Sparse Representations and Bayesian Denoising

Jalal M. FADILI and Larbi BOUBCHIR

GREYC CNRS UMR 6072, Caen France

Outline

Introduction.

- Observation model.
- Bayesian paradigm.
- Ingredients from modern harmonic analysis.
- Statistical sparse priors:
 - Univariate (marginal).
 - Multivariate (joint).
- Bayesian estimation.
- Combining transforms.
- Conclusion and extensions.

Observation model

The image (or signal) is viewed as realization(s) of a RV or a random field whose degradation equation is:

$$Y_s = \mathcal{M}\left[\Psi((\mathcal{B}X)_s) \odot \epsilon_s\right] \tag{1}$$

where:

- \odot is any composition of two arguments (e.g. '+', '.').
- $s \in S$ is the location index.
- ϵ_s is the noise (random) (generally assumed AWGN but not necessarily so, e.g. speckle, Poisson, $\frac{1}{f}$).
- \mathcal{B} is a (possibly non-linear) degradation operator (e.g. convolution with a PSF).
- Ψ is a transformation not necessarily linear nor invertible (e.g. sensor-specific, etc).
- \mathcal{M} missing data mechanism.

Restoration problem: how to estimate unobserved X from observed YAn inverse ill-posed problem

Observation model

The image (or signal) is viewed as realization(s) of a RV or a random field whose degradation equation is:

$$Y_s = \mathcal{M}[\Psi((\mathcal{B}X)_s) \odot \epsilon_s] \tag{1}$$

where:

- \odot is any composition of two arguments (e.g. '+', '.').
- $s \in S$ is the location index.
- ϵ_s is the noise (random) (generally assumed AWGN but not necessarily so, e.g. speckle, Poisson, $\frac{1}{f}$).
- \mathcal{B} is a (possibly non-linear) degradation operator (e.g. convolution with a PSF).
- Ψ is a transformation not necessarily linear nor invertible (e.g. sensor-specific, etc).
- \mathcal{M} missing data mechanism.

Restoration problem: how to estimate unobserved X from observed YAn inverse ill-posed problem

Bayesian paradigm

 $=\Psi((B(X)))\odot$

p(x, z): prior distribution. z some other image features (e.g. local regularity, texture, etc).

 $p(y|x, \mathbf{z})$: likelihood (given x and z). ($p(\epsilon)$).

p(y): marginal distribution = $\int p(y|x, \mathbf{z}) p(x, \mathbf{z}) dx d\mathbf{z}$.

• $p(x, \mathbf{z}|y)$, *posterior* distribution:

 $rac{p(y|x,\mathbf{z})p(x,\mathbf{z})}{p(y)}$

Bayesian estimation amounts to finding the operator \mathcal{D} s.t.:

$$\hat{x} = \underset{\mathcal{D}\in\mathcal{O}_n}{\operatorname{arg\,inf}} R\left(x, \hat{x} = \mathcal{D}y\right) = \mathsf{E}_{Y,X}\left[L(x, \mathcal{D}y)\right] \tag{2}$$

What estimator for what risk ?

$Cost\ L\left(x,\hat{x}\right)$	Estimator	\hat{x}
0-1	MAP	$\arg\max_{x\in\mathcal{X}} p_{X Y}(x y)$
L_2	MF	$E\left[X Y ight]$
L_1	MMAE	$\Pr(X > \hat{x} Y = y) = \frac{1}{2}$
Card $\{s \in S : \hat{x}_s \neq x_s\}$	MPM	MAP at each site.

- MAP involves solving an optimization problem.
- MF involves solving an integration problem.
- For mutually independent iid gaussian signal and noise, MAP, MF and Wiener are the same.

What prior ?

Image corpus based models

- Existence of a probability space on some particular corpus of images (e.g. natural images) [Olshausen and Field 96, Zhu and Mumford 96, Gousseau 00, Gousseau-Morel-Alvarez 99, Mumford and Huang 99].
- Transported Generator Models
 - Random objects randomly placed (according to some probability law) while imposing some axioms such as scale invariance (multi-scale nature of images) [Gidas et Mumford 01, Grenander et al. 99-03].
- Random Field Theory (e.g. MRF) [Besag 86, Geman and Geman 88].
- Sparse representation-based prior [Mallat 89, Simoncelli et al. 98, Wainwright et al. 00, Grenander et al. 01, Achim et al. 01, Fadili et al.
 03, etc].

