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Observation model
The image is viewed as realization(s) of a RV or a random fields

whose degradation equation is:

Ys = M [Φ((BX)s) ⊙ ǫs] (1)

where:

⊙ is any composition of two arguments (e.g. ’+’, ’·’).
s ∈ S is the location index.

ǫs is the noise (random) (generally assumed AWGN but not

necessarily so, e.g. speckle, Poisson, 1
f ).

B is a (possibly non-linear) degradation operator (e.g. convolution

with a PSF).

Φ is a transformation not necessarily linear nor invertible (e.g.

sensor-specific, etc).

M missing data mechanism.

Restoration problem: how to estimate unobserved X from observed Y

An inverse ill-posed problem Seminar Apr. 06 – p.3/53



Observation model
The image is viewed as realization(s) of a RV or a random fields

whose degradation equation is:

Ys = ��M [Φ((BX)s) ⊙ ǫs] (1)

where:

⊙ is any composition of two arguments (e.g. ’+’, ’·’).
s ∈ S is the location index.

ǫs is the noise (random) (generally assumed AWGN but not

necessarily so, e.g. speckle, Poisson, 1
f ).

B is a (possibly non-linear) degradation operator (e.g. convolution

with a PSF).

Φ is a transformation not necessarily linear nor invertible (e.g.

sensor-specific, etc).

M missing data mechanism.

Restoration problem: how to estimate unobserved X from observed Y

An inverse ill-posed problem Seminar Apr. 06 – p.3/53



Bayesian paradigm

Y = Φ((B X )) ⊙ ǫ

p(x, z): prior distribution. z some other image features (e.g.

local regularity, texture, etc).

p(y|x, z): likelihood (given x and z). (p(ǫ)).

p(y): marginal distribution =
∫

p(y|x, z)p(x, z)dxdz.

p(x, z|y), posterior distribution:
p(y|x,z)p(x,z)

p(y)

Bayesian estimation amounts to finding the operator D s.t.:

x̂ = arg inf
D∈On

R (x, x̂ = Dy) = EY,X [L(x,Dy)] (2)
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What estimator for what risk ?

Cost L (x, x̂) Estimator x̂

0-1 MAP arg max
x∈X

pX|Y (x|y)

L2 MMSE E [X|Y ]

L1 MMAE Pr(X > x̂|Y = y) = 1
2

Card {s ∈ S : x̂s 6= xs} MPM MAP at each site.

MAP involves solving an optimization problem.

MMSE involves solving an integration problem.

For mutually independent iid gaussian signal and noise, MAP, MMSE

and Wiener are the same.
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What prior ?
Image corpus based models

Existence of a probability space on some particular corpus of images (e.g. natural

images) [Olshausen and Field 96, Zhu and Mumford 96, Gousseau 00,

Gousseau-Morel-Alvarez 99, Mumford and Huang 99].

Only general properties (e.g. scale invariance, power-law) are accessible but no

explicit distribution.

Transported Generator Models

X(u, v) =
X

i

aigi(siu + tiu , siv + tiv )

gi are the random object templates.

Clearly, this states that random objects are randomly placed (according to some

probability law) while imposing some axioms such as scale invariance (multi-scale

nature of images !).

[Gidas et Mumford 01] showed (invariance principle and the Lévy-Khintchine theorem)

that (si, tiu , tiv ) has a Poisson law in affine transformation group with a density

dsdtudtv/s.

[Grenander et al. 99-03] imposed ai ∼ N (0, 1) and a Gamma prior on
P

i g2
i (siu + tiu , siv + tiv ) (an instance of the scale-mixture of gaussians SMG).

Random Field Theory (e.g. MRF)
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What prior ? (cont’d)

Sparse representation prior

Choose a Hilbert space equipped with a basis or frame (Fourier, wavelets, X-lets, etc)

[Mallat 89, Simoncelli et al. 98, Wainwright et al. 00, Grenander et al. 01, Fadili and

Boubchir 03].

Project the original data in that space where all components (coefficients) but a few

are zero (notion of parsimony or sparsity).

Expected statistical behavior: unimodal, centered a zero, non-gaussian sharply

peaked distribution with heavy tails.

