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Stein Unbiased GrAdient estimator of the Risk (SUGAR)
for multiple parameter selection∗
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Abstract. Algorithms to solve variational regularization of ill-posed inverse problems usually involve operators
that depend on a collection of continuous parameters. When these operators enjoy some (local) reg-
ularity, these parameters can be selected using the so-called Stein Unbiased Risk Estimate (SURE).
While this selection is usually performed by exhaustive search, we address in this work the problem of
using the SURE to efficiently optimize for a collection of continuous parameters of the model. When
considering non-smooth regularizers, such as the popular ℓ1-norm corresponding to soft-thresholding
mapping, the SURE is a discontinuous function of the parameters preventing the use of gradient
descent optimization techniques. Instead, we focus on an approximation of the SURE based on
finite differences as proposed in [51]. Under mild assumptions on the estimation mapping, we show
that this approximation is a weakly differentiable function of the parameters and its weak gradient,
coined the Stein Unbiased GrAdient estimator of the Risk (SUGAR), provides an asymptotically
(with respect to the data dimension) unbiased estimate of the gradient of the risk. Moreover, in
the particular case of soft-thresholding, it is proved to be also a consistent estimator. This gradient
estimate can then be used as a basis to perform a quasi-Newton optimization. The computation of
the SUGAR relies on the closed-form (weak) differentiation of the non-smooth function. We pro-
vide its expression for a large class of iterative methods including proximal splitting ones and apply
our strategy to regularizations involving non-smooth convex structured penalties. Illustrations on
various image restoration and matrix completion problems are given.
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1. Introduction. In this paper, we consider the recovery problem of a signal x0 ∈ X
(where X = R

N or is a suitable finite-dimensional Hilbert space that can be identified to R
N )

from a realization y ∈ Y = R
P of the normal random vector

Y = µ0 +W with µ0 = Φx0 (1.1)

where W ∼ N (0, σ2IdP ), and the linear imaging operator Φ : X → Y entails some loss of
information. Typically, P = dim(Y) is smaller than N = dim(X ), or Φ is rank-deficient, and
the recovery problem is ill-posed.

Let (y, θ) 7→ x(y, θ) be some recovery mapping, possibly multivalued, which attempts
to approach x0 from a given realization y ∈ Y of Y and is parametrized by a collection of
continuous parameters θ ∈ Θ. Throughout, Θ is considered as a subset of a linear subspace
of dimension dim(Θ). We also denote µ(y, θ) = Φx(y, θ) ∈ Y and assume in the rest of the
paper that it is always a single-valued mapping though x(y, θ) may not.
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Depending on the smoothness of the mapping y 7→ µ(y, θ), the recovered estimate enjoys
different regularity properties. For instance, µ(y, θ) can be built by solving a variational
problem with some regularizing penalty parametrized by θ (see the example in (1.2), as well
as Section 4 and 5). This regularization is generally chosen so as to preserve/promote the
interesting structure underlying x0, e.g. singularities, textures, etc. Also, depending on its
choice and that of the data fidelity, the resulting mapping y 7→ µ(y, θ) may be smooth or not.
To cover most of these situations, throughout the paper, we will assume that (y, θ) 7→ µ(y, θ)
is weakly differentiable with respect to both the observation y, and the collection of parameters
θ.

Recall that for a locally integrable function f : a ∈ Ω 7→ R, Ω is an open subset of RN , its
weak partial derivative with respect to ai in Ω is the locally integrable function gi on Ω such
that ∫

Ω
gi(a)ϕ(a)da = −

∫

Ω
f(a)

∂ϕ(a)

∂ai
da

holds for all functions ϕ ∈ C1
c (Ω), i.e. the space of continuously differentiable functions of

compact support. The weak partial derivative, if it exists, is uniquely defined Lebesgue-almost
everywhere (a.e.). Thus we write

gi =
∂f

∂ai

and all such pointwise relations involving weak derivatives will be accordingly understood to
hold Lebesgue-a.e. A function is said to be weakly differentiable if all its weak partial deriva-
tives exist. Similarly, a vector-valued function h : a ∈ R

N 7→ h(a) = (h1(a), . . . , hP (a)) ∈ R
P

is weakly differentiable if hk(a) is weakly differentiable ∀k ∈ {1, . . . , P}, and we will denote
∂h(a) its weak Jacobian, and ∇g(a) = ∂h(a)∗ its adjoint. Remark that weak differentiation
concepts boil down to the classical ones when the considered function is C1. A comprehensive
account on weak differentiability can be found in e.g. [28, 30].

Getting back to the estimator x(y, θ), we now discuss some typical examples covered in
this paper.
• Given (y, θ), consider a minimizer of a convex variational problem of the form

x(y, θ) = Argmin
x∈X

{E(x, y, θ) = H(y,Φx) +R(x, θ)} (1.2)

where x(y, θ) is the set of minimizers of x 7→ E(x, y, θ) which is considered nonempty
(the minimizer may not be unique but is assumed to exist). The data fidelity term x 7→
H(y,Φx) is defined using a strongly convex map µ 7→ H(y, µ). The regularization term
x 7→ R(x, θ) is assumed to be a closed proper and convex function, that accounts for the
prior structure of x0. Typical priors correspond to non-smooth regularizers such as sparsity
in a suitable domain, e.g. Fourier, wavelet [46], or gradient [59]. Such regularizers are usually
parametrized with a collection of parameters θ. A typical example is R(x, θ) = θR0(x)
where θ ∈ R

+ is a scaling which controls the strength of the regularization. Of course, more
complicated (multi-parameters) regularizations, are often considered in the applications,
and our methodology aims at dealing with these higher dimensional sets of parameters.
An important observation is that even though x(y, θ) may not be a singleton (minimizer of
E(x, y, θ) may not be unique), strict convexity of H(y, ·) implies that all minimizers share
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the same image under Φ, see e.g. [66]. Hence (y, θ) 7→ µ(y, θ) is defined without ambiguity as
a single-valued mapping. Moreover, strong convexity of H(y, ·) implies that y 7→ µ(y, θ) is
non-expansive (i.e. uniformly 1-Lipschitz) [67], hence weakly differentiable [28, Theorem 5,
Section 4.2.3].
• Consider now the ℓ-th iterate, denoted by x(ℓ)(y, θ), of an iterative algorithm converging
to a fixed point of an operator acting on X . In this case, θ can include the parameters
of the fixed point operator, as well as other continuous parameters inherent to the fixed
point iteration (such as, e.g., step sizes). Section 4 is completely dedicated to this setting,
and appropriate sufficient conditions will be exhibited to ensure weak differentiability of
x(ℓ)(y, θ) with respect to both its arguments.
This general setting encompasses the case of proximal splitting methods that have become
popular to solve large-scale optimization problems of the form (1.2), especially with convex
non-smooth terms, e.g. those encountered in sparsity regularization. The precise splitting
algorithm to be used depends on the structure of the optimization problem at hand. See
for instance [2, 12] for an overview. Some of these algorithms are considered in detail in
Section 4.

The choice of θ is generally a challenging task, especially as the dimension of Θ gets large.
Ideally, one would like to choose the parameters θ⋆ that makes µ(y, θ⋆) (or some appropriate
image of it) as faithful as possible to µ0 (or some appropriate image of it). Formally, this can
be cast as selecting θ⋆ that minimizes the expected reconstruction error (a.k.a., mean-squared
error or quadratic risk), i.e.

θ⋆ ∈ Argmin
θ∈Θ

{RA{µ}(µ0, θ) = EW ‖A(µ(Y, θ)− µ0)‖2} (1.3)

where the matrix A ∈ RM×P is typically chosen to counterbalance the effect of Φ, see Sec-
tion 2.1 for a precise discussion.

If θ 7→ RA{µ}(µ0, θ) were sufficiently smooth, at least locally (e.g. Lipschitz), one could
expect to solve (1.3) using a (sub)gradient-descent scheme relying on the (weak) gradient of the
risk ∇2{RA{µ}}(µ0, θ), where the subscript 2 specifies that the (weak) gradient is with respect
to the second argument θ. However, this would only apply if µ0 were available. In the context
of our observation model (1.1), µ0 is however considered to be unknown. Our motivation
is then to build an estimator of ∇2{RA{µ}}(µ0, θ) that depends solely on y, without prior
knowledge of µ0.

Toward this goal, we adopt the framework of the (generalized) Stein Unbiased Risk Es-
timator (SURE) [27, 48, 55, 62, 66]. For a fixed θ, the celebrated Stein’s lemma [62] allows to
unbiasedly estimate RA{µ}(µ0, θ) through the weak Jacobian ∂1µ(y, θ), where the subscript 1
specifies that the (weak) Jacobian is with respect to the first argument y. This idea have been
exploited for years in several statistical and signal processing applications, typically for select-
ing thresholds in wavelet based reconstruction algorithms, see e.g. [3, 5, 10, 16, 22, 48, 52, 54].
Given such an estimator R̂A{µ}(y, θ) (see Section 2.1), the idea is so to replace the optimiza-
tion problem (1.3) with

θ⋆ ∈ Argmin
θ∈Θ

R̂A{µ}(y, θ) . (1.4)
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Providing that the variance of 1
P R̂

A{µ}(Y, θ) can be made arbitrarily small or even asymptot-
ically vanishing as P increases, so that it becomes a consistent estimator of 1

PR
A{µ}(µ0, θ),

one can expect that the minimizers of (1.4) becomes close to those of (1.3).

It remains to find an efficient way to solve the optimization (1.4). Again, a (sub)gradient-
descent algorithm can qualify as a good candidate if θ 7→ R̂A{µ}(y, θ) were sufficiently smooth.
To our knowledge, only [17] have performed such an optimization with Newton’s method where
(y, θ) 7→ R̂A{µ}(y, θ) was C∞. Unfortunately, being a function of ∂1µ(y, θ), θ 7→ R̂A{µ}(y, θ)
is in general not differentiable, not even continuous (think of a simple soft-thresholding). This
then precludes the use of standard descent schemes.

The common practice has been to apply an exhaustive search by evaluating the risk
estimate R̂A{µ}(y, θ) at different values of θ. Even if in some particular cases this can be
done efficiently (see for instance [22]), the computational expense can become prohibitive in
general especially as dim(Θ) increases.

Derivative-free optimization algorithms have also been investigated (see for instance [51]
for the case of 2 parameters). But such approaches typically do not scale up to problems
where Θ has a linear vector space structure with dimension larger than 2. Their performance
are known to degrade exponentially with problem size, and they require to compute a lower
and an upper bound on the optimal value over a given region.

Contributions. In this paper, we address the challenging problem of solving efficiently
(1.4): a main subject of interest for applications that has been barely investigated. Our
main contribution (Section 3) is an effective strategy to optimize automatically a collection
of parameters θ independently of their dimension. While classical unbiased risk estimates
entail optimizing a non-continuous function of the parameters, we show that the biased risk
estimator introduced in [51] is differentiable in the weak sense. This allows us, whenever the
derivatives exist, to perform a quasi-Newton optimization driven by a biased estimator of the
gradient of the risk based on the evaluation of ∂2µ(y, θ). Such optimization technique can
be provably faster thanks to first-order information compared to derivative-free approaches.
We prove that, under mild assumptions, this estimator is asymptotically (with respect to
P ) unbiased, hence the name: Stein Unbiased GrAdient estimator of the Risk (SUGAR).
Moreover, in the particular case of soft-thresholding, we go a step further and show that it is
actually a consistent estimator of the gradient of the risk.

As a second contribution (Section 4), we propose a versatile approach to compute the
derivatives ∂1µ(y, θ) and ∂2µ(y, θ), involved respectively in the computation of the SURE and
SUGAR, when µ(y, θ) is computed through an iterative algorithm, typically proximal splitting
methods. We illustrate the versatility of our method by applying it to both primal (forward-
backward [13], Douglas-Rachford [11] and generalized foward-backward [50]) and primal-dual
[9] algorithms (see [41] for a recent review). The proposed methodology can however be
adapted to any other proximal splitting method and more generally to any algorithm whose
iteration operator is weakly differentiable.

Numerical simulations involving multi-parameter selection for image restoration and ma-
trix completion problems are reported in Section 5. The proofs of our results are collected in
the appendix.
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2. Overview on Risk Estimation. This section gives an overview of the literature to
estimate the risk via the SURE and its variants for ill-posed inverse problems contaminated
by additive white Gaussian noise.

2.1. Stein Unbiased Risk Estimator. Degrees of freedom (DOF) is often used to quantify
the complexity of a statistical modeling procedure, see for instance, GCV (generalized cross-
validation [33]). From [26, 66], the degrees of freedom of a function y 7→ µ(y, θ) relatively to
a matrix A ∈ RM×P is given by

dfA{µ}(µ0, θ) =
P∑

i=1

cov(AYi, (Aµ(Y, θ))i)

σ2
, (2.1)

such that dfA{µ}(µ0, θ) is maximal when Aµ(Y, θ) is highly correlated with the random vector
AY . Taking A = Id, leads to the standard definition of the DOF defined in the seminal work
of Efron [26]. But other choices of A allow to counterbalance the undesirable effect of the
linear operator Φ (recall that µ0 = Φx0). For instance, setting A = (Φ∗Φ)−1Φ∗ when Φ
has full-rank, or A = Φ∗(ΦΦ∗)+ when Φ is rank deficient∗, provides a measure of the DOF
relatively to the least-squares estimate of x0, i.e. xLS(y) = Ay [27, 48, 66].

With the proviso that y 7→ µ(y, θ) is weakly differentiable with essentially bounded weak
partial derivatives, an unbiased estimate of the DOF can be used to unbiasedly estimate the
risk in (1.3). This leads to the (generalized) SURE (also known as weighted SURE [53]) given
as

SUREA{µ}(y, θ) = ‖A(µ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f
A{µ}(y, θ) (2.2)

with d̂f
A{µ}(y, θ) = tr (A∂1µ(y, θ)A

∗)

where we recall that ∂1µ(y, θ) is the weak Jacobian of µ(y, θ) with respect to the first argument
y. It can be shown that (see e.g. [27, 62, 66])

EW [d̂f
A{µ}(Y, θ)] = dfA{µ}(µ0, θ) and EW [SUREA{µ}(Y, θ)] = RA{µ}(µ0, θ) .