Elements from modern harmonic analysis

An *n*-sample signal or image X can be written as the superposition of elementary functions $\phi_{\gamma}(s)$ (*atoms*) parameterized by γ s.t. (Γ is denumerable):

- If the atoms $\{\phi_l\}_{l=1,...,L}$ are normalized to a unit ℓ_2 norm.
- $\Phi = [\phi_1 \dots \phi_L] \in \mathbb{R}^{N \times L}$, Card $\Gamma = L \ge N$ (bases, tight frames or frames).
- Examples of Γ: frequency (Fourier), scale-translation (wavelets), scale-translation-frequency (wavelet packets), translation-duration-frequency (cosine packets), scale-translation-angle (geometrical X-lets, curvelets, bandlets, contourlets, wedgelets, etc).

Sparse representation-based denoising

Stable recovery of a sparse representation in presence of (AWG) noise (with bounded variance):

$$\min_{\alpha} \|\boldsymbol{\alpha}\|_{0} \text{ s.t. } \|Y - \Phi\boldsymbol{\alpha}\|_{2} \leq \delta$$

Convexify and relax [Chen et al. 01, Donoho et al. 04, Gribonval et al. 04, Fuchs 05, etc]:

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \left\| Y - \Phi \boldsymbol{\alpha} \right\|_{2} + \lambda \left\| \boldsymbol{\alpha} \right\|_{1}$$

- Corresponds to the MAP estimate with Laplacian prior.
- Here, the ℓ_1 norm prior will be replaced by a flexbile family of sparsity promoting priors and the MAP by the MF.

A brief overview

Classical term-by-term

Minimax estimation, SureShrink, etc [Donoho et al. 92-95]. Modifications on Donoho's shrinkage operators [Bruce and Gao, Antoniadis and Fan]. Translation invariant threshold [Coifman and Donoho 95]. Hypothesis testing [Abramovich and Benjamini 95-96, Ogden and Parzen 96]. Cross-validation [Green et Silverman 94, Eubank 99].

Classical block

Non-overlapping block thresholding [Cai 99]. Overlapping block thresholding [Cai et Silverman 00].

Bayesian term-by-term (univariate)

Bernoulli-Gaussian FM [Abramovich et al. 98, Clyde and George 99,00]. Bayesian hypothesis testing [Vidakovic et al. 98]. SMG with exponential multiplier prior [Vidakovic et al. 00]. Two Gaussians FM [Chipman et al. 97]. t-Student prior [Vidakovic 98]. GGD [Mallat99, Liu et Moulin 99]. Adaptive variance gaussian prior [Simoncelli 99]. α -stable [Achim et al. 01].

Bayesian block (multivariate)

Non-overlapping block bayesian estimation [Abramovich et Sapatinas 00]. Multivariate gaussian prior [Huang and Cressie 00]. Mixed effects models [Huang and Lu 00]. MRF [Malfait et al. 97, Crouse et al. 98, Pizurica et al. 02]. HMT model [DSP Rice (Romberg, Baraniuk et al. 00-02)]. Scale mixture of gaussians [Li and Orchard 00, Mihchak et al. 99, Portilla et al. 03]. Multi-variate α -stable [Koruglu et Achim 04].

A comprehensive comparative study in [Antoniadis, Bigot and Sapatinas 01].

Univariate Scale Mixture of Gaussians family

Definition 1 (Andrews and Mallows 74) Let X be a RV with real-valued realizations. Under the SMG, there exist two independent RVs $U \ge 0$ and $Z \sim \mathcal{N}(0, 1)$ such that:

$$X \stackrel{d}{=} Z \sqrt{U} \tag{3}$$

SIAM IS'06 - p.10/29

USMG family

The following proposition establishes necessary and sufficient conditions for such a representation to exist:

Proposition 1 The RV X has a SMG representation iff the k^{th} derivatives of $f_X(\sqrt{y})$ have alternating sign, *i.e.:*

$$\left(-\frac{d}{dy}\right)^k f_X(\sqrt{y}) \ge 0 \quad \forall y > 0 \tag{6}$$

Lemma 1 If $X \stackrel{d}{=} Z\sqrt{U}$ with random $U \ge 0$ and $Z \sim \mathcal{N}(0, \sigma^2)$, then $kurtosis(X) > 0 \Longrightarrow$ the symmetric distribution of X is necessarily sharply peaked (leptokurtic) with heavy tails.

- For sparse representations, empirical coefficient pdfs are symmetric around 0, leptokurtic and heavy tailed.
- \checkmark These pdfs have their 1st and 2nd derivatives of alternating signs on \mathbb{R}^+ .
- The SMG family satisfies all these requirements.
- Consequence: this family is well adapted to capture the sparsity of decompositions and is then legitimate as a prior for the coefficients.
- A key advantage of SMG is that it transfers desirable properties of the gaussian distribution through the mixing RV.