Many images encountered in practice have a sparse gradient and then fall within this

intuitive model.
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Wavelet coefficients model. Dark points: ob-

served pdf, dashed: GGD [Mallat 89], dotted:

α-stable [Lévy 24, Achim et al. 01], solid:

Bessel K form [Grenander et al. 01, Fadili et

al. 03].
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Elements from modern harmonic analysis

Ingredients: X ∈ H a Hilbert space.

An
√
n×√

n image X can be written as the superposition of

elementary functions ϕγ(u, v) (atoms) parameterized by γ s.t. (Γ is

denumerable):

X(u, v) =
∑

γ∈Γ dγϕγ(u, v), ϕγ ∈ L

The atoms {ϕl}l=1,...,L are normalized to a unit norm.

The forward transform is defined by Φ = [ϕ1 . . . ϕL] ∈ RN×L, L ≥ N

(defines a basis, a frame or a tight frame).

Examples of Γ: frequency (Fourier), scale-translation (wavelets),

scale-translation-frequency (wavelet packets),

translation-duration-frequency (cosine packets),

scale-translation-angle (geometrical X-lets, curvelets, bandlets,

contourlets, wedgelets, etc).
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What those atoms look like: morphological diversity

DictionaryΦ

Others

(piece−wise smooth, isotropic)Wavelet
Local Cosine Packet

(locally oscillating, stationary textures)

Curvelet
(piece−wise regular, any geometry with C2 contours)

Others

Width=Length^2 Seminar Apr. 06 – p.9/53



Non-oriented pyramids: WT

_ 1
_ 2

(0 , 0 )
D (H H )V (H L )

H ( LH )L L

F in e s t
Co a r s e s t

y(t) =
2Jc−1
∑

k=0

cJc,kφJc,k(t) +
∞
∑

j=Jc

2j−1
∑

k=0

dj,kψj,k(t) where Jc ≥ 0, y ∈ L2(R)

cJc,k =< y, φj0,k > and dj,k =< y, ψj,k >

φ and ψ are defined by a (FIR) filter bank (h, g).

h and g are in most cases power-complementary.

d = Wy: corresponds to a (tight) frame expansion (oversampled) or

a basis (critically sampled).

For piece-wise smooth images: ‖f − f̂M‖2
L2

≤ CM−1. Seminar Apr. 06 – p.10/53



Oriented pyramids: FDCT
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2nd generation curvelets [E. Candès, D. Donoho and L. Demanet].

Curvelet atoms are formed by translating, scaling and rotating a

single mother function.

Its Fourier transform is defined as (polar coordinates):

ϕ̂j(r, θ) = 23j/4W (2jr)V

(⌊2j/2⌋θ
2π

)

The support of |ϕ̂j | is a polar wedge defined by those of W (radial

window) and V (angular window). Seminar Apr. 06 – p.11/53



Oriented pyramids: FDCT (cont’d)
Property 1

The curvelet transform provides a multiresolution, directional representation with

basis elements well localized in both space and frequency.

Parabolic scaling law: atoms are highly anisotropic with

(2−j) ≈ width ≈ length2(2−j/2).

Oscillating behavior: ϕj is a little needle whose envelope is a specified ”ridge” of

effective length 2−j/2 and width 2−j , and which displays an oscillatory behavior

across the main ”ridge”.

Tight frame.

Optimally sparse representation of piecewise smooth images with C2 edges:

‖f − f̂M‖2
L2

≤ C (logM)
3
M−2.

Curvelet in spatial domain 
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Sparse representation-based denoising

Seminal work of Dave Donoho and Ian Johnstone in early 90’s on

wavelet non-parametric regression with AWGN.

Argument from functional approximation: owing to the sparsity of the

wavelet expansion, signal is essentially concentrated on a small

fraction of coefficients while most others are due to noise, which

contaminates uniformly all coefficients.

Basic idea: apply a non-expansive operator (e.g. threshold or shrink)

to the representation coefficients.