Expression (2.2) is general enough to encompass unbiased estimates of the prediction risk
EW ‖µ(Y, θ)− µ0‖2 (i.e. A = Id), the projection risk EW ‖Π(x(Y, θ)− x0)‖2, where Π
is the orthogonal projector on ker(Φ)⊥ (i.e. A = Φ∗(ΦΦ∗)+), and the estimation risk
EW ‖x(Y, θ)− x0‖2 when Φ has full rank (i.e. A = (Φ∗Φ)−1Φ∗). This can prove useful when
Φ is rank deficient, since in this case, the minimizers of the prediction risk can be far away
from the minimizers of the estimation risk [56]. The projection risk restricts the estimate to
the subspace where there is a signal beside noise, and in this sense, is a good approximation
of the estimation risk [27].

Note that generalization of the SURE have been developed for other noise models, typically
within the multivariate canonical exponential family (see e.g. [27, 37, 38, 55]).

Applications of SURE emerged for choosing the smoothing parameters in families of linear
estimates [44] such as for model selection, ridge regression, smoothing splines, etc. After its

∗(·)+ stands for the Moore-Penrose pseudo-inverse.
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introduction in the wavelet community with the SURE-Shrink algorithm [22], it has been
widely used for various image restoration problems, e.g. with sparse regularizations [3,5,6,10,
16, 45, 48, 51–54,70] or with non-local filters [15, 24, 68, 69].

However, a major practical difficulty when using the SURE lies in the numerical compu-

tation of the DOF estimate, i.e. the quantity d̂f
A{µ}(y, θ) for a given realization y. We now

give a brief overview of some previous works to deal with this computation.

2.2. Closed-form SURE. The SURE is based on a DOF estimate d̂f
A{µ}(Y, θ) that can

be sampled from the observation y ∈ R
P by evaluating the Jacobian ∂1µ(y, θ) ∈ R

N×P . A
natural way, to evaluate ∂1µ(y, θ) would be to derive its closed-form expression. This has
been studied for some classes of variational problems.

In quadratic regularization (e.g. ridge regression), where solutions are of the form x(y, θ) =
K(θ)y, where K(θ) is known as the hat or influence matrix, the Jacobian has a closed-form
∂1µ(y, θ) = ΦK(θ). In ℓ1-synthesis regularization (a.k.a. the lasso), the Jacobian matrix
depends on the support (set of non-zero coefficients) of any lasso solution x(y, θ). An esti-
mator of the DOF can then be retrieved from the number of non-zero entries of this solu-
tion [23,65,73]. These results have in turn been extended to more general sparsity promoting
regularizations [20, 40, 61, 64–66,72], and spectral regularizations (e.g. nuclear norm) [8, 19].

This approach however has three major bottlenecks. First, deriving the closed-form ex-
pression of the Jacobian is in general challenging and has to be addressed on a case by case
basis. Second, in large-dimensional problems, evaluating numerically this Jacobian is barely
possible. Even if it were possible, it might be subject to serious numerical instabilities. Indeed,
solutions of variational problems are achieved via iterative schemes providing iterates x(ℓ)(y, θ)
that eventually converge to the set of solutions as ℓ → +∞. And yet, for instance, substi-
tuting the support of the true solution by the support of x(ℓ)(y, θ), obtained at a prescribed
convergence accuracy, might be imprecise (all the more since the problem is ill-conditioned).

The three next sections review previous work to address one or some of these three points.

2.3. Monte-Carlo SURE. To deal with the large dimension of the Jacobian, the standard
approach is to exploit the fact that the DOF only depends on the trace of A∂1µ(y, θ)A

∗.
In denoising applications where A = Id and Φ = Id, this trace can generally be obtained
by closed-form computations of the P diagonal elements of ∂1µ(y, θ) (see e.g. [22, 68]). This
can also be done for some particular inverse problems. For instance, the authors of [48]
provide an expression of this trace for the wavelet-vaguelette estimator when Φ is a convolution
matrix and A = Φ+. However, in more general settings, the complexity of the closed-form
computation of the trace is non-linear, typically the number of operations is in O(P × P )
(think of Φ a mixing operator or µ an iterative estimator). To avoid such a costly procedure,
the authors of [31, 51] suggest making use of the following trace equality

d̂f
A{µ}(y, θ) = tr (A∂1µ(y, θ)A

∗) = E∆ 〈∂1µ(y, θ)[∆], A∗A∆〉 (2.3)

where ∆ ∼ N (0, IdP ) and ∂1µ(y, θ)[δ] ∈ R
P denotes the directional derivative of y 7→ µ(y, θ)

at y in direction δ. Remark that ∆ does not necessary have to be Gaussian and higher
precisions can be reached in some specific cases, see for instance [1, 21, 39, 58]. As shown
in [58], the performance of this trace estimator is governed by the distribution of the singular
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values of the operator A∂1µ(y, θ)A
∗. More specifically, the slower the decay, the better the

performance. While it is difficult to make a general claim, we observed numerically that for
the recovery problems we consider, it provide a very accurate estimator of the trace. Hence,
following [51,70], an estimate of SUREA{µ}(y, θ) can be obtained by Monte-Carlo simulations
using

SUREA
MC{µ}(y, θ, δ) = ‖A(µ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

MC{µ}(y, θ, δ)
with d̂f

A

MC{µ}(y, θ, δ) = 〈∂1µ(y, θ)[δ], A∗Aδ〉 . (2.4)

The evaluation of (2.4) necessitates only computing the P entries of ∂1µ(y, θ)[δ].

It remains to find a stable and efficient way to evaluate for any vector δ ∈ R
P the direc-

tional derivative ∂1µ(y, θ)[δ] ∈ R
P .

2.4. Iterative Differentiation for Monte-Carlo SURE. When considering solutions
x(y, θ) of a variational problem, the DOF cannot be robustly estimated if one knows only
the iterates µ(ℓ)(y, θ) that eventually converge to some µ(y, θ) as ℓ → +∞. It appears then
natural to estimate the DOF of µ(ℓ)(Y, θ) directly and make the assumption that it will con-
verge to that of µ(y, θ). For a realization y ∈ R

P , one can sample an estimate of the DOF of
the iterate µ(ℓ)(Y, θ) by evaluating its directional derivative ∂1µ

(ℓ)(y, θ)[δ]. A practical way,
initiated by [70], to compute this quantity, consists in recursively differentiating the sequence
of iterates. The authors of [70] have derived the closed-form expression of the directional
derivative for the Forward-Backward (FB) algorithm. The directional derivative at iteration

ℓ+ 1, denoting by D(ℓ+1)
µ = ∂1µ

(ℓ+1)(y, θ)[δ], is obtained iteratively as a function of µ(ℓ)(y, θ)

and D(ℓ)
µ = ∂1µ

(ℓ)(y, θ)[δ]. The Monte-Carlo DOF and the Monte-Carlo SURE can in turn be
iteratively estimated by plugging ∂1µ

(ℓ)(y, θ)[δ] in (2.4) leading to

SUREA
MC{µ(ℓ)}(y, θ, δ) =

∥∥∥A(µ(ℓ)(y, θ)− y)
∥∥∥
2
− σ2 tr(A∗A) + 2σ2d̂f

A

MC{µ(ℓ)}(y, θ, δ)

with d̂f
A

MC{µ(ℓ)}(y, θ, δ) =
〈
D(ℓ)

µ , A∗Aδ
〉
. (2.5)

A similar approach is described in [32]. Pursuing this idea, the authors of [52,53] have recently
provided such closed-form expressions in the case of the split Bregman method. Concurrently,
in an early short version of this paper [18], we have also considered this approach for general
proximal splitting algorithms, an approach that we extend in Section 4.

2.5. Finite-Difference SURE. An alternative initiated in [60,71] and rediscovered in [51]
consists in estimating tr (A∂1µ(y, θ)A

∗) via finite differences given, for ε > 0, by

tr (A∂1µ(y, θ)A
∗) ≈

P∑

i=1

[A∗A(µ(y + εei, θ)− µ(y, θ))]i
ε

, (2.6)
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where (ei)16i6P is the canonical basis of R
P . Plugging this expression in (2.4) yields the

Finite-Difference (FD) SUREA given by

SUREA
FD{µ}(y, θ, ε) = ‖A(µ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

FD{µ}(y, θ, ε)

with d̂f
A

FD{µ}(y, θ, ε) =
1

ε

P∑

i=1

(A∗A(µ(y + εei, θ)− µ(y, θ)))i. (2.7)

The main advantage of this method is that (y, θ) 7→ µ(y, θ) can be used as a black-box,
i.e., without knowledge on the underlying algorithm that provides µ(y, θ), while, for ε small
enough, it performs as well as the approach described in Section 2.4 that requires the knowl-
edge of the derivatives in closed-form. In fact, if y 7→ µ(y, θ) is Lipschitz-continuous, then
it is differentiable Lebesgue a.e. (Rademacher’s theorem), and its derivative equals its weak
derivative Lebesgue a.e. [28, Theorem 1-2, Section 6.2], which in turn implies

lim
ε→0

SUREA
FD{µ}(y, θ, ε) = SUREA{µ}(y, θ) Lebesgue a.e. (2.8)

The value of ε can so be chosen as small as possible as soon as it does not rise to numerical
instabilities due to limited machine precision. To avoid numerical instabilities, ε should be
chosen in a reasonable range of values with respect to the amplitudes of the data. In practice,
we observe that precised results can be reached compared to the closed-form derivation, hence
yielding to a quasi unbiased risk estimator (i.e., with a negligible bias). It remains that when
the data dimension P is large, the evaluation of P finite differences along each axis might be
numerically intractable. In that case, the Monte-Carlo approach (see Section 2.3) can also
be used in conjunction with finite differences leading to the Finite-Difference Monte-Carlo
(FDMC) SUREA given by

SUREA
FDMC{µ}(y, θ, δ, ε) = ‖A(µ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

FDMC{µ}(y, θ, δ, ε)

with d̂f
A

FDMC{µ}(y, θ, δ, ε) =
1

ε
〈µ(y + εδ, θ)− µ(y, θ), A∗Aδ〉 . (2.9)

The originality of our approach described in the next section is to devise a grounded choice
of ε > 0. This introduces a bias in the estimation of the risk. Nevertheless, as we will see,
using ε > 0 plays an important role in risk optimization since, unlike SUREA{µ}, SUREA

FD{µ}
is a smooth function of θ in the weak sense. This is the key point to optimize the risk. By
choosing ε > 0 carefully, a smoother objective function can be used as a basis to perform a
quasi-Newton-like optimization at the expense of a controlled bias.

3. Risk Estimate Minimization. In this section, we investigate how risk estimates can be
used for optimizing a collection of continuous parameters.

3.1. Stein’s Unbiased GrAdient Risk (SUGAR) Estimator. The difficulty is that even if
θ 7→ RA{µ}(µ0, θ) is differentiable in the weak sense, the function θ 7→ SUREA{µ}(y, θ) might

contain discontinuities. Typically, d̂f
A{µ}(y, θ) has discontinuities where (y, θ) 7→ µ(y, θ) is

not differentiable.
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We start with a simple result showing that unlike SUREA{µ}(y, θ), the finite-difference
based mapping θ 7→ SUREA

FD{µ}(y, θ, ε), for ε > 0, is weakly differentiable.
Proposition 1. Assume µ(y, θ) is weakly differentiable with respect to y and θ. Given ε > 0,

d̂f
A

FD{µ}(y, θ, ε) and SUREA
FD{µ}(y, θ, ε) are also weakly differentiable with respect to y and

θ, and their (weak) gradients with respect to θ are given, for almost all θ ∈ Θ, as

SUGARA
FD{µ}(y, θ, ε) = ∇2{SUREA

FD{µ}}(y, θ, ε)
= 2∂2µ(y, θ)

∗A∗A(µ(y, θ)− y) + 2σ2∇2{d̂f
A

FD{µ}}(y, θ, ε)

where ∇2{d̂f
A

FD{µ}}(y, θ, ε) =
1

ε

P∑

i=1

(∂2µ(y + εei, θ)− ∂2µ(y, θ))∗A∗Aei .

Thanks to Proposition 1, a quasi-Newton-like method can now be used to optimize
SUREA

FD{µ}(y, θ, ε) for the vector of continuous parameters θ by implementing the iteration

θn+1 = θn −BnSUGARA
FD{µ}(y, θn, ε)

where Bn ∈ R
dim(Θ)×dim(Θ) is a sequence of definite-positive matrices. Typically, if θ 7→

SUREA
FD{µ}(y, θ, δ, ε) behaves locally as a C2 function, Bn should approach the inverse of

the corresponding Hessian at θn. Remark that in general there is no guarantee that the
risk has a unique global minimizer, though in the 1-D case it is generally the case. When
several parameters are involved, such objective can have several local minima and specific
quasi-Newton-like methods might be developed to avoid being stuck in one of them.

In practice, the calculation of SUGARA
FD depends on the computation of the Jacobian

matrices with respect to the parameters θ. We will see in Section 4 how this quantity can be
efficiently computed when µ results from an iterative algorithm.

We now turn to the asymptotic unbiasedness of the proposed gradient estimator of the
risk as ε approaches 0. Toward this goal we need the following assumptions.
(A.1) The mapping y 7→ µ(y, θ) is uniformly Lipschitz continuous with Lipschitz constant

L1.
(A.2) The mapping y 7→ µ(y, θ) is such that µ(0, θ) = 0 for any θ.
(A.3) The mapping θ 7→ µ(y, θ) is uniformly Lipschitz continuous with Lipschitz constant

L2 independently of y.

