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Abstract. Convex optimization has become ubiquitous in most quantitative disciplines of
science, including variational image processing. Proximal splitting algorithms are becoming
popular to solve such structured convex optimization problems. Within this class of algo-
rithms, Douglas–Rachford (DR) and ADMM are designed to minimize the sum of two proper
lower semi-continuous convex functions whose proximity operators are easy to compute. The
goal of this work is to understand the local convergence behaviour of DR (resp. ADMM)
when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly
smooth. More precisely, when both of the two functions (resp. their conjugates) are partly
smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these
manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that
DR/ADMM is locally linearly convergent with a rate in terms of the cosine of the Friedrichs
angle between the tangent spaces of the identified manifolds. This is illustrated by several
concrete examples and supported by numerical experiments.

Keywords: Douglas–Rachford splitting, ADMM, Partial Smoothness, Finite Activity Iden-
tification, Local Linear Convergence

1 Introduction

1.1 Problem formulation

In this work, we consider the problem of solving

min
x∈Rn

J(x) +G(x), (1)

where both J and G are in Γ0(Rn), the class of proper, lower semi-continuous (lsc) and convex
functions. We assume that ri

(
dom(J)

)
∩ ri
(
dom(G)

)
6= ∅, where ri(C) is the relative interior of the

nonempty convex set C, and dom(F ) is the domain of the function F . We also assume that the set
of minimizers is non-empty, and that these two functions are simple, meaning that their respective
proximity operators, proxγJ and proxγG, γ > 0, are easy to compute, either exactly or to a very
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good approximation. Problem (1) covers a large number of problems including those appearing in
variational image processing (see Section 6).

An efficient and provably convergent algorithm to solve this class of problems is the Douglas–
Rachford splitting method [16], which reads, in its relaxed form,

vk+1 = proxγG(2xk − zk),

zk+1 = (1− λk)zk + λk
(
zk + vk+1 − xk

)
,

xk+1 = proxγJz
k+1,

(2)

for γ > 0, λk ∈]0, 2] with
∑
k∈N λk(2 − λk) = +∞. The fixed-point operator BDR with respect to

zk takes the form

BDR
def.= 1

2
(rproxγG ◦ rproxγJ + Id),

rproxγJ
def.= 2proxγJ − Id, rproxγG

def.= 2proxγG − Id.

The proximity operator of a proper lsc convex function is defined, for γ > 0, as

proxγJ(z) = argminx∈Rn
1
2
||x− z||2 + γJ(x).

Since the set of minimizers of (1) is assumed to be non-empty, so is the Fix(BDR) since the former
is nothing but proxγJ

(
Fix(BDR)

)
. See [3] for a more detailed account on DR in real Hilbert spaces.

Remark 1 The DR algorithm is not symmetric w.r.t. the order of the functions J and G. Never-
theless, the convergence claims above hold true of course when this order is reversed in (2). In turn,
all of our statements throughout also extend to this case with minor adaptations. Note also that the
standard DR only accounts for the sum of 2 functions. But extension to more than 2 functions is
straightforward through a product space trick, see Section 5 for details.

1.2 Contributions

Based on the assumption that both J and G are partly smooth relative to smooth manifolds, we
show that DR identifies in finite time these manifolds. In plain words, this means that after a
finite number of iterations, the iterates (xk, vk) lie respectively in the partial smoothness manifolds
associated to J and G respectively. When these manifolds are affine/linear, we establish local linear
convergence of DR. We show that the optimal convergence radius is given in terms of the cosine of
the Friedrichs angle between the tangent spaces of the manifolds. We generalize these claims to the
minimization of the sum of more than two functions. We finally exemplify our results with several
experiments on variational signal and image processing.