Since then, literature have been inundated by modifications or

extensions of this original idea.

y
W−→ {cmn, dγ} Non-linear estimator Dθ−−−−−−−−−−−−−→ {cmn,Dθ(d̂γ)} R−→ x̂
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A brief overview
Classical term-by-term

Minimax estimation, SureShrink, etc [Donoho

et al. 92-95]. Modifications on Donoho’s

shrinkage operators [Bruce and Gao, Anto-

niadis and Fan]. Translation invariant thresh-

old [Coifman and Donoho 95]. Hypothe-

sis testing [Abramovich and Benjamini 95-

96, Ogden and Parzen 96]. Cross-validation

[Green et Silverman 94, Eubank 99].

Classical block

Non-overlapping block thresholding [Cai 99].

Overlapping block thresholding [Cai et Silver-

man 00].

Bayesian term-by-term (univariate)

Bernoulli-Gaussian FM [Abramovich et al. 98,

Clyde and George 99,00]. Bayesian hypothe-

sis testing [Vidakovic et al. 98]. SMG with ex-

ponential multiplier prior [Vidakovic et al. 00].

Two Gaussians FM [Chipman et al. 97]. t-

Student prior [Vidakovic 98]. GGD [Mallat99,

Liu et Moulin 99]. Adaptive variance gaussian

prior [Simoncelli 99]. α-stable [Achim et al.

01].

Bayesian block (multivariate)

Non-overlapping block bayesian estimation

[Abramovich et Sapatinas 00]. Multivariate

gaussian prior [Huang and Cressie 00]. Mixed

effects models [Huang and Lu 00]. MRF [Mal-

fait et al. 97, Crouse et al. 98, Pizurica et al.

02]. HMT model [DSP Rice (Romberg, Bara-

niuk et al. 00-02)]. Scale mixture of gaussians

[Li and Orchard 00, Mihchak et al. 99, Portilla

et al. 03]. Multi-variate α-stable [Koruglu et

Achim 04].

A comprehensive comparative study in [Antoniadis, Bigot and Sapatinas 01]. Seminar Apr. 06 – p.14/53



Univariate Scale Mixture of Gaussians family

Definition 1 (Andrews and Mallows 74) Let X be a RV with real-valued realizations. Under the SMG, there

exist two independent RVs U ≥ 0 and Z ∼ N (0, 1) such that:

X
d
= Z

√
U (3)

Property 2

SMG is a subset of the elliptically symmetric distributions [Kotz et al. 89]

fX(0) exists iif E[U−1/2] < +∞.

The pdf of X is:

fX(x) =
1√
2π

Z

+∞

0

u−1/2e−
x2

2u fU (u) (4)

It is unimodal, symmetric around the mode and differentiable almost everywhere (except perhaps at 0).

The characteristic function (CF) of X is:

ΦX(ω) = L[fU ]

„

ω2

2

«

(5)

L is the Laplace transform.

The pdf of U is closely related to the inverse Laplace transform of fX .
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USMG family

The following proposition establishes necessary and sufficient conditions for such a

representation to exist:

Proposition 1 (Andrews and Mallows 74) The RV X has a SMG representation iff the kth derivatives of

fX(
√

y) have alternating sign, i.e.:

„

− d

dy

«k

fX(
√

y) ≥ 0 ∀y > 0 (6)

Lemma 1 If X
d
= Z

√
U with random U ≥ 0 and Z ∼ N (0, σ2), then kurtosis(X) > 0 =⇒ the

symmetric distribution of X is necessarily sharply peaked (leptokurtic) with heavy tails.

As stated before, in many sparse representations, empirical coefficient pdfs are

symmetric around 0, leptokurtic and heavy tailed.

Moreover, these pdfs have their 1st and 2nd derivatives of alternating signs on R
+.

The SMG family satisfies all these requirements (above results).

Consequence: this family is well adapted to capture the sparsity of decompositions

and is then legitimate as a prior for the coefficients.

A key advantage of SMG is that it transfers desirable properties of the gaussian

distribution through the mixing RV. Seminar Apr. 06 – p.16/53



Back to wavelets: USMG and Besov space

Is the SMG family well adapted as a prior for wavelet coefficients of highly
irregular functions) ?

