.9), and
F satisfies Assumptions (H.1), (H.2) and (H.4). Suppose that rank(X) = n and let s(X) = maxi,j |Xi,j |.
Choose

λn ≥ τσs(X)
√

2δ log(2)

√
p

n

(
1 + 2κ/σ

√
δ log(2)

√
p

n

)
,

for some τ > 1 and δ > 1. Then, with probability at least 1− 2−p(δ−1)+1, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
Rn
(
θ,θ0

)
+ 1

nϕ
+

(
λn
√
n(τ+1)

τΥ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)
))

+ pβ, (3.11)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
Rn
(
θ,θ0

)
+ 1

nϕ
+

(
λn
√
n(τ+1)

τΥ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)
))

. (3.12)

We are not aware of any result of this kind in the literature. The bound imposed on X is similar to what
is generally assumed in the vector quantization literature [42, 58].
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3.4.2 General penalty

Extending the above reasoning to a general penalty requires a deviation inequality for the supremum of an
empirical process in (3.8) under the Bernstein moment condition (H.4)(iii), but without the need of uniform
boundedness. This can be achieved via generic chaining along a tree using entropy with bracketing; see [75,
Theorem 8]. The resulting deviation bound will thus depend on the entropies with bracketing. These quan-
tities capture the complexity of the set X(C) but are intricate to compute in general. This subject deserves
further investigation that we leave to a future work.

Remark 3.4 (Group Lasso). Using the union bound, we have

P
(

max
i∈{1,...,L}

∥∥X>bi∇F (Xθ0,y)
∥∥

2
≥ λnn/τ

)
≤ Lmax

i
P
(∥∥X>bi∇F (Xθ0,y)

∥∥
2
≥ λnn/τ

)
.

This requires a concentration inequality for quadratic forms of independent random variables satisfying the
Bernstein moment assumption above. We are not aware of any such result. But if our moment condition is
strengthened to

E
[∣∣f ′i((Xθ0)i,yi)

∣∣2m] ≤ m!κ2(m−1)σ2
i /2, ∀1 ≤ i ≤ n,∀m ≥ 1,

then one can use [4, Theorem 3]. Indeed, assuming maxi ‖Xi‖2 ≤
√
n, which is a natural normalization

on the design, we have by independence that

E
[∥∥X>bi∇F (Xθ0,y)

∥∥
2

]
≤ E

[∥∥X>bi∇F (Xθ0,y)
∥∥2

2

]1/2
= σ

√
tr(X>biXbi)/2= σ

√∑
j∈bi

∥∥Xj

∥∥2

2
/2

≤ σ
√
Kn/2.

It then follows that taking

λn ≥ τ
σ
√
K + 16κ

√
δ log(L)√

n
, δ > 1,

the oracle inequalities (4.5) and (4.6) hold for the group Lasso with probability at least 1−L1−δ. A similar
result can be proved for the analysis group Lasso just as well (see Section 4.3.3).

4 Oracle inequalities for low-complexity linear regression

In this section, we consider the classical linear regression problem where the n response-covariate pairs
(yi,Xi) are linked as

y = Xθ0 + ξ, (4.1)

where ξ is a noise vector. The data loss will be set to F (u,y) = 1
2

∥∥y − u∥∥2

2
. This in turn entails that

ϕ = ϕ+ = 1
2(·)2 on R+ and Rn

(
θ,θ0

)
= 1

2n

∥∥Xθ −Xθ0

∥∥2

2
.

In this section, we assume that the noise ξ is a zero-mean sub-Gaussian vector in Rn with parameter σ.
That is, its one-dimensional marginals 〈ξ, z〉 are sub-Gaussian random variables ∀z ∈ Rn, i.e. they satisfy

P
(∣∣〈ξ, z〉∣∣ ≥ t) ≤ 2e−t

2/(2‖z‖22σ2), ∀z ∈ Rn. (4.2)

In this case, the bounds of Section 3.4 can be improved.
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4.1 General penalty

As we will shortly show, the event E will depend on the Gaussian width, a summary geometric quantity
which, informally speaking, measures the size of the bulk of a set in Rn.

Definition 4.1. The Gaussian width of a subset S ⊂ Rn is defined as

w(S)
def
= E [σS(g)] , where g ∼ N (0, Idn).

The concept of Gaussian width has appeared in the literature in different contexts. In particular, it has
been used to establish sample complexity bounds to ensure exact recovery (noiseless case) and mean-square
estimation stability (noisy case) for low-complexity penalized estimators from Gaussian measurements; see
e.g. [56, 15, 65, 76, 70].

The Gaussian width has deep connections to convex geometry and it enjoys many useful properties. It
is well-known that it is positively homogeneous, monotonic w.r.t. inclusion, and invariant under orthogonal
transformations. Moreover, w(conv (S)) = w(S). From Lemma A.2(ii)-(iii), w(S) is a non-negative finite
quantity whenever the set S is bounded and contains the origin.

We are now ready to state our oracle inequality in probability with sub-Gaussian noise.

Proposition 4.1. Let the data generated by (4.1) where ξ is a zero-mean sub-Gaussian random vector with
parameter σ. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assumptions (H.1)-

(H.2) and (H.3). Suppose that λn ≥
τσc1
√

2 log(c2/δ)w(X(C))
n , for some τ > 1 and 0 < δ < min(c2, 1),

where c1 and c2 are positive absolute constants. Then with probability at least 1 − δ, (3.2) and (3.6) hold
with the remainder term given by (3.3) with ν = 1.

The proof requires sophisticated ideas from the theory of generic chaining [62], but we only apply these
results. The constants c1 and c2 can be traced back to the proof of these results as detailed in [62].