Remark 1 (Discussion of the assumptions).
1. Assumption (A.1) is mild and is fulfilled in many situations of interest. In particu-

lar, this is the case when y 7→ µ(y, θ) is the proximal operator of proper closed and
convex function, as considered in Section 4 (see also Section 3.2 for soft-thresholding).
Standard convex analysis arguments [36] show that the proximity operator is indeed a
uniformly Lipschitz of its argument y with constant L1 = 1, independently of θ.

2. Assumption (A.2) is very natural and does not entail any loss of generality. It basically
states that, when the observations are zero, so is the estimator.

3. As far as Assumption (A.3) is concerned, it is verified under certain circumstances.
This is for instance the case when µ(y, θ) = ProxθG(y), θ > 0, where G is the gauge
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(see Definition 2 in Appendix B) of any compact convex set containing the origin as
an interior point†; see Proposition 5 in Appendix B. By induction, this also holds when
µ(y, θ) = Proxθ1G1

◦ · · · ◦ ProxθmGm
(y), θ ∈]0,+∞[m, and for any i = 1, . . . ,m, Gi is

the gauge of any compact convex set containing the origin as an interior point, see
Corollary 5. Typical instances of these gauges are norms, e.g. ℓ1, ℓ1 − ℓ2 or nuclear
norms very popular now in the signal and image processing community.

4. Assumption (A.3) can be relaxed to cover the case where L2 depends on y. In such a
situation, additional assumptions on the function y 7→ L2(y) are needed for steps 3)
and 4) in the proof of Theorem 1 to go through. We omit this case for the sake of
clarity and to avoid further technicalities.

We are now ready to state our theorem.
Theorem 1 (Asymptotic unbiasedness of SUGAR). Assume that (A.1)-(A.3) hold. Then,

RA{µ}(µ0, ·) and dfA{µ}(µ0, ·) are weakly differentiable, and for any Lebesgue point θ,

lim
ε→0

EW

[
SUGARA

FD{µ}(Y, θ, ε)
]
= ∇2{RA{µ}}(µ0, θ)

and lim
ε→0

EW

[
∇2{d̂f

A

FD{µ}}(Y, θ, ε)
]
= ∇2{dfA{µ}}(µ0, θ) .

Theorem 1 can be given the following interpretation. As ε gets close to 0, e.g. a decreasing
function of the dimension P ‡, the gradient of SUREA

FD{µ}(y, ·, ε) (normalized by P ) can be
used to estimate the gradient of the risk (also normalized by P ) provided that P is large
enough.

However, even if ε should decrease towards 0, it should not decrease too fast. In particular,
for a fixed dimension P , the step ε cannot be chosen arbitrarily small. This would not be
an issue if µ(y, ·) were differentiable, but in general, there might be singularities. In fact,
for a finite dimension P , the limit when ε → 0 of the sample SUGARA

FD{µ}(y, θ, ε) may not
even exist, though that of its expectation does exist Lebesgue a.e. as shown in the proof of
Theorem 1. As a consequence, the quantity 1

P SUGARA
FD{µ}(Y, θ, ε) can become very unstable

when ε decreases too fast with the dimension P . The underlying statistical question is whether
one can control the variance of 1

P SUGARA
FD{µ}(Y, θ, ε) as P increases, and make arbitrarily

small or even asymptotically vanishing, so that 1
P SUGARA

FD{µ}(Y, θ, ε) becomes a consistent
estimator. Unfortunately, consistency of our gradient estimator of the risk is very intricate to
get in the general case, as it is the case for the consistency of the SURE. However, when µ
specializes to soft-thresholding, such a result can be achieved.

3.2. SUGAR for Soft-tresholding. In this section, we show that the proposed gradient
estimator of the risk can be consistent in the case where µ is the soft-thresholding (ST)
function and A = IdP . The ST is the proximal operator of the ℓ1-norm. Understanding the
ST is of chief interest since it is at the heart of any proximal splitting algorithm solving a
regularized inverse problem involving terms of the form ‖D∗x‖1 where D is a linear operator.

†Another case which is trivial corresponds to G being the indicator function of a non-empty closed convex
set, in which case L2 = 0.

‡as we will see, the higher the dimension P , the smaller ε could be.
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Let first recall the definition of soft-thresholding.

Definition 1 (Soft-Thresholding). The soft-thresholding (ST) is defined, for λ > 0, and for
all 1 6 i 6 P , as

ST(y, λ)i =





yi + λ if yi 6 −λ
0 if − λ < yi < λ
yi − λ otherwise

. (3.1)

Observe that as a proximity operator of a norm, soft-thresholding satisfies Assumptions (A.1)
through (A.3) of Theorem 1, see the corresponding discussion. Hence, we already anticipate
from Theorem 1 that our gradient estimator of the soft-thresholding risk is asymptotically
unbiased.

We start with following lemma which collects the statistics of the gradient of the finite
difference DOF estimator.

Lemma 1 (Statistics of the gradient of the finite difference DOF estimator). Let 0 < ε < 2λ.
The weak gradient of λ 7→ d̂fFD{ST}(Y, λ, ε) is such that

EW

[
∇2{d̂fFD{ST}}(Y, λ, ε)

]
=
−1
2

P∑

i=1

ϕ[(µ0)i, λ, ε]

ε
,

and VW

[
∇2{d̂fFD{ST}}(Y, λ, ε)

]
=

1

2ε

P∑

i=1

ϕ[(µ0)i, λ, ε]

ε
− 1

4

P∑

i=1

[
ϕ[(µ0)i, λ, ε]

ε

]2
.

where for a ∈ R, ϕ[a, λ, ε] = erf
(
a+λ+ε√

2σ

)
− erf

(
a+λ√
2σ

)
+ erf

(
a−λ+ε√

2σ

)
− erf

(
a−λ√
2σ

)
.

We now turn to the asymptotic behavior of the proposed gradient estimator of the risk
for large P , at a single realization of Y , i.e., our observation y. To this end, we first have to
define how the observation model evolves with the dimension P . Given z0 ∈ R

N , we consider
the sequence {ΨP }P>1 where ΨP ∈ R

P×N and such that, for all P > 1, ΨP is the sub-matrix
obtained by cutting down one line of ΨP+1. We can then define a sequence of observation
models as a the sequence of random vector {YP }P>1 defined as

YP = ΨP z0 +WP where WP ∼ N (0, σ2IdP ). (3.2)

We also define the sequence {(µ0)P }P>1 where (µ0)P = ΨP z0. In the following, for the sake
of clarity, we omit the dependency of YP , WP and (µ0)P on P .

We can now state our consistency result for soft-thresholding.

Theorem 2 (Consistency of SUGAR). Take ε̂(P ) such that limP→∞ ε̂(P ) = 0 and
limP→∞ P−1ε̂(P )−1 = 0. Then for any Lebesgue point λ > 0 (i.e. such that ∀(i, P ), λ 6=
|Yi| and λ 6= |Yi + ε̂(P )ei|)

plim
P→∞

[
1

P
(SUGARFD{ST}(Y, λ, ε̂(P ))−∇2{R{ST}}(µ0, λ))

]
= 0

and plim
P→∞

[
1

P

(
∇2{d̂fFD{ST}}(Y, λ, ε̂(P ))−∇2{df{ST}}(µ0, λ)

)]
= 0 .
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In plain words, Theorem 2 asserts that for our gradient estimator of the soft-thresholding
risk to be consistent, ε̂(P ) should not decrease faster than the inverse of the dimension P . With
the proviso that ε̂(P ) fulfills the requirement, for P large enough, 1

P SUGARFD{ST}(y, λ, ε̂(P ))
is guaranteed to come close to 1

P∇2{R{ST}}(µ0, λ) with high probability.
Unfortunately, Theorem 2 does not dictate an explicit choice of ε̂(P ), and the practitioner

may wonder how to choose this value for a given P . It turns out that studying the mean
squared error (MSE) of the gradient of the finite difference DOF estimator helps unveiling the
link between P and ε through a bias-variance trade-off.

Proposition 2 (MSE of the gradient of the finite difference DOF estimator). The weak gradi-
ent of λ 7→ d̂f{ST}(Y, λ, ε) is such that

EW

[
1

P

(
∇2{d̂f{ST}}(Y, λ, ε)−∇2{df{ST}}(µ0, λ)

)]2
=

1

P 2

(
EW

[
∇2{d̂f{ST}}(Y, λ, ε)

]
−∇2{df{ST}}(µ0, λ)

)2

︸ ︷︷ ︸
Bias2

+
1

P 2
VW

[
∇2{d̂f{ST}}(Y, λ, ε)

]
.

︸ ︷︷ ︸
V ariance

where the statistics of ∇2{d̂f{ST}}(Y, λ, ε) are given in Lemma 1 and

∇2{df{ST}}(µ0, λ) =
−1√
2πσ

P∑

i=0

[
exp

(
−((µ0)i + λ)2

2σ2

)
+ exp

(
−((µ0)i − λ)2

2σ2

)]
.

Thus, if µ0 were given, the quantities in Proposition 2 could be computed in closed-form.
The MSE can then be evaluated to select the optimal value of ε for a fixed dimension P and a
given threshold λ. See the following numerical experiments which illustrate this relationship.
When µ0 is unknown, an a priori model can be imposed, such as for instance belonging to
some ball promoting sparsity, e.g. a weak ℓγ-ball for γ > 0. For γ sufficiently small, this ball
corresponds to compressible or nearly sparse vectors µ0 whose entries |µi| sorted in descending
order of magnitude behave as O(i−1/γ). With such a model at hand, the MSE in Proposition 2
can be optimized for ε given P , σ, λ and γ. This however entails a highly non-linear equation
that cannot be solved in closed form. We defer such a development to a future work.

Figure 3.1.(a) shows the evolution of the bias and the variance as a function of the ratio
ε/σ for fixed values of σ, λ and a compressible vector µ0, i.e. |(µ0)i| = O(i−1/γ), chosen as
illustrated on Figure 3.1.(d). When ε → 0, for fixed P , the bias vanishes while the variance,
and in turn the MSE, increases. However, for a step ε > 0, the MSE is finite and seems
to be optimal around the value 0.1σ. Figure 3.1.(c) shows the evolution of the MSE as a
function of the dimension P and the ratio ε/σ for the same fixed values as before. The
optimal step, minimizing the MSE, seems to evolve as a power decay function (the scale is
log-log) of the form ε⋆(P ) = Cσ/Pα with C > 0 and 0 < α < 1. Of course the optimal
constants C and α depend on the choice of µ0, σ and λ. However, whatever C > 0 and
0 < α < 1, or more generally for any admissible choice of ε̂ such that limP→∞ ε̂(P ) = 0 and
limP→∞ P−1ε̂(P )−1 = 0, the MSE vanishes with respect to P . Figure 3.1.(b) shows indeed
the evolution of the bias, the variance and the MSE as a function of the dimension P when ε̂
is chosen as a power decay function. For α = 0 or α = 1, the MSE remains constant while,
for α > 1, the MSE diverges which suggests the necessity of limP→∞ P−1ε̂(P )−1 = 0.
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Figure 3.1. Bias-variance trade-off of the gradient estimator of the DOF of soft-thresholding, (a) with
respect to the step ε and (b) with respect to the dimension P when using a power decay function P 7→ ε̂(P ).
(c) Its mean squared error as a function of P and ε (in logarithmic scales). The solid line represents the pairs
(ε̂⋆(P ), P ) where, for a fixed dimension P , ε̂⋆(P ) minimizes the mean squared error. The function ε̂⋆(P ) looks
like a power function of the form of Cσ/Pα with C > 0 and 0 < α < 1. The dashed lines represent respectively
the power functions ε̂inf(P ) = Cσ and ε̂sup(P ) = Cσ/P outside which the mean squared error diverges when P
increases. (d) Description of the settings of the experiments, i.e., the choice of σ, µ0 and λ.

4. Differentiation of an Iterative Scheme. We now turn to iterative algorithms that
involve linear and soft-thresholding operators. We observed empirically that for all the inverse
problems exposed in Section 5, setting ε⋆(P ) = Cσ/Pα, as suggested by our study on the soft
thresholding, resulted in a reliable way to parametrize our estimator. The effectiveness of this
heuristic might be explained by the fact that the singularities encountered in most imaging
problems are similar to absolute values, in order to encourage some sort of sparsity in the
solution.

In this section, we focus on iterates, defined unambiguously as single-valued mappings
(y, θ) 7→ x(ℓ)(y, θ), where ℓ is the iteration counter of the iterative algorithm. In this context,
we propose to compute in closed-form the derivatives of x(ℓ)(y, θ) with respect to either y (in
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a direction δ) or θ. This proves useful to respectively estimate the risk via SUREA
MC (see

Section 2) and estimate its gradient via SUGARA
FDMC (see Section 3).

The iterative schemes we consider can be cast in the same framework, which subsumes
proximal splitting algorithms designed to minimize a proper, closed and convex objective
function x 7→ E(x, y, θ), whose set of minimizers is supposed non-empty. All these algorithms
can be unified as an iterative scheme of the form

{
x(ℓ) = γ(a(ℓ))

a(ℓ+1) = ψ(a(ℓ), y, θ),
(4.1)

where a(ℓ) ∈ A is a sequence of auxiliary variables. ψ : A×Y×Θ→ A is a fixed point operator
in such a way that a(ℓ) converge to a fixed point a⋆, and γ : A → X is non-expansive (i.e,
‖γ(a1)− γ(a2)‖ 6 ‖a1 − a2‖ for any a1, a2 ∈ A) entailing that x(ℓ) will converge to x⋆ = γ(a⋆).
Note that for the sake of clarity, we have dropped the dependencies of a⋆ and x⋆ to y and θ.