Besov spaces are very general tool in describing the smoothness properties of

functions, e.g. piece-wise smooth or with isolated singularities.

Instead of the modulus of continuity based definition, we use a practical

characterization of Besov space norm with the wavelet coefficients.

Theorem 1 (Meyer 92) Let g =
∑

j,k dj,kψj,k where dj,k are the wavelet coefficients

and ψ is a wavelet with sufficient number of vanishing moments. The Besov norm for the

function g ∈ Bs
p,q is related to a sequence space norm on its wavelet coefficients and is

given by:

‖x‖Bs
p,q

=



















|c0,0| +
[

∑∞
j=0 2js′q

(

∑2j−1
k=0 |dj,k|p

)

q
p

]
1

q

if 1 ≤ q <∞

|c0,0| + sup
j≥0

[

2js′

(

∑2j−1
k=0 |dj,k|p

)
1

p

]

if q = ∞

for 1 ≤ p <∞ where s′ = (s+ 1
2 − 1

p ). s can be viewed as a regularity parameter of

the image g.
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Back to wavelets: USMG and Besov space (cont’d)

The Besov space norm can be related to the prior distribution of the

wavelet coefficients at each detail scale.

An explicit relationship between the parameters of the SMG prior

model and the Besov space.

Theorem 2 Let Xj,k
d
= Zj

√
U iid RVs at each scale such that Z ∼ N (0, σ2

j ),

E [U ] = 1 and MU (p) < +∞ 1 ≤ p < +∞ and σj = σ02
−jβ (the scale invariance

property of images), with (0 < σ0 < +∞, β ≥ 0). Then, for a fixed c0,0,

g ∈ Bs
p,q almost surely if and only if β > (s+

1

2
), for 1 ≤ p <∞ and 1 ≤ q ≤ ∞.
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USMG: hyperparameters estimation

Generally, distribution of U depends on some hyperparameters θ.

They are estimated directly from the coefficients at each subband:

MLE.

Quantile methods.

Characteristic function methods.

Cumulants (easily extended in presence of AWGN).

EM.

This step is crucial for the final performance of the denoiser.

Is somewhat easy in noiseless case and becomes much more

complex with corrupting noise.
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Case (1): Bessel K form

X =
√
UZ where U ∼ Gamma(α, c)

Raised in the TGM [Grenander et al. 01].

Definition 2 The BKF pdf is:

f (x;α, c) =
1√

πΓ (α)

( c

2

)−α
2
− 1

4

∣

∣

∣

x

2

∣

∣

∣

α− 1

2

Kα− 1

2

(

√

2

c
|x|
)

Kν is the modified Bessel function. α > 0 and c > 0 are the shape and scale

parameters.

Property 3

The BKF distribution tends to a gaussian as α −→ ∞.

Let X ∼ BKF (α, c),

κ2i = α
( c

2

)i (2i)!

i
, i ≥ 1 (7)
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Bessel K form: estimate α and c

Using cumulants:

α̂ =
3

Kurt(X) − 3
, ĉ =

Var(X)

α̂

Using EM algorithm: consider the multiplier as the
missing data.

The sufficient statistics are calculated in closed form
in the E-step.

Proof of convergence (to a local minimum).

cumulant-based estimator is used as an initialization.
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Case (2): α-stable

X =
√
UZ where U ∼ Sα/2(−1, σ = (cos(πα

4 ))
2

α )) and Z ∼ N (0, 2γ)

Definition 3 The α-stable pdf is given (Zolotarev formulation) [Levy 24]:

f(x;α, β, σ) =



















1

π

R

∞

0
exp(−σαxα) cos[x2 + βxα tan(απ

2
)]dx

if α 6= 1

1

π

R

∞

0
exp(−σαxα) cos[x2 + βxα 2

π
log |x|]dx

if α = 1

Characteristic exponent α, 0 < α ≤ 2 (leptokurticity degree).

Asymmetry parameter β (symmetric for β = 0),

Scale parameter σ = γ
1

α .

Tails have an algebraic decay rate.
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α-stable marginal pdf

The α-stable exists pdf exists and is continuous, but not analytical form except very

special cases.