Proof. First, from (4.2), we have the bound

P
(∣∣〈ξ, z − z′〉∣∣ ≥ t) ≤ 2e−t

2/(2‖z−z′‖22σ2), ∀z, z′ ∈ Rn,

i.e. the increment condition [62, (0.4)] is verified. Thus combining (3.8) with the probability bound in [62,
page 11], the generic chaining theorem [62, Theorem 1.2.6] and the majorizing measure theorem [62, The-
orem 2.1.1], we have

P
(
J◦(X>ξ) ≥ λnn/τ

)
≤ P

(
sup

z∈X(C)
〈ξ, z〉 ≥ σc1

√
2 log(c2/δ)w(X(C))

)

≤ c2 exp

(
−σ

22 log(c2/δ)

2σ2

)
= δ.

If the noise is Gaussian, an enhanced version can be proved by invoking Gaussian concentration of Lips-
chitz functions [39].

Proposition 4.2. Let the data generated by (4.1) with noise ξ ∼ N (0, σ2Idn). Consider the estimators
θ̂

EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assumptions (H.1)-(H.2) and (H.3). Suppose that λn ≥

(1+δ)τσw(X(C))
n , for some τ > 1 and δ > 0. Then with probability at least 1 − exp

(
− δ2w(X(C))2

2|||X|||2J→2

)
, (3.2)

and (3.6) hold with the remainder term given by (3.3) with ν = 1.
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Proof. Thanks to sublinearity (see Lemma A.3(i) and Lemma A.4), the function ξ 7→ J◦(X>ξ) is Lipschitz
continuous with Lipschitz constant

∣∣∣∣∣∣X>∣∣∣∣∣∣
2→J◦ = |||X|||J→2. From (3.8), we also have

E
[
J◦
(
X>ξ

)]
= σw(X(C)).

Observe that X(C) is a convex compact set containing the origin. Setting ε = λnn/τ − σw(X(C)) ≥
δσw(X(C)), it follows from (3.8) and the Gaussian concentration of Lipschitz functions [39] that

P
(
J◦(X>ξ) ≥ λnn/τ

)
≤ P

(
J◦(X>ξ)− E

[
J◦(X>ξ)

]
≥ ε
)

≤ P
(
J◦(X>ξ/σ)− w(X(C)) ≥ δw(X(C))

)
≤ exp

(
−δ

2w(X(C))2

2|||X|||2J→2

)
.

Estimating theoretically the Gaussian width of a set7 is a non-trivial problem that has been extensively
studied in the areas of probability in Banach spaces and stochastic processes. There are classical bounds on
the Gaussian width (Sudakov’s and Dudley’s inequalities), but they are difficult to estimate in most cases
and neither of these bounds is tight for all sets. When the set is a convex cone (intersected with a sphere),
tractable estimates based on polarity arguments were proposed in, e.g., [15].

4.2 Polyhedral penalty

When C and is polytope, enhanced oracle inequalities can be obtained by invoking a simple union bound
argument.

Proposition 4.3. Let the data generated by (4.1) where ξ is a zero-mean sub-Gaussian random vector with
parameter σ. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assumptions (H.1)-

(H.2) and (H.3), and moreover C is a polytope with verticesV . Suppose thatλn ≥
τσ
(

maxv∈V‖Xv‖2
)√

2δ log(|V|)
n ,

for some τ > 1 and δ > 1. Then with probability at least 1−2|V|1−δ, (3.2) and (3.6) hold with the remainder
term given by (3.3) with ν = 1.

In particular, if maxv∈V ‖Xv‖2 = C
√
n, for a positive constantC, then one can takeλn ≥ Cτσ

√
2δ log(|V|)

n .

Proof. From (3.8) we have

J◦
(
X>ξ

)
= max

v∈C
〈Xv, ξ〉 = max

v∈V
〈Xv, ξ〉,

where in the last inequality, we used the fact that a convex function attains its maximum on C at an extreme

7Not to mention its image with a linear operator as for X(C).
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point V . Let ε = σ
(

maxv∈V ‖Xv‖2
)√

2δ log(|V|). By the union bound, (4.2) and (3.8), we have

P
(
J◦
(
X>ξ

)
≥ λnn/τ

)
≤ P

(
max
v∈V

〈Xv, ξ〉 ≥ ε
)

≤ |V|max
v∈V

P (〈Xv, ξ〉 ≥ ε)

≤ |V|max
v∈V

P
(∣∣〈Xv, ξ〉∣∣ ≥ ε)

≤ 2|V| exp
(
− ε2/

(
2σ2 max

v∈V
‖Xv‖22

))
≤ 2|V|1−δ.

4.3 Applications

In this section, we exemplify our oracle inequalities for the penalties described in Section 2.5.

4.3.1 Lasso

Recall the derivations for the Lasso in Section 3.4.1. We obtain the following corollary of Proposition 4.3.

Corollary 4.1. Let the data generated by (4.1) where ξ is a zero-mean sub-Gaussian random vector with pa-
rameter σ. Assume thatX is such that maxi ‖Xi‖2 ≤

√
n. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where

J is the Lasso penalty (2.2) and F satisfies Assumptions (H.1)-(H.2). Suppose that λn ≥ τσ
√

2δ log(2p)
n , for

some τ > 1 and δ > 1. Then, with probability at least 1− 2(2p)1−δ, the following holds

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2|I|

τ2Υ
(

Span{ai}i∈I ,
τ+1
τ−1

)2

)
+ 2pβ, (4.3)

and

1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2|I|

τ2Υ
(

Span{ai}i∈I ,
τ+1
τ−1

)2

)
. (4.4)

The normalization on the design is natural. The remainder term grows as |I| log(p)
n . The oracle inequality

(4.4) recovers [21, Theorem 1] in the exactly sparse case, and (4.4) the one in [60, Theorem 4] (see also
[37, Theorem 11] and [22, Theorem 2]). It is worth mentioning, however, that [21, Theorem 1] handles the
inexactly sparse case while we do not. For the choice β = O

(
σ2|I| log(2p)/(pn)

)
, the remainder terms

in (4.3) and (4.4) are of the same order. Observe that this choice of the temperature parameter is optimal
in view of the results of [12]. These authors proved that for the `1 penalty, orthonormal design, noise ξ ∼
N (0, σ2Idn), and all choices of the form λ = Cσ

√
log(n)/n, then the pseudo-posterior µn in (1.2) with

temparature β = σ2/n puts asymptotically no mass on the ball centered at θ0 of radius ∼
√

log(n)/n.
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4.3.2 Group Lasso

Recall the notations in Section 2.5.2, and denote Iθ = suppB(θ) the set indexing active blocks in θ. From
(2.5), we have

|||PTθ |||2→J =
√
|Iθ| and J◦(eθ) = ‖eθ‖∞,2 ≤ 1,

where the last bound holds as an equality whenever θ 6= 0.
We have the following oracle inequalities as corollaries of Proposition 4.1 and Proposition 4.2.

