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® The image (or signal) is viewed as realization(s)
field whose degradation equation is:

Observation model

Yo = M[P((BX)s) © €]

where:

o

o

N

) ) ) )

® IS any composition of two arguments (e.g. '+, ).
s € S Is the location index.

e IS the noise (random) (generally assumed AWGN but not

necessarily so, e.g. speckle, Poisson, %).

ofaRV ora randomT

(1)

B is a (possibly non-linear) degradation operator (e.g. convolution

with a PSF).

U is a transformation not necessarily linear nor invertible (e.g.

sensor-specific, etc).
M missing data mechanism.

Restoration problem: how to estimate unobserved X from observed Y
An inverse ill-posed problem

i
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Bayesian paradigm

s . prior distribution. z some other image features (e.g.
al regularity, texture, etc).

p(y|x,z): likelihood (given x and z). (p(e)).

=

(y): marginal distribution = [ p(y|z, z)p(x, z)dzdz.

® p(x,zly), posterior distribution: p(y|$]’gz<;)

Bayesian estimation amounts to finding the operator D s.t.:

= arginf R (x,2 = Dy) = Ey x |L(x, Dy)] (2)

DecOy,
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What estimator for what risk ?

- N

Cost L (z, &) Estimator T
0-1 MAP arg max px|y (z|y)
reX

Lo MF E[X|Y]

L MMAE | Pr(X > 2|V =y) =1
Card {s € S: s # x5} MPM MAP at each site.
® MAP involves solving an optimization problem.
® MF involves solving an integration problem.
® For mutually independent iid gaussian signal and noise, MAP, MF

\_ and Wiener are the same. J
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What prior ?

., N

Image corpus based models

» Existence of a probability space on some particular corpus of
images (e.g. natural images)

® Transported Generator Models

» Random objects randomly placed (according to some probability
law) while imposing some axioms such as scale invariance
(multi-scale nature of images)

® Random Field Theory (e.g. MRF)

® Sparse representation-based prior

o |
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Elements from modern harmonic analysis

® An n-sample signal or image X can be written as the superposition of elementary

L 3 I

functions ¢~ (s) (atoms) parameterized by ~ s.t. (I" is denumerable):

Xs = nyer oy Py (s), ¢y € L, [lalp < n

% (nx1) @ (nxL) a(an

The atoms {¢; };—1,.... are normalized to a unit 2 norm.
®=[p1...01] € RNXL Card ' = L > N (bases, tight frames or frames).

Examples of I': frequency (Fourier), scale-translation (wavelets),
scale-translation-frequency (wavelet packets), translation-duration-frequency (cosine
packets), scale-translation-angle (geometrical X-lets, curvelets, bandlets, contourlets,

wedgelets, etc). SIAM 15106 — p.7/29
06-p.



Sparse representation-based denoising

., N

Stable recovery of a sparse representation in presence of (AWG)
noise (with bounded variance):

min |||, S.t. ||Y — Paf|, <6

® Convexify and relax

1
min - ||V — ®a, + o],

°

Corresponds to the MAP estimate with Laplacian prior.

°

Here, the /1 norm prior will be replaced by a flexbile family of sparsity
promoting priors and the MAP by the MF.

o |
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A brief overview

Classical term-by-term

Minimax estimation, SureShrink, etc
Modifications on Donoho’s
shrinkage operators
. Translation invariant thresh-
old Hypothe-
sis testing

. Cross-validation

Bayesian term-by-term (univariate)

Bernoulli-Gaussian FM
. Bayesian hypothe-

sis testing . SMG with ex-
ponential multiplier prior
Two Gaussians FM . t-
Student prior . GGD

. Adaptive variance gaussian

prior «-stable

A comprehensive comparative study in

Classical block

oo |

Non-overlapping block thresholding
Overlapping block thresholding

Bayesian block (multivariate)

Non-overlapping block bayesian estimation

Multivariate
gaussian prior . Mixed
effects models . MRF

. HMT model
. Scale mixture of gaussians

]

. Multi-variate «-stable
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Univariate Scale Mixture of Gaussians family

efinition 1 (Andrews and Mallows 74) Let X be a RV with real-valued realizations. Under the SMG, there
exist two independent RvVs U > 0 and Z ~ N (0, 1) such that:

