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Observation model
The image (or signal) is viewed as realization(s) of a RV or a random

field whose degradation equation is:

Ys = M [Ψ((BX)s) ⊙ ǫs] (1)

where:

⊙ is any composition of two arguments (e.g. ’+’, ’·’).
s ∈ S is the location index.

ǫs is the noise (random) (generally assumed AWGN but not

necessarily so, e.g. speckle, Poisson, 1
f ).

B is a (possibly non-linear) degradation operator (e.g. convolution

with a PSF).

Ψ is a transformation not necessarily linear nor invertible (e.g.

sensor-specific, etc).

M missing data mechanism.

Restoration problem: how to estimate unobserved X from observed Y

An inverse ill-posed problem SIAM IS’06 – p.3/29
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Bayesian paradigm

Y = Ψ((B X )) ⊙ ǫ

p(x, z): prior distribution. z some other image features (e.g.

local regularity, texture, etc).

p(y|x, z): likelihood (given x and z). (p(ǫ)).

p(y): marginal distribution =
∫

p(y|x, z)p(x, z)dxdz.

p(x, z|y), posterior distribution:
p(y|x,z)p(x,z)

p(y)

Bayesian estimation amounts to finding the operator D s.t.:

x̂ = arg inf
D∈On

R (x, x̂ = Dy) = EY,X [L(x,Dy)] (2)
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What estimator for what risk ?

Cost L (x, x̂) Estimator x̂

0-1 MAP arg max
x∈X

pX|Y (x|y)

L2 MF E [X|Y ]

L1 MMAE Pr(X > x̂|Y = y) = 1
2

Card {s ∈ S : x̂s 6= xs} MPM MAP at each site.

MAP involves solving an optimization problem.

MF involves solving an integration problem.

For mutually independent iid gaussian signal and noise, MAP, MF

and Wiener are the same.
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What prior ?

Image corpus based models

Existence of a probability space on some particular corpus of

images (e.g. natural images) [Olshausen and Field 96, Zhu and

Mumford 96, Gousseau 00, Gousseau-Morel-Alvarez 99,

Mumford and Huang 99].

Transported Generator Models

Random objects randomly placed (according to some probability

law) while imposing some axioms such as scale invariance

(multi-scale nature of images) [Gidas et Mumford 01, Grenander

et al. 99-03].

Random Field Theory (e.g. MRF) [Besag 86, Geman and Geman

88].

Sparse representation-based prior [Mallat 89, Simoncelli et al. 98,

Wainwright et al. 00, Grenander et al. 01, Achim et al. 01, Fadili et al.

03, etc]. SIAM IS’06 – p.6/29



Elements from modern harmonic analysis

An n-sample signal or image X can be written as the superposition of elementary

functions φγ(s) (atoms) parameterized by γ s.t. (Γ is denumerable):

Xs =
P

γ∈Γ
αγφγ(s), φγ ∈ L, ‖α‖

0
≪ n

( n x 1 ) ( n x L ) ( L x 1 )

The atoms {φl}l=1,...,L are normalized to a unit ℓ2 norm.

Φ = [φ1 . . . φL] ∈ R
N×L, Card Γ = L ≥ N (bases, tight frames or frames).

Examples of Γ: frequency (Fourier), scale-translation (wavelets),

scale-translation-frequency (wavelet packets), translation-duration-frequency (cosine

packets), scale-translation-angle (geometrical X-lets, curvelets, bandlets, contourlets,

wedgelets, etc).
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Sparse representation-based denoising

Stable recovery of a sparse representation in presence of (AWG)

noise (with bounded variance):

min
α

‖α‖0 s.t. ‖Y − Φα‖2 ≤ δ

Convexify and relax [Chen et al. 01, Donoho et al. 04, Gribonval et

al. 04, Fuchs 05, etc]:

min
α

1

2
‖Y − Φα‖2 + λ ‖α‖1

Corresponds to the MAP estimate with Laplacian prior.

Here, the ℓ1 norm prior will be replaced by a flexbile family of sparsity

promoting priors and the MAP by the MF.
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A brief overview
Classical term-by-term

Minimax estimation, SureShrink, etc [Donoho

et al. 92-95]. Modifications on Donoho’s

shrinkage operators [Bruce and Gao, Anto-

niadis and Fan]. Translation invariant thresh-

old [Coifman and Donoho 95]. Hypothe-

sis testing [Abramovich and Benjamini 95-

96, Ogden and Parzen 96]. Cross-validation

[Green et Silverman 94, Eubank 99].

Classical block

Non-overlapping block thresholding [Cai 99].

Overlapping block thresholding [Cai et Silver-

man 00].

Bayesian term-by-term (univariate)

Bernoulli-Gaussian FM [Abramovich et al. 98,

Clyde and George 99,00]. Bayesian hypothe-

sis testing [Vidakovic et al. 98]. SMG with ex-

ponential multiplier prior [Vidakovic et al. 00].