Corollary 4.2. Let the data generated by (4.1). Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where F satisfies
Assumptions (H.1)-(H.2), and J is the group Lasso (2.4) with L non-overlapping blocks of equal sizeK. Let
s(X) =

√
maxi

∣∣∣∣∣∣X>biXbi

∣∣∣∣∣∣
2→2

/n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 3τσs(X)c1

√
2 log(c2/δ)

(√
K+
√

2 log(L)
)

√
n

, for some τ > 1 and 0 < δ < min(c2, 1), where c1

and c2 are the positive absolute constants in Proposition 4.1. Then, with probability at least 1− δ, the
following holds

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2|I|

τ2Υ
(

Span{aj}j∈bi,i∈I ,
τ+1
τ−1

)2

)
+ 2pβ,

(4.5)

and

1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2|I|

τ2Υ
(

Span{aj}j∈bi,i∈I ,
τ+1
τ−1

)2

)
. (4.6)

(ii) ξ ∼ N (0, σ2Idn): suppose that λn ≥ τσs(X)
√
K+
√

2δ log(L)√
n

, for some τ > 1 and δ > 1. Then,
with probability at least 1− L1−δ, (4.5) and (4.6) hold.

When s(X) = O(1)8, the first remainder term is on the order
|I|
(√

K+
√

2 log(L)
)2

n . This is similar to the
scaling that has been provided in the literature for EWA with other group sparsity priors and noises [53, 29].
Similar rates were given for θ̂

PEN

n with the group Lasso in [45, 41, 73].

Proof.

(i) This is a consequence of Proposition 4.1, for which we need to bound

w(X(C)) = E
[

max
i∈{1,...,L}

∥∥X>big∥∥2

]
.

8This is for instance the case if X is drawn from the standard Gaussian ensemble and K = O(n) (the O(·) is in fact even o(·)
as the remainder term is supposed to go to 0 as n→ +∞). In this case, classical concentration bounds of the largest eigenvalue of
a Wishart matrix allow to conclude that s(X) = O(1 +

√
K/n) = O(1) with high probabilty.
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We first have, for any block bi

E
[∥∥X>big∥∥2

]
≤ E

[∥∥X>big∥∥2

2

]1/2
≤ s(X)

√
Kn.

Furthermore,
∥∥X>bi · ∥∥2

is Lipschitz continuous with Lipschitz constant s(X)
√
n. Thus the union

bound and Gaussian concentration of Lipschitz functions [39] yield, for any t > 0,

P
(

max
i∈{1,...,L}

∥∥X>big∥∥2
≥ s(X)

√
Kn+ t

)
≤

L∑
i=1

P
(∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ t
)

≤ L exp

(
− t2

2s(X)2n

)
.

Let κ = s(X)
(√

Kn+
√

2n log(L)
)

. w(X(C)) can be expressed as

w(X(C)) =

∫ ∞
0

P
(

max
i∈{1,...,L}

∥∥X>big∥∥2
≥ u

)
du ≤

∫ κ

0
du+

∫ ∞
κ

e−
(u−s(X)

√
Kn)2−2s(X)2n log(L)

2n du

= κ+ s(X)
√
n

∫ ∞
κ/(s(X)

√
n)
e−

(s−
√
K)2−2 log(L)

2 du

≤ κ+ s(X)
√
n

∫ ∞
κ/(s(X)

√
n)
e−

s−κ/(s(X)
√
n)

2 du = κ+ 2s(X)
√
n ≤ 3κ.

(ii) The proof follows the lines of Proposition 4.2 where we additionally use the union bound. Indeed,

P
(

max
i∈{1,...,L}

∥∥X>biξ∥∥2
≥ λnn/τ

)
≤

L∑
i=1

P
(∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ λnn/τ − E

[∥∥X>biξ∥∥2

])
≤

L∑
i=1

P
(∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ λnn/τ − σs(X)

√
Kn
)

≤
L∑
i=1

P
(∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ σs(X)

√
2δn log(L)

)
≤ L exp (−δ log(L)) = L1−δ,

where used the Gaussian concentration of Lipschitz functions [39] in the last inequality.

We observe in passing that another way to prove the oracle inequalities in the sub-Gaussian is to use
Dudley’s inequality on the sphere in RK after applying a union bound on the L blocks. In addition, in the
Gaussian case, the (similar) bound λn ≥ 3δτσs(X)

√
K+
√

2 log(L)√
n

can be obtained by combining Proposi-
tion 4.2 and the estimate w(X(C)) ≤ 3s(X)(

√
Kn+

√
2n log(L)) in the proof of (i). The corresponding

probability of success would be at least 1− L−9(δ−1)2 .
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4.3.3 Analysis group Lasso

We now turn to the prior penalty (2.6). Recall the notations in Section 2.5.3, and remind Λθ =
⋃
i∈suppB(D>θ) bi.

We assume that D is a frame of Rp, hence surjective, meaning that there exist c, d > 0 such that for any
ω ∈ Rp

d ‖ω‖22 ≤
∥∥D>ω∥∥2

2
≤ c ‖ω‖22 .