Relating USMG to Besov space

An explicit relationship between the parameters of the USMG prior on the wavelet coefficients of g and the Besov space within which g may fall (a.s.).

Theorem 1 Let $X_{j,k} \stackrel{d}{=} Z_j \sqrt{U}$ iid RVs at each scale such that $Z \sim \mathcal{N}(0, \sigma_j^2)$, $\mathsf{E}[U] = 1$ and $M_U(p) < +\infty$ $1 \le p < +\infty$ and $\sigma_j = \sigma_0 2^{-j\beta}$ (the scale invariance property of images), with $(0 < \sigma_0 < +\infty, \beta \ge 0)$. Then, for a fixed $c_{0,0}$,

 $g \in B^s_{p,q}$ almost surely if and only if $\beta > (s + \frac{1}{2})$, for $1 \le p < \infty$ and $1 \le q \le \infty$.

USMG: empirical Bayes

- Generally, distribution of U depends on some hyperparameters θ .
- They are estimated directly from the coefficients at each subband:
 - MLE.
 - Quantile methods.
 - Characteristic function methods.
 - Cumulants (easily extended in presence of AWGN).
 - EM.
- This step is crucial for the final performance of the denoiser.
- Is somewhat easy in noiseless case and becomes much more complex with corrupting noise.

USMG: examples

- The Bessel K form prior [Grenander et al. 03, Fadili et al. 03]: the mixing RV is Gamma distributed.
- The α -stable prior [Achim et al. 01, Boubchir and Fadili 03]: the mixing RV is also α -stable.
- The GGD prior [Mallat 89, Moulin and Liu 99]: the mixing RV is not known in a closed form.

Example on the DWT

Multivariate SMG family

Definition 2 Let **X** be a VRV taking values in \mathbb{R}^d . Under the SMG, there exists a RV $U \ge 0$ and a VRV $\mathbf{Z} \sim \mathcal{N}(0, \Sigma)$, $\Sigma > 0$ (U and **Z** mutually independent) such that:

$$\mathbf{X} \stackrel{d}{=} \mathbf{Z} \sqrt{U}$$

Property 2 MSMG is a sub-family of elliptically symmetric distributions [Kotz et al. 89]. The pdf of ${f X}$ is: $f_{\mathbf{X}}(x) = (2\pi)^{-d/2} |\Sigma|^{-1} \int_{0}^{+\infty} u^{-1/2} \exp\left[-\frac{\mathbf{x}^T \Sigma^{-1} \mathbf{x}}{2u}\right] f_U(u) du \quad (8)$ It is unimodal, elliptically symmetric with elliptically symmetric CF: $\Phi_{\mathbf{X}}(\omega) = \mathcal{L}\left[f_U\right] \left(\frac{\boldsymbol{\omega}^T \boldsymbol{\Sigma} \boldsymbol{\omega}}{2}\right)$ (9)

(7)

Multivariate SMG family

Lemma 2 For a RVU,

- If the measure of multivariate kurtosis of ${f X}$ in the sense of Mardia is always strictly positive.
- A necessary and sufficient condition for a MSMG representation to exist is the alternation of sign of the derivatives of its functional parameter (density generator).
- The multivariate SMG family satisfies the requirements of leptokurticity, heavy-tailness and symmetry.
- This family is again adapted to capture the sparsity and dependency structure of the representation coefficients and is then legitimate as a multivariate prior.

MSMG: empirical Bayes

- Again, the distribution of the multiplier U depends on some hyperparameters θ .
- Σ and these hyperparameters are estimated directly from the coefficients:
 - MLE (very time consuming).
 - Moments and Cumulants (E $| (\mathbf{X}\Sigma^{-1}\mathbf{X})^i | = 2^i \frac{\Gamma(d/2+i)}{\Gamma(d/2)} \mathsf{E}[U^i]$).
 - EM (easily adapted if univariate EM is accessible).
- Again, this step is a chief obstacle towards good performance of the denoiser.
- Somewhat easy in noiseless case but more complex with corrupting noise.

MSMG: examples

- The multivariate Bessel K form prior [Fadili et al. 06]: the mixing RV is Gamma distributed.
- The α -stable prior [Kuruoglu et al. 04]: the mixing RV is also α -stable.
- The GGD prior [Fadili et al. 05].
- Non-informative Jeffrey's prior [Portilla et al. 03].

Visual illustration (d = 2)

Empirical (red), MBKF (blue), AMGGD (green), MSMG with Jeffrey's multi-

plier (cyan).