To make our ideas clear, consider the instructive example where x 7→ E(x, y, θ) is convex
and C1(X ) with L-Lipschitz gradient, in which case A = X , a = x and ψ(x, y, θ) = x −
τ∇1E(x, y, θ) where 0 < τ < 2/L.

4.1. Iterative Weak Differentiability. A practical way to get the weak directional deriva-
tive ∂1x(y, θ)[δ] and the weak Jacobian ∂2x(y, θ), is to compute them iteratively from the
sequences (4.1) by relying on the chain rule. However, two major issues have to be taken care
of. First, one has to ensure weak differentiability of the iterates (4.1) so that ∂1x

(ℓ)(y, θ)[δ]
(or resp. to ∂2x

(ℓ)(y, θ)) exist Lebesgue a.e. Second, one may legitimately ask whether the
sequence of weak derivatives converges, and the properties of its cluster point, if any, with
respect to the weak derivatives at a minimizer x⋆.

Regarding weak differentiability of the iterates, it relies essentially on regularity conditions
to apply the chain rule, e.g. [28, Section 4.2.2], i.e. regularity properties of the iteration
mappings γ and ψ and of the initialization. For instance, for proximal splitting algorithms,
it turns out that γ is the composition of one or several non-expansive operators, hence 1-
Lipschitz, operators. In turn, γ is 1-Lipschitz. Furthermore, in all examples we consider, ψ
is also 1-Lipschitz with respect to its second and third arguments. Therefore, if one starts
at a Lipschitz continuous initialization, by induction, y 7→ x(ℓ)(y, θ) and θ 7→ x(ℓ)(y, θ) are
also Lipschitz. Using the chain rule for Lipschitz mappings [28, Theorem 4 and Remark,
Section 4.2.2], weak differentiability of x(ℓ) follows with respect to both arguments.

As far as convergence of the sequence of weak Jacobians is concerned, this remains an
open question in the general case, and we believe this would necessitate intricate arguments
from non-smooth and variational analysis. This is left to future research.

From now on, we suppose that the Lipschitzian assumptions on γ, ψ and the initial points
hold. The next two sections detail the computation of ∂1x

(ℓ)(y, θ)[δ] and ∂2x
(ℓ)(y, θ) in order

to get the estimates SUREA
MC and SUGARA

FDMC.

4.2. Computation of SUREA

MC for Risk Optimization. We describe here the iterative
computation of the directional derivative ∂1x

(ℓ)(y, θ)[δ] following the idea introduced in [70]
(see Section 2.4). Note that we focus on the directional derivative since, on the one hand,
∂1x

(ℓ)(y, θ) ∈ R
N×P is never used explicitly but only its trace, not to mention its storage
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Algorithm Risk estimation of an iterative scheme

Inputs: observation y ∈ Y = R
P , collection of parameters θ ∈ Θ

Parameters: noise variance σ2 > 0, linear operator Φ ∈ R
P×N ,

matrix A ∈ R
M×P , number L of iterations

Output: solution x(y, θ) ∈ X and its risk estimate R̂A{x}(y, θ)

Sample a vector δ from N (0, IdP )
Initialize a(0) ← 0 *
Initialize D(0)

a ← 0
for ℓ from 0 to L − 1 do *

a(ℓ+1) ← ψ(a(ℓ), y, θ) *

D(ℓ+1)
a ← Ψ

(ℓ)
a (D(ℓ)

a ) + Ψ
(ℓ)
y (δ)

end for *
x(L) ← γ(a(L)) *

D(L)
x ← Γ

(L)
a (D(L)

a )

d̂f
A

MC ←
〈
ΦD(L)

x , A∗Aδ
〉

SUREA
MC ←

∥∥A(y − Φx(L))
∥∥2 − σ2 tr(A∗A) + 2σ2d̂f

A

MC

return x(y, θ)← x(L) and R̂A{x}(y, θ)← SUREA
MC

Figure 4.1. Pseudo-algorithm for risk estimation of an iterative scheme. The symbols * indicate the lines
corresponding to the computation of x. The others are dedicated to the computation of the estimated risk R̂A

using Monte Carlo simulation. Even if computing the risk requires more operations, the global complexity of
the algorithm is unchanged.

cost, and, on the other hand, the risk can be estimated by applying only the weak directional
derivatives on random directions δ (see Section 2.3 for more details).

The next proposition summarizes a recursive scheme to compute the weak derivatives
∂1x

(ℓ)(y, θ)[δ].

Proposition 3. For any vector δ ∈ X , the weak directional derivative D(ℓ)
x = ∂1x

(ℓ)(y, θ)[δ]
is given by

D(ℓ)
x = Γ(ℓ)

a (D(ℓ)
a )

with D(ℓ+1)
a = Ψ(ℓ)

a (D(ℓ)
a ) + Ψ(ℓ)

y (δ),

where D(ℓ)
a = ∂1a

(ℓ)(y, θ)[δ] and we have defined the following linear mappings

Γ(ℓ)
a (·) = ∂1γ(a

(ℓ))[·],
Ψ(ℓ)

a (·) = ∂1ψ(a
(ℓ), y, θ)[·],

Ψ(ℓ)
y (·) = ∂2ψ(a

(ℓ), y, θ)[·].
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Algorithm Risk and gradient risk estimation of an iterative scheme

Inputs: observation y ∈ Y = R
P , collection of parameters θ ∈ Θ

Parameters: noise variance σ2 > 0, linear operator Φ ∈ R
P×N ,

matrix A ∈ R
M×P , number L of iterations

decay parameters C > 0 and 0 < α < 1
Output: solution x(y, θ) ∈ X , its risk estimate R̂A{x}(y, θ),

and its gradient risk estimate ∇̂2R
A{x}(y, θ)

Sample a vector δ from N (0, IdP ) *
Choose ε = Cσ/Pα *
for y′ = y and y′ = y + εδ do *

Initialize a(0) ← 0 *
Initialize J (0)

a ← 0
for ℓ from 0 to L − 1 do *

a(ℓ+1) ← ψ(a(ℓ), y′, θ) *

J (ℓ+1)
a ← Ψ

(ℓ)
a (J (ℓ)

a ) + Ψ
(ℓ)
θ

end for *
x(ℓ)(y′)← γ(a(ℓ)) *

J (ℓ)
x (y′)← Γ

(ℓ)
a (J (ℓ)

a )
end for *
d̂fFDMC ← 1

ε

〈
Φ(x(L)(y + εδ)− x(L)(y)), A∗Aδ

〉
*

SUREA
FDMC ←

∥∥A(y − Φx(L))
∥∥2 − σ2 tr(A∗A) + 2σ2d̂fFDMC *

SUGARA
FDMC ← 2J (L)

x (y)∗Φ∗A∗A(Φx(L) − y) + 2σ2

ε

(
J (L)
x (y+εδ)−J (L)

x (y)
)∗

Φ∗A∗Aδ

return x(y, θ)← x(L)(y), R̂A{x}(y, θ)← SUREA
FDMC and ∇̂2R

A{x}(y, θ)← SUGARA
FDMC

Figure 4.2. Pseudo-algorithm for risk and gradient risk estimation of an iterative scheme. The symbols *
indicate the lines corresponding to the computation of x and its estimated risk RA using approximated Monte
Carlo simulation, i.e., as described in [51]. The others are dedicated to the computation of the estimated gradient
of the risk ∇̂RA. Even if computing the gradient of the risk requires more operations, the global complexity of
the algorithm is unchanged.

Plugging ∂2x
(ℓ)(y, θ)[δ] in (2.4), and in turn in (2.2), gives iteratively an unbiased§ estimate

of the risk at the current iterate x(ℓ)(y, θ). The whole procedure is summarized in Fig. 4.1. It
is worth point out that although estimating the risk entails additional operations, the global
complexity is the same as for the original iterative algorithm without risk estimation.

4.3. Computation of SUGARA

FDMC for Risk Optimization. We now focus on the com-
putation of the weak Jacobian ∂2x

(ℓ)(y, θ). Unlike for risk estimation that required only
weak directional derivatives, for risk optimization we need the full weak Jacobian matrix
∂2x(y, θ) ∈ R

dim(Θ)×N . The proposed strategy, known as the forward accumulation, is one

§Expectation is to be taken here with respect to both the Gaussian measure of the noise W and the
direction ∆.
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of the possible strategies to iteratively evaluate the derivatives by the use of the chain rule.
The reverse accumulation is another strategy that does not require computing the full Jaco-
bian matrix at the expense of a large memory load with respect to the number of iterations.
Between these two extreme approaches, they are several hybrid strategies that can also be con-
sidered, knowing, that finding the optimal Jacobian accumulation strategy is an NP-complete
problem. Such strategies have been studied in the field of “automatic differentiation” and the
reader is invited to refer to [34, 47] for a comprehensive account of these approaches.

In our case, we consider that, unlike for ∂1x
(ℓ)(y, θ), the matrix ∂2x(y, θ) is in practice

quite small since dim(Θ)≪ P , hence implying only a memory load overhead of small fraction
of P . Hence following the forward accumulation strategy, we propose a practical way to
compute iteratively the full weak Jacobian matrix ∂2x(y, θ).

The next result describes an iterative scheme to compute ∂2x
(ℓ)(y, θ).

Proposition 4. The weak Jacobian J (ℓ)
x = ∂2x

(ℓ)(y, θ) is given by

J (ℓ)
x = Γ(ℓ)

a (J (ℓ)
a )

with J (ℓ+1)
a = Ψ(ℓ)

a (J (ℓ)
a ) + Ψ

(ℓ)
θ ,

where J (ℓ)
a = ∂2a

(ℓ)(y, θ) and we have defined

Γ(ℓ)
a (·) = ∂1γ(a

(ℓ))[·],
Ψ(ℓ)

a (·) = ∂1ψ(a
(ℓ), y, θ)[·],

Ψ
(ℓ)
θ = ∂3ψ(a

(ℓ), y, θ).

Plugging ∂2x
(ℓ)(y, θ) in the expression of SUGARA

FDMC given by Proposition 1 provides
iteratively an asymptotically (see Theorem 1) unbiased estimate of the gradient of the risk at
the current iterate x(ℓ)(y, θ). The main steps of the procedure are summarized in Fig. 4.2. The
estimation of the gradient of the risk entails only a small computational overhead compared
to the risk estimation approach of [51]. Their respective complexity remains however the same.

Note finally that in both schemes, another initialization than a(0) = 0 can be chosen,
for instance depending on y and θ, in which case the respective derivatives require to be
initialized accordingly.

The following sections are devoted to instantiate this approach to more specific iterative
algorithms that are able to handle non-smooth convex objective functions E.

4.4. Application to Generalized Forward Backward Splitting. The Generalized Forward
Backward (GFB) splitting [50] allows one to find one element belonging to the set x(y, θ)
solution of the structured convex optimization problem

x(y, θ) = Argmin
x∈X

{
E(x, y, θ) = F (x, y, θ) +

Q∑

k=1

Gk(x, y, θ)

}
(4.2)

under the assumptions that all functions are proper, closed and convex, F is C1(X ) with
L-Lipschitz continuous gradient, and the Gk functions are simple, in the sense their proximity
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operator can be computed in closed form (e.g. the ℓ1 norm is simple since its proximal operator
is explicitly the soft-thresholding). Recall that the proximal mapping of a proper closed convex
function G is defined as

ProxG : x ∈ X 7→ argmin
z∈X

1

2
‖z − x‖2 +G(z) .

It is uniquely valued and non-expansive (i.e., ‖ProxG(x1)− ProxG(x2)‖ 6 ‖x1 − x2‖ for any
x1, x2 ∈ X ), in fact even firmly so.

The GFB implements iteration (4.1) with a(ℓ) = (ξ(ℓ), z
(ℓ)
1 , . . . , z

(ℓ)
Q ) ∈ A = X 1+Q, x(ℓ) =

γ(a(ℓ)) = ξ(ℓ) and a(ℓ+1) = ψ(a(ℓ), y, θ) chosen such that for all k = 1, . . . , Q,

x(ℓ+1) = 1
Q

∑Q
k=1 z

(ℓ+1)
k

and z
(ℓ+1)
k = z

(ℓ)
k − x(ℓ) + ProxνQGk

(Z(ℓ)
k , y, θ)

with Z(ℓ)
k = 2x(ℓ) − z(ℓ)k − ν∇1F (x

(ℓ), y, θ) .

With the parameter ν ∈]0, 2/L[, the sequence of iterates x(ℓ) is provably guaranteed to con-
verge to a minimizer x(y, θ) of (4.2). One recovers as a special cases the Forward-Backward
splitting [13] when Q = 1 and the Douglas-Rachford splitting [11] when F = 0.

Corollary 1. For any vector δ ∈ X , the GFB weak directional derivatives D(ℓ)
x = Γ

(ℓ)
a (D(ℓ)

a )

and D(ℓ+1)
a = Ψ

(ℓ)
a (D(ℓ)

a ) + Ψ
(ℓ)
y (δ) are computed by evaluating iteratively

D(ℓ+1)
x = 1

Q

∑Q
k=1D

(ℓ+1)
zk

and D(ℓ+1)
zk = D(ℓ)

zk −D
(ℓ)
x + G(ℓ)k,x(D

(ℓ)
Zk

) + G(ℓ)k,y(δ)

with D(ℓ)
Zk

= 2D(ℓ)
x −D(ℓ)

zk − ν(F
(ℓ)
x (D(ℓ)

x ) + F (ℓ)
y (δ)) ,

where we have defined the following linear mappings

G(ℓ)k,x(·) = ∂1{ProxνQGk
}(Z(ℓ)

k , y, θ)[·],
G(ℓ)k,y(·) = ∂2{ProxνQGk

}(Z(ℓ)
k , y, θ)[·],

F (ℓ)
x (·) = ∂1{∇1F}(x(ℓ), y, θ)[·]

and F (ℓ)
y (·) = ∂2{∇1F}(x(ℓ), y, θ)[·] .