This together with (2.7)-(2.8) and Cauchy-Schwarz inequality entail

|||PTθ |||2→J = sup
‖ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2
≤
√
c sup
‖D>ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2

=
√
c sup∥∥∥D>ΛθωTθ∥∥∥2

≤1

∥∥D>ΛθωTθ∥∥1,2

=
√
c

√
|suppB(D>θ)|.

Note, however, that from (2.7), we do not have in general C(D,θ)
def
=

∥∥∥∥D+ PKer(D>
Λc
θ

)De
‖‖1,2
D>θ

∥∥∥∥
∞,2
≤ 1.

With exactly the same arguments to those for proving Corollary 4.2, replacing X by XD, we arrive at
the following oracle inequalities.

Corollary 4.3. Let the data generated by (4.1). Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where F satisfies
Assumptions (H.1)-(H.2), and J is the analysis group Lasso (2.6) with L blocks of equal size K. Assume
thatD is a frame, and le s(XD) =

√
maxi

∣∣∣∣∣∣D>biX>XDbi

∣∣∣∣∣∣
2→2

/n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 3τσs(XD)c1

√
log(c2/δ)

(√
K+
√

2 log(L)
)

√
n

, for some τ > 1 and 0 < δ < min(c2, 1), where
c1 and c2 are the positive absolute constants in Proposition 4.1. Then, with probability at least 1− δ,
the following holds

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

 1
n

∥∥Xθ −Xθ0

∥∥2

2
+

cλ2
n

(
τC(D,θ)+1

)2
|I|

τ2Υ

(
Ker(D>

Λc
θ

),
τC(D,θ)+1

τ−1

)2

+ 2pβ,

(4.7)

and

1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

 1
n

∥∥Xθ −Xθ0

∥∥2

2
+

cλ2
n

(
τC(D,θ)+1

)2
|I|

τ2Υ

(
Ker(D>

Λc
θ

),
τC(D,θ)+1

τ−1

)2

 (4.8)

(ii) ξ ∼ N (0, σ2Idn): suppose that λn ≥ τσs(XD)
√
K+
√

2δ log(L)√
n

, for some τ > 1 and δ > 1. Then,
with probability at least 1− L1−δ, (4.7) and (4.8) hold.
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To the best of our knowledge, this result is new to the literature. The scaling of the remainder term is the
same as in [29] and [53] with analysis sparsity priors different from ours (the authors in the latter also assume
thatD is invertible).

4.3.4 Anti-sparsity

Recall the derivations for the `∞ norm example in Section 3.4.1. We have the following oracle inequalities
from Proposition 4.3.

Corollary 4.4. Let the data generated by (4.1) where ξ is a zero-mean sub-Gaussian random vector with
parameter σ. Assume that X is such that maxi,j |Xi,j | ≤ 1/p. Consider the estimators θ̂

EWA

n and θ̂
PEN

n ,
where F satisfies Assumptions (H.1)-(H.2), and J is the anti-sparsity penalty (2.9). Suppose that λn ≥
τσ
√

2δ log(2)
√

p
n , for some τ > 1 and δ > 1. Then, with probability at least 1− 2−p(δ−1)+1, the following

holds

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2

τ2Υ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)2

)
+ 2pβ, (4.9)

and

1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ λ2

n(τ+1)2

τ2Υ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)2

)
. (4.10)

The first remainder term scales as p
n which reflects that anti-sparsity regularization requires an overde-

termined regime to ensure good stability performance. This is in agreement with [69, Theorem 7]. This
phenomenon was also observed by [27] who studied sample complexity thresholds for noiseless recovery
from random projections of the hypercube.

4.3.5 Nuclear norm

We now turn to the nuclear norm case. Recall the notations of Section 2.5.5. For matrices θ ∈ Rp1×p2 ,
a measurement map X takes the form of a linear operator whose ith component is given by the Frobenius
scalar product

X(θ)i = tr((Xi)>θ) = 〈Xi,θ〉F,

where Xi is a matrix in Rp1×p2 . We denote ‖·‖F the associated norm. From (2.12), it is immediate to see
that whenever θ 6= 0,

J◦(eθ) =
∣∣∣∣∣∣UV >∣∣∣∣∣∣

2→2
= 1.

Moreover, from (2.12), we have

|||PTθ |||F→∗ = sup
θ′∈Tθ

∥∥θ′∥∥∗∥∥θ′∥∥
F

= sup
θ′∈Tθ

∥∥λ(θ′)
∥∥

1∥∥λ(θ′)
∥∥

2

≤ sup
θ′∈Tθ

√
rank(θ′) ≤

√
min(r, p1) + min(r, p2) ≤

√
2r.

To apply Proposition 4.1 and Proposition 4.2, we need to bound w(X(C)) (C is the nuclear ball), or equiva-
lently, to bound

E [|||X∗(g)|||2→2] = E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xigi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

]
, g ∼ N (0, σ2Idn),
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which is the expectation of the operator norm of a random series with matrix coefficients. Thus using [66,
Theorem 4.1.1(4.1.5)] to get this bound, and inserting it into Proposition 4.1 and Proposition 4.2, we get the
following oracle inequalities for the nuclear norm. Define

s(X) =

√√√√max

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi(Xi)>

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

,

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(Xi)>Xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

)
/n.

Corollary 4.5. Let the data generated by (4.1) with a linear operator X : Rp1×p2 → Rn. Consider the
estimators θ̂

EWA

n and θ̂
PEN

n , where F satisfies Assumptions (H.1)-(H.2), and J is the nuclear norm (2.11).