-

i

d
X =ZvU (3)
Property 1
O SMGis a subset of the elliptically symmetric distributions
® 1 (0)existsiif E[U1/2] < +00.
O Thepdfof X is:
1 [ e _a?
fx(x) = — u e 2u fy(u) (4)
V21T Jo
It is unimodal, symmetric around the mode and differentiable almost everywhere (except perhaps at 0).
O The characteristic function (CF) of X is:
e
Px(w) = L[fu] > (5)
L is the Laplace transform.
O 7re padf of U is closely related to the inverse Laplace transform of fx .
SIAM IS’06 — p.
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USMG family

he following proposition establishes necessary and sufficient conditions for such a
representation to exist:

Proposition 1 The RV X has a SMG representation iff the k' derivatives of fx (\/ﬂ) have alternating sign,

ie.:

k
(—d%) fx(\/y)>0Vy>0 (6)

Lemma1 if X < Z/U with random U > 0and Z ~ N(0,02), then kurtosis(X) > 0 = the

symmetric distribution of X is necessarily sharply peaked (leptokurtic) with heavy tails.

® For sparse representations, empirical coefficient pdfs are symmetric around 0,
leptokurtic and heavy tailed.

These pdfs have their 1st and 2nd derivatives of alternating signs on R .

The SMG family satisfies all these requirements.

L I I

Consequence: this family is well adapted to capture the sparsity of decompositions

and is then legitimate as a prior for the coefficients.
® Akey advantage of SMG is that it transfers desirable properties of the gaussian

distribution through the mixing RV. SIAM 1506 — p.11/29



Relating USMG to Besov space

- .

® An explicit relationship between the parameters of the USMG prior on
the wavelet coefficients of g and the Besov space within which g may
fall (a.s.).

Theorem 1 Let X l Z;\/'U iid RVs at each scale such that Z ~ N(0,07%), E[U] =
1 and My; (p) <+0 1 <p<+ooando; = 002_j b (the scale invariance property
of images), with (0 < ooy < +00, 8 > 0). Then, for a fixed ¢y o,

1
g € B, , almost surely if and only if 3 > (s + 5), forl <p<ooandl < q < oo.

o |
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Generally, distribution of U depends on some hyperparameters 6.

USMG: empirical Bayes
-

They are estimated directly from the coefficients at each subband:

N
N
N
N
o

MLE.
Quantile methods.
Characteristic function methods.

Cumulants (easily extended in presence of AWGN).
EM.

This step is crucial for the final performance of the denoiser.

|Is somewhat easy in noiseless case and becomes much more
complex with corrupting noise.

|
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USMG: examples
-

#® The Bessel K form prior
: the mixing RV is Gamma distributed.

#® The «-stable prior
: the mixing RV is also a-stable.

® The GGD prior . the
mixing RV is not known in a closed form.

o |
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Example on the DWT

Comparison on a 100 image database.

0.35 T T T T T T T T T
I 5<F—cumulants
0.3 N BKF-EM —
|:| o—stable
- o—stable mixture
| Jelel
0.25 _
0.2 B B _
3 _
<
0.15 .
0.1 _
0.05 _
HLA1 LHA1 HHA1 HL2 LH2 HH2 HL3 LH3 HH3

SIAM 1S’06 — p.15/29



Multivariate SMG family

Definition 2 Let X be a VRV taking values in R<. Under the SMG, there exists a RV
U>0andaVRVZ ~ N(0,%), X > 0 U and Z mutually independent) such that:

X £ 7/U (7)

Property 2
® MSMG is a sub-family of elliptically symmetric distributions
® The pdfof X is:

xI'y—1x
2U

+00
fx(x) = (27r)_d/2\2\_1/0 w12 exp [— ] fu(u)du (8)

® |tis unimodal, elliptically symmetric with elliptically symmetric CF:

wTEw)

ox(w) = L[] (2
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Multivariate SMG family

- |

Lemma2 Fora RV U,

® The measure of multivariate kurtosis of X in the sense of Mardia is
always strictly positive.

® A necessary and sufficient condition for a MSMG representation to
exist is the alternation of sign of the derivatives of its functional pa-
rameter (density generator).