Gaussian S2(0, σ)

Cauchy S1(0, σ)

Lévy S1/2(1, σ)

Inverse FT necessitate intensive numerical integration with infinite bounds.

Exact approach [Nolan 97]

finite integration bounds.

numerically stable, but ...

computationally intensive (e.g. for images).

hyperparameter estimation is an issue (especially in the noisy case).

no analytical form for the bayesian denoiser.

Our approach:

use the SMG property to provide an finite mixture approximation with a controlled

accuracy.

fast and numerically stable.

By-products: analytical form for the bayesian denoiser, good estimator of the

hyperparameters.
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α-stable marginal pdf

Require: Number of components Nmixt.

1: Estimate α and σ (e.g. using a quantile estimator).

2: Calculate the CF of the fU with (α
2 , β = −1, σ = (cos(πα

4 ))
2

α ).

3: Evaluate fU at Nmixt points by taking the inverse FFT of the CF.

4: Get the mixing function:

h(v) = 2vfU (v2;α,−1, σ)

5: Take the finite mixture approximation for the SαS pdf:

f̃(x;α, γ) =

∑Nmixt

i=1 φ(x; 0, σ2v2
i )h(vi)

∑Nmixt

i=1 h(vi)

6: Fine tune using the EM algorithm.
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α-stable marginal pdf: Nmixt
Model selection theory: BIC, AIC, MDL (balance between accuracy

and complexity):

CMDL(Nmixt) = −ℓℓ(x) + g(Nmixt), g positive and strictly increasing.

Conclusion: Nmixt ∈ [4, 8] is fair enough.

MC simulations with the KL divergence confirmed these findings.

For a 256 × 256 image and DWT, less than 1 min (on a 1.5 GHz

SunW) to fit all subbands under Matlab.
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Visual illustration on DWT
Barbara DWT coeffs. modeling
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Univariate priors comparison

Comparison on a 100 image database.
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Limitations of univariate modeling

Coefficients of transforms tend to cluster around fine details in

images (exhibit geometrical structures).

Persistence across scales although orientations are almost

decoupled.

Thus, independence hypothesis is not valid.

Multivariate priors offer a natural way to handle this behavior.

Scale J Scale J − 1

IM(X;PX) 0.164 0.194

IM(X;V X) 0.374 0.555

IM(X;CX) 0.142 0.151

Average mutual information between coeffs (100 im-

ages). Seminar Apr. 06 – p.28/53



Multivariate SMG family

Definition 4 Let X be a VRV taking values in Rd. Under the SMG, there exists a RV

U ≥ 0 and a VRV Z ∼ N (0,Σ), Σ > 0 (U and Z mutually independent) such that:

X
d
= Z

√
U (8)

Property 4

MSMG is a sub-family of elliptically symmetric distributions [Kotz et al. 89].

The pdf of X is:

fX(x) = (2π)−d/2|Σ|−1

∫ +∞

0

u−1/2 exp

[

−xT Σ−1x

2u

]

fU (u)du (9)

It is unimodal, elliptically symmetric with elliptically symmetric CF:

ΦX(ω) = L [fU ]

(

ω
T Σω

2

)

(10)

A necessary and sufficient condition for a MSMG representation to exist is the

alternation of sign of the derivatives of its functional parameter (density generator).
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Multivariate SMG family

Lemma 2 For a RV U , the measure of multivariate kurtosis of X in the

sense of Mardia is always strictly positive.

The multivariate SMG family satisfies the requirements
of leptokurticity, heavy-tailness and symmetry.

This family is again adapted to capture the sparsity and
dependency structure of the representation coefficients
and is then legitimate as a multivariate prior.
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MSMG: hyperparameters estimation

Again, the distribution of the multiplier U depends on some

hyperparameters θ.

Σ and these hyperparameters are estimated directly from the

coefficients:

MLE (very time consuming).

Moments and Cumulants (E
[

(

XΣ−1X
)i
]

= 2i Γ(d/2+i)
Γ(d/2) E

[

U i
]

).

EM (easily adapted if univariate EM is accessible).

Again, this step is a chief obstacle towards good performance of the

denoiser.