Corollary 2. The GFB weak Jacobian J (ℓ)
x = Γ

(ℓ)
a (J (ℓ)

a ), where J (ℓ+1)
a = Ψ

(ℓ)
a (J (ℓ)

a ) + Ψ
(ℓ)
θ ,

is computed by evaluating iteratively

J (ℓ+1)
x = 1

Q

∑Q
k=1 J

(ℓ+1)
zk

and J (ℓ+1)
zk = J (ℓ)

zk − J
(ℓ)
x + G(ℓ)k,x(J

(ℓ)
Zk

) + G(ℓ)k,θ

with J (ℓ)
Zk

= 2J (ℓ)
x − J (ℓ)

zk − ν(F
(ℓ)
x (J (ℓ)

x ) + F (ℓ)
θ ) ,

where we have defined

G(ℓ)k,x(·) = ∂1{ProxνQGk
}(Z(ℓ)

k , y, θ)[·],
G(ℓ)k,θ = ∂3{ProxνQGk

}(Z(ℓ)
k , y, θ),

F (ℓ)
x (·) = ∂1{∇1F}(x(ℓ), y, θ)[·]

and F (ℓ)
θ = ∂3{∇1F}(x(ℓ), y, θ) .
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4.5. Application to Primal-dual Splitting. Proximal splitting schemes can be used to find
an element of the set x(y, θ) defined as the solution of the large class of variational problems

x(y, θ) = Argmin
x∈X

{E(x, y, θ) = H(x, y, θ) +G(K(x), y, θ)} , (4.3)

where both x 7→ H(x, y, θ) and u 7→ G(u, y, θ) are proper closed convex and simple functions,
and K : X → U is a bounded linear operator.

The primal-dual¶ relaxed Arrow-Hurwicz algorithm as revitalized recently in [9] (that
we coin CP) to solve (4.3) implements (4.1) with a(ℓ) = (ξ(ℓ), x̃(ℓ), u(ℓ)) ∈ A = X 2 × U ,
x(ℓ) = γ(a(ℓ)) = ξ(ℓ) and a(ℓ+1) = ψ(a(ℓ), y, θ) such that

u(ℓ+1) = ProxτG∗(U (ℓ), y, θ) where U (ℓ) = u(ℓ) + τK(x̃(ℓ)),

x(ℓ+1) = ProxξH(X(ℓ), y, θ) where X(ℓ) = x(ℓ) − ξK∗(u(ℓ+1)),

x̃(ℓ+1) = x(ℓ+1) + ζ(x(ℓ+1) − x(ℓ)).
(4.4)

where the Legendre-Fenchel conjugate of G is defined as G∗(u, y, τ) = maxz 〈z, u〉−G(z, y, τ),
and its proximity operator is given by Moreau’s identity as

ProxτG∗(u, y) = u− τ ProxG/τ (u/τ, y) .

The parameters τ > 0, ξ > 0 are chosen such that τξ ‖K‖2 < 1, and ζ ∈ [0, 1] to ensure
provable convergence of x(ℓ) toward an element in the set x(y, θ) of (4.3). ζ=0 corresponds
to the Arrow-Hurwitz algorithm, and for ζ = 1, a sublinear O(1/ℓ) convergence rate on the
partial duality gap was established in [9].

Corollary 3. For any vector δ ∈ X , the CP weak directional derivatives D(ℓ)
x = Γ

(ℓ)
a (D(ℓ)

a )

and D(ℓ+1)
a = Ψ

(ℓ)
a (D(ℓ)

a ) + Ψ
(ℓ)
y (δ) are computed by evaluating iteratively

D(ℓ+1)
u = G(ℓ)u (D(ℓ)

U ) + G(ℓ)y (δ) where D(ℓ)
U = D(ℓ)

u + τK(D(ℓ)
x̃ ),

D(ℓ+1)
x = H(ℓ)

x (D(ℓ)
X ) +H(ℓ)

y (δ) where D(ℓ)
X = D(ℓ)

x − ξK∗(D(ℓ+1)
u ),

and D(ℓ+1)
x̃ = D(ℓ+1)

x + ζ(D(ℓ+1)
x −D(ℓ)

x )

where we have defined the following linear mappings

H(ℓ)
x (·) = ∂1{ProxξH}(X(ℓ), y, θ)[·],
H(ℓ)

y (·) = ∂2{ProxξH}(X(ℓ), y, θ)[·],
G(ℓ)u (·) = ∂1{ProxτG∗}(U (ℓ), y, θ)[·]

and G(ℓ)y (·) = ∂2{ProxτG∗}(U (ℓ), y, θ)[·] .

Corollary 4. Similarly to Corollary 3, the CP weak Jacobians J (ℓ)
x = Γ

(ℓ)
a (J (ℓ)

a ) and

J (ℓ+1)
a = Ψ

(ℓ)
a (J (ℓ)

a ) + Ψ
(ℓ)
θ are computed by evaluating iteratively

J (ℓ+1)
u = G(ℓ)u (J (ℓ)

U ) + G(ℓ)θ where J (ℓ)
U = J (ℓ)

u + τK(J (ℓ)
x̃ ),

J (ℓ+1)
x = H(ℓ)

x (J (ℓ)
X ) +H(ℓ)

θ where J (ℓ)
X = J (ℓ)

x − ξK∗(J (ℓ+1)
u ),

and J (ℓ+1)
x̃ = J (ℓ+1)

x + ζ(J (ℓ+1)
x − J (ℓ)

x )

¶We invite the interested reader to consult [41] for a detailed review on primal-dual algorithms.
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where we have defined

H(ℓ)
x (·) = ∂1{ProxξH}(X(ℓ), y, θ)[·],
H(ℓ)

θ = ∂3{ProxξH}(X(ℓ), y, θ),

G(ℓ)u (·) = ∂1{ProxτG∗}(U (ℓ), y, θ)[·]
and G(ℓ)θ = ∂3{ProxτG∗}(U (ℓ), y, θ).

Note that the two proximal splitting schemes described here were chosen for their flexibility
and the richness of the class of problems they can handle. Obviously, the methodology and
discussion extend easily to the reader’s favorite proximal splitting algorithm.

5. Examples and Numerical Results. In this section, we exemplify the use of the formal
differentiation of iterative proximal splitting algorithms for three popular variational problems:
nuclear norm regularization, total-variation regularization and multi-scale wavelet ℓ1-analysis
sparsity prior. For each of them, the expressions of all quantities including the proximal
operators and their derivatives are given in closed-form. On each problem, we illustrate the
usefulness of our gradient risk estimators for (multi) continuous parameter optimization.

5.1. Implementation Details. All experiments reported below are based on the algo-
rithms detailed in Figure 4.1 and 4.2 in conjunction with proximal splitting algorithms pre-
sented in the previous section. The step of the finite difference is chosen as ε = 2σ/P 0.3.
Iterative proximal splitting algorithms will be used with L = 100 iterations. For quasi-Newton
optimization, we used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the im-
plementation of [43]. The use of BFGS is just given as an example to make the most of the
proposed gradient estimator of the risk and seems to be good enough for the cases considered
in all the following experiments examples. Of course, other first-order optimization methods
can be considered for just as well, essentially if the risk presents several local minima.

An important issue in using quasi-Newton optimization is the choice of the initialization,
the initial step and the stopping criteria. For a variation regularization problem expressed as

Argmin
x

1

2
‖Φx− y‖2 +

K∑

k=1

λkRk(x) , (5.1)

where λk > 0, ∀k ∈ N, the initialization λk0 is chosen empirically as

λk0 =
Pσ2

4
∑K

k=1Rk(xLS(y))
, (5.2)

where xLS(y) is the least-square estimator. At the first iteration, the approximate inverse
Hessian B1 should be chosen such that, for all k > 0, λk1 is of the same order as λk0. To this
end, we suggest initializing B1 as a diagonal matrix with diagonal entries

Bk
1 =

∣∣∣∣
αλk0

SUGARA
FDMC{x}(y, λ0, δ, ε)k

∣∣∣∣ (5.3)
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such that, for all k, λk1 = (1± α)λk0 , where, in practice, we have chosen α = 0.9. Finally, the
BFGS method stops after the following criterion is reached

∥∥SUGARA
FDMC{x}(y, λn, δ, ε)

∥∥
∞∥∥SUGARA

FDMC{x}(y, λ0, δ, ε)
∥∥
∞

6 τ (5.4)

where we have chosen τ = 0.02 meaning that the algorithm stops if all (weak) partial deriva-
tives are at least 50 times lower than the maximal one at initialization.

For the sake of reproducibility, the Matlab scripts implementing the SURE
and SUGAR for the different problems details hereafter are available online at
http://www.math.u-bordeaux1.fr/~cdeledal/sugar.php.

5.2. Nuclear Norm Regularization. We consider the recovery of a low-rank matrix x0 ∈
R
n1×n2 from an observation y ∈ R

P of Y = Φx0 + W , W ∼ N (0, σ2IdP ), where we have
identified the matrix space R

n1×n2 to the vector space R
N with N = n1n2. To this end, we

consider the following spectral regularization problem

x⋆(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + λ ‖x‖∗ , (5.5)

where λ > 0 and ‖·‖∗ is the nuclear norm (a.k.a., trace for the symmetric semi-definite positive
case or Schatten 1-norm). This is a spectral function defined as the ℓ1 norm of the singular
values Λx ∈ R

n=min(n1,n2), i.e.

‖x‖∗ = ‖Λx‖1 .

The nuclear norm is a particular case of spectral regularization that accounts for prior knowl-
edge on the spectrum of x, typically low-rank (see, e.g., [29]). It is the convex hull of the
rank function restricted to the unit spectral ball [7]. The parameter λ balances the sparsity
of the spectrum of the recovered matrix, and the tolerated amount of noise. However, except
in the random measurements setting, there is no direct relation between λ and the rank of
x(y, λ). The optimal value of λ depends indeed on x0, Φ and σ confirming the importance of
automatic selection procedures.

Problem (5.5) is a special instance of (4.2) with the parameter λ = θ ∈ Θ = R
+, Q = 1,

and

F (x, y, λ) =
1

2
‖Φx− y‖2

and G1(x, y, λ) = λ ‖x‖∗ .

Hence the GFB algorithm‖ can be used to solve (5.5) by setting

∇1F (x, y, λ) = Φ∗(Φx− y)
and ProxτG1

(x, y, λ) = Vx diag(ST(Λx, τλ))U
∗
x

‖which corresponds in this case where Q = 1 to the forward-backward algorithm.

http://www.math.u-bordeaux1.fr/~cdeledal/sugar.php


22 TEX PRODUCTION

where diag : Rn → R
n1×n2 maps the entries of a vector in R

n to the main diagonal of a
rectangular matrix in R

n1×n2 filled with 0 elsewhere, (Vx, Ux,Λx) ∈ R
n1×n1 × R

n2×n2 × R
n

is the singular value decomposition (SVD) of x such that x = Vx diag(Λx)U
∗
x and ST is the

soft-thresholding operator (3.1). Corollary 1 and 2 can then be applied using, for any δx ∈ X
and δy ∈ Y, the relations

∂1{∇1F}(x, y, λ)[δx] = Φ∗Φδx,
∂2{∇1F}(x, y, λ)[δy] = −Φ∗δy,
∂3{∇1F}(x, y, λ) = 0

and ∂1{ProxτG1
}(x, y, λ)[δx] = Vx(H(Λx)[δ̄x] + ΓS(Λx)[δ̄x] + ΓA(Λx)[δ̄x])U

∗
x ,

∂2{ProxτG1
}(x, y, λ)[δy] = 0,

∂3{ProxτG1
}(x, y, λ) = Vx diag(∂2ST(Λx, τλ))U

∗
x

where δ̄x = V ∗
XδxUX ∈ R

n1×n2 , H(Λx) is defined as

H(Λx)[δ̄x] = diag(∂1ST(Λx, ρλ)[diag(δ̄x)])

and ΓS(Λx) and ΓA(Λx) are defined, for all 1 6 i 6 n1 and 1 6 j 6 n2, as

ΓS(Λx)[δ̄x]i,j =
(δ̄x)i,j + (δ̄x)j,i

2
×





0 if i = j
ST(Λx,ρλ)i−ST(Λx,ρλ)j

(Λx)i−(Λx)j
if (Λx)i 6= (Λx)j

∂1ST(Λx, ρλ)i,i otherwise,

ΓA(Λx)[δ̄x]i,j =
(δ̄x)i,j − (δ̄x)j,i

2
×





0 if i = j
ST(Λx,ρλ)i+ST(Λx,ρλ)j

(Λx)i+(Λx)j
if (Λx)i > 0 or (Λx)j > 0

∂1ST(Λx, ρλ)i,i otherwise,

where for i > n we have extended Λx and ST(Λx, ρλ) as (Λx)i = 0 and ST(Λx, ρλ)i = 0, and
for j > n1 or i > n2, δ̄x as (δ̄x)j,i = 0. Recall from (A.2) that the weak derivatives of the
soft-thresholding are defined, for t ∈ R

N , ρ > 0, δt ∈ R
N , 1 6 i 6 N , by

∂1ST(t, ρ)i,i =

{
0 if |ti| 6 ρ
1 otherwise,

(5.6)

∂1ST(t, ρ)[δt]i = ∂1ST(t, ρ)i,i × (δt)i

and ∂2ST(t, ρ)i =

{
0 if |ti| 6 ρ
− sign(ti) otherwise.

The closed-form expression we derived for ∂1{ProxτG1
}(x, y, λ)[δx] is far from trivial. It

is essentially due to [25, 42, 63], see [8] for an expression similar to ours. The generalization
of this result to other matrix-valued spectral function has been studied in [19].