It is important to note that our results readily apply to the alternating direction method of
multipliers (ADMM), since it is well-known that ADMM is the DR method applied to the Fenchel
dual problem of (1). More precisely, we only need to assume that the conjugates J∗ and G∗ are
partly smooth. Therefore, to avoid unnecessary lengthy repetitions , we only focus in detail on the
primal DR splitting method.
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1.3 Relation to prior work

There are problem instances in the literature where DR was proved to converge locally linearly. For
instance, in [16, Proposition 4], it was assumed that the ”internal” function is strongly convex with
a Lipschitz continuous gradient. This local linear convergence result was further investigated in [22,
24] under smoothness and strong convexity assumptions. On the other hand, for the Basis Pursuit
(BP) problem, i.e. `1 minimization with an affine constraint, is considered in [9] and an eventual
local linear convergence is shown in the absence of strong convexity. The author in [23] analyzes
the local convergence behaviour of ADMM for quadratic or linear programs, and shows local linear
convergence if the optimal solution is unique and the strict complementarity holds. This turns out
to be a special case of our framework. For the case of two subspaces, linear convergence of DR with
the optimal rate being the cosine of the Friedrichs angle between the subspaces is proved in [2]. Our
results generalize those of [9, 23, 2] to a much larger class of problems. For the non-convex case, [4]
considered DR method for a feasibility problem of a sphere intersecting a line or more generally
a proper affine subset. Such feasibility problems with an affine subspace and a super-regular set
(in the sense of [14]) with strongly regular intersection was considered in [11], and was generalized
later to two (ε, δ)-regular sets with linearly regular intersection [25], see also [18] for an even more
general setting. However, even in the convex case, the rate provided in [18] is nowhere near the
optimal rate given by the Friedrichs angle.

1.4 Notations

For a nonempty convex set C ⊂ Rn, aff(C) is its affine hull, par(C) is the subspace parallel to it.
Denote PC the orthogonal projector onto C and NC its normal cone. For J ∈ Γ0(Rn), denote ∂J
its subdifferential and proxJ its proximity operator. Define the model subspace

Tx
def.= par

(
∂J(x)

)⊥
.

It is obvious that PTx

(
∂J(x)

)
is a singleton, and therefore defined as

ex
def.= PTx

(
∂J(x)

)
= Paff(∂J(x))(0).

Suppose M⊂ Rn is a C2-manifold around x, denote TM(x) the tangent space of M at x ∈ Rn.

2 Partly Smooth Functions

2.1 Definition and main properties

Partial smoothness of functions was originally defined in [13], our definition hereafter specializes it
to the case of proper lsc convex functions.

Definition 1 (Partly smooth function) Let J ∈ Γ0(Rn), and x ∈ Rn such that ∂J(x) 6= ∅. J
is partly smooth at x relative to a set M containing x if

(1) (Smoothness) M is a C2-manifold around x, J |M is C2 near x;
(2) (Sharpness) The tangent space TM(x) is Tx;
(3) (Continuity) The set–valued mapping ∂J is continuous at x relative to M.
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The class of partly smooth functions at x relative to M is denoted as PSx(M). When M is an
affine manifold, then M = x + Tx, and we denote this subclass as PSAx(x + Tx). When M is a
linear manifold, then M = Tx, and we denote this subclass as PSLx(Tx).

Capitalizing on the results of [13], it can be shown that, under mild transversality conditions,
the set of lsc convex and partly smooth functions is closed under addition and pre-composition by a
linear operator. Moreover, absolutely permutation-invariant convex and partly smooth functions of
the singular values of a real matrix, i.e. spectral functions, are convex and partly smooth spectral
functions of the matrix [7].

Examples of partly smooth functions that have become very popular recently in the signal
processing, optimization, statistics and machine learning literature are `1, `1,2, `∞, total variation
(TV) and nuclear norm regularizations. In fact, the nuclear norm is partly smooth at a matrix x
relative to the manifold M = {x′ : rank(x′) = rank(x)}. The first four regularizers are all part of
the class PSLx(Tx).

We now define a subclass of partly smooth functions where the manifold is affine or linear and
the vector ex is locally constant.

Definition 2 J belongs to the class PSSx(x+Tx) (resp. PSSx(Tx)) if and only if J ∈ PSAx(x+Tx)
(resp. J ∈ PSLx(Tx)) and ex is constant near x, i.e. there exists a neighbourhood U of x such that
∀x′ ∈ (x+ Tx) ∩ U (resp. x′ ∈ Tx ∩ U)

ex′ = ex.