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 2τσs(X)c1

√
log(c2/δ) log(p1+p2)

n , for some τ > 1 and 0 < δ < min(c2, 1), where c1 and
c2 are the positive absolute constants in Proposition 4.1. Then, with probability at least 1 − δ, the
following holds

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf
r∈{1,...,min(p1,p2)}
θ: rank(θ)=r

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ 2λ2

n(τ+1)2r

τ2Υ
(
Tθ ,

τ+1
τ−1

)2

)
+ 2p1p2β,

(4.11)

and

1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf
r∈{1,...,min(p1,p2)}
θ: rank(θ)=r

(
1
n

∥∥Xθ −Xθ0

∥∥2

2
+ 2λ2

n(τ+1)2r

τ2Υ
(
Tθ ,

τ+1
τ−1

)2

)
. (4.12)

(ii) ξ ∼ N (0, σ2Idn): suppose that λn ≥ (1 + δ)τσs(X)

√
2 log(p1+p2)

n , for some τ > 1 and δ > 0.
Then, with probability at least 1− (p1 + p2)−δ

2 , (4.11) and (4.12) hold.

The set over which the infimum is taken just reminds us that the nuclear norm is partly smooth (see above)
relative to the constant rank manifold (which is a Riemannian submanifold ofRp1×p2) [25, Theorem 3.19]. In
the iid Gaussian noise case, we recover the same rate as in [21, Theorem 3] for θ̂

EWA

n and in [37, Theorem 2]
for θ̂

PEN

n . If s(X) = O(
√
p1 + p2), then the first remainder term scales as r(p1+p2) log(p1+p2)

n . For low-
rank matrix recovery, the same rate was also independently proved in [43, 61]9 for EWA and the posterior
conditional mean respectively, in the temperature regime β = C/n, though with completely different priors,
but without requiring the compatibility factor assumption.

The assumption s(X) = O(
√
p1 + p2) on the design is mild and verified in many situations. Indeed, by

Jensen’s inequality we have

s(X)2 ≤ n−1
n∑
i=1

max
(∣∣∣∣∣∣∣∣∣Xi(Xi)>

∣∣∣∣∣∣∣∣∣
2→2

,
∣∣∣∣∣∣∣∣∣(Xi)>Xi

∣∣∣∣∣∣∣∣∣
2→2

)
≤
∣∣∣∣∣∣Xi

∣∣∣∣∣∣2
2→2

.

If, for example, (Xi)i are independent copies of a standard random Gaussian matrix, then classical concen-
tration bounds of the largest eigenvalue of a Wishart matrix entail that

∣∣∣∣∣∣Xi
∣∣∣∣∣∣

2→2
concentrates around its

mean E
[∣∣∣∣∣∣Xi

∣∣∣∣∣∣
2→2

]
≤ √p1 +

√
p2 ≤

√
2(p1 + p2).

9The noise is iid Gaussian in [61] and subexponential in [43]. The assumptions on the design are also different.
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4.4 Discussion of minimax optimality

In this section, we discuss the optimality of the estimators θ̂
EWA

n and θ̂
PEN

n (we remind the reader that the
design X is fixed). Recall the discussion on stratification at the end of Section 3.1. LetM0 ∈ M be the
stratum active at θ0 ∈ M0. In this setting, choosing β = C(1 + δ)2σ2w(X(C))2

∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J/(pn

2) for
some constant C > 0, (3.5) and Proposition 4.2 ensure that

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤

(1 + δ)2σ2w(X(C))2
∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J

n2

 (
τJ◦(eθ0) + 1

)2
Υ
(
Tθ0 ,

τJ◦(eθ0
)+1

τ−1

)2 + C


1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤

(1 + δ)2σ2w(X(C))2
∣∣∣∣∣∣PTθ0

∣∣∣∣∣∣2
2→J

n2

(
τJ◦(eθ0) + 1

)2
Υ
(
Tθ0 ,

τJ◦(eθ0
)+1

τ−1

)2 ,

with high probability. In particular, for a polyhedral gauge penalty, in which caseM0 = Tθ0 (see [69]), and
under the normalization maxvV ‖Xv‖2 ≤

√
n and with the choice β = 2Cδσ2

∣∣∣∣∣∣PM0

∣∣∣∣∣∣2
2→J log(|V|)/(pn),

Proposition 4.3 entails

1
n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤

2δσ2
∣∣∣∣∣∣PM0

∣∣∣∣∣∣2
2→J log(|V|)
n

 (
τJ◦(eθ0) + 1

)2
Υ
(
M0,

τJ◦(eθ0
)+1

τ−1

)2 + C


1
n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤

2δσ2
∣∣∣∣∣∣PM0

∣∣∣∣∣∣2
2→J log(|V|)
n

(
τJ◦(eθ0) + 1

)2
Υ
(
M0,

τJ◦(eθ0
)+1

τ−1

)2 ,

with high probability. Thus the risk bounds only depend onM0. A natural question that arises is whether
the above bounds are optimal, i.e. whether an estimator can achieve a significantly better prediction risk than
θ̂

EWA

n and θ̂
PEN

n uniformly onM0. A classical way to answer this question is the minimax point of view.
This amounts to finding a lower bound on the minimax probabilities of the form

inf
θ̂

sup
θ∈M0

Pr
(

1
n

∥∥Xθ̂ −Xθ∥∥2

2
≥ ψn

)
,

where ψn is the rate, which ideally, should be comparable to the risk bounds above. A standard path to derive
such a lower bound is to exhibit a subset ofM0 of well-separated points while controlling its diameter, see
[67, Chapter 2] or [44, Section 4.3]. This however must be worked out on a case-by-case basis.

Example 4.1 (Lasso). In this case,M0 = Tθ0 is the subspace of vectors whose support is contained in that
of θ0. Let I = supp(θ0) and s = ‖θ0‖0. Define the set

B0 =
{
θ ∈ Rp : θI ∈ {0, 1}s and θIc = 0

}
.