Application to matrix completion. We illustrate the nuclear norm regularization on a ma-
trix completion problem encountered in recommendation systems such as the popular Net-
flix problem [4]. We therefore consider y ∈ R

P with the forward model Y = Φx0 + W ,
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Figure 5.1. (a-b) Risk, prediction risk and its SURE estimates∗∗ as a function of the regularization
parameter λ. (a) The 12 points where SUREMC{x}(y, λ, δ) has been evaluated by exhaustive search. (b) The
5 evaluation points of SUREFDMC{x}(y, λ, δ, ε) and SUGARFDMC{x}(y, λ, δ, ε) required by BFGS to reach the
optimal one. (c-d) Respectively, a close in and the spectrum of the underlying matrix x0, the least-square
estimate xLS(y) and the solution x(y, λ) at the optimal λ.

W ∼ N (0, σ2IdP ), where x0 is a dense but low-rank (or approximately so) matrix and Φ is a
binary masking operator.

We have taken (n1, n2) = (1000, 100) and P = 25000 observed entries (i.e., 25%). The
underlying matrix x0 = Vx0

diag Λx0
U∗
x0

has been chosen with Vx0
and Ux0

two realizations
of the uniform distribution of orthogonal matrices and Λx0

= (k−1)16k6n such that x0 is
approximately low-rank with a rapidly decaying spectrum. The binary masking operator
is such that for i = 1, . . . , P , (Φx)i = xΣ(i)1,Σ(i)2 where Σ : [1, . . . , n1 × n2] → [1, . . . , n1] ×
[1, . . . , n2] is the realization of a random permutation of the n1×n2 entries of x. The standard
deviation σ has been set such that the resulting minimum least-square estimate xLS(y) = Φ∗y
has a relative error ‖xLS(y)− x0‖F / ‖x0‖F = 0.9.

Figure 5.1.(a) and (b) depict the risk, the prediction risk and the SURE = SUREA (with
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A = Id) estimates∗∗ as a function of λ obtained from a single realization of y and δ. In
(a), SUREMC{x}(y, λ, δ) has been evaluated for 12 values of λ chosen in a suitable tested
range using the algorithm given in Figure 4.1. Figure (b), shows the benefit of computing
SUREFDMC{x}(y, λ, δ, ε) and SUGARFDMC{x}(y, λ, δ, ε), as described in Figure 4.2, to realize
a quasi-Newton optimization. The sequence of iterates λn is represented as well as the se-
quence of the slopes of SUREFDMC{x}(y, λn, δ, ε) given by SUGARFDMC{x}(y, λn, δ, ε). The
BFGS algorithm reaches to the optimal value in 5 iterations only. One can also notice that
SUREFDMC{x}(y, λ, δ, ε) and SUREMC{x}(y, λ, δ) are both good, and visually equivalent, es-
timators of the prediction risk. At the optimum value λ⋆ minimizing the SURE, the true risk
is not too far from its minimum showing that, in this case, the prediction risk is indeed a good
objective in order to minimize the risk. In Figure 5.1.(c) a close in on the solution x(y, λ⋆)
is compared to x0 and xLS(y), and their respective spectrum in Figure 5.1.(d). The solution
x(y, λ⋆) has a rank of 57 with a relative error of 0.45 (i.e., a gain of about a factor 2 w.r.t. the
least-square estimator).

5.3. Total-Variation Regularization. We consider the recovery of a piece-wise constant
two dimensional image x0 ∈ R

n1×n2 from an observation y of Y = Φx0 +W ∈ R
P , W ∼

N (0, σ2IdP ), where we have identified the image space R
n1×n2 to the vector space R

N with
N = n1n2. To this end, we suggest using (isotropic) total variation regularization of the form

x⋆(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + λ‖∇̃x‖1,2 , (5.7)

where λ > 0 and ∇̃ : RN → R
N×2 is the two-dimensional discrete gradient operator. The

ℓ1-ℓ2 norm of a vector field t = (ti)
N
i=1 ∈ R

N×2, with ti ∈ R
2, is defined as ‖t‖1,2 =

∑
i ‖ti‖.

Total-variation promotes the sparsity of the gradient field which turns out to be a prior that
enforces smoothing while preserving edges. The parameter λ controls the regularity of the
image. A large value of λ results to an image with large homogeneous areas while a small
value results to an image with several small disconnected regions. The optimal value of λ is
image and degradation dependent revealing the importance of automatic selection procedures.

Problem (5.7) is a special instance of (4.2) using x = (f, u) ∈ X = R
N × R

N×2, the
parameter λ = θ ∈ Θ = R

+, Q = 2 simple functionals, and for x = (f, u)

F (x, y, λ) =
1

2
‖Φf − y‖2 ,

G1(x, y, λ) = λ ‖u‖1,2
and G2(x, y, λ) = ιC(x) where C =

{
x = (f, u) \ u = ∇̃f

}
.

Hence the GFB algorithm can be used to solve (5.7) using

∇1F (x, y, λ) = (Φ∗(Φf − y), 0),
ProxτG1

(x, y, λ) = (f, ST1,2(u, τλ))

and ProxτG2
(x, y, λ) = ((Id + ∆)−1(f + div u), ∇̃(Id + ∆)−1(f + div u))

∗∗Without impacting the optimal choice of λ, the curves have been rescaled for visualization purposes.
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where ∆ is the Laplacian operator and div is the discrete divergence operator such that
div = −∇̃∗. The operator ST1,2 is the component-wise ℓ1-ℓ2 soft-thresholding defined, for any
dimensions N and D, t ∈ R

N×D and ρ > 0, by

ST1,2(t, ρ)i =

{
0 if ‖ti‖ 6 ρ
ti − ρ ti/ ‖ti‖ otherwise

, for all 1 6 i 6 N. (5.8)

For D = 1, the component-wise ℓ1-ℓ2 soft-thresholding reduces to (3.1). Corollary 1 and 2
can then be applied, for any δx = (δf , δu) ∈ X and δy ∈ Y, using the relations

∂1{∇1F}(x, y, λ)[δx] = (Φ∗Φδf , 0),
∂2{∇1F}(x, y, λ)[δy] = (−Φ∗δy, 0),
∂3{∇1F}(x, y, λ) = (0, 0),

∂1{ProxτG1
}(x, y, λ)[δx] = (δf , ∂1ST1,2(u, τλ)[δu]),

∂2{ProxτG1
}(x, y, λ)[δy] = (0, 0),

∂3{ProxτG1
}(x, y, λ) = (0, ∂2ST1,2(u, τλ))

and ∂1{ProxτG2
}(x, y, λ)[δx] = ((Id + ∆)−1(δf + div δu), ∇̃(Id + ∆)−1(δf + div δu)),

∂2{ProxτG2
}(x, y, λ)[δy] = (0, 0),

∂3{ProxτG2
}(x, y, λ) = (0, 0)

where the weak derivatives of the component-wise ℓ1-ℓ2 soft-thresholding are defined, for any
dimensions N and D, t ∈ R

N×D, ρ > 0 and δt ∈ R
N×D, by

∂1ST1,2(t, ρ)[δt]i =

{
0 if ‖ti‖ 6 ρ
δt,i − ρ

‖ti‖Pti(δt,i) otherwise
(5.9)

and ∂2ST1,2(t, ρ)i =

{
0 if ‖ti‖ 6 ρ
−ti/ ‖ti‖ otherwise

where Pα is the orthogonal projector on α⊥ for α ∈ R
2.

Application to image deblurring. We illustrate the total-variation regularization on an image
deblurring problem. We therefore consider the forward model Y = Φx0 +W ∈ R

P , W ∼
N (0, σ2IdP ), where x0 is a piece-wise constant (or approximately so) image and Φ is a discrete
convolution matrix.

We have taken a cartoon-like image of size (n1, n2) = (512, 512) and P = 5122 observations
corresponding to noisy observations of a convolution product with a discrete Gaussian kernel
of radius 2 pixels. To ensure numerical stability of the pseudo-inverse (typically for the least-
square estimate and the computation of the projection risk and its estimate), the kernel has
been truncated in the Fourier domain such that too small contributions have been set to
0. The consequence is that around 80% of (high) frequencies are masked. The standard
deviation of the noise has been set to σ = 10 (for an image x0 with a range [0, 255]) such that
the resulting minimum least-square estimate xLS(y) = Φ+y has a peak signal-to-noise ratio
(PSNR) equals to 10 log10(255

2/ ‖xLS(y)− x0‖2F ) = 21.02 dB.
Figure 5.2.(a) and (b) display the risk, the projection risk and the GSURE = SUREA

(with A = Π) estimates as a function of λ obtained from a single realization of y and
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Figure 5.2. (a-b) Risk, projection risk and its GSURE estimates∗∗ as a function of the regularization
parameter λ. (a) The 12 points where GSUREMC{x}(y, λ, δ) has been evaluated by exhaustive search. (b) The
4 evaluation points of GSUREFDMC{x}(y, λ, δ, ε) and GSUGARFDMC{x}(y, λ, δ, ε) required by BFGS to reach
the optimal one. (c-d) Respectively, a close in of the underlying image x0, the observation y and the solution
x(y, λ) at the optimal λ.

δ. In (a), GSUREMC{x}(y, λ, δ) has been evaluated for 12 values of λ chosen in a suit-
able tested range using the algorithm given in Figure 4.1. Figure (b), shows the bene-
fit of computing GSUREFDMC{x}(y, λ, δ, ε) and GSUGARFDMC{x}(y, λ, δ, ε), as described
in Figure 4.2, to realize a quasi-Newton optimization. The sequence of iterates λn is
represented as well as the sequence of the slopes of GSUREFDMC{x}(y, λn, δ, ε) given by
GSUGARFDMC{x}(y, λn, δ, ε). The BFGS algorithm reaches to the optimal value in 4 iter-
ations. The deviation of GSUREFDMC{x}(y, λ, δ, ε) from the projection risk is of the same
order as the deviation of GSUREMC{x}(y, λ, δ). At the optimum value λ⋆ minimizing the
GSURE, the true risk is not too far from its minimum showing that relatively to the range
of variation of the risk, in this case, the projection risk is indeed a good objective in order
to minimize the risk. In Figure 5.2.(c-e) the solution x(y, λ⋆) is compared to x0 and y. The
solution x(y, λ⋆) has a PSNR of 24.98 dB (i.e., a gain of about +3.94 dB). Remark that given
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such noise level and convolution operator, masking 80% of (high) frequencies, the solution
selected by minimizing the GSURE criterion is still a bit blurred and exhibit a staircasing
effect. Using a larger regularization parameter λ would result in a more “cartoon” result with
less blur. This would however entail a larger bias, which corresponds to a loss of contrast
inherent to the convexity of the TV prior. This larger bias subsequently degrades the mean
square error, which explains why it is not selected by the GSURE criterion.

5.4. Weighted ℓ1-analysis Wavelet Regularization. We focus on the recovery of a
piece-wise regular image x0 ∈ R

n1×n2 from an observation y of Y = Φx0 + W ∈ R
P ,

W ∼ N (0, σ2IdP ), using a J-scale undecimated wavelet analysis regularization of the form

x⋆(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + ‖Ψx‖1,λ where Ψ =




Ψh
1

Ψv
1
...

Ψh
J

Ψv
J




(5.10)

and λ ∈ R
+J

and Ψ ∈ R
2JN×N is the analysis operator of a two-orientation wavelet transform,

where, for all scales 1 6 j 6 J , Ψh
j , Ψ

v
j are defined such that, for x ∈ R

N , uhj = Ψh
j x and

uvj = Ψv
jx are respectively the vectors of undecimated wavelet coefficients of x in the horizontal

and vertical directions at the decomposition level j. The weighted ℓ1-norm ‖.‖1,λ is

‖Ψx‖1,λ =
J∑

j=1

λj

(∥∥Ψh
j x
∥∥
1
+
∥∥Ψv

jx
∥∥
1

)
.

Multi-scale wavelet analysis promotes piece-wise regular images by enforcing smoothness while
preserving sharp discontinuities at different scales and orientations. Each parameter λj con-
trols the regularity at scale j. A large value of λj tends to over-smooth structures at scale j,
while a small value leads to under-smoothing. As noted in several papers, see e.g. [10,49], the
optimal values λj are also image and degradation dependent revealing again the importance
of automatic selection procedures.

Problem (5.10) is a special instance of (4.3) where the parameter λ = θ ∈ Θ = R
+J

, and

H(x, y, λ) = 1
2 ‖Φx− y‖

2 ,
G(u, y, λ) = ‖u‖1,λ

and K(x) = Ψx .

Hence the primal-dual CP splitting can be used to solve (5.10) using

ProxξH(x, y, λ) = x+ ξΦ∗y − ξΦ∗(Id + ξΦΦ∗)−1Φ(x+ ξΦ∗y),
ProxτG∗(u, y, λ) = u− τST(u/τ, λ/τ)

and K∗(u, λ) =
∑J

j=1(Ψ
h
j
∗
uhj +Ψv

j
∗uvj )

where ST denotes here the multi-scale extension of the soft-thresholding operator (3.1), such
that, for t ∈ R

2JN and ρ ∈ R
J , we have

ST(t, ρ)oj = ST(toj , ρj)
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Table 5.1
Illustration of the minimization of SUREFDMC in multi-scale regularization obtained for the three images

of Figure 5.3 with different numbers of scales from J = 1 to J = 3 using either one global parameter or one
parameter per scales. For each case, the obtained optimal parameters λ⋆ are given. The associated value of
SURE and the PSNR are compared to neighbors of λ⋆ located at 0.75λ⋆ and 1.25λ⋆.