The class of functions that conform with this definition is that of locally polyhedral functions [21,
Section 6.5], which includes for instance the `1, `∞ norms and the anisotropic TV semi-norm that
are widely used in signal and image processing, computer vision, machine learning and statistics.
The indicator function of a polyhedral set is also in PSSx(x+ Tx) at each x in the relative interior
of one of its faces relative to the affine hull of that face, i.e. x+ Tx = aff(Face of x). Observe that
for polyhedral functions, in fact, the subdifferential itself is constant along the partial smoothness
subspace.

2.2 Proximity operator

This part shows that the proximity operator of a partly smooth function can be given in an implicit
form.

Proposition 1 Let p def.= proxγJ(x) ∈M. Assume that J ∈ PSp(M). Then for any point x near p,
we have

p = PM(x)− γep + o
(
||x− p||

)
.

In particular, if J ∈ PSAp(p+ Tp) (resp. J ∈ PSLp(Tp)), then for any x ∈ Rn, we have

p = Pp+Tp
(x)− γep (resp. p = PTp

(x)− γep).

Proof. We start with the following lemma whose proof can be found in [15].

Lemma 1 Suppose that J ∈ PSp(M). Then any point x near p has a unique projection PM(x),
PM is C1 around p, and thus

PM(x)− p = PTp(x− p) + o
(
||x− p||

)
.
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Let’s now turn to the proof of our proposition. We have the equivalent characterization

p = proxγJ(x) ⇐⇒ x− p ∈ γ∂J(p). (3)

Projecting (3) on Tp and using Lemma 1, we get

PTp
(x− p) = PM(x)− p+ o

(
||x− p||

)
= γep,

which is the desired result.
When J ∈ PSAp(p+Tp), observe that Pp+Tp

(x) = p+PTp
(x−p) for any x ∈ Rn. Thus projecting

again the monotone inclusion (3) on Tp, we get

PTp
(x− p) = Pp+Tp

(x)− p = γep,

whence the claim follows. The linear case is immediate.

3 Activity Identification with Douglas–Rachford

In this section, we present the finite time activity identification of the DR method.

Theorem 1 (Finite activity identification) Suppose that the DR scheme (2) is used to create
a sequence (zk, xk, vk). Then (zk, xk, vk) converges to (z?, x?, x?), where z? ∈ Fix(BDR) and x? is
a global minimizer of (1). Assume that J ∈ PSx?(MJ) and G ∈ PSx?(MG), and

z? ∈ x? + γ
(
ri
(
∂J(x?)

)
∩ ri
(
−∂G(x?)

))
. (4)

Then,

(1) The DR scheme has the finite activity identification property, i.e. for all k sufficiently large,
(xk, vk) ∈MJ ×MG.

(2) If G ∈ PSAx?(x? + TGx?) (resp. G ∈ PSLx?(TGx?)), then vk ∈ x? + TGx? (resp. vk ∈ TGx?), and in
both cases TGvk = TGx? for all k sufficiently large.

(3) If J ∈ PSAx?(x? + T Jx?) (resp. J ∈ PSLx?(T Jx?)), then xk ∈ x? + T Jx? (resp. xk ∈ T Jx?), and in
both cases T Jxk = T Jx? for all k sufficiently large.

Proof. Standard arguments using that BDR is firmly non-expansive allow to show that the iterates
zk converge globally to a fixed point z? ∈ Fix(BDR), by interpreting DR as a relaxed Krasnosel’skĭı-
Mann iteration. Moreover, the shadow point x? def.= proxγJ(z?) is a solution of (1), see e.g. [3]. In
turn, using non-expansiveness of proxγJ , and as we are in finite dimension, we conclude also that
the sequence xk converges to x?. This entails that vk converges to x? (by non-expansiveness of
proxγG).

Now (4) is equivalent to

z?−x?

γ ∈ ri
(
∂J(x?)

)
and x?−z?

γ ∈ ri
(
∂G(x?)