# The multivariate SMG family satisfies the requirements
of leptokurticity, heavy-tailness and symmetry.

# This family is again adapted to capture the sparsity and
dependency structure of the representation coefficients
and is then legitimate as a multivariate prior.

o |
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MSMG: empirical Bayes
-

Again, the distribution of the multiplier U depends on some
hyperparameters 6.

>: and these hyperparameters are estimated directly from the
coefficients:
o MLE (very time consuming).

» Moments and Cumulants (E {(XZ*X)Z} — 9 rgg;) E [U7)).

o EM (easily adapted if univariate EM is accessible).

Again, this step is a chief obstacle towards good performance of the
denoiser.

Somewhat easy in noiseless case but more complex with corrupting
noise.

|
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MSMG: examples

'he multivariate Bessel K form prior
the mixing RV is Gamma distributed.

ne «a-stable prior
also a-stable.

The GGD prior
Non-informative Jeffrey’s prior

-

: the mixing RV is

|
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Visual illustration (d = 2)
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Example on the DWT and FDCT
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Symmetrized KL distance

Symmetrized KL distance
Symmetrized KL distance
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Application to Bayesian denoising

-

The MF estimator corresponds to a scale mixture of
local Wiener estimates:

—+00 ~
0 au ¢ (d;ud + ;) fu(u)du
v
N Wiener estimate
QN\NF — T oo

o @(d;uX + ) fu(u)du

Closed-form expressions.

Deploy the bayesian integration technology:
s Analytic approximation (e.g. Laplace, Saddlepoint).

» Quadrature numerical integration (accurate but
slow).

» Monte-Carlo Integration (fast and accurate).

|
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Application to Bayesian denoising (cont’d)

-

Main results

Theorem 2

® Both the MF and the MAP estimators under the UBKF prior have
closed analytical forms.

-

® The UBKF MAP estimator is equivalent to universal soft
2
thresholding for U—g = logn as o — 1 (Laplacian prior) or large n.

® Bayesian CLT: the UBKF MAP estimator is asymptotically gaussian
(asn — +0o0).

® The MF estimator under the c:-stable prior has a closed analytical
form.

o |
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Combining transforms: bases

® The dictionary is a union of M (sufficiently incoherent) bases T

@ X1 = E[X|Y, 0] A

—»
P(9,Y;US) X

o

—’ R
@) |- sy opima
combine
@ 2 P(®,]Y;U2) estimates

XM:E[X‘Y7(I)M]
P(®y|Y; UL

71

M
X, P(®,,|]Y: U™
mZ:l (P |Y;UT) J

SIAM IS’06 — p.24/29
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Combining transforms: bases

® Suppose that:

® The SMG prior is independent of the transform.
® The transforms are equiprobable (or given by a learning step).

®» Forthe USMG:

[ SN pm V() + 02) fume (ul) duf . dur

[T |
N——
LP component SMG prior

Z%’:l f f0+oo N(YS; Mo’ s Vm’ (S) + O'g)ngn/ (’UJ,T’,) d’u{” c o d’u,ir?,m|

m(s) = Y l¢yn ()P uy
Tm

v
A
3
o
c
||

® For USMG priors with mixing RVs subband-independent and rapidly decreasing pdfs.

N (Ys; pom, Vi o?)
Z%’:l N<Y3;:um’7 ‘A/m’ + O-g)

P(®m|Ys; U;n)

® For many usual transform bases, V;,, is exactly (or to a good approximation):

Ym o v )
Empirical bayes estimate SIAM IS'06 — p.25/29



1D Examples
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Combined PSNR=25 MBKF UDWT PSNR=24.7 MBKF FDCT PSNR=26.12
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Conclusion and perspectives

-

A flexible statistical prior to model both marginal and joint statistics of
sparse representation coefficients.

Univariate and multivariate properties derived and special cases fully
considered.

Application to statistical modeling of real images.

Bayesian term-by-term MF and MAP estimators also derived.
Combined MF denoising with bases.

Extension to other transforms.

Extension to handle more rigorously dependencies (e.g. global
MRF).

|
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More details at

http://www.greyc.ensicaen.fr/~jfadili

Thanks
Any questions ?


http://www.greyc.ensicaen.fr/~jfadili
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