Somewhat easy in noiseless case but more complex with corrupting

noise.
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Case (1): Multivariate BKF

X =
√
UZ where U ∼ Gamma(α, 1/α), α > 0

Proposition 2 The EC MBKF pdf is given by:

f (x;α,Σ) =
21−α

√

(2π)d|Σ|
(2α)

α
2
+ d

4 ‖x‖α− d
2

Σ Kα− d
2

(√
2α‖x‖Σ

)

Kν is the modified Bessel function.

Property 5

The BKF distribution tends to a gaussian as α −→ ∞.

Let X ∼MBKF (α,Σ),

κj(2i) = α1−i (2i)!

2ii

d
∑

l=1

σ2i(j, l), i ≥ 1, j = 1, . . . , d(11)

E

[

(

XΣ−1X
)i
]

= 2i Γ(d/2 + i)Γ(α+ i)

αΓ(d/2)Γ(α)
(12)
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MBKF: estimate α and Σ

Moments, e.g.:

Σ̂ = Ĉov [X], α̂ =

(

(

xΣ̂−1x

)2

/(d(d + 2)) − 1

)−1

Using cumulants.

Using EM algorithm: consider the multiplier as the
missing data.

The sufficient statistics are calculated in closed form
in the E-step.

Proof of convergence (to a local minimum).

Moment (or cumulant) based estimator is used as an
initialization.
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Visual illustration on DWT (d = 2)

Empirical (red), MBKF (blue), AMGGD (green), MSMG with Jeffrey’s multi-

plier [Portilla et al. 03] (cyan).
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Visual illustration on DWT (d = 3)
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Visual illustration on FDCT (d = 2)
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Multivariate priors comparison
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Bayesian denoising: univariate

Setting

The noise in image domain is AWGN.

The multiscale sparse representation is a basis
(typically DWT).

Observe,

dsub = xsub + ǫ, ǫ ∼ N (0, σ2
ε)

xsub ∼ SMGθsub
are iid in each subband (+ inter-scale

independence).

We developed bayesian estimators (MMSE and MAP)
for BKF and α-stable priors.
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Main results

Theorem 3

Both the MMSE and the MAP estimators of xsub under the BKF

prior (given α and c) have closed analytical forms.

The BKF MAP estimator is equivalent to universal hard thresholding

for
σ2

ε

c
= log N as α → 1 (Laplacian prior) or large N .

Bayesian CLT: the BKF MAP estimator is asymptotically gaussian

(as N → +∞).

The MMSE estimator under the approximate α-stable prior has a

closed analytical form.
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Hyperparameters estimation

Cumulant method extends easily for the BKF: σ̂ε with
the MAD of the finest scale, then:

α̂ = 3

(

κ̂2 − σ̂2
ε

)2

+

κ̂4

, ĉ =

(

κ̂2 − σ̂2
ε

)

+

α̂

EM algorithm for BKF: closed-form expressions are no
longer available (not used).

EM algorithm for approximate α-stable: OK.
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Oracle Threshold  18.87 dB

α−stable mixture  20.84 dBNoisy SNR
in

=15 dB

α−stable  19.04 dB BKF  20.64 dB Hard universal  17.00 dB

Soft universal  15.55 dB SURE  18.14 dB

Original
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PSNR comparison
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Limitations of univariate denoising

Lack of translation invariance with orthogonal
transforms.

Gibbs-like ringing artifacts.

Better use directional and (almost) translation invariant
representations.

Taking into account dependency structure of
neighboring coefficients is likely to improve the
denoising performance.
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Bayesian denoising: multivariate

Setting

The noise in image domain is AWGN (could be
generalized to colored noise).

The representation is a frame, a tight frame or a basis
(typically FDCT, UDWT).

Observe,

d = x + ǫ, ǫ ∼ N (0, Σε)

Each d is a vector of packed coefficients (neighbors +
parent).

x ∼ MSMGθ.

Seminar Apr. 06 – p.46/53



Preliminary results

So far, we developed the MMSE bayesian estimator for
the MBKF prior, but no analytical expression.

x̂MMSE =

∫ +∞

0
uΣ (uΣ + Σε)

−1
d φ (d; uΣ + Σε) fU (u)du

∫ +∞

0
φ (d; uΣ + Σε) fU (u)du

If the dictionary is sufficiently incoherent, then

Σε ≈ σ2
εId.