)
. (5)

(1) The update of xk+1 and vk+1 in (2) is equivalent to the monotone inclusions

zk+1−xk+1

γ ∈ ∂J(xk+1) and 2xk−zk−vk+1

γ ∈ ∂G(vk+1) .
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It then follows that

dist
(
z?−x?

γ , ∂J(xk+1)
)

6 1
γ

(
||zk+1 − z?||+ ||xk+1 − x?||

)
→ 0

and
dist

(
x?−z?

γ , ∂G(vk+1)
)

6 1
γ

(
||zk − z?||+ 2||xk − x?||+ ||vk+1 − x?||

)
→ 0.

By assumption, J ∈ Γ0(Rn) and G ∈ Γ0(Rn), and thus are sub-differentially continuous at
every point in their respective domains [20, Example 13.30], and in particular at x?. It then
follows that J(xk)→ J(x?) and G(vk)→ G(x?). Altogether, this shows that the conditions of
[10, Theorem 5.3] are fulfilled for J and G, and the finite identification claim follows.

(2) In this case, we have vk ∈ x? + TGx? (resp. vk ∈ TGx?). Since G is partly smooth at x? relative to
x? + TGx? (resp. TGx?), the sharpness property holds at all nearby points in x? + TGx? (resp. TGx?)
[13, Proposition 2.10]. Thus for k large enough, i.e. vk sufficiently close to x?, we have indeed
Tx?+TG

x?
(vk) = TGx? = TGvk as claimed.

(3) Similar to (2).

Remark 2

1. Condition (4) can be interpreted as a non-degeneracy assumption. It can be viewed as a geomet-
ric generalization of the strict complementarity of non-linear programming. Such a condition is
almost necessary for the finite identification of the partial smoothness active manifolds [8].

2. When the minimizer is unique, using the fixed-point set characterization of DR, it can be shown
that condition (4) is also equivalent to z? ∈ ri

(
Fix(BDR)

)
.

4 Local Linear Convergence of Douglas–Rachford

Let us first recall the principal angles and the Friedrichs angle between two subspaces U and V ,
which are crucial for our quantitative analysis of the convergence rates. Without loss of generality,
let 1 6 p

def.= dim(U) 6 q
def.= dim(V ) 6 n− 1.

Definition 3 (Principal angles) The principal angles θk ∈ [0, π2 ], k = 1, . . . , p between U and V
are defined by, with u0 = v0

def.= 0

cos θk
def.= 〈uk, vk〉 = max〈u, v〉 s.t. u ∈ U, v ∈ V, ||u|| = 1, ||v|| = 1,

〈u, ui〉 = 〈v, vi〉 = 0, i = 0, . . . , k − 1.

The principal angles θk are unique with 0 6 θ1 6 θ2 6 . . . 6 θp 6 π/2.

Definition 4 (Friedrichs angle) The Friedrichs angle θF ∈]0, π2 ] between U and V is

cos θF (U, V ) def.= max〈u, v〉 s.t. u ∈ U ∩ (U ∩ V )⊥, ||u|| = 1, v ∈ V ∩ (U ∩ V )⊥, ||v|| = 1.

The following relation between the Friedrichs and principal angles is of paramount importance
to our analysis, whose proof can be found in [1, Proposition 3.3].

Lemma 2 (Principal angles and Friedrichs angle) The Friedrichs angle is exactly θd+1 where
d

def.= dim(U ∩ V ). Moreover, θF (U, V ) > 0.
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Remark 3 One approach to obtain the principal angles is through the singular value decomposition
(SVD). For instance, let X ∈ Rn×p and Y ∈ Rn×q form the orthonormal bases for the subspaces
U and V respectively. Let AΣBT be the SVD of XTY ∈ Rp×q, then cos θk = σk, k = 1, 2, ..., p and
σk corresponds to the k’th largest singular value in Σ.

We now turn to local linear convergence properties of DR. Let’s denote SJx? =
(
T Jx?

)⊥ and
similarly for SGx? .