We have B0 ⊂ M0 and
∥∥θ − θ′∥∥

0
≤ 2s for all (θ,θ′) ∈ B0. Define F0

def
=
{
rXθ : θ ∈ B0

}
, for r > 0

to be specified later. Due to the Varshamov-Gilbert lemma [44, Lemma 4.7], given a ∈]0, 1[, there exists a
subset B ⊂ B0 with cardinality |B| ≥ 2ρs/2 such that for two distinct elementsXθ andXθ′ in F0∥∥X(θ − θ′)

∥∥2

2
≥ κr2

∥∥θ − θ′∥∥2

2
≥ 2(1− a)κr2s,∥∥X(θ − θ′)

∥∥2

2
≤ κr2

∥∥θ − θ′∥∥2

2
≤ 4κr2s,
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where

κ = inf
θ∈M0

‖Xθ‖22
‖θ‖22

≤ κ = sup
θ∈M0

‖Xθ‖22
‖θ‖22

.

Standard results from random matrix theory, see [65], ensure that κ > 0 for a Gaussian design with high
probability as long as n ≥ s+ C

√
s for some positive absolute constant C.

Then choosing r2 = cρσ2

4κ , where c ∈]0, 1/8[ and ρ = (1 + a) log(1 + a) + (1− a) log(1− a), we get the
bounds ∥∥X(θ − θ′)

∥∥2

2
≥ σ2c(1− a)ρκ

2κ
s,∥∥X(θ − θ′)

∥∥2

2
≤ 2σ2c log(|B|).

We are now in position to apply [67, Theorem 2.5] to conclude that there exists η ∈]0, 1[ (that depends on
a) such that

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2c(1− a)ρκ

4κ

s

n

)
≥ η.

This lower bound together with Corollary 4.1 show that θ̂
EWA

n (with β = O
(
σ2s log(2p)/(pn)

)
) and θ̂

PEN

n

are nearly minimax (up to a logarithmic factor) overM0.
One can generalize this reasoning to get a minimax lower bound over the larger class of s-sparse vectors,

i.e.
⋃{

V = Span{(aj)1≤j≤p} : dim(V ) = s
}

, which is a finite union of subspaces that containsM0. Let
(a, b) ∈]0, 1[2 such that 1 ≤ s ≤ abp and a(−1 + b− log(b)) ≥ log(2) 10, c ∈]0, 1/8[. Then combining [67,
Theorem 2.5] and [44, Lemma 4.6 and Lemma 4.10], we have for η def

= 1
1+(ab)ρs/2

(
1− 2c−

√
2c

−ρ log(ab)

)
∈

]0, 1[

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2cρ(1− α)κ

2κ

s log(p/s)

n

)
≥ η,

where ρ = −a(−1 + b − log(b))/ log(ab), and κ and κ are now the restricted isometry constants of X of
degree 2s, i.e.

κ = inf
‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

≤ κ = sup
‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

.

For this lower bound to be meaningful, κ should be positive. From the compressed sensing literature, many
random designs are known to verify this condition for n large enough compared to s, e.g. sub-Gaussian
designs with n & s log(p).

One can see that the difference between this lower bound and the one onM0 lies in the log(p/s) fac-
tor, which basically derives from the control over the union of subspaces. The minimax prediction risk (in
expectation) over the `0-ball were studied in [52, 49, 77, 81, 78], where similar lower bounds were obtained.

Example 4.2 (Group Lasso). For the group Lasso with L groups of equal sizeK,M0 is the subspace group
sparse vectors whose group support is included in that of θ0. Let s be the number of non-zero (active)
groups in θ0. Following exactly the same reasoning as for the Lasso, one can show that the risk lower
bound in probability scales as Cσ2sK/n, which together with Corollary 4.2, shows that θ̂

EWA

n (with β =

O
(
σ2s
(√
K +

√
2 log(L)

)2
/(pn)

)
) and θ̂

PEN

n are nearly minimax (up again to a logarithmic factor) over
M0. One can also derive the lower bound Cσ2s(K + log(L/s))/n over the set of s-block sparse vectors.
Such minimax lower bound is comparable to the one in [41].

10E.g. take b = 1/(1 + e a
√
2).
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Example 4.3 (Anti-sparsity). Denote the saturation support of θ0 as Isat and recall the subspace Tθ0 form
(2.10). Thus,M0 = Tθ0 is the subspace of vectors which are collinear to sign(θ0) on Isat and free on its
complement. Observe that dim(M0) = p− s+ 1, where s = |Isat|. Define the set

B0 =
{
θ ∈ Rp : θIsat = sign(θIsat) and θ(Isat)c ∈ {0, 1}p−s)

}
.

By construction, B0 ⊂ M0, and
∥∥θ − θ′∥∥

0
≤ 2(p − s) for all (θ,θ′) ∈ B0. Thus following the same

arguments as for the Lasso example (using again Varshamov-Gilbert lemma and [67, Theorem 2.5]), we
conclude that there exists η ∈]0, 1[ (that depends on a) such that

inf
θ̂

sup
θ∈M0

Pr

(
1
n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2c(1− a)ρκ

4κ

p− s
n

)
≥ η,

where the restricted isometry constants are defined similarly to the Lasso but with respect to the model
subspace M0 of the `∞ norm. Again, for a Gaussian design, κ > 0 with high probability as long as
n ≥ (p− s+ 1) + C

√
p− s+ 1 [65].

The obtained minimax lower bound is consistent with the sample complexity thresholds derived in [27] for
noiseless recovery from random projections of the hypercube. For a saturation support size s small compared
to p, the bound of Corollary 4.4 (with β = O

(
σ2/n2

)
) comes close to the minimax lower bound.

Example 4.4 (Nuclear norm). Let r = rank(θ0), where θ0 ∈ Rp1×p2 , and p = max(p1, p2). For the nuclear
norm,M0 is the manifold of rank-r matrices. Thus arguing as in [37, Theorem 5] (who use the Varshamov-
Gilbert lemma [44] to find the covering set), one can show that the minimax risk lower bound overM0 is
Cσ2r/n. In view of Corollary 4.5, we deduce that θ̂

EWA

n (with β = O
(
σ2r log(p1 + p2)/(p1p2n)

)
) and

θ̂
PEN

n are nearly minimax over the constant rank manifolds.