Two Gaussians FM [Chipman et al. 97]. t-

Student prior [Vidakovic 98]. GGD [Mallat99,

Liu et Moulin 99]. Adaptive variance gaussian

prior [Simoncelli 99]. α-stable [Achim et al.

01].

Bayesian block (multivariate)

Non-overlapping block bayesian estimation

[Abramovich et Sapatinas 00]. Multivariate

gaussian prior [Huang and Cressie 00]. Mixed

effects models [Huang and Lu 00]. MRF [Mal-

fait et al. 97, Crouse et al. 98, Pizurica et al.

02]. HMT model [DSP Rice (Romberg, Bara-

niuk et al. 00-02)]. Scale mixture of gaussians

[Li and Orchard 00, Mihchak et al. 99, Portilla

et al. 03]. Multi-variate α-stable [Koruglu et

Achim 04].

A comprehensive comparative study in [Antoniadis, Bigot and Sapatinas 01]. SIAM IS’06 – p.9/29



Univariate Scale Mixture of Gaussians family

Definition 1 (Andrews and Mallows 74) Let X be a RV with real-valued realizations. Under the SMG, there

exist two independent RVs U ≥ 0 and Z ∼ N (0, 1) such that:

X
d
= Z

√
U (3)

Property 1

SMG is a subset of the elliptically symmetric distributions [Kotz et al. 89]

fX(0) exists iif E[U−1/2] < +∞.

The pdf of X is:

fX(x) =
1√
2π

Z
+∞

0

u−1/2e−
x
2

2u fU (u) (4)

It is unimodal, symmetric around the mode and differentiable almost everywhere (except perhaps at 0).

The characteristic function (CF) of X is:

ΦX(ω) = L[fU ]

„
ω2

2

«

(5)

L is the Laplace transform.

The pdf of U is closely related to the inverse Laplace transform of fX .
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USMG family

The following proposition establishes necessary and sufficient conditions for such a

representation to exist:

Proposition 1 The RV X has a SMG representation iff the kth derivatives of fX(
√

y) have alternating sign,

i.e.:

„

− d

dy

«k

fX(
√

y) ≥ 0 ∀y > 0 (6)

Lemma 1 If X
d
= Z

√
U with random U ≥ 0 and Z ∼ N (0, σ2), then kurtosis(X) > 0 =⇒ the

symmetric distribution of X is necessarily sharply peaked (leptokurtic) with heavy tails.

For sparse representations, empirical coefficient pdfs are symmetric around 0,

leptokurtic and heavy tailed.

These pdfs have their 1st and 2nd derivatives of alternating signs on R
+.

The SMG family satisfies all these requirements.

Consequence: this family is well adapted to capture the sparsity of decompositions

and is then legitimate as a prior for the coefficients.

A key advantage of SMG is that it transfers desirable properties of the gaussian

distribution through the mixing RV. SIAM IS’06 – p.11/29



Relating USMG to Besov space

An explicit relationship between the parameters of the USMG prior on

the wavelet coefficients of g and the Besov space within which g may

fall (a.s.).

Theorem 1 Let Xj,k
d
= Zj

√
U iid RVs at each scale such that Z ∼ N (0, σ2

j ), E [U ] =

1 and MU (p) < +∞ 1 ≤ p < +∞ and σj = σ02
−jβ (the scale invariance property

of images), with (0 < σ0 < +∞, β ≥ 0). Then, for a fixed c0,0,

g ∈ Bs
p,q almost surely if and only if β > (s +

1

2
), for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞.

SIAM IS’06 – p.12/29



USMG: empirical Bayes

Generally, distribution of U depends on some hyperparameters θ.

They are estimated directly from the coefficients at each subband:

MLE.

Quantile methods.

Characteristic function methods.

Cumulants (easily extended in presence of AWGN).

EM.

This step is crucial for the final performance of the denoiser.

Is somewhat easy in noiseless case and becomes much more

complex with corrupting noise.
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USMG: examples

The Bessel K form prior [Grenander et al. 03, Fadili et
al. 03]: the mixing RV is Gamma distributed.

The α-stable prior [Achim et al. 01, Boubchir and Fadili
03]: the mixing RV is also α-stable.

The GGD prior [Mallat 89, Moulin and Liu 99]: the
mixing RV is not known in a closed form.
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Example on the DWT

Comparison on a 100 image database.
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Multivariate SMG family

Definition 2 Let X be a VRV taking values in R
d. Under the SMG, there exists a RV

U ≥ 0 and a VRV Z ∼ N (0, Σ), Σ > 0 (U and Z mutually independent) such that:

X
d
= Z

√
U (7)

Property 2

MSMG is a sub-family of elliptically symmetric distributions [Kotz et al. 89].

The pdf of X is:

fX(x) = (2π)−d/2|Σ|−1

∫ +∞

0

u−1/2 exp

[

−x
T Σ−1

x

2u

]

fU (u)du (8)

It is unimodal, elliptically symmetric with elliptically symmetric CF:

ΦX(ω) = L [fU ]

(
ω

T Σω

2

)

(9)
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Multivariate SMG family

Lemma 2 For a RV U ,

The measure of multivariate kurtosis of X in the sense of Mardia is

always strictly positive.