Input Optimal parameters SURE/PSNR
Image PSNR J dimΛ λ⋆ 0.75λ⋆ λ⋆ 1.25λ⋆

Mandrill 17.37 1 1 (7.58) 7.53/24.84 7.39/24.90 7.43/24.94
2 1 (5.63) 7.60/24.85 7.45/24.88 7.58/24.89
3 1 (4.54) 7.87/24.04 7.71/24.10 7.83/24.10
2 2 (5.94, 4.24) 7.49/25.02 7.30/25.06 7.38/25.07
3 3 (7.51, 1.07, 0.99) 7.37/25.12 7.22/25.18 7.33/25.20

House 17.65 1 1 (18.38) 3.69/31.16 3.51/31.15 3.68/30.55
2 1 (11.11) 3.72/31.31 3.51/31.40 3.81/31.05
3 1 (8.73) 4.30/30.18 4.08/30.31 4.43/30.13
2 2 (14.47, 5.20) 3.53/31.51 3.34/31.57 3.55/31.05
3 3 (15.00, 2.50, 2.83) 3.52/31.55 3.27/31.63 3.44/31.14

Cameraman 15.13 1 1 (13.50) 5.29/28.61 5.09/28.73 5.35/28.64
2 1 (8.78) 5.34/28.75 5.09/28.83 5.38/28.72
3 1 (7.14) 5.84/28.03 5.60/28.06 5.88/27.99
2 2 (10.98, 3.74) 5.16/28.91 4.90/29.04 5.09/28.96
3 3 (11.56, 3.31, 0.97) 5.07/29.00 4.86/29.11 5.13/28.99

for all scales 1 6 j 6 J and orientations o = v, h. Corollary 1 and 2 can then be applied using

∂1{ProxξH}(x, y, λ)[δx] = δx + ξΦ∗(Id + ξΦΦ∗)−1Φδx,
∂2{ProxξH}(x, y, λ)[δy] = ξΦ∗δy − ξ2Φ∗(Id + ξΦΦ∗)−1ΦΦ∗δy,
∂3{ProxξH}(x, y, λ) = 0

and ∂1{ProxτG∗}(u, y, λ)[δu] = δu − ∂1ST(u/τ, λ/τ)[δu],
∂2{ProxτG∗}(u, y, λ)[δy] = 0,
∂3{ProxτG∗}(u, y, λ) = −∂2ST(u/τ, λ/τ).

where the derivatives of the multi-scale soft-thresholding are defined, for any t ∈ R
2JN , ρ ∈ R

J

and δt ∈ R
2JN , by

∂1ST(t, ρ)[δt]
o
j = ∂1ST(t

o
j , ρj)[δt

o
j ] and ∂2ST(t, ρ)

o
j = ∂2ST(t

o
j , ρj) (5.11)

for all scales 1 6 j 6 J and orientations o = v, h.

Application to compressed sensing. We illustrate the multi-scale wavelet ℓ1-analysis reg-
ularization on a compressed sensing problem. We therefore consider the forward model
Y = Φx0 + W ∈ R

P , W ∼ N (0, σ2IdP ), where x0 is a piece-wise multi-scale regular (or
approximately so) image and Φ is a random matrix. Here the multi-scale transform W is
constructed from undecimated Daubechies 4 wavelets [14].

We have taken a uniformly randomized sub-sampling of a uniform random convolution,
where (P/N = 0.5). The standard deviation has been set to σ = 10 (for an image x0 with
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(a) (b) (c) (d) (e)

Figure 5.3. From top to bottom, a close up on Mandrill, House and Cameraman. (a) Underlying image x0.
(b) Least-square estimate xLS(y). (c) Result with λ⋆ for one level of decomposition J = 1, (d) for three levels
of decomposition J = 3 using one global parameter, and (e) for three levels of decomposition J = 3 using one
parameter per scales.

a range [0, 255]) such that the resulting minimum least-square estimate xLS(y) = Φ+y has a
PSNR given by 10 log10(255

2/ ‖xLS(y)− x0‖2F ) ≈ 16 dB.

Table 5.1 and Figure 5.3 illustrates the multi-scale regularization obtained by minimizing
the SURE = SUREA (with A = Id) for three different images x0, known as Mandrill, House
and Cameraman, and a single realization of y and δ. Three levels of decomposition from J = 1
to 3 are considered. We consider also to use either one global regularization parameter or one
parameter per scales. Table 5.1 gives the selected optimal vector of parameters λ⋆ for each
level of decomposition and their associated performance in terms of SURE and PSNR. We
first observe that compared to the global approach, optimizing one parameter per scale indeed
adapts better to the regularity of the image. For instance, the image Mandrill contains fine
scales with more energy than House, and then the obtained penalization of the first scale
is smaller for Mandrill than for House. Visual inspection of these results on Figure 5.3
illustrates this automatic adaptation. In the same vein, with three levels of decomposition,
the penalization is less severe for Mandrill than for House and Cameraman. We next observe
that increasing the level of decomposition improves the PSNR when using one parameter per
scale, while this is not the case when a global parameter is used. The gap is more important
between J = 1 and J = 2. To assess the minimization of SUREFDMC, we have compared
the SURE and the PSNR values at 0.75λ⋆ and 1.25λ⋆. At the optimal λ⋆, the SURE is as
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expected minimal. Furthermore, at λ⋆, the PSNR is either maximal or not too far from its
maximal value, showing that, in this case, the prediction risk is indeed a good objective in
order to maximize the PSNR.

6. Conclusion.
We have proposed a methodology for optimizing multiple continuous parameters of a

weakly differentiable estimator that attempts solving a linear ill-posed inverse problem con-
taminated by additive white Gaussian noise. The proposed method selects the parameters
minimizing an estimate of the risk and is driven by an estimate of its gradient. Classical
unbiased estimators of the risk are generally non-continuous functions of the parameters, so
that, their local variations cannot be used to estimate the gradient of the risk. These esti-
mators require estimating the degree of freedom by evaluating the variations of the estimator
with respect to the observations. We have shown that estimating the degree of freedom by
finite differences leads to a weakly differentiable risk estimator. By carefully choosing the
finite differences step and by computing explicitly the (weak) gradient of this estimate, an
asymptotically unbiased estimator of the gradient of the risk is obtained. This estimator is
numerically smooth enough to apply a quasi-Newton method. An explicit strategy to compute
this (weak) gradient is given for a large class of (iterative) weakly differentiable algorithms.
We exemplified our methodology on several popular proximal splitting methods. Numerical
experiments have demonstrated the wide applicability and scope of the approach.

Our choice of the finite differences step size was essentially guided by a careful analysis of
the soft-thresholding estimator. Choosing this step size with theoretical guarantees (such as
consistency or optimality) in more general cases remains an open question. Beyond consistency
and optimality, the question of quantifying the influence of the finite differences step on
the smoothness of the risk gradient estimates and then on the performance of quasi-Newton
methods is still open. To deal with parameter space of higher dimensions, other accumulation
Jacobian strategies could be explored following [34]. Improvements could also be achieved on
the settings of the quasi-Newton methods. In particular, a drawback of our approach is the
sensitivity to local minima of the risk with respect to the collection of parameters. In some
settings, more elaborated optimization strategies could be employed. Future work could also
focus on the extensions to non-weakly differentiable estimators and/or inverse problems with
non-Gaussian noises.

Appendix A. Proofs of Section 3.
Proof. [Proposition 1] This is a consequence of the chain rule and linearity of the weak

derivative. Indeed, d̂f
A

FD{µ}(y, θ, ε) is just the sum of P weakly differentiable functions, and
hence is weakly differentiable with the weak derivative with respect to θ as given. Moreover,
‖A(µ(y, θ)− y)‖2 =

∑P
i=1 ((A(µ(y, θ)− y))i)2. Each term i is the composition of a weakly

differentiable function (A(µ(y, ·)− y))i and (·)2, where the latter is obviously continuously
differentiable with bounded derivative, and takes 0 at the origin. It then follows from the
chain rule [28, Theorem 4(ii), Section 4.2.2] that (A(µ(y, ·)− y))i is weakly differentiable, and
the weak derivative of ‖A(µ(y, ·)− y)‖2 with respect to θ is indeed

2∂2µ(y, θ)
∗A∗A(µ(y, θ)− y) .
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Proof. [Theorem 1] The proof strategy consists in commuting in an appropriate order the
different signs (limit, integration and derivation) while checking that our assumptions provide
sufficient conditions for this to hold.

Let V a compact subset of Θ, and choose ϕ ∈ C1
c (Θ) with support in V . We have

∫

Θ
RA{µ}(µ0, θ)

∂ϕ(θ)

∂θi
dθ =

∫

V
RA{µ}(µ0, θ)

∂ϕ(θ)

∂θi
dθ

=

∫

V
EW

[
‖A(µ(Y, θ)− y)‖2

] ∂ϕ(θ)
∂θi

dθ

[Stein Lemma]
(S.1)
=

∫

V
EW

[
SUREA{µ}(Y, θ)

] ∂ϕ(θ)
∂θi

dθ

[(2.8)]
(S.2)
=

∫

V
EW

[
lim
ε→0

SUREA
FD{µ}(Y, θ, ε)

] ∂ϕ(θ)
∂θi

dθ

[Dominated convergence]
(S.3)
= lim

ε→0

∫

V
EW

[
SUREA

FD{µ}(Y, θ, ε)
] ∂ϕ(θ)
∂θi

dθ

[Fubini]
(S.4)
= lim

ε→0
EW

[∫

V
SUREA

FD{µ}(Y, θ, ε)
∂ϕ(θ)

∂θi
dθ

]

[Weak differentiability, Proposition 1]
(S.5)
= − lim

ε→0
EW

[∫

V

∂

∂θi
SUREA

FD{µ}(Y, θ, ε)ϕ(θ)dθ
]

[Proposition 1]
(S.6)
= − lim

ε→0
EW

[∫

V

(
SUGARA

FD{µ}(Y, θ, ε)
)
i
ϕ(θ)dθ

]

[Fubini]
(S.7)
= − lim

ε→0

∫

V
EW

[(
SUGARA

FD{µ}(Y, θ, ε)
)
i

]
ϕ(θ)dθ

[Dominated convergence]
(S.8)
= −

∫

V

(
lim
ε→0

EW

[(
SUGARA

FD{µ}(Y, θ, ε)
)
i

])
ϕ(θ)dθ

= −
∫

Θ

(
lim
ε→0

EW

[(
SUGARA

FD{µ}(Y, θ, ε)
)
i

])
ϕ(θ)dθ .

From the definition of weak derivative, we get the claimed result on the asymptotic unbi-
asedness of SUGARA

FD. The asymptotic unbiasedness of the gradient of the finite difference
DOF naturally follows with the same proof strategy by ignoring the two first terms in the

decomposition SUREA
FD{µ}(µ0, θ, ε) = ‖A(µ(y, θ)− y)‖2− σ2 tr(A∗A) + 2σ2d̂f

A

FD{µ}(µ0, θ, ε).
We now justify each of the steps (S.1)-(S.8). We denote g1,σ the Gaussian probability

density function of zero-mean and variance σ2, and gσ its P -dimensional version, i.e. gσ =
(g1,σ)

P .

(S.1) This is Stein lemma which applies owing to Assumption (A.1). Indeed, µ(·, θ) is
Lipschitz, hence weakly differentiable and its derivative equals its weak derivative
Lebesgue a.e. [28, Theorem 1-2, Section 6.2]. Moreover, we have for any θ

∥∥µ(y, θ)− µ(y′, θ)
∥∥ 6 L1

∥∥y − y′
∥∥⇒

∣∣µi(y, θ)− µi(y′, θ)
∣∣ 6 L1

∥∥y − y′
∥∥ , (A.1)

and thus, whenever the derivatives of µi(·, θ) exist, they are bounded by L1. Conse-
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quently,

EW

[∣∣∣∣
∂µi(Y )

∂yi

∣∣∣∣
]
6 L1 ,

i.e. the weak partial derivatives are essentially bounded.
(S.2) This is just (2.8) and the arguments justifying hold owing to Assumption (A.1).
(S.3) Let fε(y, θ) = SUREA

FD{µ}(y, θ, ε). From (2.8), limε→0 fε(y, θ) = SUREA{µ}(y, θ)
exists Lebesgue a.e. Assumptions (A.1)-(A.2) give

‖µ(y, θ)− y‖ 6 ‖y‖+ ‖µ(y, θ)− µ(0, θ)‖ 6 (1 + L1) ‖y‖ .

Combining this with (A.1) leads to

|fε(y, θ)| =
∣∣∣∣∣‖A(µ(y, θ)− y)‖

2 − σ2 tr(A∗A) + 2σ2
1

ε

P∑

i=1

(A∗A(µ(y + εei, θ)− µ(y, θ)))i
∣∣∣∣∣

6 ‖A‖2 Pσ2
(
(1 + L1)

2 ‖y‖2
Pσ2

+ 1 + 2L1

)
.

Note that the bound is independent of θ. Thus

EW

[
‖A‖2 Pσ2

(
(1 + L1)

2 ‖y‖2
Pσ2

+ 1 + 2L1

)]
=

‖A‖2 Pσ2
(
(1 + L1)

2

(
‖µ0‖2
Pσ2

+ 1

)
+ 1 + 2L1

)
<∞ .

This bound together with the fact that ϕ is continuously differentiable with compact
support in V means that fε

∂ϕ
∂θi

is dominated by an integrable function on Y × V . The
dominated convergence then applies which yields the claim.

(S.4) Fubini theorem surely applies in view of the integrability just shown at the end of
(S.3).

(S.5) This is a consequence of Proposition 1 and definition of weak differentiability since
µ(y, ·) is Lipschitz continuous independently of y.

(S.6) By definition of SUGARA
FD{µ} in Proposition 1.