A Pre-requisites from convex analysis

We here collect some ingredients from convex analysis that are essential to our exposition.

Monotone conjugate

Lemma A.1. Let g be a non-decreasing function on R+ that vanishes at 0. Then the following hold:

(i) g+ is a proper closed convex and non-decreasing function on R+ that vanishes at 0.

(ii) If g is also closed and convex, then g++ = g.

(iii) Let f : t ∈ R 7→ g(|t|) such that f is differentiable on R, where g is finite-valued, strictly convex and
strongly coercive. Then g+ is likewise finite-valued, strictly convex, strongly coercive, and f∗ = g+◦|·|
is differentiable on R. In particular, both g and g+ are strictly increasing on R+.

Proof. (i) By [3, Proposition 13.11], g+ is a closed convex function. We have inft≥0 g(t) = − supt≥0 t ·
0−g(t) = −g+(0). Since g is non-decreasing and g(0) = 0, then g+(0) = − inft≥0 g(t) = −g(0) =
0. In addition, by (1.5), we have g+(a) ≥ a · 0 − g(0) = 0, ∀a ∈ R+. This shows that g+ is
non-negative and dom(g+) 6= ∅, and in turn, it is also proper.
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Let a, b in R+ such that a < b. Then

g+(a)−g+(b) = (sup
t≥0

ta−g(t))−(sup
t′≥0

t′b−g(t′)) ≤ sup
t≥0

(ta−g(t)− tb+g(t)) = sup
t≥0

t(a−b) = 0.

That is, g+ is non-decreasing on R+.

(ii) This follows from [54, Theorem 12.4].

(iii) By definition of f , f is a finite-valued function on R, strictly convex, differentiable and strongly co-
ercive. It then follows from [33, Corollary X.4.1.4] that f∗ enjoys the same properties. In turn, using
the fact that both f and f∗ are even, we have g+ is strongly coercive, and strict convexity of f (resp.
f∗) is equivalent to that of g (resp. g+). Altogether, this shows the first claim. We now prove that g
vanishes only at 0 (and similary for g+). As g is non-decreasing and strictly convex, we have, for any
ρ ∈]0, 1[ and a, b in R+ such that a < b,

g(a) ≤ g(ρa+ (1− ρ)b) < ρg(a) + (1− ρ)g(b) ≤ ρg(b) + (1− ρ)g(b) = g(b).

Support function The support function of C ⊂ Rp is

σC(ω) = sup
θ∈C
〈ω,θ〉.

We recall the following properties whose proofs can be found in e.g. [54, 33].

Lemma A.2. Let C be a non-empty set.

(i) σC is proper lower semicontonuous (lsc) and sublinear.

(ii) σC is finite-valued if and only if C is bounded.

(iii) If 0 ∈ C, then σC is non-negative.

(iv) If C is convex and compact with 0 ∈ int(C), then σC is finite-valued and coercive.

Gauges and polars

Definition A.1 (Polar set). Let C be a nonempty convex set. The set C◦ given by

C◦ =
{
η ∈ Rp : 〈η,θ〉 ≤ 1 ∀θ ∈ C

}
is called the polar of C.

The set C◦ is closed convex and contains the origin. When C is also closed and contains the origin, then
it coincides with its bipolar, i.e. C◦◦ = C.

Let C ⊆ Rp be a non-empty closed convex set containing the origin. The gauge of C is the function γC
defined on Rp by

γC(θ) = inf
{
λ > 0 : θ ∈ λC

}
.

As usual, γC(θ) = +∞ if the infimum is not attained.
Lemma A.3 hereafter recaps the main properties of a gauge that we need. In particular, (ii) is a fundamental

result of convex analysis that states that there is a one-to-one correspondence between gauge functions and
closed convex sets containing the origin. This allows to identify sets from their gauges, and vice versa.
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Lemma A.3.

(i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C =
{
θ ∈ Rp : γC(θ) ≤ 1

}
.

(iii) γC is finite-valued if, and only if, 0 ∈ int(C), in which case γC is Lipschitz continuous.

(iv) γC is finite-valued and coercive if, and only if, C is compact and 0 ∈ int(C).

See [69] for the proof.
Observe that thanks to sublinearity, local Lipschitz continuity valid for any finite-valued convex function

is streghthned to global Lipschitz continuity. Moreover, γC is a norm, having C as its unit ball, if and only if
C is bounded with nonempty interior and symmetric.

We now define the polar gauge.

Definition A.2 (Polar Gauge). The polar of a gauge γC is the function γ◦C defined by

γ◦C(ω) = inf
{
µ ≥ 0 : 〈θ,ω〉 ≤ µγC(θ), ∀θ

}
.

An immediate consequence is that gauges polar to each other have the property

〈θ,u〉 ≤ γC(θ)γ◦C(u) ∀(θ,u) ∈ dom(γC)× dom(γ◦C), (A.1)

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best inequalities
of this type.

Lemma A.4. Let C ⊆ Rp be a closed convex set containing the origin. Then,

(ii) γ◦C is a gauge function and γ◦◦C = γC .

(iii) γ◦C = γC◦ , or equivalently
C◦ =

{
θ ∈ Rp : γ◦C(θ) ≤ 1

}
.

(iv) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

See [54, 33, 69] for the proof.

B Expectation of the inner product

We start with some definitions and notations that will be used in the proof. For a non-empty closed convex
set C ∈ Rp, we denote

(
C
)0 its minimal selection, i.e. the element of minimal norm in C. This element is of

course unique. For a proper lsc and convex function f and γ > 0, its Moreau envelope (or Moreau-Yosida
regularization) is defined by

γf(θ)
def
= min
θ∈Rp

1

2γ

∥∥θ − θ∥∥2

2
+ f(θ).

The Moreau envelope enjoys several important properties that we collect in the following lemma.
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Lemma B.1. Let f be a finite-valued and convex function. Then

(i) (γf(θ))γ>0 is a decreasing net, and ∀θ ∈ Rp, γf(θ)↗ f(θ) as γ ↘ 0.