Theorem 2 (Local linear convergence) Suppose that the DR scheme (2) is used with λk ≡ λ ∈
]0, 2[ to create a sequence (zk, xk, vk) which converges to a pair (z?, x?, x?) such that J ∈ PSSx?(T Jx?)
and G ∈ PSSx?(TGx?), and (4) holds. Then, there exists K > 0 such that for all k > K,

||(zk − z?)− P(TJ
x?∩TG

x? )⊕(SJ
x?∩SG

x? )(z
K − z?)|| 6 ρk−K ||(Id− P(TJ

x?∩TG
x? )⊕(SJ

x?∩SG
x? ))(z

K − z?)||

6 ρk−K ||zK − z?||,
(6)

with ρ =
√

(1− λ)2 + λ(2− λ) cos2 θF
(
T Jx? , TGx?

)
∈ [0, 1[, and thus, zk−z? converges locally linearly

to P(TJ
x?∩TG

x? )⊕(SJ
x?∩SG

x? )(zK − z?) with the optimal rate ρ.
In particular, if T Jx? ∩ TGx? = SJx? ∩ SGx? = {0}, then zk converges locally linearly to z? with the

optimal rate
√

(1− λ)2 + λ(2− λ) cos2 θ1

(
T Jx? , TGx?

)
∈ [0, 1[.

This result is only valid for the class PSS. Extending this to general partly smooth functions is left
to a forthcoming work.

Remark 4 It can be observed that the best rate is obtained for λ = 1. This has been also pointed
out in [9] for basis-pursuit. This assertion is however only on the local convergence behaviour and
does not mean in general that the DR will be globally faster for λk ≡ 1. Note also that the above
result can be straightforwardly generalized to the case of varying λk.

Proof. We give the proof for the affine case, the linear one is similar. To lighten the notation, we
will denote M∞ = P(TJ

x?∩TG
x? )⊕(SJ

x?∩SG
x? ) (the choice of this notation will be clearer shortly).

Combining Theorem 1(2)-(3), Proposition 1 and the definition of the class PSSx(Tx), we get

xk = PTJ
x?
zk − γeJx? + PSJ

x?
x?,

vk+1 = 2PTG
x?
xk − PTG

x?
zk − γeGx? + PSG

x?
x?

= 2PTG
x?

PTJ
x?
zk − PTG

x?
zk − γeGx? − 2γPTG

x?
eJx? + 2PTG

x?
PSJ

x?
x? + PSG

x?
x?.

Similarly, we have

x? = PTJ
x?
z? − γeJx? + PSJ

x?
x?,

x? = 2PTG
x?

PTJ
x?
z? − PTG

x?
z? − γeGx? − 2γPTG

x?
eJx? + 2PTG

x?
PSJ

x?
x? + PSG

x?
x?.

Combining and rearranging the terms, we get

(zk + vk+1 − xk)− z? = (zk + vk+1 − xk)− (z? + x? − x?) = (zk − z?) + (vk+1 − x?)− (xk − x?)
=
(
Id− PTJ

x?
+ 2PTG

x?
PTJ

x?
− PTG

x?

)
(zk − z?)

= (PSJ
x?
− 2PTG

x?
PSJ

x?
+ PTG

x?
)(zk − z?) = (PSG

x?
PSJ

x?
+ PTG

x?
PTJ

x?
)(zk − z?),
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whence we obtain

(zk+1 − z?)−M∞(zK − z?) = M(zk − z?)−M∞(zK − z?)
= (Mk+1−K −M∞)(zK − z?),

where
M = (1− λ)Id + λ(PSG

x?
PSJ

x?
+ PTG

x?
PTJ

x?
).

It is immediate to check that M is normal. Moreover, combining [1, Theorem 3.10(ii)] and [2,
Proposition 3.6(i)], M is convergent to PFixM = M∞ if λ ∈]0, 2[ (hence the choice of notation
above). Thus, combining normality and [1, Theorem 2.16] we get that

||Mk+1−K −M∞|| = ||M −M∞||k+1−K

and ||M −M∞|| is the optimal convergence rate of M . Using together Lemma 2 and arguments
similar to those of the proof of [2, Theorem 3.10(ii)] (see also [1, Theorem 4.1(ii)]), we get indeed
that

||M −M∞|| = ρ .