(S.7) Let fε(y, θ) = (SUGARA
FD{µ}(y, θ, ε))i and h(y, θ) = (2∂2µ(y, θ)

∗A∗A(µ(y, θ)− y))i.
By the translation invariance of the convolution product, we have

EW [fε(Y, θ)] = 2(gσ ∗ h(·, θ))(µ0) + 2σ2
P∑

j=1

gσ(·+ εei)− gσ
ε

∗ (∂2µ(·, θ)∗A∗Aej)i (µ0) .
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Thus

|(gσ ∗ h(·, θ))(µ0)| 6 2

∫

Y
gσ(y − µ0) |(∂2µ(y, θ)∗A∗A(µ(y, θ)− y))i| dy

[Assumption (A.3)] 6 2L2 ‖A‖2
∫

Y
gσ(y − µ0) ‖µ(y, θ)− y‖ dy

[Assumptions (A.1)-(A.2)] 6 2(1 + L1)L2 ‖A‖2
∫

Y
gσ(y − µ0) ‖y‖ dy

6 2(1 + L1)L2 ‖A‖2 EW [‖y‖]dy
[Jensen inequality] 6 2(1 + L1)L2 ‖A‖2 EW [‖y‖2]1/2dy

6 2(1 + L1)L2 ‖A‖2
(
‖µ0‖2 + Pσ2

)1/2
<∞ .

For the second term, we have

∣∣∣∣
gσ(·+ εei)− gσ

ε
∗ (∂2µ(·, θ)∗A∗Aej)i (µ0)

∣∣∣∣

6

∫

Y

∣∣∣∣
gσ(y − µ0 + εei)− gσ(y − µ0)

ε

∣∣∣∣
∣∣(∂2µ(y, θ)∗A∗Aej)i

∣∣ dy

[Assumption (A.3)] 6 L2 ‖A‖2
∫

Y

∣∣∣∣
gσ(y − µ0 + εei)− gσ(y − µ0)

ε

∣∣∣∣ dy

6 L2 ‖A‖2
∫

R

∣∣∣∣
g1,σ(t− (µ0)i + ε)− g1,σ(t− (µ0)i)

ε

∣∣∣∣ dt

[Taylor] 6 L2 ‖A‖2
∫

R

∫ 1

0

∣∣g′1,σ(t− (µ0)i + τ)
∣∣ dtdτ

[Fubini] 6 L2 ‖A‖2
∫

R

∣∣g′1,σ(t)
∣∣ dt <∞ .

In view of these bounds, and since ϕ is compactly supported in V , integrability of fεϕ
on Y × V is ensured, whence the claimed result follows.

(S.8) Let fε defined as in (S.7). We have just shown that the integrand in θ,
i.e. EW [fε(Y, ·))i]ϕ, is dominated by a function that is integrable on V . It remains
to check that its limit exists Lebesgue a.e. But this is yet again an application of the
dominated convergence theorem to the sequence fε as an integrand with respect to
the Gaussian measure gσ(y)dy, which allows to deduce that limε→0 EW [fε(Y, θ)ϕ(θ)] =
EW [limε→0 fε(Y, θ)ϕ(θ)].

This completes the proof.

Proof. [Proposition 1] For a fixed λ, it can be shown similarly to [28, Theorem 4(iii), Sec-
tion 4.2.2], that ST(·, λ) is weakly differentiable and that its weak Jacobian h(y) = ∂2ST(y, λ)
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is diagonal, with diagonal elements, for 1 6 i 6 P ,

h(y)i =





+1 if yi 6 −λ
0 if − λ < yi < λ
−1 otherwise

. (A.2)

We next define, for a fixed λ, the quantity h′(y, ε) = ∇2{d̂fFD{ST}}(y, λ, ε). Using Proposition
1 and the fact that ε < 2λ give

h′(y, ε) =
P∑

i=1

h(y + εei)i − h(y)i
ε

=
P∑

i=1





0 if yi < −λ− ε
−1/ε if − λ− ε < yi < −λ
0 if − λ < yi < λ− ε
−1/ε if λ− ε < yi < λ
0 if λ < yi

.

Computing the expectation and the variance of h′(Y, ε) in closed-form with truncated Gaussian
statistics, and using the fact that h is separable in its arguments, give the proposed formula.

Proof. [Theorem 2] For P big enough, ε̂(P ) < 2λ since limP→∞ ε̂(P ) = 0. Using the
notations in the proof of Lemma 1 leads to

SUGARFD{ST}(y, λ, ε) = 2h(y)∗(ST(y, λ)− y) + 2σ2h′(y, ε̂(P )) .

The Cauchy-Schwartz inequality implies that

VW

[
1

P
SUGARFD{ST}(Y, λ, ε)

]1/2
6 2VW

[
1

P
h(y)∗(ST(Y, λ)− Y )

]1/2

+ 2σ2VW

[
1

P
h′(Y, ε̂(P ))

]1/2
.

Since x 7→ √π erf (x/a) is Lipschitz continuous with a constant of 2/a, Lemma 1 yields

VW

[
1

P
h′(Y, ε̂(P ))

]
6

√
2√

πσP ε̂(P )
.

By assumption, we have limP→∞ P−1ε̂(P )−1 = 0 and then the variance of 1
P h

′(Y, ε̂(P )) van-
ishes to zero. Next, remark that

h(y)∗(ST(y, λ)− y) = λ#{|y| > λ}

where #{|y| > λ} denotes the number of entries of |y| greater than λ. We have #{|Yi| >
λ} ∼iid Bernoulli(pi) whose variance is pi(1−pi), where pi = 1

2

(
erf
(
(µ0)i+λ√

2σ

)
− erf

(
(µ0)i−λ√

2σ

))
.

It follows that VW [#{|Y | > λ}] =∑P
i=1 pi(1− pi) 6 P and hence

lim
P→∞

VW

[
1

P
h(Y )∗(ST(Y, λ)− Y )

]
= lim

P→∞
VW

[
1

P
λ#{|Y | > λ}

]
= 0 .
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Consistency (i.e. convergence in probability) follows from traditional arguments by invoking
Chebyshev inequality and using asymptotic unbiasedness (Theorem 1) and vanishing variance.

Proof. [Proposition 2] Developing the mean squared error in terms of bias and variance give
the first part of the proposition. Lemma 1 and the fact that limε→0 EW∇2{d̂f{ST}}(Y, λ, ε) =
∇2{df{ST}}(µ0, λ) concludes the second part.

Appendix B. Regularity of the proximal operator of a gauge. We first provide a glimpse
of gauges.

Definition 2 (Gauge). Let C be a non-empty closed convex set containing the origin. The
gauge of C is the function γC defined by

γC(y) = inf {ω > 0 \ y ∈ ωC} .

As usual, γC(y) = +∞ if the infimum is not attained.
Definition 3 (Polar set). Let C be a non-empty convex set. The set C◦ given by

C◦ =
{
z ∈ R

N \ 〈z, x〉 6 1 for all x ∈ C
}

is called the polar of C. C◦ is a non-empty closed convex set containing the origin, and if C is
closed and contains the origin as well, C◦◦ = C.

We now summarize some key properties that will be needed in the main proof.
Lemma 2. Let C be a non-empty closed convex set containing the origin. The following

assertions hold.
(i) γC is a non-negative, closed, convex and positively homogenenous function.
(ii) C is the unique closed convex set containing the origin such that

C = {y ∈ Y \ γC(y) 6 1} .

(iii) γC is bounded and coercive if, and only if, C is compact and contains the origin as an
interior point.

(iv) The gauge of C and the support function σC◦(y) = maxz∈C◦ 〈y, z〉 coincide, i.e.

γC = σC◦ .

Proof. (i)-(ii) follow from [36, Theorem V.1.2.5]. (iii) is a consequence of [36, Theo-
rem V.1.2.5(ii) and Corollary V.1.2.6]. (iv) [36, Proposition V.3.2.4].

We are now equiped to prove our regularity result.
Proposition 5. Let C be a compact convex set containing the origin as an interior point, i.e.

a convex body, and G = γC is its gauge. For any θ > 0, θ′ > 0 and any y ∈ Y, the following
holds

‖ProxθG(y)− Proxθ′G(y)‖ 6 L2|θ − θ′|
for some constant L2 > 0 independent of y, i.e. for any y, θ 7→ ProxθG(y) is Lipschitz
continuous on ]0,+∞[.

Proof. From [35, Proposition 2.3(ii)], we have that for any y, the function θ 7→ ProxθG(y)
is such that

‖ProxθG(y)− Proxθ′G(y)‖ 6 |θ − θ′| ‖y − ProxθG(y)‖ /θ . (B.1)
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Now, we have
θG(y) = γC/θ(y) = σθC◦(y) , (B.2)

where the first equality follows from positive homogeneity (Lemma 2(i)) and Definition 2, and
the second equality is a consequence of Lemma 2(iv) and polarity.

Applying Moreau identity, we get that

y − ProxθG(y) = y − ProxσθC◦
(y) = ProjθC◦(y) .

By virtue of Lemma 2(iii), there exists a constant L2 > 0, independent of y, such that††

‖y − ProxθG(y)‖ = ‖ProjθC◦(y)‖ 6 L2γC◦

(
ProjθC◦(y)

)
.

Applying (B.2) to γC◦ , we get

‖y − ProxθG(y)‖ 6 L2θγθC◦

(
ProjθC◦(y)

)
6 L2θ , (B.3)

where the last inequality follows from Lemma 2(ii) since obviously ProjθC◦(y) ∈ θC◦. Com-
bining (B.1) and (B.3), we get the desired result.

Corollary 5. Let Ci, i = 1, . . . ,m, be compact convex sets containing the origin as an interior
point, i.e. convex bodies, and Gi = γCi the associated gauges. For any θ, θ′ ∈]0,+∞[m, and
any y ∈ Y, the following holds
∥∥∥Proxθ1G1

◦ · · · ◦ ProxθmGm
(y)− Proxθ′1G1

◦ · · · ◦ Proxθ′mGm
(y)
∥∥∥ 6
√
mmax

i
L2,i

∥∥θ − θ′
∥∥

where L2,i > 0 is the same Lipschitz constant associated to Ci given in Proposition 5.
Proof. Using repeatedly the triangle inequality, Proposition 5 and the fact that the map-

ping y 7→ ProxθiGi
(y) is 1-Lipschitz [57], we obtain

∥∥∥Proxθ1G1
◦ · · · ◦ ProxθmGm

(y)− Proxθ′1G1
◦ · · · ◦ Proxθ′mGm

(y)
∥∥∥ =

∥∥∥
(
Proxθ1G1

◦Proxθ2G2
◦ · · · ◦ ProxθmGm

(y)− Proxθ′1G1
◦Proxθ2G2

◦ · · · ◦ ProxθmGm
(y)
)
+

(
Proxθ′1G1

◦Proxθ2G2
◦ · · · ◦ ProxθmGm

(y)− Proxθ′1G1
◦Proxθ′2G2

◦ · · · ◦ ProxθmGm
(y)
)∥∥∥

6 L2,1|θ1 − θ′1|+
∥∥∥Proxθ2G2

◦ · · · ◦ ProxθmGm
(y)− Proxθ′2G2

◦ · · · ◦ Proxθ′mGm
(y)
∥∥∥

6
∑

i

L2,i|θi − θ′i| 6 max
i
L2,i

∥∥θ − θ′
∥∥
1
6
√
mmax

i
L2,i

∥∥θ − θ′
∥∥

as claimed.

Appendix C. Proofs of Section 4.
Proof. [Proposition 3] Since (4.1) is the composition of Lipschitz continuous mappings of

y by assumption, applying the chain rule [28, Theorem 4 and Remark, Section 4.2.2] gives the
formula.

††The constant L2 can be given explicitly by bounding from below the support function of the inscribed
ellipsoid of maximal volume, the so-called John ellipsoid. For symmetric convex bodies, L2 can be made tightest
possible. For simplicity, we avoid delving into these technicalities here.
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Proof. [Proposition 4] The argument is exactly the same as that for Proposition 3 replacing
y by θ where the required Lipschitz continuity assumptions w.r.t. θ hold true.

Proof. [Corollary 1] We first notice that D(ℓ)
a = (D(ℓ)

ξ ,D(ℓ)
z1 , . . . ,D(ℓ)

zQ) where D(ℓ)
ξ =

∂1ξ
(ℓ)(y, θ)[δ] and D(ℓ)

zk = ∂1z
(ℓ)
k (y, θ)[δ]. Hence, applying again the chain rule [28, Theo-

rem 4 and Remark, Section 4.2.2] to the the sequence of iterates and using the fact that all

involved mappings are Lipschitz, and D(ℓ)
x = Γ

(ℓ)
a (D(ℓ)

a ) = D(ℓ)
ξ concludes the proof.

Proof. [Corollary 2] Observe that J (ℓ)
a = (J (ℓ)

ξ ,J (ℓ)
z1 , . . . ,J (ℓ)

zQ ) where J (ℓ)
ξ = ∂2ξ

(ℓ)(y, θ)

and J (ℓ)
zk = ∂2z

(ℓ)
k (y, θ). Arguing as in the proof of Corollary 1, using now that J (ℓ)

x =

Γ
(ℓ)
a (J (ℓ)

a ) = J (ℓ)
ξ yields the formula.

Proof. [Corollary 3] As before, but now with D(ℓ)
a = (D(ℓ)

ξ ,D(ℓ)
x̃ , . . . ,D(ℓ)

u ) where D(ℓ)
ξ =

∂1ξ
(ℓ)(y, θ)[δ], D(ℓ)

x̃ = ∂1x̃
(ℓ)(y, θ)[δ], D(ℓ)

u = ∂1u
(ℓ)(y, θ)[δ], and D(ℓ)

x = Γ
(ℓ)
a (D(ℓ)

a ) = D(ℓ)
ξ . The

chain rule completes the proof.

Proof. [Corollary 4] As before, but now with J (ℓ)
a = (J (ℓ)

ξ ,J (ℓ)
x̃ , . . . ,J (ℓ)

u ) where J (ℓ)
ξ =

∂1ξ
(ℓ)(y, θ), J (ℓ)

x̃ = ∂1x̃
(ℓ)(y, θ), J (ℓ)

u = ∂1u
(ℓ)(y, θ) and J (ℓ)

x = Γ
(ℓ)
a (J (ℓ)

a ) = J (ℓ)
ξ . The chain

rule completes the proof.
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