(ii) γf ∈ C1(Rp) with γ−1-Lipschitz continuous gradient.

(iii) ∀θ ∈ Rp, ∇ γf(θ)→
(
∂f(θ)

)0 and
∥∥∇ γf(θ)

∥∥
2
↗
∥∥(∂f(θ)

)0∥∥
2

as γ ↘ 0.

Proof. (i) [3, Proposition 12.32]. (ii) [3, Proposition 12.29]. (iii) Since f is finite-valued and convex, it is
is subdifferentiable everywhere and its subdifferential is a maximal monotone operator with full domain Rp,
and the result follows from [3, Corollary 23.46(i)].

We are now equipped to prove the following important result11. To study EWA, [40] used Stein’s identity
and [13, 14, 20, 43] used PAC-Bayesian bounds. Our result hereafter turns out to be instrumental to study
EWA in the low-temperature regime for general penalties.

Proposition B.1. Let the density µn in (1.2), where

(a) F satisfies Assumptions (H.1)-(H.2);

(b) J is a finite-valued lower-bounded convex function, and ∃R > 0 and ρ ≥ 0, such that ∀θ ∈ Rp,∥∥(∂J(θ)
)0∥∥

2
≤ R ‖θ‖ρ2;

(c) and Vn is coercive.

Then, ∀θ ∈ Rp,
Eµn

[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= −pβ.

This result covers of course the situation where J fulfills (H.3). In this case, since ∂J(θ) ⊂ C◦ by
Theorem 2.1(i), we have ρ = 0 and R = diam(C◦), the diameter of the convex compact set C◦ containing
the origin. It can be shown that, when F (·,y) is strongly coercive, the coercivity assumption (c) can be
equivalently stated as J∞(θ) > 0, ∀θ ∈ ker(X) \ {0}, where J∞ is the recession/asymptotic function of J ;
see e.g. [55].

Proof. Let V γ
n (θ)

def
= 1

nF (Xθ,y) + λn
γJ(θ) and define µγn(θ)

def
= exp (−V γ

n (θ)/β)/Z, where 0 < Z <
+∞ is the normalizing constant of the density µn. Assumption (H.1) and Lemma B.1(ii)-(iii) tell us that
V γ
n ∈ C1(Rp) and ∇V γ

n (θ)→
(
∂Vn(θ)

)0 as γ → 0. Thus

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
=

∫
Rp

lim
γ→0
〈µγn(θ)∇V γ

n (θ),θ − θ〉dθ.

We now check that 〈µγn(θ)∇V γ
n (θ),θ − θ〉 is dominated by an integrable function. From the definition of

the Moreau envelope, we have

V γ
n (θ) = min

θ∈Rp
1
nF (Xθ,y) + λn

(
J(θ − θ) +

1

2γ

∥∥θ∥∥2

2

)
.

11It will be proved here using Moreau-Yosida regularization. Yet another alternative proof could be based on mollifiers for
approximating subdifferentials.
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From coercivity of Vn, the objective in the min is also coercive in (θ,θ) by [55, Exercise 3.29(b)]. It then
follows from [55, Theorem 3.31] that V γ

n is also coercive. In turn, [55, Theorem 11.8(c) and 3.26(a)] allow
to assert that for some a ∈]0,+∞[, ∃b ∈]−∞,+∞[ such that for all γ > 0 and θ ∈ Rp

µγn(θ) ≤ exp (−a ‖θ‖2 − b)/Z. (B.1)

Lemma B.1-(iii) and assumption (b) on J entail that for any θ ∈ Rp,∥∥∇ γJ(θ)
∥∥

2
≤
∥∥(∂J(θ)

)0∥∥
2
≤ R ‖θ‖ρ2 .

Altogether, we have∣∣〈µγn(θ)∇V γ
n (θ),θ − θ〉

∣∣ ≤ µγn(θ)
(∣∣〈X> 1

n∇F (Xθ,y),θ − θ〉
∣∣+ λn

∥∥∇ γJ(θ)
∥∥

2

∥∥θ − θ∥∥
2

)
≤ CZ−1 exp (−F (Xθ,y)/(nβ))

∣∣〈 1
n∇F (Xθ,y),X(θ − θ)〉

∣∣
+ (Z exp b)−1λnR exp (−a ‖θ‖2)

∥∥θ∥∥ρ
2

∥∥θ − θ∥∥
2
,

where the constantC > 0 reflects the lower-boundedness of J . It is easy to see that the function in this upper-
bound is integrable, where we also use (H.2). Hence, we can apply the dominated convergence theorem to
get

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= lim

γ→0

∫
Rp
〈µγn(θ)∇V γ

n (θ),θ − θ〉dθ.

Now, by simple differential calculus (chain and product rules), we have

〈µγn(θ)∇V γ
n (θ),θ − θ〉 = −β〈∇µγn(θ),θ − θ〉

= −β
p∑
i=1

∂

∂θi

(
µγn(θ)(θi − θi)

)
− pβµγn(θ).

Integrating the first term, we get by Fubini theorem and the Newton-Leibniz formula∫
Rp−1

(∫
R

∂

∂θi

(
µγn(θ)(θi − θi)

)
dθi

)
dθ1 · · · dθi−1dθi+1 · · · dθp

=

∫
Rp−1

[
µγn(θ)(θi − θi)

]
Rdθ1 · · · dθi−1dθi+1 · · · dθp = 0,

where we used coercivity of V γ
n (see (B.1)) to conclude that lim|θi|→+∞ µ

γ
n(θ)(θi−θi) = 0. For the second

term, we have from Lemma B.1(i) that µγn → µn as γ → 0. Thus, arguing again as in (B.1), we can apply
the dominated convergence theorem to conclude that

lim
γ→0

∫
Rp
µγn(θ)dθ =

∫
Rp
µn(θ)dθ = 1.

This concludes the proof.
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