This estimator corresponds to a scale mixture of local
Wiener estimates.

Deploy the bayesian integration technology:

Analytic approximation (e.g. Laplace, Saddlepoint).

Quadrature numerical integration (accurate but
slow).

Monte-Carlo Integration (fast and accurate). Seminar Apr. 06 – p.47/53



Hyperparameters estimation

Cumulant method extends easily for the noisy MBKF:

Σ̂ = Ĉov [d] − Σε, α̂ =
3

d

d
∑

j=1

∑d
l=1 σ̂4(j, l)

κ̂j(4)

EM algorithm for BKF: closed-form expressions are no
longer available (not used).
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Original
Noisy 18.94 dB (σ

ε
=40)

UDWT H 28.00 dB FDCT H 28.01 dB

UDWT UBKF 27.87 dB UDWT MBKF 28.60 dB FDCT MBKF 28.12 dB [Starck et al. 01] 28.93 dB
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Original
Noisy 19.26 dB (σ

ε
=40)

UDWT H 23.77 dB FDCT H 25.95 dB

UDWT UBKF 24.21 dB UDWT MBKF 25.79 dB FDCT MBKF 26.72 dB [Starck et al. 01] 26.08 dB
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Take away messages

For bases (i.e. DWT):

Bayesian estimators with USMG prior are clearly better than

many other denoisers (including bayesian).

But bases suffer from many limitations, e.g. translation

invariance.

For frames and tight frames (i.e. UDWT, FDCT):

Saliency of univariate bayesian methods is limited (compared e.g.

to simple hard thresholding).

Incorporation of MSMG priors clearly improves the performance

of denoisers.

MBKF prior based denoiser compares favorably with state-of-the

art denoisers [Portilla et al. 03 (Jeffrey’s prior), Starck et al. 01]

(courtesy of JLS for providing his code).

Curvelets are crucial for faint curvilinear structures.
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Conclusion and perspectives

A flexible statistical prior is proposed to model both marginal and joint statistics of

sparse representation coefficients.

Univariate and multivariate properties derived and special cases fully considered.

Application to statistical modeling of real images.

Bayesian term-by-term MMSE and MAP estimators were also derived.

Preliminary results for the joint MMSE estimator.

Experimental results are very encouraging.

Simplification: the joint prior denoiser considered independence of overlapping blocks

of coefficients.

Rigor: this local model actually defines a global Markov model −→ must be rigorously

considered, but estimation will be more complicated.

Investigate other special priors for whom bayesian estimators could be calculated

analytically.

A more comprehensive comparative study for the multivariate case.
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More details

L. Boubchir, M.J. Fadili, "A Closed-form Nonparametric Bayesian Estimator in The

Wavelet-domain of Images Using an Approximate α-stable Prior", Pattern Recognition

Letters, in press, 2006.

M.J. Fadili, L. Boubchir, "Analytical form for a Bayesian wavelet estimator of images

using the Bessel K form densities", IEEE Transactions on Image Processing, Vol. 14, No.

2, pp. 231-240, 2005.

L. Boubchir, M.J. Fadili, "Multivariate Statistical Modeling of Images with The Curvelet

Transform", IEEE ISSPA 2005, pp. 747-750, Sydney, Australia, August 28-31, 2005.

L. Boubchir, M.J. Fadili, "Bayesian Denoising Based on The MAP Estimation in

Wavelet-domain Using Bessel K Form Prior", IEEE ICIP’05, Vol. I, pp. 113-116, Genoa,

Italy, September 11-14, 2005.

L. Boubchir, M.J. Fadili, D. Bloyet, "Bayesian Denoising in the Wavelet-domain Using an

Analytical Approximate α-stable prior", IEEE ICPR 2004, Vol. 4, pp. 889-892,

Cambridge, United Kingdom, August 23-26, 2004.

http://www.greyc.ensicaen.fr/~jfadili

http://www.greyc.ensicaen.fr/~boubchir

Any questions ?
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