Example on the DWT and FDCT

Application to Bayesian denoising

The MF estimator corresponds to a scale mixture of local Wiener estimates:

$$\hat{\boldsymbol{\alpha}}_{\mathrm{MF}} = \frac{ \int_{0}^{+\infty} \underbrace{\hat{\boldsymbol{\alpha}} | u}_{\text{Wiener estimate}} \phi\left(\mathbf{d}; u\Sigma + \Sigma_{\varepsilon}\right) f_{U}(u) du }{ \int_{0}^{+\infty} \phi\left(\mathbf{d}; u\Sigma + \Sigma_{\varepsilon}\right) f_{U}(u) du}$$

- Closed-form expressions.
- Deploy the bayesian integration technology:
 - Analytic approximation (e.g. Laplace, Saddlepoint).
 - Quadrature numerical integration (accurate but slow).
 - Monte-Carlo Integration (fast and accurate).

Application to Bayesian denoising (cont'd)

Main results

Theorem 2

- Both the MF and the MAP estimators under the UBKF prior have closed analytical forms.
 - The UBKF MAP estimator is equivalent to universal soft thresholding for $\frac{\sigma_{\varepsilon}^2}{c} = \log n$ as $\alpha \to 1$ (Laplacian prior) or large n.
- Bayesian CLT: the UBKF MAP estimator is asymptotically gaussian (as $n \rightarrow +\infty$).
- The MF estimator under the α-stable prior has a closed analytical form.

Combining transforms: bases

• The dictionary is a union of M (sufficiently incoherent) bases $\{\Phi_m\}_{m=1,...,M}$.

$$\hat{X} = \sum_{m=1}^{M} \hat{X}_m P(\Phi_m | Y; \mathbf{U}_{\gamma}^m)$$

Combining transforms: bases

Suppose that:

- The SMG prior is independent of the transform.
- The transforms are equiprobable (or given by a learning step).

For the USMG:

$$\int \cdots \int_{0}^{+\infty} \mathcal{N}(Y_{s}; \underbrace{\mu_{m}}_{V_{m}}, V_{m}(s) + \sigma_{\varepsilon}^{2}) f_{U_{\gamma}^{m}}(u_{\gamma}^{m}) du_{1}^{m} \dots du_{|\Gamma_{m}|}^{m} \\
\underbrace{\mathsf{LP \ component}}_{V_{m}(s) = \frac{\sum_{m'=1}^{M} \int \cdots \int_{0}^{+\infty} \mathcal{N}(Y_{s}; \mu_{m'}, V_{m'}(s) + \sigma_{\varepsilon}^{2}) f_{U_{\gamma}^{m'}}(u_{\gamma}^{m'}) du_{1}^{m} \dots du_{|\Gamma_{m}|}^{m}} \\
\underbrace{\mathsf{V}_{m}(s) = \sum_{\gamma_{m}} |\phi_{\gamma_{m}}(s)|^{2} u_{\gamma}^{m}}$$

For USMG priors with mixing RVs subband-independent and rapidly decreasing pdfs.

$$P(\Phi_m | Y_s; \mathbf{U}_{\gamma}^m) = \frac{\mathcal{N}(Y_s; \mu_m, \hat{V}_m + \sigma_{\varepsilon}^2)}{\sum_{m'=1}^M \mathcal{N}(Y_s; \mu_{m'}, \hat{V}_{m'} + \sigma_{\varepsilon}^2)}$$

For many usual transform bases, \hat{V}_m is exactly (or to a good approximation):

$$\hat{V}_m = (\approx) \sum_{\gamma_m} \underbrace{\hat{u}_{\gamma}^m}_{\text{Empirical bayes estimate}}$$

1D Examples

Original

PSNR_w=32.95

PSNR_d=32.39

 $\mathsf{P}(\Phi_{\!_{\sf W}}|\mathsf{Y})$

PSNR_{cb}=34.47

Original

PSNR_w=23.95

 $\mathsf{P}(\Phi_{\mathsf{w}}|\mathsf{Y})$

Combined PSNR=25

MBKF UDWT PSNR=24.7

MBKF FDCT PSNR=26.12

Conclusion and perspectives

- A flexible statistical prior to model both marginal and joint statistics of sparse representation coefficients.
- Univariate and multivariate properties derived and special cases fully considered.
- Application to statistical modeling of real images.
- Bayesian term-by-term MF and MAP estimators also derived.
- Combined MF denoising with bases.
- Extension to other transforms.
- Extension to handle more rigorously dependencies (e.g. global MRF).

More details at

http://www.greyc.ensicaen.fr/~jfadili

Thanks Any questions ?