A necessary and sufficient condition for a MSMG representation to

exist is the alternation of sign of the derivatives of its functional pa-

rameter (density generator).

The multivariate SMG family satisfies the requirements
of leptokurticity, heavy-tailness and symmetry.

This family is again adapted to capture the sparsity and
dependency structure of the representation coefficients
and is then legitimate as a multivariate prior.
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MSMG: empirical Bayes

Again, the distribution of the multiplier U depends on some

hyperparameters θ.

Σ and these hyperparameters are estimated directly from the

coefficients:

MLE (very time consuming).

Moments and Cumulants (E
[(

XΣ−1
X

)i
]

= 2i Γ(d/2+i)
Γ(d/2) E

[
U i

]
).

EM (easily adapted if univariate EM is accessible).

Again, this step is a chief obstacle towards good performance of the

denoiser.

Somewhat easy in noiseless case but more complex with corrupting

noise.
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MSMG: examples

The multivariate Bessel K form prior [Fadili et al. 06]:
the mixing RV is Gamma distributed.

The α-stable prior [Kuruoglu et al. 04]: the mixing RV is
also α-stable.

The GGD prior [Fadili et al. 05].

Non-informative Jeffrey’s prior [Portilla et al. 03].

SIAM IS’06 – p.19/29



Visual illustration (d = 2)

Empirical (red), MBKF (blue), AMGGD (green), MSMG with Jeffrey’s multi-

plier (cyan).
SIAM IS’06 – p.20/29



Example on the DWT and FDCT
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Application to Bayesian denoising

The MF estimator corresponds to a scale mixture of
local Wiener estimates:

α̂MF =

∫ +∞

0
α̂|u
︸︷︷︸

Wiener estimate

φ (d; uΣ + Σε) fU (u)du

∫ +∞

0
φ (d; uΣ + Σε) fU (u)du

Closed-form expressions.

Deploy the bayesian integration technology:

Analytic approximation (e.g. Laplace, Saddlepoint).

Quadrature numerical integration (accurate but
slow).

Monte-Carlo Integration (fast and accurate).
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Application to Bayesian denoising (cont’d)

Main results
Theorem 2

Both the MF and the MAP estimators under the UBKF prior have

closed analytical forms.

The UBKF MAP estimator is equivalent to universal soft

thresholding for
σ

2
ε

c
= log n as α → 1 (Laplacian prior) or large n.

Bayesian CLT: the UBKF MAP estimator is asymptotically gaussian

(as n → +∞).

The MF estimator under the α-stable prior has a closed analytical

form.
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Combining transforms: bases

The dictionary is a union of M (sufficiently incoherent) bases

{Φm}m=1,...,M .

Y Φ1

Φ2

ΦM

U
1

γ

U
2

γ

U
M

γ

X̂
X̂1 = E[X|Y,Φ1]

X̂2 = E[X|Y,Φ2]

X̂M = E[X|Y,ΦM ]

P (ΦM |Y ;UM

γ
)

P (Φ1|Y ;U1

γ
)

P (Φ2|Y ;U2

γ
)

X̂ =
M∑

m=1

X̂mP (Φm|Y ;Um
γ )
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Combining transforms: bases
Suppose that:

The SMG prior is independent of the transform.

The transforms are equiprobable (or given by a learning step).

For the USMG:

P (Φm|Ys;U
m
γ ) =

R
·· ·

R
+∞
0

N (Ys; µm
|{z}

LP component

, Vm(s) + σ2
ε)fUm

γ
(um

γ )
| {z }

SMG prior

dum
1

. . . dum
|Γm|

PM
m′=1

R
·· ·

R
+∞
0

N (Ys; µm′ , Vm′ (s) + σ2
ε)f

Um′

γ

(um′

γ ) dum
1

. . . dum
|Γm|

Vm(s) =
X

γm

|φγm
(s)|2 um

γ

For USMG priors with mixing RVs subband-independent and rapidly decreasing pdfs.

P (Φm|Ys;U
m
γ ) =

N (Ys; µm, V̂m + σ2
ε)

PM
m′=1

N (Ys; µm′ , V̂m′ + σ2
ε)

For many usual transform bases, V̂m is exactly (or to a good approximation):

V̂m = (≈)
X

γm

ûm
γ

|{z}

Empirical bayes estimate SIAM IS’06 – p.25/29



1D Examples
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Original Noisy PSNR
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Combined PSNR=25 MBKF UDWT PSNR=24.7 MBKF FDCT PSNR=26.12
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Conclusion and perspectives

A flexible statistical prior to model both marginal and joint statistics of

sparse representation coefficients.

Univariate and multivariate properties derived and special cases fully

considered.

Application to statistical modeling of real images.

Bayesian term-by-term MF and MAP estimators also derived.

Combined MF denoising with bases.

Extension to other transforms.

Extension to handle more rigorously dependencies (e.g. global

MRF).
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More details at

http://www.greyc.ensicaen.fr/~jfadili

Thanks
Any questions ?
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