Finally,

||(zk+1 − z?)−M∞(zK − z?)|| = ||(Mk+1−K −M∞)(zK − z?)||
= ||(Mk+1−K −M∞)(Id−M∞)(zK − z?)||
6 ||Mk+1−K −M∞||||(Id−M∞)(zK − z?)||
= ρk+1−K ||(Id−M∞)(zK − z?)||
6 ρk+1−K ||zK − z?||,

where we used the fact that MkM∞ = MkPFixM = PFixM , and Id−M∞ is an orthogonal projector,
hence non-expansive.

The particular case is immedate. This concludes the proof.

5 Sum of more than two functions

We now want to tackle the problem of solving

min
x∈Rn

∑m

i=1Ji(x), (7)

where each Ji ∈ Γ0(Rn). We assume that all the relative interiors of their domains have a non-empty
intersection, that the set of minimizers is non-empty, and that these functions are simple.

In fact, problem (7) can be equivalently reformulated as (1) in a product space, see e.g. [6, 19].
Let H = Rn × · · · × Rn︸ ︷︷ ︸

m times

endowed with the scalar inner-product and norm

∀x,y ∈H, 〈〈x,y〉〉 =
∑m

i=1〈xi, yi〉, ||x|| =
√∑m

i=1||xi||2.
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Let S = {x = (xi)i ∈H : x1 = · · · = xm} and its orthogonal complement S⊥ =
{
x = (xi)i ∈H :∑m

i=1 xi = 0
}

. Now define the canonical isometry,

C : Rn → S, x 7→ (x, · · · , x),

then we have PS(z) = C
(

1
m

∑m
i=1 zi

)
.

Problem (7) is now equivalent to

min
x∈H

J(x) + G(x), where J(x) =
∑m

i=1Ji(xi) and G(x) = ιS(x). (8)

Obviously, J is separable and therefore,

proxγJ (x) =
(
proxγJi

(xi)
)
i
.

Denote T J
x? =×iT

Ji
x? , and hence SJ

x? = (T J
x?)⊥ =×i(T

Ji
x? )⊥, where x? = C(x?). We have the

following result.

Corollary 1 Suppose that the DR scheme is used to solve (8) and creates a sequence (zk,xk,vk).
Then (zk,xk,vk) converges to (z?,x?,x?), and x? is a minimizer of (7). Suppose that Ji ∈
PSx?(MJi) and

z? ∈ x? + γri
(
∂J(x?)

)
∩ S⊥. (9)

Then,

(1) the DR scheme has the finite activity identification property, i.e. for all k sufficiently large,
xk ∈ ×iMJi .

(2) Assume that Ji ∈ PSSx?(x? + T Ji
x? ) (or Ji ∈ PSSx?(T Ji

x? )) and DR is run with λk ≡ λ ∈]0, 2[.
Then, there exists K > 0 such that for all k > K,

||(zk − z?)− P(T J
x?∩S)⊕(SJ

x?∩S⊥)(z
K − z?)|| 6 ρk−K ||zK − z?||,

with ρ =
√

(1− λ)2 + λ(2− λ) cos2 θF
(
T J
x? ,S

)
∈ [0, 1[, and thus, zk − z? converges locally

linearly to P(T J
x?∩S)⊕(SJ

x?∩S⊥)(zK − z?) at the optimal rate ρ.

Proof.

(1) By the separability rule, J ∈ PSx?(×iMJi
x?), see [13, Proposition 4.5]. We also have ∂G(x?) =

NS(x?) = S⊥. Thus G ∈ PSx?(S), i.e. TG
x? = S. Then (9) is simply a specialization of

condition (4) to problem (8). The claim then follows from Theorem 1(1).
(2) This is a direct consequence of Theorem 2.

