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Introduction — Context

m GLAST project (The Gamma Ray Large Area Space
Telescope 2007, Stanford Univ.)

m Images of photons emitted by gamma sources
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Introduction — Data

underlying sources  counts + src positions

very low source intensity (~101 or even lower)

linelike structure

non-isotropic sources

curvilinear structure

Results — Conclusion
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band: 16th / band: 26th

multi-spectral images

defective camera channels
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Introduction — Image Model and Goals

m We observe a discrete image of counts X = (X;),cz« where
X, ~ P(\;) are independent Poisson variables; A = (\;);c 74
is thus the underlying intensity image

m Example intensity image counts (observed)

m Goals
Statistical intensity estimation in a sparse-representation domain A =DX
Efficient for very low-count settings
Shape-adaptive estimation (isotropic, linelike, curvilinear, etc.)
Missing data restoration
Capable of dealing with multi-spectral images
Photometry preservation
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Generalize the Anscombe Transform:
VST for a Filtered Poisson Process

m  Anscombe transform (rapid but efficient only for high-count settings)
X ~P(), 2/X +3/8~AN(2VA, 1), A —
m Anscombe transform: stabilization after fllterlng with A = o
m Generalize the VST for a non-trivial filter
Y, =2 hli]X,_i, Xi~P(N)
hacts as an “averaging” kernel (more generally a low-pass filter)
The SNR is enhanced after filtering

Stabilization is more efficient in low-count settings
The shape can be preserved by designing matched filter

m The general form of the VST (some heuristics)

T(Y)~T(u)+T' ()Y —p) = 1=Var[[(Y)] =T (p)*Var(Y) p=m7A
T"(u) = \/7u_% = T(u) = by/u Var(Y) = 1A
T = X2, hlil*

square root as VST 6
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VST for a Filtered Poisson Process

Theorem 1 Define T'(Y) = bv'Y + c. Then, we have the following results:

(i) T(Y) — by/TiX 2 N(0, b*) as A — oo, for ¢ >0, 7 >0 and 75 > 0;

(ii) The asymptotic expansions of the mean and variance of T(Y') /b are given by:
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(iii) For the VST to be second order accurate and\T'(Y') to have asymptotic unit
variance, b and ¢ should satisfy:

h—o T1 - 7’7’2 T3 |
= T = 37 271 |C— 8(Anscombe)l
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Asymptotic Results

The variance is constant up to a second order residual term

For appropriately chosen £, the convergence toward the asympto tic behavior
can be much rapid for the new VST than Anscombe

| . . . . .
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The Poisson process can be reasonably considered stabilized for A = 5 using
Anscombe, for A = | using Fisz and for A £ 0.1 using the new VST+h g, 8
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Application to Wavelets: Multi-Scale VST (MS-VST)
Isotropic Source Restoration

m The UWT W uses the filter bank (. g) to decompose an 1D signal
into a set of coefficients

Aj41 = Aj * f_z..j, Wiyl = G x g
(h[n] = h[—n], g[n] = g[-n])
m The original signal is reconstructed by the filter bank (7, )
;= Qjq1 *x fzj + w1 * g,

m The filter bank needs only verify the exact reconstruction condition

~
~

Weh+g =1
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Application to Wavelets: Multi-Scale VST (MS-VST)
Isotropic Source Restoration

m The filter bank (h —hp,.g=0—hh=064=20)is well adapted to isotropic
sources and is extensively used in astronomy, biomedical imaging, etc.

m  We can apply a Multi-Scale VST (MS-VST) for this filter bank as follows:

aj = hjxa;_ a; = h;jxa;j_4
w; = a;—1 — Q; w; = Tj—la’j—l — Tja.j
Theorem 2 Suppose hp, to be normalized such that |hp, |1 = 1. Consider

1
2

the VST: T(a;) = [a-j + ¢l )] where ) is derived from with the filter hU) =
hy*---xhj;. Then, for any given scale j, as X — 400,

(=112 ()2 G-1) 1,0)
w; 2N (D. I I + IRl <k 1 >)

4 4 2
Apply your favorite denoising method for Gaussian noise

m All the results hold for any dimensional case
10
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MS-VST + Wavelet: Algorithm Sketch

1. Let ap = X, for a given filter /
2. forj=1toJ

a; = h Fx A1
wj = Tj—la'j—l e Tj(l-j

5. Denoise (typically thresholding) w;assuming
a zero-mean Gaussian noise, to obtain w;
end for
Reconstruct

J
Toag =Tray + Z W,
1=1
. _ =2 (0
ay = Var(Toap) +Toag —c

, 2
2 1
= Tpag |:b(_0):| — C:(O)

11
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A More General Scheme

m For an arbitrary band-pass filter g

a; = hj*(Lj_],

w; = gj*xTj 105

Theorem 3 We have w;|l] LA N(0, O’fz) as A — +oo, where

0%, = 1 —D) Zq, — m]g;[l — n] Zh’ DERY=Vn — m + k]

mLn

1
= =5 qu m]g;[n Zh I=D[RRY=D[n —m + k]
T2

m.n

m Detection; use the same schema as before

m Estimation and reconstruction: Optimize the sparseness of the
representation with constraints (using Hybrid Steepest Descent iteration)

12
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Extensions

m Multi-Spectral data MS-VST + [2D+1D] Wavelet (humber of scales
different in each direction)

m Shape adaption MS-VST + Ridgelet and MS-VST + Curvelet

m Defective channels MS-VST+ x-Let + EM-inpainting

Green: solved

Blue: currently working on
13
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Results — Isotropic Sources Restoration
(MS-VST + Wavelet)

image of counts Anscombe Fisz + 25 Cyc. Spin.

Thresh. Level =4s

Bi-Haar (direct thr.) MS-VST 14
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Results — Isotropic Sources Restoration

(MS-VST + Wavelet)

image of counts Anscombe Fisz + 25 Cyc. Spin.

Thresh. Level =4s

Bi-Haar (direct thr.) MS-VST 15
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Results — Multi-Spectral Image Restoration
(MS-VST + [2D+1D] Wavelet)

16th band Anscombe Fisz + 64 Cyc. Spin.

A 35-source grid:
5lines x 7 columns

Thresh. Level =4s

Bi-Haar (direct thr.) MS-VST 16
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Results — Multi-Spectral Image Restoration
(MS-VST + [2D+1D] Wavelet)

26th band Anscombe Fisz + 64 Cyc. Spin.

A 35-source grid:
5lines x 7 columns

Thresh. Level =4s

Bi-Haar (direct thr.) MS-VST

17
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Preliminary Results — Image Restoration with Line-Like Sources
(MS-VST + Ridgelet)

underlying intensity image simulated image of counts restored image
from the left image of counts

Max Intensity
background = 0.01
vertical bar = 0.03
inclined bar = 0.04

18
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Preliminary Results —Restoration with Missing Data
(MS-VST + Wavelet + Inpainting)

image of counts restored image
with defective channels from the left image
with missing observations

19
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Conclusion and Perspectives

m VST for low-pass filtered Poisson process

Efficient for (very) low-count settings

m MS-VST: the VST can be naturally coupled with most multi-
scale transforms (e.g. x-let)

Multi-spectral data
Shape adaptation
Regularity preservation

m MS-VST is fast and easy to implement in any dimension

m Currently working issus and perspectives: MS-VST with
other transforms, with inpainting, with deconvolution, etc.

20
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