6 Numerical experiments

Here, we illustrate our theoretical results on several concrete examples. This section is by no means
exhaustive, and we only focus on the problems that we consider as representative in variational
signal/image processing.
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Affinely-constrained Polyhedral Minimization Let us now consider the affine-constrained minimiza-
tion problem

min
x∈Rn

J(x) subject to y = Ax, (10)

where A ∈ Rm×n, and J is finite-valued polyhedral. We assume that the problem is feasible, i.e.
the observation y ∈ Im(A). By identifying G with the indicator function of the affine constraint, it
is immediate to see that G = ιKer(A)(·), which is polyhedral, hence belongs to PSS, and is simple.

Problem (10) is of important interest in various areas, including signal and image processing
to find regularized solutions to linear equations. Typically, J is a regularization term intended
to promote solutions conforming to some notion of simplicity/low-dimensional structure. One can
think of instance of the active area of compressed sensing (CS) and sparse recovery.

We here solve (10) with J being either `1, `∞, and anisotropic TV regularizers. For all these
cases, J ∈ Γ0(Rn), is simple and J ∈ PSSx?(Tx?), where Tx? can be easily computed, see e.g. [21].
In these experiments, A is drawn randomly from the standard Gaussian ensemble, i.e. CS scenario,
with the following settings:

(a) `1-norm: m = 32 and n = 128, x0 is 8-sparse;
(b) `∞-norm: m = 120 and n = 128, x0 has 10 saturating entries;
(c) TV semi-norm: m = 32 and n = 128, (∇x0) is 8-sparse;

For each setting, the number of measurements is sufficiently large so that one can prove that the
minimizer x? is unique, and in particular that Ker(A)∩Tx? = {0} (with high probability). We also
checked that Im(AT ) ∩ Sx? = {0}, which in this case is equivalent to uniqueness of the fixed point
(see Remark 2(ii)). Thus (4) is obviously fulfilled, and the second part of Theorem 2 applies.

Figure 1(a)-(c) displays the global profile of ||zk − z?|| as a function of k, and the starting point
of the solid line is the iteration number at which the partial smooth manifolds (here subspaces) are
identified. One can easily see the linear convergence behaviour and that our rate estimate is indeed
optimal.

TV based Image Inpainting In this image processing example, we observe y = Ax0, where A is a
binary mask operator. We aim at inpainting the missing regions from the observations y. This can
be achieved by solving (10) with J the 2D anisotropic TV. The corresponding convergence profile
is depicted in Figure 1(d).

Uniform Noise Removal For this problem, we assume that we observe y = x0 + ε, where x0 is a
piecewise-smooth vector, and ε is a realization of a random vector whose entries are iid ∼ U([−a, a]),
a > 0. It is then natural to solve the problem

min
x∈Rn

||x||TV subject to ||y − x||∞ 6 a. (11)

G is now identified with the indicator function of the `∞-ball constraint, which is polyhedral and
simple. The local convergence profile is shown in Figure 1(e) where we set a = 1 and n = 100.
Again, the rate estimate is extremely tight.

Outliers Removal Consider solving

min
x∈Rn

||y − x||1 + λ||x||TV, (12)
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(a) CS `1-norm
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(b) CS `∞-norm
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(c) CS TV semi-norm
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(d) TV image inpainting
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(f) Outliers removal

Fig. 1. Observed (dashed) and predicted (solid) convergence profiles of DR (2) in terms of ||zk−z?||. (a) CS
with `1. (b) CS with `∞. (c) CS with TV. (d) TV image inpainting. (e) Uniform noise removal by solving
(11). (f) Outliers removal by solving (12). The starting point of the solid line is the iteration at which the
manifolds are identified.

where λ > 0 is the tradeoff parameter. This problem has been proposed by [17] for outliers removal.
We take J = λ|| · ||TV and G = ||y − ·||1, which is again simple and polyhedral. For this example
we have n = 100, and y − x is 10-sparse, the corresponding local convergence profile is depicted in
Figure 1(f).

7 Conclusion

In this paper, we first showed that the DR splitting has the finite manifold identification under
partial smoothness. When the involved manifolds are affine/linear and the generalized signs are
locally constant, we proved local linear convergence of DR and provided a very tight rate estimate
as illustrated by several numerical experiments. Our future work will focus on extending the linear
convergence result to more general partly smooth functions.
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